Chapter 8

Test Compression

Acknowledgements:
Mainly based on the lecture notes of
Chapter 6, "VLSI Test Principles and Architectures"

ch8-1

What is this Chapter about?

- □ Introduce the basic concepts of test data compression
- □ Focus on stimulus compression and response compaction techniques
- Present and discuss commercial tools on test compression

Test Compression

- □ Introduction
- □ Test Stimulus Compression
- □ Test Response Compaction
- □ Industry Practices
- □ Concluding Remarks

ch8-3

Introduction

- □ Why do we need test compression?
 - Test data volume
 - Test time
 - Test pins
- □ Why can we compress test data?
 - Test vectors have a lot of "don't care" (X's)

Test Compression Categories

□ Test Stimulus Compression

- (1) Code-based schemes
- (2) Linear-decompression-based schemes
- (3) Broadcast-scan-based schemes

□ Test Response Compaction

- Space compaction
- Time compaction
- Mixed time and space compaction

Test Stimulus Compression

- Code-based schemes
 - Dictionary code (fixed-to-fixed)
 - Huffman code (fixed-to-variable)
 - Run-length code (variable-to-fixed)
 - Golomb code (variable-to-variable)
 - □ Linear-decompression-based schemes
 - □ Broadcast-scan-based schemes

Golomb Code

□ Golomb code (variable-to-variable)

Group	Run-Length	Group Prefix	Tail	Codeword
A ₁	0	0	0.0	000
	1		0.1	001
	2		10	010
	3		11	011
A ₂	4	10	0.0	1000
	5		0.1	1001
	6		10	1010
	7		11	1011
A ₃	8	110	0.0	11000
	9	1 1	0.1	11001
	10	1 1	10	11010
	11	1	11	11011

ch8-13

Example of Golomb Code

□ Golomb code (variable-to-variable)

 T_E = 010 1000 011 1000 1000 1001 010 1011 011

The length of T_D is 43 bits The length of T_E is 32 bits

Test Stimulus Compression

- □ Code-based schemes
- **□** Linear-decompression-based schemes
 - □ Broadcast-scan-based schemes

Test Stimulus Compression

- □ Code-based schemes
- □ Linear-decompression-based schemes
- □ Broadcast-scan-based schemes

ch8-21

Basic Concept: Broadcast-Scan

 $\{SC_1, SC_2, ..., SC_k\}$ shares the same test patterns applied by ATE

ATPG Supporting Broadcast-Scan

 Force ATPG tool to generate patterns for broadcast scan (by binding certain PI's together)

ch8-23

Reconfigurable Broadcast Scan

□ Reconfigurable broadcast scan

- Static reconfiguration
 - The reconfiguration can only be done when a new pattern is to be applied
- Dynamic reconfiguration
 - The configuration can be changed while scanning in a pattern

Broadcast-Scan Based Scheme

- First configuration is: 1->{2,3,6}, 2->{7}, 3->{5,8}, 4->{1,4}
- Second configuration is: 1->{1,6}, 2->{2,4}, 3->{3,5,7,8}

First Partition Second Partition

Test Response Compaction (or Called Output Compaction)

- □ Space compaction
- □ Time compaction
- □ Mixed time and space compaction

Unlike lossless input stimulus compression, Output compaction is often lossy, leading to aliasing...

Space (Output) Compaction

- □ Space (output) compaction
 - Zero-aliasing output compaction
 - X-compactor
 - X-blocking & X-masking techniques
 - X-impact-aware ATPG

Zero-Aliasing Output Compaction

Theorem 6.1

For any test set T, for a circuit that implements function C, there exists a zero-aliasing output space compactor for C with q outputs where $q = \lceil \log_2(|T|+1) \rceil$.

Theorem 6.2

Let G be a response graph. If G is 2^q colorable, then there exists a q-output zero-aliasing space compactor for the circuit C.

X-Blocking or Masking Techniques

- □ X-blocking (or X-bounding, X-avoiding)
 - X's can be blocked before reaching the response compactor
 - To ensure that no X's will be observed
 - May still have fault coverage loss
 - Add area overhead and may impact delay

X-Impact-Aware ATPG

□ Concept

- Simply use ATPG to algorithmically handle the impact of residual X's on the space compactor
- Without adding any extra circuitry

ch8-39

Example: Handling X in ATPG

Path (G5→G6→SC4→G8→q) might be contaminated by 'X' at f

- (1) Propagate the fault effect through $(f1 \rightarrow G3 \rightarrow G2 \rightarrow SC2 \rightarrow G7 \rightarrow p) \Rightarrow b=0, c=1$
- (2) Kill the X by assigning g to '1' \rightarrow SC4=0 \rightarrow q is observable

Output-Compactor-Aware ATPG

- □ f₂/1 fault could be masked as propagated to p
- □ Block aliasing by assigning a to '0'

ch8-41

Time Compaction

- **□** Time compaction
 - A time compactor uses sequential logic to compact test responses
 - MISR is most widely adopted
 - n-stage MISR can be described by specifying a characteristic polynomial of degree n

Industry Practices

- □ OPMISR+
- □ Embedded Deterministic Test
- □ Virtual Scan and UltraScan
- Adaptive Scan
- □ ETCompression

ch8-45

Industry Solutions Categories

- □ Linear-decompression-based schemes
 - Two steps
 - ETCompression, LogicVision
 - TestKompress, Mentor Graphics
 - SOCBIST, Synopsys
- □ Broadcast-scan-based schemes
 - Single step
 - SPMISR+, Cadence
 - VirtualScan and UltraScan, SynTest
 - DFT MAX, Synopsys

Concluding Remarks

□ Test compression is

- An effective method for reducing test data volume and test application time with relatively small cost
- An effective test structure for embedded hard cores
- Easy to implement and capable of producing highquality tests
- Successful as part of standard design flow