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國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 7
Built-In Self-Test

Design-for-Testability

• Design activities for generating a set of 
test patterns with a high fault coverage.

• Methodology
– Logic

• Automatic Test Pattern Generation (ATPG)
• Scan Insertion (to ease the ATPG process)
• Built-In Self-Test

ch7-2

– Memory (SRAM, DRAM, …)
• Built-In Self-Test

User Core

SRAM

SRAM
Logic
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Outline

• Basics
• Test Pattern Generation
• Response Analyzers
• BIST Examples
• Memory BIST

ch7-3

y

Definition & Advantages of BIST

• Built-In Self-Test (BIST) is a design-for-
t t bilit  (DFT) t h i  i  hi h t titestability (DFT) technique in which testing
(test generation , test application) is 
accomplished through built-in hardware
features.
– [ V.D. Agrawal, C.R. Kime, and K.K. Saluja ]

ch7-4

Can lead to significant test time reduction
Especially attractive for embedded cores
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Good Things About BIST

• At-Speed Testing
– catching timing defects

• Fast
– reduce the testing time and testing costs
– a major advantage over scan

• Board-level or system-level testing

ch7-5

– can be conducted easily in field

General Organization of BIST

Test GeneratorSimple on-chip 
pattern generation

Circuit Under Test
(CUT)

To avoid expensive

pattern generation

signature

off-line
pre-computed

fault-free
signature

ch7-6

Response Compressor
To avoid expensive

bit-to-bit comparison +
signature

Pass-or-fail
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Why Compression ?

• Motivation
– Bit-to-bit comparison is infeasible for BIST

Si t  l i• Signature analysis
– Compress a very long output sequence into a single 

signature
– Compare the compressed word with the pre-stored 

golden signature to determine the correctness of the 
circuit

• Problems

ch7-7

– Many output sequences may have the same signature 
after the compression leading to the aliasing problem

– Poor diagnosis resolution after compression

Aliasing Effect in Response 
Compression

• Aliasing - the probability that a faulty 
response is mapped to the same signature as 
th  f lt f  i it (魚目混珠) 錯變成對的機率the fault-free circuit (魚目混珠) 錯變成對的機率

output response space signature space








fault-free

ch7-8


 



Response compression is a mapping
from the output response space to the signature space
In this example, aliasing prob. = 1 / 4 = 25%
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BIST Issues

• Area Overhead
P f  D d ti• Performance Degradation

• Fault Coverage
– Most on-chip generated patterns may not 

achieve a very high fault coverage

• Diagnosability

ch7-9

– The chip is even harder to diagnose due to 
response compression

Random Pattern Resistant Faults

• An RPRF cannot be detected by random patterns
• is a major cause of low fault coverage in BIST

Fault coverage inadequate coverage can be boosted by 
test points, ATPG patterns, … ?

ch7-10

Pseudo-random pattern length
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Example: Hard-To-Detect Fault

• Hard-to-detect faults 
– Faults that are not covered by random testing
– E.g., an output signal of an 18-input AND gate

Hard-to-detect fault

ch7-11

x
stuck-at-0

Reality of Logic BIST

• BIST is NOT a replacement for scan
– it is built on top of full-scanp

• BIST does NOT result in fewer patterns
– it usually uses many more patterns than ATPG patterns

• BIST does NOT remove the need for testers
– tester still required to 

• initiate test

ch7-12

• read response
• apply ATPG patterns to other part of IC
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BIST Techniques

• Stored-Vector Based
Micro instruction support– Micro-instruction support

– Stored in ROM

• Hardware-Based Pattern Generators
– Counters
– Linear Feedback Shift Registers

C ll l  A t t

ch7-13

– Cellular Automata

Linear Feedback Shift Register 
(LFSR)

• Flip-Flop: one cycle delay
• XOR gate: modulo-2  addition
• Connection: modulo-2 multiplication

+

Type 1: Out-Tap Type 2: In-Tap

ch7-14

D1 D2 D3 D4 D1 D2 D3 D4+z
y1 y2 y3 y4 y1 y2 y3 y4z

z = y4 + y1 = D4(z) + D(z) z = y4 = D(y3 + y4) = D(D3(z) + z)
= D4(z) + D(z)
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LFSR – Example

16-bit shift register16 bit shift register

7th 9th 12th 16th

This sixteen-stage LFSR will autonomously generates a maximum length of 

ch7-15

g y g g
216-1 = 65,535 state before the sequence repeats
The seed (I.e., initial state of the LFSR) should not be all-0 state.
All 0-state is called a forbidden seed.

LFSR Example

1 0 0 0
0 0 0 1

D4 D2
D

1D
3+

0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1
1 0 1 1

D4D3D2D1

z y1 y2 y3 y4

y1(t+1)
y2(t+1)
y3(t+1)
y4(t+1)

1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

y1(t)
y2(t)
y3(t)
y4(t)

＝

ch7-16

0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

g x x x( )   4 1 1
repeating

Characteristic polynomial
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Ex: Primitive LFSR – State Diagram

0000

The register cycles through all 24-1 states
if the seed is not all-0

 Such a LFSR is called primitive

1000 0001

1100 0010

1110

1111

0100

1001

ch7-17

 Such a LFSR is called primitive

0111

1011

0101
1010

1101

0011

0110

Primitive Polynomials
(Up to Degree 100)

013424)( xxxxxxp Note: “24 4 3 1 0” means

ch7-18
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Galois Field GF(2)

• Operation
– Modulo-2 addition, subtraction, multiplication, and 

division of binary data

• Properties
– Modulo-2 addition and subtraction are identical
– 0+0=0, 0+1=1, 1+0=1, 1+1=0
– 0-0=0, 0-1=1, 1-0=1, 1-1=0

ch7-19

Bit-stream
multiplication

Bit-stream
division

Why LFSR ?

• Simple and regular structure
– D-flip-flops and XOR gates

• Compatible with scan DFT design
• Capable of exhaustive and/or pseudo 

exhaustive testing
– If the LFSR is properly configured

• Low aliasing probability

ch7-20

g p y
– The fault coverage lost due to the response 

compression is less than other compression schemes
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LFSR – Definitions

• Maximum-length sequence
– A sequence generated by an n-stage LFSR is called a 

maximum-length sequence if it has a period of 2n-1
– A maximum-length sequence is called m-sequence

• Primitive polynomial
– The characteristic polynomial associated with a 

maximum-length sequence is called a primitive 
polynomial

I d ibl  l i l

ch7-21

• Irreducible polynomial
– A polynomial is irreducible if it cannot be factorized 

into two (or more) parts, I.e., it is not divisible by any 
polynomial other than 1 and itself.

LFSR – Properties

• No. of 1s and 0s
– The number of 1s in an m-sequence differs from the 

number of 0s by only oney y

• Pseudo-random sequence
– The sequence generated by an LFSR is called a pseudo-

random sequence

• The correlation
– Between any two output bits is very close to zero 

• Consecutive run of 1s and 0s

ch7-22

• Consecutive run of 1s and 0s
– An m-sequence produces an equal number of runs of 1s 

and 0s.
– In every m-sequence, one half the runs have length 1, 

one fourth have length 2, one eighth have length 3, and 
so forth
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LFSR – Polynomial Multiplication

g x x x( )   4 3 1
1101

1
3 2x x 

D1D2D3+D4+

Output stream   D4 D3 D2 D1 Input stream
0 0 0 0   1 1 0 1

1   1 0 0 1 1 0 1
1 0   1 0 1 1   0 1

1 0 1 0 1 1 0 1

Add-and-shift

ch7-23

1 0 1   0 1 1 0   1
1 0 1 1   0 1 0 1
x7 x5 x4 x2 1

   x x x x x x x x4 3 3 2 7 5 4 21 1 1         

LFSR – Polynomial Division 
(Example)

Input
011011011

Output 
11001

M(x)

Q(x)g x x x( )   4 3 1

D1 D2 D3 + D4+

M(x) D1 D2 D3 D4 Q(x)
0 1 1 0 1 1 0 1 1   0 0 0 0

0 1 1 0 1   1 0 1 1
0 1 1 0   0 1 0 0 1
0 1 1   0 0 1 0 0 1

after 4 
shifts

M(x) D1 D2 D3 + D4+

x+x2+x4+x5+x7+x8 1+x+x4

Quotient

ch7-24

0 1   1 0 0 1 0 0 1
0   0 1 0 1   1 0 0 1 

1 0 1 1   1 1 0 0 1
1 +x             +x41       +x2+x3

(x8+x7+x5+x4+x2+x)  (x4+x3+1) = x4+x+1
R(x) = x3+x2+1

Remainder
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LFSR – Summary

• LFSRs have two types
– In-tap and Out-tap– In-tap and Out-tap

• LFSRs
– Can be used to implement polynomial 

multiplication and division in GF(2)

• As polynomial multiplier
– LFSRs are capable of generating pseudo random

ch7-25

LFSRs are capable of generating pseudo random
vectors

• As polynomial divisors
– LFSRs are capable of compressing test response

Cellular Automaton (CA)

– An one-dimensional array of cells
– Each cell contains a storage device and next 

state logicg
– Next state is a function of current state of the 

cell and its neighboring cells

Next
State

Next
State

Next
State . . .. . .

ch7-26

D
Q

State

D
Q

D
Q

State State

Three-cell neighbor

. . .
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Cellular Automata – Name

• Name of CA functions 
– Is determined by its truth table

A A A A A A A A Next State K Map FCAState   A0 A1 A2 A3 A4 A5 A6 A7

Ci+1

Ci

Ci-1

Next State K-Map FCA

A0 A2

A1 A3 A5

A4 A6

A7

Name Ai
i 

7

2 (defined by Wolfram)

0  0  0  0  1  1  1  1
0  0  1  1  0  0  1  1
0  1  0  1  0  1  0  1

ch7-27

i
i0

Example: F C CCA i i 1

Name = 64+32+4+2
= 102

0 1 0 1

( y )

0 1 0 1

CiCi-1

00    01   11     10Ci+1

0
1

Cellular Automata – Hardware

CA with Null Boundary Condition

0

D
Q

Fca

D
Q

Fca

D
Q

Fca

D
Q

Fca

D
Q

Fca

D
Q

Fca

0 0

ch7-28

Q Q Q Q Q Q

Standard – All the CAs are of the same type
Hybrid – The CAs are of different type
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Cellular Automata – Hardware

CA with cyclic Boundary Condition

Fca Fca Fca Fca Fca Fca

ch7-29

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

Outline

• Basics
T t P tt  G ti• Test Pattern Generation
– How to generate patterns on chip using 

minimum hardware, while achieving 
high fault coverage

• Response Analyzers

ch7-30

• BIST Examples
• Memory BIST
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On-Chip Pattern Generation

PG Hardware Pattern Generated

• Stored Patterns
• Counter Based
• LFSR Based

C ll l  A t t

• Deterministic
• Pseudo-Exhaustive
• Pseudo-Random

P d R d

ch7-31

• Cellular Automata • Pseudo-Random

Pseudo Random Patterns: Random patterns with a specific sequence
defined by a seed

Counter Based Pattern Generation

• Generates regular test sequences
– Such as walking sequence and counting sequence for 

memory interconnect testingmemory interconnect testing

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

Walking Sequence
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

Counting Sequencecycle
1
2
3
4
5
6

ch7-32

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 0 1
1 1 0
1 1 1

coupling between interconnects
can be tested by walking sequence

6
7
8

line id 1    2   3    4    5   6     7   8  

chip1 chip2
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On-Chip Exhaustive Testing

• Exhaustive testing
– Apply all possible input combinations to CUD
– A complete functional testing
– 100% coverage on all possible faults

• Limitation
– Only applicable for circuits with medium number of 

inputs

ch7-33

6-stage
LFSR

Circuit Under Test
(CUD)

Signature
Analyzer

(SA)

Pseudo Exhaustive Testing (PET)

– Apply all possible input combinations to 
 titi d b i itevery partitioned sub-circuits

– 100% fault coverage on single faults and 
multiple faults within the sub-circuits

– Test time is determined by the number 
of sub-circuits and the number of inputs 

ch7-34

to the sub-circuit
– Partitioning is a difficult task
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Example for Pseudo-Exhaustive 
Testing

ch7-35

10 vectors are enough to pseudo-exhaustively test this circuit,
Compared to 26=64 vectors for naive exhaustive testing

LFSR-Based Pattern Generation

– Apply random test sequence generated 
b  LFSR/CAby LFSR/CA

– Simplest to design and implement
– Lowest in hardware overhead
– Fault coverage

• Is a function of the test length and the 

ch7-36

random testability of the circuits
• Certain circuits are more resistant to  random 

patterns than others
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Pseudo Random Testing Hardware

Combinational Sequential

LFSR

Combinational
circuit

LFSR

Combinational
circuit

ch7-37

SA SA

(Circular BIST)

BIST – Pseudo Random Testing 
Hardware

Shift register
10-stage

LFSR
LFSR

Circuit Under Test
S
R

S
R

S
R

CUT CUT

ch7-38

SA

(CEBT)

SA

(STUMPS)

test-per-clock configuration test-per-scan configuration
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Weighted Pseudo Random Testing

It was observed that weighted random patterns could
achieve higher fault coverage in most cases !

LFSR
0

123 193 61 114 228 92 25

0

LFSR Based Weighted Cellular Automaton

ch7-39

1/8 3/4 1/2 7/8 1/2 0.8      0.6      0.8       0.4     0.5     0.3     0.3

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Signal of An Arbitrary Weight

• To implement a signal
– with a signal-1 probability (weight) of 5/32

• Procedure
(1) Decompose into a sum of basic weights

5/32 = 4/32 + 1/32 = 1/8 + 1/32

(2) Use AND and OR gates to realize the weight

ch7-40

LF
S

R a signal with a
weight of 5/32

1/8

1/32

z = y1y2y3 + y1y2y3y4y5

y1
y2
y3

y4
y5
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Outline

• Basics
T t P tt  G ti• Test Pattern Generation

• Response Analyzers
– How to compress the output response 

without losing too much accuracy

• BIST Examples

ch7-41

p
• Memory BIST

Types of Response Compression

• Ones-counting compression
• Transition-counting compression
• Signature Analysis

ch7-42
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Ones-Counting Signature

• Procedure
– Apply the predetermined patterns
– Count the number of ones in the output 

sequence

Test
Pattern

CUT

R0=00000000
R1=11000000
R2=10000000

ch7-43

Counter
Clock

OC(R0) = 0
OC(R1) = 2
OC(R2) = 1

signature

Zero-Aliasing Test Set for Ones-
Counting

• Notations
– T0: set of test vectors whose fault-free response is 0T0: set of test vectors whose fault free response is 0
– T1: set of test vectors whose fault-free response is 1

• Theorem
– The following new test set does NOT suffer from 

fault masking using ones count testing
– T = {T0, (|T0|+1) copies of every pattern in T1}

ch7-44

– Note that the fault masking only occurs when a fault 
is detected by the same number of patterns in T0 
and T1; the above new test set avoid this condition
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Transition-Counting Signature

• Procedure
– Apply predetermined patternspp y p p
– Count the number of 01 and 10 transitions

Test
Pattern

CUT

DFF

ch7-45

CounterClock

Transition count

Aliasing of Transition-Counting

• Consider a sub-sequence of bits
( rj 1 rj rj+1 …)(… rj-1 rj rj+1 …)

If rj-1 is not equal to rj+1, then an error occurring at 
rj will not be detected by transition counting. 

• Example
1. (0, 1, 1)  (0, 0, 1)
2. (0, 0, 1)  (0, 1, 1)

ch7-46

( , , ) ( , , )
3. (1, 1, 0)  (1, 0, 0)
4. (1, 0, 0)  (1, 1, 0)
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Aliasing of Transition Counting

• Aliasing Probability
– NotationsNotations

• m: the test length
• r: the number of transitions

– Highest when r=m/2
– No aliasing when r=0 or r=m
– For combinational circuits, permutation of the 

i t  lt  i   diff t i t

ch7-47

input sequence results in a different signature
– One can reorder the test sequence to minimize 

the aliasing probability

Signature Analysis by LFSR

• Procedure
– Apply predetermined patterns
– Divide the output sequence by LFSR

Test
Pattern

CUT LFSR

ch7-48

Pattern
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Example: Aliasing Probability

• Assume that
– Output number to be compressed has m=4 bitsp p
– The compression is done by dividing output 

number by a divisor of 2n-1, (e.g., the divisor is 
22-1 = 3 when n=2)

– The remainder is taken as the signature

• Possible signatures

ch7-49

output       = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
remainder = 0 1 2 0 1 2 0 1 2 0   1  2   0   1   2   0
aliasing prob. when signature is 0 = (2m/(2n-1)) / 2m

= 1/ (2n-1) ~ 2-n

Multiple Input Shift Register (MISR)
(Temporal Compression)

• A MISR compacts responses from multiple 
circuit outputs into a signaturep g

D Q D Q D Q D Q+ + ++

ch7-50

clock

Aliasing probability of m stage = 2-m
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Outline

• Basics
• Test Pattern Generation
• Response Analyzers
• BIST Examples
• Memory BIST

ch7-51

Key Elements in a BIST Scheme

• Test pattern generator (TPG)
• Output response analyzer (ORA)Output response analyzer (ORA)

– Also called Signature Analyzer (SA)

• The circuit under test (CUT)
• A distribution system (DIST)

– which transmits data from TPG’s to CUT’s and from 
CUT’s to ORA’s

ch7-52

– e.g., wires, buses, multiplexers, and scan paths

• A BIST controller
– for controlling the BIST circuitry during self-test
– could be off-chip
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HP Focus Chip (Stored Pattern)

• Chip Summary
– 450,000 NMOS devices, 300,000 Nodes
– 24MHz clocks, 300K-bit on-chip ROM
– Used in HP9000-500 Computer

• BIST Micro-program
– Use microinstructions dedicated for testing
– 100K-bit BIST micro-program in CPU ROM
– Executes 20 million clock cycles

ch7-53

– Executes 20 million clock cycles
– Greater than 95% stuck-at coverage
– A power-up test used in wafer test, system test, 

field test

Logic BIST Example

• Features
– [Bardell 1982, 84]
– Self-Test using LFSR and Parallel MISRg
– Multiple scan chains to reduce test time

...

PIs

ML
F

Scan path

Scan path

ch7-54

...

POs

M
IS

R

F
S

R

Scan path

Scan path

CUT

Seed Signature
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Scan-Based Logic BIST 
Architecture

d d tt t

called STUMPS architecture by Mentor Graphics

pseudo-random pattern generator

ch
ai

n 
4

ch
ai

n 
2

ch
ai

n 
3

ch
ai

n 
1

primary 
input pins

primary 
output pins

ch7-55

multiple input signature register

Built-In Logic Block Observation 
(BILBO)

Z1 Z2

...

Zn

B1

c c c

0

1

M
U

X

QD

Q

Q1

D

Q

Q

Q2

...

...

QD

Q

Qn-1

D

Q

Q

Qn

S0

Si

B2

scan-in
Scan-out

ch7-56

B1 B2 operation mode
0  0 shift register
0  1 LFSR pattern generation
1  1 MISR response compressor
1  0 parallel load (normal operation)

c
0
0
0
1

...
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Example: BILBO-Based BIST

• Test procedure
– each logic block C1, C2, C3 are tested in a serial 

manner
– BIST controller needs to configure each BILBO

registers properly during self-testing

C1

BILBO1

BILBO2

when testing C1
BILBO1 is a PRPG
BILBO2 is a MISR

ch7-57

BILBO2

C2

BILBO3

C3

Concurrent BILBO

Logic with self-loop
top-row of D-FFs  MISR

bottom-row of D-FFs  PRPG

BILBO

C1

ch7-58

needs to be 
PRPG and MISR 
simultaneously

concurrent BILBO
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Outline

• Basics
• Test Pattern Generation
• Response Analyzers
• BIST Examples
• Memory BIST

ch7-59

The Density Issues

• Historical -Rule
– The number of bits per chip has quadrupled– The number of bits per chip has quadrupled

roughly every 3.1 (or ) years

• Density Induced Faults
– The cells are closer together

– More sensitive to influences of neighbors

ch7-60

o e se s t e to ue ces o e g bo s

– More vulnerable to noise on the address and 
data lines
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Test Time May Get Too Long !

• For today’s memory chips
– Test time becomes a big issue !
– We can afford nothing but linear test algorithm

• Example
– assume that the clock cycle time is 100 ns

n 64n n•log2n 3n3/2 2n2

Testing time (in seconds)Algorithm 
complexity

Capacity

ch7-61

16k 
64k 
256k 
1M 
4M 
16M

0.1 
0.4 
1.7 
6.7 

26.8 
1.8 

0.023 
0.1 

0.47 
2.1 
9.2 

40.3

0.63 
5.03 
40.3 
5.4 
43 
5.7

54 
14 
3.8 
61 
41 
2Mins 

Mins 

Mins 

Hrs

Hrs 

Days 

Years

Hrs 

Mins

IC Failure Rate Versus Time

Def: failure rate
The no. of failures per unit time as a fraction of
total population

IC’s failure rate is like a bathtub curve with three stages:C s a u e ate s e a bat tub cu e t t ee stages
1. Infant mortality stage: typically a few weeks
2. Normal life failure stage: up to 25 years or so
3. Wear-out stage

infant
mortality normal life

failure rate

wear-out
failures

failure
rate


ch7-62

Short period of accelerated stress test prior to shipment
 To eliminate the infant mortality

Time

>>

failure rate
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Memory Model

address register column decoder refresh logic
address

ro
w

 d
ec

od
er write drive

data register

Memory
Cell

Array
address
decoder data

R/W

ch7-63

data register

sense amplifier

read/write
control circuit

R/W

enable

clk

Memory Array

2L- K B it  Line
S torage C ell

P roblem : A SP E C T  R A T IO  or H E IG H T  >> W ID T H

R
ow

 D
ec

od
er

A K

A K + 1

A L -1

W ord L ine

S en se A m p lifiers /  Drivers

M .2 K

A m p lify  s wing to
r ail- to-rai l am p litu d e

ch7-64

Input-Output
(M  bits)

Colu m n  Dec ode r
A 0

A K -1

S elect s ap p rop riate
word
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Fault Models

• Stuck-At Faults (SAF)
– cell, data line, address line, etc.

• Open Faults (SAF)Open Faults (SAF)
– open in data line or in address line

• Transition Faults (TF)
– Cell can be set to 0, but not to 1

• Address Faults (AF)
– faults on decoders

• Coupling Faults (CF)

1 0 1

0 0

1 0 1

cell is affected

ch7-65

• Coupling Faults (CF)
– short or cross-talk between data (or address) lines
– A cell is affected by one of its neighboring cells

• Neighborhood Pattern Sensitive Fault (NPSF)
– A cell is affected by when its neighbors form a pattern

cell is affected

Example Faults
• SAF : Cell stuck
• SAF : Driver stuck
• SAF : Read/write line stuck
• SAF : Chip-select line stuck
• SAF : Data line stuck

Fault Models

• SAF : Data line stuck
• SAF : Open in data line
• CF : Short between data lines
• CF : Cross-talk between data lines
• AF : Address line stuck
• AF : Open in address line
• AF : Open decoder

ch7-66

• AF : Open decoder
• AF : Shorts between address lines
• AF : Wrong access
• AF : Multiple access
• TF : Cell can be set to 0 but not to 1 (or vice-versa)
• NPSF : Pattern sensitive interaction between cells
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Simple Test Algorithms

• Test Algorithm
– is an abstract description of a sequence of test patterns.

• Commonly Used Algorithms

– Background patterns

– Checkerboard patterns

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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– March Patterns
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

A March Algorithm

(Forward march that changes each cell’s content from 0 to 1)

1 0 0 0
0 0 0 0
0 0 0 0

1 1 0 0
0 0 0 0
0 0 0 0

1 1 1 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

(Backward march that changes each cell’s content from 1 back to 0)

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 1 1 1
1 1 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0
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1 1 1 1
1 1 1 1
1 1 1 0

1 1 1 1
1 1 1 1
1 1 0 0

1 1 1 1
1 1 1 1
1 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 0
0 0 0 0

1 1 1 1
1 1 1 1
1 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 0 0
0 0 0 0

1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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normal
inputs tester/BIST

BIST Circuit

Example: A Memory BIST

clock
FSM-1

pattern generator

M
U

X
test

patterns
Memory

S C cu

ou
tp

u
t b

u
ff

delay buffer
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reset

pass_or_fail

memory 
response

fer

comparator

test_done

Finite State Machine for March Alg.

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 11 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

S1
WRITE-0

S5
READ-1

if(a != N) a++; if(a != N) a++;

S4
READ-1

S3
WRITE-1

S2
READ-0

if(a != N) a++;

if(a == N) 
a=0;

if(a == N) 
a=0;

1 1 1 1

1 1 1 1

1 1 1 1

1 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0
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START

a = 0;

END

; a 0;

Notations of this extended state transition graph:
a: variable for address
N: number of cells
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Testing Procedure of BISTed Memory

normal
inputs

tester/
BISTset the test mode to BIST

Start

BIST Memory

M
U

X

test
patterns

clk

reset

apply clocking signals to input pin clk

set input signal reset to 1 for 
more than one clock cycles

set input signal reset to 0 to
start the BIST operation
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memory 
response

pass_or_fail

test_done

wait until the output response
of the output pin test_done is 1

catch the response of output pin pass_or_fail

Done

A Waveform Example

clock

R W R R W R R W R R W R R W R

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

reset

cmd

data

address
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pass_or_fail
test_done
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Quality Measures of BIST

TesterBIST-vs.-Tester
Profile

pass fail

pass

fail

B
I
S
T

Profile

(I) (III)

(II) (IV)誤殺者

漏網之魚
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1. False Negative Ratio: (II) / #chips     e.g., (1/20) = 5%
2. False Positive Ratio: (III) / #chips     e.g., (2/20) = 10%

To minimize region (II) and (III):


