

Design-for-Testability

- Design activities for generating a set of test patterns with a high fault coverage.
- Methodology
 - Logic
 - Automatic Test Pattern Generation (ATPG)
 - Scan Insertion (to ease the ATPG process)
 - Built-In Self-Test
 - Memory (SRAM, DRAM, ...)
 - Built-In Self-Test

Outline

- Basics
 - Test Pattern Generation
 - Response Analyzers
 - BIST Examples
- Memory BIST

ch7-3

Definition & Advantages of BIST

- Built-In Self-Test (BIST) is a design-fortestability (DFT) technique in which testing (test generation, test application) is accomplished through built-in hardware features.
 - [V.D. Agrawal, C.R. Kime, and K.K. Saluja]
 - Can lead to significant test time reduction Especially attractive for embedded cores

Good Things About BIST

- At-Speed Testing
 - catching timing defects
- Fast
 - reduce the testing time and testing costs
 - a major advantage over scan
- Board-level or system-level testing
 - can be conducted easily in field

ch7-5

9

Why Compression?

- Motivation
 - Bit-to-bit comparison is infeasible for BIST
- Signature analysis
 - Compress a very long output sequence into a single signature
 - Compare the compressed word with the pre-stored golden signature to determine the correctness of the circuit
- Problems
 - Many output sequences may have the same signature after the compression leading to the aliasing problem
 - Poor diagnosis resolution after compression

ch7-7

Aliasing Effect in Response Compression

 Aliasing - the probability that a faulty response is mapped to the same signature as the fault-free circuit (魚目混珠) 錯變成對的機率

Response compression is a mapping from the output response space to the signature space In this example, aliasing prob. = 1/4 = 25%

ch7-8

4

BIST Issues

- Area Overhead
- Performance Degradation
- Fault Coverage
 - Most on-chip generated patterns may not achieve a very high fault coverage
- Diagnosability
 - The chip is even harder to diagnose due to response compression

ch7-9

Pseudo-random pattern length An RPRF cannot be detected by random patterns is a major cause of low fault coverage in BIST Fault coverage inadequate coverage can be boosted by test points, ATPG patterns, ...?

.5

Example: Hard-To-Detect Fault

- · Hard-to-detect faults
 - Faults that are not covered by random testing
 - E.g., an output signal of an 18-input AND gate

Reality of Logic BIST

- BIST is NOT a replacement for scan
 - it is built on top of full-scan
- BIST does NOT result in fewer patterns
 - it usually uses many more patterns than ATPG patterns
- BIST does NOT remove the need for testers
 - tester still required to
 - · initiate test
 - read response
 - apply ATPG patterns to other part of IC

BIST Techniques

- Stored-Vector Based
 - Micro-instruction support
 - Stored in ROM
- Hardware-Based Pattern Generators
 - Counters
 - Linear Feedback Shift Registers
 - Cellular Automata

ch7-13

Linear Feedback Shift Register (LFSR) • Flip-Flop: one cycle delay

- · XOR gate: modulo-2 addition

• Connection: modulo-2 multiplication Type 1: Out-Tap Type 2: In-Tap $z = y4 + y1 = D^4(z) + D(z)$ $z = y4 = D(y3 + y4) = D(D^3(z) + z)$ $= D^4(z) + D(z)$ ch7-14

Primitive Polynomials (Up to Degree 100)							
Not	e: "24 4 3	1 0″	means	p(x)	$=x^{24}+x^4$	$+x^3$	$+ x^1 + x^0$
72	Exponents	n	Exponents	72	Exponents	72	Exponents
1	0	26	8 7 1 0	51	16 15 1 0	76	36 35 1 0
2	1 0	27	8 7 1 0	52	3 0	77	31 30 1 0
3	1 0	28	3 0	53	16 15 1 0	78	20 19 1 0
4	1 0	29	2 0	54	37 36 1 0	79	9 0
5	2. 0	30	16 15 1 0	55	24 0	80	38 37 1 0
6	1 0	31	3 0	56	22 21 1 0	81	4 0
7	1 0	32	28 27 1 0	57	7 0	82	38 35 3 0
8	6 5 1 0	33	13 0	58	19 0	83	46 45 1 0
9	4 0	34	15 14 1 0	59	22 21 1 0	84	13 0
10	3 0	35	2 0	60	1 0	85	28 27 1 0
11	2 0	36	11 0	61	16 15 1 0	86	13 12 1 0
12	7 4 3 0	37	12 10 2 0	62	57 56 1 0	87	13 0
13	4 3 1 0	38	6 5 1 0	63	1 0	88	72 71 1 0
14	12 11 1 0	39	4 0	64	4 3 1 0	89	38 0
15	1 0	40	21 19 2 0	65	18 0	90	19 18 1 0
16	5 3 2 0	41	3 0	66	10 9 1 0	91	84 83 1 0
17	3 0	42	23 22 1 0	67	10 9 1 0	92	13 12 1 0
18	7 0	43	6 5 1 0	68	9 0	93	2 0
19	6 5 1 0	44	27 26 1 0	69	29 27 2 0	94	21 0
20	3 0	45	4 3 1 0	70	16 15 1 0	95	11 0
21	2 0	46	21 20 1 0	71	6 0	96	49 47 2 0
22	1 0	47	5 0	72	53 47 6 0	97	6 0
23	5 0	48	28 27 1 0	73	25 0	98	11 0
24	4 3 1 0	49	9 0	74	16 15 1 0	99	47 45 2 0
25	3 0	50	27 26 1 0	75	11 10 1 0	100	37 0
							•

(

Galois Field GF(2)

- Operation
 - Modulo-2 addition, subtraction, multiplication, and division of binary data
- Properties
 - Modulo-2 addition and subtraction are identical
 - 0+0=0, 0+1=1, 1+0=1, 1+1=0
 - 0-0=0, 0-1=1, 1-0=1, 1-1=0

Why LFSR?

- · Simple and regular structure
 - D-flip-flops and XOR gates
- Compatible with scan DFT design
- Capable of exhaustive and/or pseudo exhaustive testing
 - If the LFSR is properly configured
- Low aliasing probability
 - The fault coverage lost due to the response compression is less than other compression schemes

LFSR - Definitions

Maximum-length sequence

- A sequence generated by an n-stage LFSR is called a maximum-length sequence if it has a period of 2ⁿ-1
- A maximum-length sequence is called m-sequence

Primitive polynomial

 The characteristic polynomial associated with a maximum-length sequence is called a primitive polynomial

Irreducible polynomial

 A polynomial is irreducible if it cannot be factorized into two (or more) parts, I.e., it is not divisible by any polynomial other than 1 and itself.

ch7-21

LFSR - Properties

No. of 1s and 0s

- The number of 1s in an *m*-sequence differs from the number of 0s by only one

Pseudo-random sequence

 The sequence generated by an LFSR is called a pseudorandom sequence

The correlation

- Between any two output bits is very close to zero

Consecutive run of 1s and 0s

- An *m*-sequence produces an equal number of runs of 1s and 0s.
- In every *m*-sequence, one half the runs have length 1, one fourth have length 2, one eighth have length 3, and so forth

LFSR - Summary

- LFSRs have two types
 - In-tap and Out-tap
- LFSRs
 - Can be used to implement polynomial multiplication and division in GF(2)
- As polynomial multiplier
 - LFSRs are capable of generating pseudo random vectors
- As polynomial divisors
 - LFSRs are capable of compressing test response

ch7-25

Cellular Automaton (CA)

- An one-dimensional array of cells
- Each cell contains a storage device and next state logic
- Next state is a function of current state of the cell and its neighboring cells

Three-cell neighbor

- Name of CA functions
 - Is determined by its truth table

State	Αo	<u>A1</u>	A 2	А 3	<u>A4</u>	<u>A5</u>	A ₆	A 7
Ci+1 Ci Ci-1	0	0	0	0	1	1	1	1
Ci	0	0	1	1	0	0	1	1
Ci-1	0	1	0	1	0	1	0	1

Next State K-Map FcA					
Ao	A2	A4	A 6		
A1	Аз	A 5	A 7		

 $Name = \sum_{i=0}^{7} A_i 2^i$ (defined by Wolfram)

Example: $F_{CA} = C_{i-1} \oplus C_i$

Name = 64+32+4+2 = 102

Outline

- Basics
- Test Pattern Generation
 - How to generate patterns on chip using minimum hardware, while achieving high fault coverage
 - Response Analyzers
 - BIST Examples
 - Memory BIST

PG Hardware Pattern Generated Stored Patterns Counter Based LFSR Based Cellular Automata Pseudo Random Patterns: Random patterns with a specific sequence defined by a seed Pattern Generated Deterministic Pseudo-Exhaustive Pseudo-Random Pseudo-Random Ch7-31

On-Chip Exhaustive Testing

- Exhaustive testing
 - Apply all possible input combinations to CUD
 - A complete functional testing
 - 100% coverage on all possible faults
- Limitation
 - Only applicable for circuits with medium number of inputs

ch7-33

Pseudo Exhaustive Testing (PET)

- Apply all possible input combinations to every partitioned sub-circuits
- 100% fault coverage on single faults and multiple faults within the sub-circuits
- Test time is determined by the number of sub-circuits and the number of inputs to the sub-circuit
- Partitioning is a difficult task

Example for Pseudo-Exhaustive Testing

10 vectors are enough to pseudo-exhaustively test this circuit, Compared to 26=64 vectors for naive exhaustive testing

ch7-35

LFSR-Based Pattern Generation

- Apply random test sequence generated by LFSR/CA
- Simplest to design and implement
- Lowest in hardware overhead
- Fault coverage
 - Is a function of the test length and the random testability of the circuits
 - Certain circuits are more resistant to random patterns than others

Outline

- Basics
- Test Pattern Generation
- Response Analyzers
 - How to compress the output response without losing too much accuracy
- BIST Examples
- Memory BIST

ch7-41

Types of Response Compression

- Ones-counting compression
- Transition-counting compression
- Signature Analysis

Ones-Counting Signature Procedure - Apply the predetermined patterns - Count the number of ones in the output sequence R0=00000000 R1=11000000 R2=10000000 **Test** CUT Pattern Counter Clock OC(R0) = 0signature OC(R1) = 2OC(R2) = 1ch7-43

Zero-Aliasing Test Set for Ones-Counting

Notations

- T0: set of test vectors whose fault-free response is 0
- T1: set of test vectors whose fault-free response is 1

Theorem

- The following new test set does NOT suffer from fault masking using ones count testing
- T = {T0, (|T0|+1) copies of every pattern in T1}
- Note that the fault masking only occurs when a fault is detected by the same number of patterns in TO and T1; the above new test set avoid this condition

Aliasing of Transition-Counting

Consider a sub-sequence of bits

$$(... r_{j-1} r_j r_{j+1} ...)$$

If r_{j+1} is not equal to r_{j+1} , then an error occurring at r_{j} will not be detected by transition counting.

Example

1. $(0, 1, 1) \rightarrow (0, 0, 1)$

2. $(0, 0, 1) \rightarrow (0, 1, 1)$

3. $(1, 1, 0) \rightarrow (1, 0, 0)$

4. $(1, 0, 0) \rightarrow (1, 1, 0)$

Aliasing of Transition Counting

Aliasing Probability

- Notations
 - m: the test length
 - r: the number of transitions
- Highest when r=m/2
- No aliasing when r=0 or r=m
- For combinational circuits, permutation of the input sequence results in a different signature
- One can reorder the test sequence to minimize the aliasing probability

Example: Aliasing Probability

- · Assume that
 - Output number to be compressed has m=4 bits
 - The compression is done by dividing output number by a divisor of 2ⁿ-1, (e.g., the divisor is 2²-1 = 3 when n=2)
 - The remainder is taken as the signature
- Possible signatures

```
output = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 remainder = 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 aliasing prob. when signature is 0 = (2^m/(2^n-1)) / 2^m = 1/(2^n-1) \sim 2^{-n}
```

ch7-49

Multiple Input Shift Register (MISR) (Temporal Compression)

 A MISR compacts responses from multiple circuit outputs into a signature

Aliasing probability of m stage = 2^{-m}

Outline

- Basics
- Test Pattern Generation
- Response Analyzers
- BIST Examples
- Memory BIST

ch7-51

Key Elements in a BIST Scheme

- Test pattern generator (TPG)
- Output response analyzer (ORA)
 - Also called Signature Analyzer (SA)
- The circuit under test (CUT)
- A distribution system (DIST)
 - which transmits data from TPG's to CUT's and from CUT's to ORA's
 - e.g., wires, buses, multiplexers, and scan paths
- A BIST controller
 - for controlling the BIST circuitry during self-test
 - could be off-chip

HP Focus Chip (Stored Pattern)

- Chip Summary
 - 450,000 NMOS devices, 300,000 Nodes
 - 24MHz clocks, 300K-bit on-chip ROM
 - Used in HP9000-500 Computer
- BIST Micro-program
 - Use microinstructions dedicated for testing
 - 100K-bit BIST micro-program in CPU ROM
 - Executes 20 million clock cycles
 - Greater than 95% stuck-at coverage
 - A power-up test used in wafer test, system test, field test

Outline

- Basics
- Test Pattern Generation
- Response Analyzers
- BIST Examples
- Memory BIST

ch7-59

The Density Issues

- Historical π-Rule
 - The number of bits per chip has quadrupled roughly every 3.1 (or π) years
- Density Induced Faults
 - The cells are closer together
 - More sensitive to influences of neighbors
 - More vulnerable to noise on the address and data lines

Test Time May Get Too Long!

- For today's memory chips
 - Test time becomes a big issue!
 - We can afford nothing but linear test algorithm
- Example
 - assume that the clock cycle time is 100 ns

Algorithm complexity	Testing time (in seconds)					
Capacity n	64n n•log ₂ n 3n ^{3/2}			2n²		
16k	0.1	0.023	0.63	54		
64k	0.4	0.1	5.03	14 Mins		
256k	1.7	0.47	40.3	3.8 Hrs		
1M	6.7	2.1	5.4 Mins	61 Hrs		
4M	26.8	9.2	43 Mins	41 Days		
16M	1.8 Mins	40.3	5.7 Hrs	2 Years		

Fault Models

- Stuck-At Faults (SAF)
 - cell, data line, address line, etc.
- Open Faults (SAF)
 - open in data line or in address line
- Transition Faults (TF)
 - Cell can be set to 0, but not to 1
- Address Faults (AF)
 - faults on decoders
- Coupling Faults (CF)
 - short or cross-talk between data (or address) lines
 - A cell is affected by one of its neighboring cells
- Neighborhood Pattern Sensitive Fault (NPSF)
 - A cell is affected by when its neighbors form a pattern

ch7-65

cell is affected

Fault Models

Example Faults

- SAF : Cell stuck
- SAF : Driver stuck
- SAF : Read/write line stuck
- SAF: Chip-select line stuck
- SAF : Data line stuck
- · SAF: Open in data line
- CF: Short between data lines
- CF: Cross-talk between data lines
- AF : Address line stuck
- · AF: Open in address line
- AF : Open decoder
- · AF: Shorts between address lines
- AF: Wrong access
- AF : Multiple access
- TF: Cell can be set to 0 but not to 1 (or vice-versa)
- NPSF: Pattern sensitive interaction between cells

117 -66

Simple Test Algorithms

- Test Algorithm
 - is an abstract description of a sequence of test patterns.
- Commonly Used Algorithms
 - Background patterns
 - Checkerboard patterns
 - March Patterns

Quality Measures of BIST

BIST-vsTester Profile		Tester				
		pass	fail			
B	pass	(I)	(III) •漏網之魚			
S T	fail	(II) 。 誤殺者	(IV) • •			

To minimize region (II) and (III):

1. False Negative Ratio: (II) / #chips e.g., (1/20) = 5%

2. False Positive Ratio: (III) / #chips e.g., (2/20) = 10%