
1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 4
Automatic Test Pattern Generation

General ATPG Flow

• ATPG (Automatic Test Pattern Generation)
– Generate a set of vectors for a set of target faults

B i fl• Basic flow
Initialize the vector set to NULL

Repeat

Generate a new test vector

Evaluate fault coverage for the test vector

If the test vector is acceptable, then add it to the vector set

ch4-2

Until required fault coverage is obtained

• To accelerate the ATPG
– Random patterns are often generated first to detect easy-

to-detect faults, then a deterministic TG is performed to
generate tests for the remaining faults

2

Combinational ATPG

• Test Generation (TG) Methods
Based on Truth Table– Based on Truth Table

– Based on Boolean Equation
– Based on Structural Analysis

• Milestone Structural ATPG Algorithms
– D-algorithm [Roth 1967]

9 V l d D l ith [Ch 1978]

ch4-3

– 9-Valued D-algorithm [Cha 1978]
– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

A Test Pattern

t k t 1

A Fully Specified Test Pattern
(every PI is either 0 or 1)

stuck-at 10
0
1
1 1

0/1
0/1

A Partially Specified Test Pattern
(certain PI’s could be undefined)

ch4-4

stuck-at 01
x
x
x x

x
1/0

1/0

(certain PI s could be undefined)

3

Test Generation Methods
(From Truth Table)

Ex: How to generate tests
for the stuck at 0 faultfor the stuck-at 0 fault
(fault ? abc f f

000
001
010
011
100
101
110

0
0
0
0
0
1
1

0
0
0
0
0
1
0

a

f

b

 stuck-at 0

ch4-5

110
111

1
1

0
1

c

Test Generation Methods
(Using Boolean Equation)

f = ab+ac, f= ac

T th t f ll t t f f lt

a

f

b
 stuck-at 0

T = the set of all tests for fault 

= ON_set(f⊕f

= ON_set(f)  OFF_set(f) + OFF_set(f) ON_set(f)

= {(a,b,c) | (ab+ac)(ac)' + (ab+ac)'(ac) = 1 }

= {(a,b,c) | abc'=1}

= { (110) }. High complexity !!

c

Boolean equation

ch4-6

* ON_set(f): All input combinations to which f evaluates to 1.
OFF_set(f): All input combinations to which f evaluates to 0.
Note: a function is characterized by its ON_SET

Since it needs to compute the faulty
function for each fault.

4

Boolean Difference

• Physical Meaning of Boolean Difference
– For a logic function F(X)=F(x1, ..., xi, ..., xn), find all the input

combinations that make a value-change at xi also cause a value-
change at F.g

• Logic Operation of Boolean Difference
– The Boolean difference of F(X) w.r.t. input xi is

where Fi(0) = F(x1, ..., 0, ..., xn) and Fi(1) = F(x1, ..., 1, ..., xn).

dF(x)/dxi = Fi(0)⊕Fi(1) = Fi(0) · Fi(1)’ + Fi(0)’ · Fi(1)
Where

Fi(0) = F(x1, …, 0, …, xn)
Fi(1) = F(x1, …, 1, …, xn)

ch4-7

F

0
1

0

1

1
0

or

x1

xi

xn

circuit
F

1

0
1

0

0
1

or

x1

xi

xn

circuit

• Illustrations of Boolean Difference

Chain Rule

fA
G(f(A B) {C D})G(f(A, B), {C, D})
{A,B} and {C,D} have no
variables in common

B
C

D

f = AB
G = f + CD

dG/df = (C’ + D’)
df/dA = B

ch4-8

dG/dA = (dG/df) · (df/dA) = (C’+D’) · B

An Input vector v sensitizes a fault effect from A to G
Iff v sensitizes the effect from A to f and from f to G

5

Boolean Difference (con’t)

• Boolean Difference
– With respect to an internal signal, w, Boolean

diff t th t f i t bi ti difference represents the set of input combinations
that sensitize a fault effect from w to the primary
output F

• Calculation
– Step 1: convert the function F into a new one G that

takes the signal w as an extra primary input
– Step 2: dF(x1, …, xn)/dw = dG (x1, …, xn, w)/dw w

ch4-9

1 n 1 n

x

w

G

x1

xn

w
F

x1

xn

Free w.
.
.

.

.

.

Test Gen. By Boolean Difference

Case 1: Faults are present at PIs.

a
b

x

c

F = ab + ac
b

F(a=0) = 0
F(a=1) = (b+c)

Fault Sensitization Requirement:
dF/d F(0) F(1) 0 (b) (b)

ch4-10

Test-set for a s-a-1 = {(a,b,c) | a' (b+c)=1} = {(01x), (0x1)}.
Test-set for a s-a-0 = {(a,b,c) | a (b+c)=1} = {(11x), (1x1)}.

dF/da = F(a=0) ⊕ F(a=1) = 0 ⊕ (b+c) = (b+c)

Fault activation
requirement

Fault sensitization
requirement

No need to compute
The faulty function !!

6

Test Generation By Boolean
Difference (con’t)

Case 2: Faults are present at internal lines.

a
b x

h

c

F = ab + ac

b h

G(i.e., F with h floating) = h + ac
dG/dh = G(h=0) ⊕G(h=1) = (ac ⊕ 1) = (a’+c’)

ch4-11

Test-set for h s-a-1 is
{ (a,b,c)| h‘ (a'+c')=1 } = { (a,b,c)| (a'+b') (a'+c')=1 } = { (0xx), (x00) }.

Test-set for h s-a-0 is
{(a,b,c)| h (a'+c')=1} = {(110)}.

For fault activation For fault sensitization

Outline

• Test Generation (TG) Methods
– Based on Truth Table
– Based on Boolean Equation
– Based on Structural Analysis
– D-algorithm [Roth 1967]
– 9-Valued D-algorithm [Cha 1978]

PODEM [Goel 1981]

ch4-12

– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

7

Test Generation Method
(From Circuit Structure)

• Two basic goals
– (1) Fault activation (FA)
– (2) Fault propagation (FP)
– Both of which requires Line Justification (LJ), I.e., finding Both of which requires Line Justification (LJ), I.e., finding

input combinations that force certain signals to their desired
values

• Notations:
– 1/0 is denoted as D, meaning that good-value is 1 while

faulty value is 0
– Similarly, 0/1 is denoted D’

– Both D and D’ are called fault effects (FE)

ch4-13

fault propagation

fault activation

c

a

f
b

1/0

0

1

1

0

Common Concepts for Structural TG

• Fault activation
– Setting the faulty signal to either 0 or 1 is a Line

Justification problemJustification problem

• Fault propagation
– (1) select a path to a PO  decisions
– (2) Once the path is selected  a set of line

justification (LJ) problems are to be solved

• Line Justification
– Involves decisions or implications

ch4-14

– Involves decisions or implications
– Incorrect decisions: need backtracking

a
b cTo justify c=1  a=1 and b=1 (implication)

To justify c=0  a=0 or b=0 (decision)

8

Ex: Decision on Fault Propagation

f1G5

G1

G2

a
b
c

d

{ G5, G6 }

– Fault activation
• G1=0  { a=1, b=1, c=1 }  { G3=0 }

– Fault propagation: through G5 or G6

f2G6
G3

G4e

G5 G6

decision tree

fail success

ch4-15

– Decision through G5:
• G2=1  { d=0, a=0 }  inconsistency at a  backtrack !!

– Decision through G6:
•  G4=1  e=0  done !! The resulting test is (111x0)

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.

Various Graphs

A Combinational Circuit: is usually modeled as a DAG, but not tree

Graph = (V, E)

DAG
(Directed Acyclic Graph)

Digraph
(directed graph)

ch4-16

(y p)

Tree

9

Ex: Decisions On Line Justification

a
b
c
d

k

l
q l=1 k=1

fail

q=1

r=1

FA  set h to 0

d

e
f
h

p

r
m
n
o

s

The corresponding
decision tree

m=1 o=1
n=1

J-frontier: is the set of gates
whose output value is known
(I 0 1) b t i t i li d

fail

success

r 1

ch4-17

– FA  set h to 0
– FP  e=1, f=1 (o=0) ; FP  q=1, r=1
– To justify q=1  l=1 or k=1
– Decision: l =1  c=1, d=1  m=0, n=0  r=0  inconsistency at r 

backtrack !
– Decision: k=1  a=1, b=1
– To justify r=1  m=1 or n=1 (c=0 or d=0)  Done ! (J-frontier is )

(I.e., 0 or 1), but is not implied
by its input values.
Ex: initially, J-frontier is {q=1, r=1}

Decision point

Branch-and-Bound Search

• Test Generation
– Is a branch-and-bound search
– Every decision point is a branching point
– If a set of decisions lead to a conflict (or bound), a

backtrack is taken to explore other decisions
– A test is found when

• (1) fault effect is propagated to a PO
• (2) all internal lines are justified

– No test is found after all possible decisions are tried

ch4-18

p
 Then, target fault is undetectable

– Since the search is exhaustive, it will find a test if one
exists

For a combinational circuit, an undetectable fault is also a
redundant fault  Can be used to simplify circuit.

10

Implications

• Implications
– Computation of the values that can be uniquely p q y

determined
• Local implication: propagation of values from one

line to its immediate successors or predecessors
• Global implication: the propagation involving a

larger area of the circuit and re-convergent fanout

• Maximum Implication Principle

ch4-19

– Perform as many implications as possible
– It helps to either reduce the number of problems

that need decisions or to reach an inconsistency
sooner

Local Implications (Forward)

0

Before

0

After

0
x

1
1

1
x a

0

x

x

J-frontier={ ...,a }

0
x

1
1

1
0 a

0

1

0

J-frontier={ ... }

ch4-20

a

D'
D a

x D-frontier={ ...,a }

a

D'
D a

0 D-frontier={ ... }

11

Local Implications (Backward)

x 1 1 1

Before After

x
x

x
1

x
x J-frontier={ }

1

0

0

1
1

0
1

x
x 0

0

1

J-frontier={ ...,a }

ch4-21

x J-frontier={ ... }

x
1

x

a x a
{ , }

1 1

1

Global Implications

dx
Before

x
After

d

• Unique D-Drive Implication

g
x

x
D

x
x

D

1

D

x

x

x

x

g

e e

ch4-22

– Suppose D-frontier (or D-drive) is {d, e},  g is a dominator
for both d and e, hence a unique D-drive is at g

g is called a dominator of d:
because every path from d to an PO passes through g

12

Learning for Global Implication

• Static Learning
– Global implication derived by contraposition law
– Learn static (I.e., input independent) signal implications

AB => ~B  ~A

(, p p) g p

• Dynamic Learning
– Contraposition law + other signal values
– Is input pattern dependent

A

B

D

F1

A

B

D

F0

1

ch4-23

B

C E

F

F=1 implies B=1
Because B=0  F=0

(Static Learning)

B

C E

F0

F=0 implies B=0 When A=1
Because {B=1, A=1}  F=1

(Dynamic Learning)

Early Detection of Inconsistency

Aggressive implication may
help to realize that the sub-
tree below is fruitless, thus
avoiding unnecessary searchavoiding unnecessary search

q=1

r=1
s=
1

u=
1

t=1
v=
1

A potential

ch4-24

success

v=
1

f

f f

f

f f

p
sub-tree

sub-tree without a solution

13

Ex: D-Algorithm (1/3)

• Five logic values
– { 0, 1, x, D, D’ }

h

Try to propagate
Fault effect thru G1
 Set d to 1

d' 0

Try to propagate
Fault effect thru G2
 Set j,k,l,m to 1

1

D

n

d

e
e'

d

i

j

k

1

0

D’
G1

0

G2
0

1

ch4-25

1

1

1

D

f
f'

k

l

m

ga
b
c

D0
1
1

D’ ≠

Conflict at k
 Backtrack !

Ex: D-Algorithm (2/3)

• Five logic values
– { 0, 1, x, D, D’ }

d'
h

0
Try to propagate

n

d

e
e'

d

i

j

k

1

0

D’
G1

0

G2

1

D

0

1

Fault effect thru G2
 Set j,l,m to 1

ch4-26

f
f'

k

l

m

ga
b
c

D0
1
1

1

1

D

0

1

D’ ≠

Conflict at m
 Backtrack !

D’ (next D-frontier chosen)

14

Ex: D-Algorithm (3/3)

• Five logic values
– { 0, 1, x, D, D’ }

d'
h

0

Try to propagate
Fault effect thru G2
 Set j,l to 11

n

d

e
e'

d

i

j

k

1

0

D’
G1

0

G2

1

D

0

1

Fault propagation
and line justification
are both complete
 A test is found !

ch4-27

f
f'

k

l

m

ga
b
c

D0
1
1

D’

1

D

D’ (next D-frontier chosen)

0

1

This is a case of
multiple path sensitization !

D-Algorithm: Value Computation

Decision Implication Comments

a=0 Active the fault
e=1 Propagate via k

k=D’a 0 Active the fault
h=1
b=1 Unique D-drive
c=1
g=D

d=1 Propagate via i
i=D’
d’=0

j=1 Propagate via n

k=D’
e’=0
j=1

l=1 Propagate via n
m=1

n=D
f’=0
f=1
m=D’ Contradiction

ch4-28

k=1
l=1
m=1

n=D
e’=0
e=1
k=D’ Contradiction

f=1 Propagate via m
m=D’
f’=0
l=1
n=D

15

Decision Tree on D-Frontier

• The decision tree below
– Node  D-frontier
– Branch  Decision Taken
– A Depth-First-Search (DFS) strategy is often used

d

e'

d'
h

i

j

1

0

D’
G1

1
0

1

{i,k,m}

{k,m,n}

i

ch4-29

n
e

f
f'

k

l

m

ga
b
c

D0
1
1

G2

D’

1

D

0

1

0

1

D’

{m,n}F

F S

n k

mn

9-Value D-Algorithm

• Logic values (fault-free / faulty)
– {0/0 0/1 0/u 1/0 1/1 1/u u/0 u/1 u/u}{0/0, 0/1, 0/u, 1/0, 1/1, 1/u, u/0, u/1, u/u},
– where 0/u={0,D'}, 1/u={D,1}, u/0={0,D}, u/1={D',1},

u/u={0,1,D,D'}.

• Advantage:
– Automatically considers multiple-path

sensitization, thus reducing the amount of search
i D l ith

ch4-30

in D-algorithm
– The speed-up is NOT very significant in practice

because most faults are detected through single-
path sensitization

16

Example: 9-Value D-Algorithm

d

d'
h 1/u  1/1

D’ (=0/1)

Decision Tree

0/1

0/u
1/u

n
e

e'

i

j

kga
b

u/1

G1

D (1/0)0/1
u/1

G2
D(=1/0)

u/1

D (0/1)

u/0

1/u

u/1

{i, k, m}

{k, m, n}

i

n

D’(0/1)

1/u

ch4-31

f

f'
l

m

b
c

()u/1
u/1

u/1

u/1

u/1

success

No-backtrack !

D’ or 1

u/0

u/1

1/u

Final Step of 9-Value D-Algorithm

• To derive the test vector
• A = (0/1)  0 (take the fault-free one)
• B = (1/u)  1
• C = (1/u)  1
• D = (u/1)  1
• E = (u/1)  1
• F = (u/1)  1

• The final vector

ch4-32

• The final vector
– (A,B,C,D,E,F) = (0, 1, 1, 1, 1, 1)

17

Outline

• Test Generation (TG) Methods
– Based on Truth Table
– Based on Boolean Equation
– Based on Structural Analysis
– D-algorithm [Roth 1967]
– 9-Valued D-algorithm [Cha 1978]

PODEM [Goel 1981]

ch4-33

– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

PODEM: Path-Oriented DEcision
Making

• Fault Activation (FA) and Propagation (FP)
– lead to sets of Line Justification (LJ) problems. The LJ problems

can be solved via value assignments. can be solved via value assignments.

• In D-algorithm
– TG is done through indirect signal assignment for FA, FP, and LJ,

that eventually maps into assignments at PI’s

– The decision points are at internal lines

– The worst-case number of backtracks is exponential in terms of
the number of decision points (e.g., at least 2k for k decision
nodes)

ch4-34

• In PODEM
– The test generation is done through a sequence of direct

assignments at PI’s

– Decision points are at PIs, thus the number of backtracking might
be fewer

18

Search Space of PODEM

• Complete Search Space
– A binary tree with 2n leaf nodes, where n is the number of PI’s

• Fast Test Generation

0 1
b

0 1

0 1

b

a

Fast Test Generation
– Need to find a path leading to a SUCCESS terminal quickly

ch4-35

c

d

0

d

1

d

0 1
c

d

0

d

1
c

d

0

d

1

F F F F

c

d

S S F F

Objective() and Backtrace()

• PODEM
– Also aims at establishing a sensitization path based on fault

activation and propagation like D-algorithm
– Instead of justifying the signal values required for sensitizing the

selected path, objectives are setup to
guide the decision process at PI’s

• Objective
– is a signal-value pair (w, vw)

• Backtrace
B kt d i d bj ti i t PI i t th t i

ch4-36

– Backtrace maps a desired objective into a PI assignment that is
likely to contribute to the achievement of the objective

– Is a process that traverses the circuit back from the objective
signal to PI’s

– The result is a PI signal-value pair (x, vx)
– No signal value is actually assigned during backtrace !

往輸入端追蹤

19

Objective Routine

• Objective Routine Involves
– The selection of a D-frontier, G

Th l ti f ifi d i t t f G– The selection of an unspecified input gate of G

Objective() {
/* The target fault is w s-a-v */
/* Let variable obj be a signal-value pair */
if (the value of w is x) obj = (w, v’);
else {

select a gate (G) from the D-frontier;

fault activation

fault propagation

ch4-37

g ()
select an input (j) of G with value x;
c = controlling value of G;
obj = (j, c’);

}
return (obj);

}

p p g

後追蹤 Backtrace Routine

• Backtrace Routine
– Involves finding an all-x path from objective site to a

PI, I.e., every signal in this path has value x

Backtrace(w, vw) {
/* Maps objective into a PI assignment */
G = w; /* objective node */
v = vw; /* objective value */
while (G is a gate output) { /* not reached PI yet */

inv = inversion of G;
l t i t (j) f G ith l

, , y g p

ch4-38

select an input (j) of G with value x;
G = j; /* new objective node */
v = v⊕inv; /* new objective value */

}
/* G is a PI */ return (G, v);

}

20

Example: Backtrace

Objective to achieve: (F, 1)
PI assignments:

(1) A = 0  fail
(2) B = 1 succeed

A
B

FC D

E

x
x

x

x
x x

=>

The first time of backtracing

(2) B 1  succeed

A
B

FC D

E

0
1

1

x
x x

ch4-39

A
B

FC D

E

0
1

1

x
x x

A
B

FC D

E

0
1

1

0
1 1

=>

The second time of backtracing

PI Assignment in PODEM

aAssume that: PI’s: { a, b, c, d }

0 1

0 1

0

b

cfailure

Assume that: PI s: { a, b, c, d }
Current Assignments: { a=0 }
Decision: b=0  objective fails
Reverse decision: b=1
Decision: c=0  objective fails
Reverse decision: c=1
Decision: d=0

ch4-40

0 1

d

S

0

failureFailure means fault effect cannot be
propagated to any PO under current
PI assignments

21

Example: PODEM (1/3)

d

d'
h

0

1 Select D-frontier G2 and
set objective to (k,1)
 e = 0 by backtrace

n

d

e

e'

i

j

kga
b

1
D’

G1

D0
1
1

G2

1

0

1

1

0

 e 0 by backtrace
 Break the sensitization

across G2
 Backtrack !

ch4-41

f

f'
l

m

c 1

Example: PODEM (2/3)

d

d'
h

0

1 Select D-frontier G3 and
set objective to (e,1)
 No backtrace is needed

n

d

e

e'

i

j

kga
b

1
D’

G1

D0
1
1

G2

 No backtrace is needed
 Success at G3

G3

1
0

1

ch4-42

f

f'
l

m

c 1

G4

22

Example: PODEM (3/3)

d

d'
h

0

1 Select D-frontier G4 and
set objective to (f,1)
 No backtrace is needed

n

d

e

e'

i

j

kga
b

1
D’

G1

D0
1
1

G2

1

D’

D

0

1

 No backtrace is needed
 Success at G4 and G2
 D appears at one PO
 A test is found !!

G3

ch4-43

f

f'
l

m

c 1

G4

1
0

1

D’

PODEM: Value Computation

Objective PI assignment Implications D-frontier Comments
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i k mc=1 c=1 g=D i,k,m
d=1 d=1 d’=0

i=D’ k,m,n
k=1 e=0 e’=1

j=0
k=1
n=1 m no solutions !  backtrack

e=1 e’=0 reverse PI assignment

Assignments need to be
reversed during backtracking

ch4-44

j=1
k=D’ m,n

l=1 f=1 f’=0
l=1
m=D’
n=D

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1
0

D’

D0
1
1

1

D’

1

D

0

1

0

1
D’

1

23

Decision Tree in PODEM

0 a

b

0

1

1

1

1

c

d

e

ffail

ch4-45

• Decision node: the PI selected through backtrace for value assignment
• Branch: the value assignment to the selected PI

ffail

success

Terminating Conditions

• D-algorithm
– Success:

(1) F lt ff t t t t (D f ti t b t)(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty

– Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

• PODEM

ch4-46

– Success:
• Fault effect seen at an output

– Failure:
• Every PI assignment leads to failure, in which D-frontier

is empty while fault has been activated

24

PODEM: Recursive Algorithm

PODEM () /* using depth-first-search */

begin
If(error at PO) return(SUCCESS);If(error at PO) return(SUCCESS);

If(test not possible) return(FAILURE);

(k, vk) = Objective(); /* choose a line to be justified */

(j, vj) = Backtrace(k, vk); /* choose the PI to be assigned */

Imply (j, vj); /* make a decision */

If (PODEM()==SUCCESS) return (SUCCESS);

Imply (j, vj’); /* reverse decision */

ch4-47

If (PODEM()==SUCCESS) return(SUCCESS);

Imply (j, x);

Return (FAILURE);

end

What PI to assign ?

j=vj

Recursive-call

j=vj’

Recursive-call
If necessary

Overview of PODEM

• PODEM
– examines all possible input patterns implicitly but

exhaustively (branch-and-bound) for finding a test

– It is complete like D-algorithm (I.e., will find one if a
test exists)

• Other Key Features
– No J-frontier, since there are no values that require

justification
– No consistency check, as conflicts can never occur
– No backward implication, because values are

ch4-48

propagated only forward
– Backtracking is implicitly done by simulation rather

than by an explicit and time-consuming save/restore
process

– Experimental results show that PODEM is generally
faster than the D-algorithm

25

• In Objective() and Backtrace()
– Selections are done arbitrarily in original PODEM

The Selection Strategy in PODEM

– The algorithm will be more efficient if certain
guidance used in the selections of objective node
and backtrace path

• Selection Principle
– Principle 1: Among several unsolved problems

•  Attack the hardest one 1

ch4-49

• Ex: to justify a ‘1’ at an AND-gate output
– Principle 2: Among several solutions for solving a

problem
•  Try the easiest one
• Ex: to justify a ‘1’ at OR-gate output

1

• Controllability of a signal w
– CY1(w): the probability that line w has value 1.
– CY0(w): the probability that line w has value 0.

Controllability As Guidance

CY0(w): the probability that line w has value 0.
– Example:

• f = ab
• Assume CY1(a)=CY0(a)=CY1(b)=CY0(b)=0.5
CY1(f)=CY1(a)xCY1(b)=0.25,
CY0(f)=CY0(a)+CY0(b)-CY0(a)xCY0(b)=0.75

• Example of Smart Backtracing
– Objective (c, 1)  choose path ca for backtracing

Obj ti (0)  h th  f b kt i

ch4-50

– Objective (c, 0)  choose path ca for backtracing

CY1(a) = 0.33
CY0(a) = 0.67

CY1(b) = 0.5
CY0(b) = 0.5

a

b
c

26

Testability Analysis

• Applications
– To give an early warning about the testing problems

that lie aheadthat lie ahead
– To provide guidance in ATPG

• Complexity
– Should be simpler than ATPG and fault simulation, I.e.,

need to be linear or almost linear in terms of circuit
size

• Topology analysis

ch4-51

• Topology analysis
– Only the structure of the circuit is analyzed
– No test vectors are involved
– Only approximate, reconvergent fanouts cause

inaccuracy

SCOAP
(Sandia Controllability/Observability Analysis Program)

• Computes six numbers for each node N
– CC0(N) and CC1(N)

• Combinational 0 and 1 controllability of a node N

– SC0(N) and SC1(N)
• Sequential 0 and 1 controllability of a node N

– CO(N)
• Combinational observability

ch4-52

y

– SO(N)
• Sequential observability

值越大代表越困難

27

General Characteristic of
Controllability and Observability

Controllability calculation: sweeping the circuit from PI to PO
Observability calculation: sweeping the circuit from PO to PI

Boundary conditions:
(1) For PI’s: CC0 = CC1 = 1 and SC0 = SC1 = 0
(2) For PO’s: CO = SO = 0

ch4-53

Controllability Measures

– CC0(N) and CC1(N)

• The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

– SC0(N) and SC1(N)

• The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

x1

x2
Y

ch4-54

CC0(Y) = min [CC0(x1) , CC0(x2)] + 1
CC1(Y) = CC1(x1) + CC1(x2) + 1
SC0(Y) = min [SC0(x1) , SC0(x2)]
SC1(Y) = SC1(x1) + SC1(x2)

28

Controllability Measure (con’t)

– CC0(N) and CC1(N)

• The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

– SC0(N) and SC1(N)

• The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

x1
x2 Y
x3

ch4-55

CC0(Y) = CC0(x1) + CC0(x2) + CC0(x3) + 1
CC1(Y) = min [CC1(x1), CC1(x2), CC1(x3)] + 1
SC0(Y) = SC0(x1) + SC0(x2) + SC0(x3)
SC1(Y) = min [SC1(x1) , SC1(x2) , SC1(x3)]

Observability Measure

– CO(N) and SO(N)

• The observability of a node N is a function of the
output observability and of the cost of holding all
other inputs at non-controlling values

x1
x2 Y
x3

Example: X1 observable: (Y observable) + (side-inputs 配合)

ch4-56

x3

CO(x1) = CO(Y) + CC0(x2) + CC0(x3) + 1
SO(x1) = SO(Y) + SC0(x2) + SC0(x3)

29

PODEM: Example 2 (1/3)

Initial objective=(G5,1).
G5 is an AND gate  Choose the hardest-1
 Current objective=(G1,1).
G1 i AND t  Ch th h d t 1G1 is an AND gate  Choose the hardest-1
 Arbitrarily, Current objective=(A,1). A is a PI  Implication  G3=0.

A
B

CY1=0.25

CY1=0.656

G5

G7

G1
1/01

ch4-57

C
G6

CY1 0.656 G7
G2

G3

G4
0

PODEM: Example 2 (2/3)

The initial objective satisfied? No!  Current objective=(G5,1).
G5 is an AND gate  Choose the hardest-1  Current objective=(G1,1). g j ()
G1 is an AND gate  Choose the hardest-1
 Arbitrarily, Current objective=(B,1). B is a PI  Implication  G1=1, G6=0.

A
B

CY1=0.25

CY1=0 656

G5

G7

G1
1/01

1

1

ch4-58

C
G6

CY1=0.656 G7
G2

G3

G4
0

0

0

30

PODEM: Example 2 (3/3)

The initial objective satisfied? No!  Current objective=(G5,1).
The value of G1 is known  Current objective=(G4,0).
The value of G3 is known  Current objective=(G2,0).
A, B is known  Current objective=(C,0).
C is a PI  Implication  G2=0, G4=0, G5=D, G7=D.

A
B

C

CY1=0.25

CY1=0.656

G5

G7

G1

G2

1/0=D1

1

1

D
0

0

1

ch4-59

C
G6

G2

G3

G4
0

0

No backtracking !!

0

If The Backtracing Is Not Guided (1/3)

Initial objective=(G5,1).
Choose path G5-G4-G2-A  A=0.
Implication for A=0  G1=0, G5=0 Backtracking to A=1.Implication for A 0  G1 0, G5 0  Backtracking to A 1.
Implication for A=1  G3=0.

A
B

C

G5

G7

G1

G2

1 1/0

ch4-60

G6

G3

G4

0

31

The initial objective satisfied? No!  Current objective=(G5,1).
Choose path G5-G4-G2-B B=0.

If The Backtracing Is Not Guided (2/3)

Choose path G5 G4 G2 B  B 0.
Implication for B=0  G1=0, G5=0  Backtracking to B=1.
Implication for B=1  G1=1, G6=0.

A
B

C

G5

G7

G1

G2

1

1

1
1/0

ch4-61

C
G6

G2

G3

G4

0

0

If The Backtracing Is Not Guided (3/3)

The initial objective satisfied? No!  Current objective=(G5,1).
Choose path G5-G4-G2-C  C=0.p
Implication for C=0 G2=0, G4=0, G5=D, G7=D.

A
B

C
G6

G5

G7

G1

G2

G

1

1

1
1/0=D

D

A

B

C

F

F

0 1

100
0 1

ch4-62

0

G6

G3

G4 0
C

S

F
0

Two times of backtracking !!

0

32

ECAT Circuit: PODEM (1/3)

a g 0->D'
0

Fault activation

b

c
d
e
f

i

h m
p

j

l

x

ch4-63

n

k

j

a g 0->D'0

ECAT Circuit: PODEM (2/3)

b

c
d
e
f

i

h m
p

j

l

x

1

1

0

1

0

side-input
requirement

ch4-64

n

k

j 0

33

a
b

g 0->D'

x
0

ECAT Circuit: PODEM (3/3)

b

c
d
e
f

i

h m

n

p

j

l

1

1

0

1

0

0

0
0

0

D D

objective

ch4-65

k 1

No backtracking !!

Outline

• Test Generation (TG) Methods
– Based on Truth Table
– Based on Boolean Equation
– Based on Structural Analysis
– D-algorithm [Roth 1967]
– 9-Valued D-algorithm [Cha 1978]

PODEM [Goel 1981]

ch4-66

– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

34

FAN (Fanout Oriented) Algorithm

• FAN
Introduces two major extensions to PODEM’s – Introduces two major extensions to PODEM’s
backtracing algorithm

• 1st extension
– Rather than stopping at PI’s, backtracing in FAN

may stop at an internal lines

• 2nd extension

ch4-67

– FAN uses multiple backtrace procedure, which
attempts to satisfy a set of objectives
simultaneously

Headlines and Bound Lines

• Bound line
– A line reachable from at least one stem

• Free line
– A line that is NOT bound line

• Head line
– A free line that directly feeds a bound line

HE

ch4-68

Bound lines

Head lines

A

B

C

J

F
K

L

M

35

Decision Tree (PODEM v.s. FAN)

Head lines

A

HE

F

K

M

Assume that:
Bound linesA

B

C

J
L

A

B

1

10

All makes J = 0

Objective is (J, 0)

J is a head line
 Backtrace stops at J
 Avoid unnecessary search

ch4-69

CS

S

1

10

0

PODEM FAN

J

S

0 1

Why Stops at Head Lines ?

• Head lines are mutually independent
– Hence, for each given value combination at head

lines, there always exists an input combination
to realize it.

• FAN has two-steps
– Step 1: PODEM using headlines as pseudo-PI’s

ch4-70

– Step 2: Generate real input pattern to realize the
value combination at head lines.

36

Why Multiple Backtrace ?

• Drawback of Single Backtrace
– A PI assignment satisfying one objective may preclude

achieving another one and this leads to backtrackingachieving another one, and this leads to backtracking

• Multiple Backtrace
– Starts from a set of objectives (Current_objectives)
– Maps these multiple objectives into a head-line

assignment k=vk that is likely to
• Contribute to the achievement of a subset of the objectives
• Or show that some subset of the original objectives cannot

ch4-71

• Or show that some subset of the original objectives cannot
be simultaneously achieved

1

0

1

0Multiple objectives
May have conflicting
Requirements at a stem

Example: Multiple Backtrace

H

G

A1

E1
E

A

B
E2

I
A2

1

0

0

1

1

1

1
1

0
conflicting stem

HB

C J
0

(I,1), (J,0)
(J,0), (G,0)
(G,0), (H,1)
(H,1), (A1,1), (E1,1)

Current_objectives Processed entry Head_objectivesStem_objectives

(I,1)
(J,0)
(G,0)
(H,1)

11

1Consistent stem

ch4-72

(A1,1), (E1,1), (E2,1), (C,1)
(E1,1), (E2,1), (C,1)
(E2,1), (C,1)
(C,1)
Empty  restart from (E,1)
(E,1)
(A2,0)
empty

(A1,1)
(E1,1)
(E2,1)
(C,1)

(E,1)
(A2,0)

A
A,E
A,E
A,E
A
A
A
A

C
C
C
C
C

37

Multiple Backtrace Algorithm

Mbacktrace (Current_objectives) {
while (Current_objectives ≠) {

remove one entry (k, vk) from Current_objectives;
switch (type of entry) {switch (type of entry) {
1. HEAD_LINE: add (k, vk) to Head_objectives;
2. FANOUT_BRANCH:

j = stem(k);
increment no. of requests at j for vk; /* count 0s and 1s */
add j to Stem_objectives;

3. OTHERS:
inv = inversion of k; c = controlling value of k;

ch4-73

inv inversion of k; c controlling value of k;
select an input (j) of k with value x;
if ((vk⊕ inv) == c) add(j, c) to Current_objectives;
else { for every input (j) of k with value x

add(j, c’) to Current_objectives; }
}

} TO BE CONTINUED …

Multiple Backtrace (con’t)

Mbacktrace (Current_objectives) {
while (Current_objectives ≠) {body in previous page}
if(Stem objectives≠) { if(Stem_objectives≠) {

remove the highest-level stem (k) from Stem_Objectives;
vk = most requested value of k;
/* recursive call here */
add (k, vk) to Current_objectives;
return (Mbacktrace(Current_objectives);

}

ch4-74

}
else { remove one objective (k, vk) from Head_objectives;

return (k, vk)
}

}

38

References

[1] Sellers et al., "Analyzing errors with the Boolean difference", IEEE Trans. Computers,
pp. 676-683, 1968.

[2] J. P. Roth, "Diagnosis of Automata Failures: A Calculus and a Method", IBM Journal
of Research and Development, pp. 278-291, July, 1966.

[2'] J. P. Roth et al., "Programmed Algorithms to Compute Tests to Detect and
Distinguish Between Failures in Logic Circuits", IEEE Trans. Electronic Computers,
pp. 567-579, Oct. 1967.

[3] C. W. Cha et al, "9-V Algorithm for Test Pattern Generation of Combinational Digital
Circuits", IEEE TC, pp. 193-200, March, 1978.

[4] P. Goel, "An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits", IEEE Trans. Computers, pp. 215-222, March, 1981.

[5] H. Fujiwara and T. Shimono, "On the Acceleration of Test Generation Algorithms",

ch4-75

IEEE TC, pp. 1137-1144, Dec. 1983.

[6] M. H. Schulz et al., "SOCRATES: A Highly Efficient Automatic Test Pattern Generation
System", IEEE Trans. on CAD, pp. 126-137, 1988.

[6'] M. H. Schulz and E. Auth, "Improved Deterministic Test Pattern Generation with
Applications to Redundancy Identification", IEEE Trans CAD, pp. 811-816, 1989.

