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Chapter 3
Fault Simulation

Outline

• Fault Simulation for Comb. Ckt
B i  f L i  Si l ti– Basic of Logic Simulation

– Parallel Fault Simulation
– Deductive Fault Simulation
– Concurrent Fault Simulation

• Approximation Approach

Ch3-2

• Techniques for Sequential Circuits

Note: Comb. Ckt: Combinational Circuits
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Why Fault Simulation ?

• To evaluate the quality of a test set
– I.e., to compute its fault coverage

• Part of an ATPG program
– A vector usually detects multiple faults
– Fault simulation is used to compute the faults 

accidentally detected by a particular vector

• To construct fault-dictionary

Ch3-3

– For post-testing diagnosis

• To Evaluate the fault coverage of a 
functional patterns

Conceptual Fault Simulation

Faulty Circuit #n (D/0)

Patterns
(Sequences)
(Vectors)

Response 
Comparison

Fault-free Circuit

Faulty Circuit #1 (A/0)

Faulty Circuit #2 (B/1)

Detected?

Ch3-4

Primary
Inputs
(PIs)

Primary Outputs
(POs)

A B

C
D

Logic simulation on both good (fault-free) and faulty circuits
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Some Basics for Logic Simulation

• For fault simulation purpose, 
– mostly the gate delay is assumed to be zero unless the 

delay faults are considered  Our main concern is the delay faults are considered. Our main concern is the 
functional faults

• The logic values 
– can be either two (0, 1) or  three values (0, 1, X)

• Two simulation mechanisms:
– Oblivious compiled-code: 

i it i  t l t d i t    d ll t   t d 
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• circuit is translated into a program and all gates are executed 
for each pattern. (may have redundant computation)

– Interpretive event-driven: 
• Simulating a vector is viewed as a sequence of value-change 

events propagating from the PI’s to the PO’s
• Only those logic gates affected by the events are re-evaluated

Compiled-Code Simulation

A
B E

• Compiled code
– LOAD A /* load accumulator with value of  A */
– AND B /* calculate A and B */

B
C Z

D

Ch3-6

– AND C /* calculate  E = AB and C */
– OR D /* calculate  Z = E or D */
– STORE Z /* store result of  Z */
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Event-Driven Simulation

A
B
C

E

Z
D

1
0
0

1
1
1

00
0?

G1
G2

0?

Initialize the events at PI’s
In the event-queue

Pick an event
Evaluate its effect

Start

D00
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More event in Q ? Done

Schedule the newly born events
In the event-queue, if any

yes no

Complexity of Fault Simulation

#Gate (G)

#Pattern (P)

#Fault (F)

• Complexity ~ F ‧P‧G ~ O(G3), where G is the no. of gates

Ch3-8

Complexity  F P G  O(G ), where G is the no. of gates
• The complexity is higher than logic simulation by a factor of F,
while usually is much lower than ATPG

• The complexity can be greatly reduced using
• Fault dropping and other advanced techniques
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Characteristics of Fault Simulation

• Fault activity with respect to fault-free 
circuit 

i  ft  b th i  ti d i  – is often sparse both in time and in space.

• For example
– F1 is not activated by the given pattern, while F2 

affects only the lower part of  this circuit.

0 F1(s-a-0)

Ch3-9

1

1

F2(s-a-0)
×

×
×

Fault Simulation Techniques

• Serial Fault Simulation
– trivial single-fault single-pattern

• Parallel Fault Simulation
• Deductive Fault Simulation
• Concurrent Fault Simulation

Ch3-10
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Parallel Fault Simulation

• Simulate multiple circuits at a time:
– The inherent parallel operation of computer words to  

i l t  f lt  i it  i  ll l ith f lt f  simulate faulty circuits in parallel with fault-free 
circuit

– The number of faulty circuits, or faults, can be 
processed simultaneously is limited by the word 
length, e.g., 32 circuits for a 32-bit computer

• Extra Cost:
A  t   l h  f  i l  f lt  f lt f  

Ch3-11

– An event, a value-change of a single fault or fault-free 
circuit leads to the computation of the entire word

– The fault-free logic simulation is repeated for each 
pass

Example: Parallel Fault Simulation

• Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0)

• Bit-space: (FF denotes fault-free) 
fault-free

p ( )
J/0 B/1 F/0 FF

A

B

C E G

1

0
1

0   1   0   0

1   1   1   1

0   1   0   0 0   1   0   1

1 0 1 1

J/0

×
×

00   x   0   0

B/1

1
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B
D

F

H

J

1
1   0   0   1

1   1   0   1

1   0   1   1

F/0

×

×

0
Q: What faults are detected?

0   1   0   0
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Example: Parallel-Pattern Simulation

• Consider one fault F/0 and four patterns:  P3,P2,P1,P0
Bit-Space: P3 P2 P1 P0

A

B

C

D E

G0   1   0   1

1   1   1   1

0   1   0   1

1   0   1   0
0   1   0   1

1   1   0   1
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x

B

F

H
J

0   1   0   1

1   0   0   0
1   0   0   11   0   0   1 0   0   0   0
0   0   0   0

Parallel-Pattern v.s. Parallel-Fault

• P1, P2, P3 are patterns events
• F1  F2  F3 are faultsP1

Parallel-pattern

• F1, F2, F3 are faults
• Complexity

– Is proportional to the events that 
need to be processed

– The value-change events (upper 
figure) seems to be fewer than 
the fault-events (lower figure)

– Hence, parallel-pattern seems to 

PIs POs

P3

P1
P2

F

Parallel-fault

Ch3-14

, p p
be more efficient than parallel-
fault methods

P

F1

F2

F3

POsPIs
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Deductive Fault Simulation

• Simulate all faulty circuits in one pass
– For each pattern, sweep the circuit from PI’s to PO’s.
– During the process, a list of faults is associated with 

each line
– The list contains faults that would produce a fault 

effect on this line
– The union fault list at every PO contains the detected 

faults by the simulated input vector

Ch3-15

• Major operation: fault list propagation
– Related to the gate types and values
– The size of the list may grow dynamically, leading to a 

potential memory explosion problem

Controlling Value of a Logic Gate

A

B
Z

Whenever there is a ‘0’ in the inputs, Z will be ‘0’
 Controlling value for NAND gate is ‘0’
 Non-Controlling value is ‘1’ Non Controlling value is 1

Gate Type Controlling

Value

Non-Controlling

Value

AND ‘0’ ‘1’

OR ‘1’ ‘0’

Ch3-16

OR 1 0

NAND ‘0’ ‘1’

NOR ‘1’ ‘0’
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Example: Fault List Propagation

Fault-free simulation results: {A=0, B=0, C=0}
Q: What is the detected fault list at line C?

(Reasoning) To create a fault effect at line C we need {A=1 B=1}

A
C

LA
LC

0

0
0

(Reasoning) To create a fault effect at line C, we need {A=1, B=1}
 which means that we need a fault effect at A as well as B
 It can be achieved in faulty circuits LA · LB
Also C/1 is a new fault to be included in the fault list of C

Ch3-17

LA is the set of all faults not in LA

LA, LB, LC are fault list propagated to their respective lines

B
C

LB
LC0

Example: Fault List Propagation

Consider a two-input AND-gate:
A

B
C

LA

LB
LC

LA, LB, LC are detected fault list
at their respective lines

Case 1:  A=1, B=1, C=1 at fault-free,
LC = LA + LB + {C/0}

Case 2:  A=1, B=0, C=0 at fault-free,
LC = LA · LB + {C/1}

p g
BLB

Non-controlling case:

Controlling cases:

Ch3-18

LC  LA  LB + {C/1}
Case 3:  A=0, B=0, C=0 at fault-free,

LC = LA · LB + {C/1}

LA is the set of all faults not in LA
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Example: Deductive Simulation (1)

• Consider  3 faults: B/1,  F/0, and J/0

G1
A

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

0 0

1

Ch3-19

LB = {B/1},    LF = {F/0},  LA = ,  LC=LD = {B/1}

Fault List at PI’s:

Example: Deductive Simulation (2)

• Consider  3 faults: B/1,  F/0, and J/0

G1
A

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

0 0

1

G

E

Ch3-20

Fault Lists at G and E: 

LB = {B/1}, LF = {F/0}, LA =  LC=LD = {B/1},  
LG = (LA * LC) = {B/1}
LE = (LD) = {B/1}
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Example: Deductive Simulation (3)

• Consider  3 faults: B/1,  F/0, and J/0

A G1

x

x

x
B C

D
E

F

H

J0

1

11

0 0

1H

Ch3-21

Computed Fault List at H:

LB = {B/1},    LF = {F/0},  LC=LD = {B/1},  
LG = {B/1},  LE = {B/1}
LH = (LE + LF) = {B/1, F/0}

Example: Deductive Simulation (4)

• Consider  3 faults: B/1,  F/0, and J/0

G1
A

x

x

x
B C

D
E

F

H

J0

1

11 J

0 0

1

Ch3-22

Final Fault List at the output J: 

LB = {B/1},    LF = {F/0},  LC=LD = {B/1},  
LG = {B/1},  LE = {B/1}
LH = {B/1, F/0},
LJ = (LG · LH) {F/0, J/0}
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Example: Even-Driven
Deductive Fault Simulation

• When A changes from 1 to 0

A GA

x

x

x
B

C

D
E

F

G

H

J

10

0

1

1

1

00

1

0
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LB = {B/1},  LF = {F/0}, LA = 
LC=LD = {B/1},  LG = , 
LE = {B/1},  LH = {B/1,F/0},   LJ = {B/1,F/0,J/0}

Event-driven operation:

F

Concurrent Fault Simulation

• Simulate all faulty circuits in one pass:
– Each gate retains a list of fault copies, each of which 

stores the status of  a fault exhibiting difference from stores the status of  a fault exhibiting difference from 
fault-free values

• Simulation mechanism
– is similar to the conceptual fault simulation except 

that only the dynamical difference w.r.t. fault-free 
circuit is retained. 

• Theoretically, 

Ch3-24

y,
– all faults in a circuit can be processed in one pass

• Practically,
– memory explosion problem may restrict the number of 

faults that can be processed in each pass
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Concurrent Fault Simulation

Fault-free

1 Y1

0
0 0

1

1
1

0

F100

F73Can be

survivor

Y

As compared to deductive fault simulation
Concurrent fault simulation can process

multiple patterns in a single run of simulation

Ch3-25

0
0

1

1
1

F73

F2survivor

Can be
dropped

Example: Concurrent Simulation (1)

• Consider  3 faults: B/1,  F/0, and J/0

x

x

x
B

C

D

E

G

H

J

1

0

1

1

1

0

1

A

Ch3-26

LG = {10_0, B/1:11_1}     LE = {0_1, B/1:1_0}

x
F

1

Fault
Free

A fault B/1
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Example: Concurrent Simulation (2)

• Consider  3 faults: B/1,  F/0, and J/0

x

x

x
B

C

D
E

G

H

J

1

0

1

1

1
1

0

A
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LG = {10_0, B/1:11_1}     LE = {0_1, B/1:1_0}  
LH = {11_1, B/1:01_0, F/0:10_0}

x
F

1

Example: Concurrent Simulation (3)

• Consider  3 faults: B/1,  F/0, and J/0

A

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11

1

0

A
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LG = {10_0, B/1:11_1}     LE = {0_1, B/1:1_0}  
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:10_1, F/0:00_0, J/0:01_0}

F

dropped
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Example: Concurrent Simulation (4)

• When A changes from 1 to 0

A

x

x

x
B

C

D
E

G

H

J

10

0

1

1

1

00

1
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LG = {00_0, B/1:01_0}     LE = {0_1, B/1:1_0}  
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:00_0, F/0:00_0, J/0:01_0}

x
F

1

Fault List Including New Borns

A

B
D0

0

0

B

A/1

B/1

0
0

1

01
0

Ch3-30

D/1

1

1
0

0
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Fault List Propagation

A

B

D0

0
0

C

E0

0
0

C

A

B

D1

0
0 E0

0

A/1: 10_0 C/1: 01_1

B/1: 01_0 D/1: 10_1

D/1: 00_1 E/1: 00_1

*

These 2 faults are 
not propagated
after evaluation

propagated

Ch3-31

B 0
C 0

0

*A/0: 00_0 *B/1: 10_1

*B/1: 11_1 C/1: 01_1

*D/1: 10_1 *D/1: 10_1

E/1: 00_1

Outline

• Fault Simulation for Comb. Circuits
• Approximation Approach

– Critical Path Tracing
– Probabilistic Approach

• Techniques for Sequential Circuits

Ch3-32
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Sensitive Input and Critical Path

1
0

0

iSensitive input
Non-sensitive input

Z PO
Sensitized ?

• Sensitive Input of a gate:
– A gate input i is sensitive if complementing the value of i

changes the value of the gate output

• Critical line

i

i is critical if Z is sensitized to at least one PO

Ch3-33

Critical line
– Assume that the fault-free value of w is v in response to t
– A line w is critical w.r.t. a pattern t iff t detects the fault 

w stuck-at v

• Critical paths
– Paths consisting of critical lines only

Basics of Critical Path Tracing

Z is critical PO

sensitization
Path(s)1

0
0

• A gate input i is critical w.r.t. a pattern t if 
– (1) the gate output is critical and  
– (2) i is a sensitive input to t

Z is critical0

PO is sensitive to i, or i is critical
i

Ch3-34

– Use recursion to prove that i is also critical 

• In a fanout-free circuit
– the criticality of  a line can be determined by 

backward traversal to the sensitive gate’s inputs from 
PO’s, in linear time
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Analysis of Critical Path Tracing

• Three-step Procedure:
– Step 1: Fault-free simulation
– Step 2: Mark the sensitive inputs of each gate
– Step 3: Identification of the critical lines by backward 

critical path tracing)

• Complexity is O(G)
– Where G is the gate count
– for fanout-free circuits --- very rare in practice

Ch3-35

y p

• Application
– Applied to fanout-free regions, while stem faults are 

still simulated by parallel-pattern fault simulator.

Example of Critical Path Tracing

sensitive input,             critical line

A

B 
(stem)

C
D E 

F

G

H
J

0

(fanout-free region)

1

1

1
1

0
1

Ch3-36

Detected faults  in the fanout-free region: 
{J/0, H/0, F/0, E/0, D/1}
Question: is B stuck-at-1 detected ?
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Anomaly of Critical Path Tracing

• Stem criticality is hard to infer from branches. 
E.g. is B/1 detectable by the given pattern?

x
B

C

D E

F

G

H J

1

1

10
0

1
1

Ch3-37

• It turns out that B/1 is not detectable even though both C 
and D are critical, because their effects cancel out each 
other at gate J, (i.e., fault masking problem)

• There is also a so-called multiple path sensitization problem.

Multiple Path Sensitization

A
1

B 
(stem)

C

D

F

G     1

H    1 J

1

1

1

1

(fanout-free region)

Ch3-38

Both C and D are not critical, yet B is critical and B/0
can be detected at J by multiple path sensitization.
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Parallel and Distributed Simulation

• To share the fault simulation effort
– by a number of processors either tightlyby a number of processors either tightly

connected as in parallel computation  or loosely
connected as in distributed computation.

• The speed-up 
– with respect to the processor number depends on 

the degree of duplicated computation, and the 
communication overhead among processors. 

Ch3-39

• The distributed simulation 
– on a cluster of  networked workstations is 

especially appealing. 

Distributed Simulation Techniques

• Fault Partition
– Distributes faults among many processors.
– Works relatively well for both combinational and 

sequential circuits.

• Pattern Partition
– Distributes patterns among processors.

• no duplicated logic simulation
– Works well for combinational circuits.

C

Ch3-40

• Circuit Partition
– Difficult to achieve synchronization without  

incurring  excessive communication overhead.
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Distributed Fault Simulation

• Typical Speed-up versus No. of Processors

Speed-up
Ratio

Ch3-41

# Processor

• Diminished increase of speed-up ratio with more processors

Fault Grading

• Approximate fault coverage 
– Can be obtained in much shorter computational – Can be obtained in much shorter computational 

time than regular fault simulation. 
– Not suitable for high fault-coverage requirement.

• Typical fault grading methods:
– Toggle test, e.g. DATAS
– Detection probability computation, e.g. STAFAN

Ch3-42

– Fault sampling
• estimate from a selected subset of total faults

– Test set sampling
• estimate from a subset of complete test sequence
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STAFAN

• Compute fault detection probability 
from logic simulation.
– dl = detection probability of s-a-0 on l = C1(l)O(l)

– dl = detection probability of s-a-1 on l = C0(l)O(l)

C l
count
n

l
count
n

S l
sensitization count

0
0

1
1

( ) , ( )

( )

 



- -

-

C

Ch3-43

S l
n

O l S l O m

( )

( ) ( ) ( ) m
l

- m is the immediate successor of l
- observability can be computed backwards from POs

STAFAN (cont.)

n
f

n
f dd )1(1  n is the no. of vectors

the summation of
each fault’s detection
probability





n
fd

 is the set of faults of interest

Statistical Fault Coverage

Ch3-44

• More sophisticated than toggle test 
with same computation complexity
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Outline

• Fault Simulation for Comb. Circuits
• Approximation Approach

– Toggle Counting
– Critical Path Tracing
– Probabilistic Approach

• Techniques for Sequential Circuits

Ch3-45

Fault Grading for 
Functional Input Sequence

Inputs:Inputs: 
(1) A test application program
(2) A sequential design

Output: The fault coverage

Application: High-Performance CPU DesignsApplication: High Performance CPU Designs

Major challenge: often too time-consuming
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Sequential Design Model

A

Sequential Circuits

FFs FFs

clk

Comb.
logic

Comb.
logic

A
B
C out1

out2

Ch3-47

FFs

Combinational
Logic

A
B
C

OUT1
OUT2

Hoffman Model

Time-Frame-Expansion Model

Ex: Input Sequence (‘0’, ‘0’, ‘0’)
State Sequence (S0  S1  S2  S3)

‘0’ ‘0’ ‘0’

f

‘0’

f

‘0’

PO’s

f

‘0’

PO’s PO’sPO PO PO

S0 S1 S2 S3

Ch3-48

Time-frame: 1 2 3

A single fault becomes multiple faults in
the time-frame-expansion model 

PPI PPO
Notations: PPI: pseudo primary inputs (I.e., outputs of flip-flops)

PPO: pseudo primary outputs (I.e., inputs of flip-flops)
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Hypertrophic Faults 

• A hypertrophic fault
– Is a fault that diverges from the fault-free circuit with 

a large number of  Xs, which usually is a stuck-at fault 
occurring at a control line and thus prevents the 
circuit initialization

• A small number of hypertrophic faults
– account for a large percentage of fault events and 

CPU time

• These faults are sometimes dropped

Ch3-49

– as potentially detected faults to reduce simulation 
time. However, the resultant fault coverage then 
becomes approximate

A potentially detected fault is
a fault detected only when the circuit is
powered on in certain states, not every state.

F lt E l tiFault Emulation

We can utilize FPGA to speed up the sequential fault grading
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FPGA-Based Emulation Process

ASIC netlist

Compilationp
(format translation, partitioning, mapping)

Bit-stream downloading

Bit-Stream

i.e.,
Programming FPGA’s

Ch3-51

Emulation 
hardware

FPGA chips

Serial Fault Emulation by FPGA’s

ASIC netlist

Fault list generation
Compilation

Bit t  d l di Fault list generation

Fault emulation

Fault injection

Bit-stream downloading

Test

Fault-free FPGA’s Fault list

Pick next fault

join

Ch3-52

More faults

Fault 
coverage

sequence

END

yes
no

Report fault coverage
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Fault Injection Should Be Efficient !

• Fault Injection
– Is to convert a fault-free FPGA implementation to a 

faulty one
– If not efficient, could become the new bottleneck 

• (1) Static Fault Injection
– Directly changes the configuration of the fault-free 

implementation to a faulty one

• (2) Dynamic Fault Injection

Ch3-53

(2) Dynamic Fault Injection
– Do not change the configuration directly
– Fault inject is injected through the control of some 

hardware originally built-in to the netlist

Static Fault Injection

E 0A

Faulty CLB

A
B

C Z

E s-a-0A
B

C Z

Simplify to

Bit t  f th  ti  i it

Ch3-54

Portion that needs to be modified and re-programmed
into the FPGAs through partial re-programming

Bit-stream of the entire circuit
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Example: FPGA-implementation

Two faults are being considered:
A stuck-at 1
G stuck-at-0

A
B

C

CLB1
CLB2

Ch3-55

D
E

F

CLB1
G s-a-0

Dynamic Fault Injection (I)

Fault Activation Control
x y

enable (Produce 1-hot output)

A
B
C

D
E

CLB1
CLB2

Ch3-56

E
F

(x=1, y=0)  The above netlist behaves like A s-a-1 faulty circuit
(x=0, y=1)  The above netlist behaves like G s-a-0 faulty circuit
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Dynamic Fault Injection (II)

(1) Conservatively map only 4-input function to a CLB,
which is originally assumed to be capable of realizing 5-input function.

(2) Extra input, I.e., x, is reserved for the control of dynamic fault injection.

Good

Faulty
Function
f(a,b,c,d)

MUX

a
b
c
d

0

1

Z

Ch3-57

A Configurable Logic Block (CLB) 
with a dynamic fault injected (activated with x=1)

Good
Function
g(a,b,c,d)

X

Overview of Dynamic Fault 
Injection (II)

CLB CLB CLB CLB CLBFPGA

In the following configuration:
5 faults are injected (one for each column), but only 1 is activated

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

FPGA

faulty

Ch3-58

CLB CLB CLB CLB CLB

FF FF FF FFFF
1 0 0 0 0

Circular shift-register

CSR
clock


