

Functional v.s. Structural Testing

- I/O functional tests inadequate for manufacturing
- Exhaustive testing is prohibitively expensive

Question: How to Generate Compact yet High-Quality Test Vectors?

Why Fault Model?

- Fault model identifies target faults
 - Model faults most likely to occur
- Fault model limits the scope of test generation
 - Create tests only for the modeled faults
- Fault model makes effectiveness measurable by experiments
 - Fault coverage can be computed for specific test patterns to reflect its effectiveness
- Fault model makes analysis possible
 - Associate specific defects with specific test patterns

Scientific Study: Hypothesis (Assumption) → Evaluation → Refinement

Ch2-3

Fault Modeling

- Fault Modeling
 - Model the effects of physical defects on the logic function and timing
- Physical Defects
 - Silicon Defects
 - Photolithographic Defects
 - Mask Contamination
 - Process Variation
 - Defective Oxides

Common Fault Types Used To Guide Test Generation

- Stuck-at Faults
- Bridging Faults
- Open Faults
- Transistor Stuck-On Faults
- Delay Faults
- IDDQ Faults (Quiescent current at VDD pin)
- Memory Faults

IDDQ Testing: canary in the coalmine, alarming of un-modeled defects 金絲雀

Ch2-5

Single Stuck-At Fault

Test Vector Fault-Free Response 1/0 1/0 stuck-at-0

Assumptions:

- Only One line is faulty
- Faulty line permanently set to 0 or 1
- Fault can be at an input or output of a gate

Multiple Stuck-At Faults

- Several stuck-at faults occur at the same time
 - Mostly used in logic diagnosis
- For a circuit with k lines
 - there are 2k single stuck-at faults
 - there are 3k-1 multiple stuck-at faults
 - A line could be stuck-at-0, stuck-at-1, or fault-free
 - One out of 3^k resulting circuits is fault-free

Ch2-7

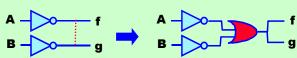
Why Single Stuck-At Fault Model?

- Complexity is greatly reduced
 - Many different physical defects may be modeled by the same logical single stuck-at fault
- Stuck-at fault is technology independent
 - Can be applied to TTL, ECL, CMOS, BiCMOS etc.
- Design style independent
 - Gate array, standard cell, custom VLSI
- Detection capability of un-modeled defects
 - Empirically, many defects accidentally detected by test derived based on single stuck-at fault
- Cover a large percentage of multiple stuck-at faults

Single SA model survives well (due to its simplicity and effectiveness)


Multiple Faults

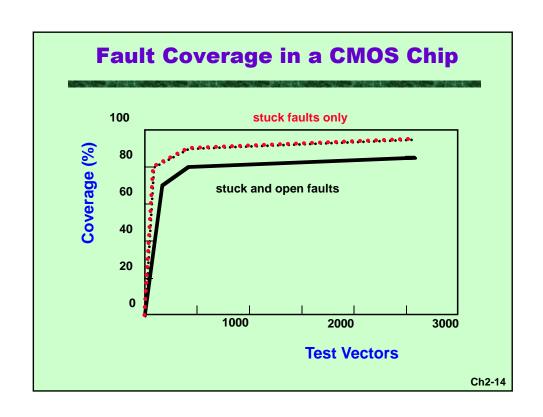
- Multiple stuck-fault coverage by single-fault tests of combinational circuit:
 - 4-bit ALU (Hughes & McCluskey, ITC-84)
 All double and most triple-faults covered.
 - Large circuits (Jacob & Biswas, ITC-87)
 Almost 100% multiple faults covered for circuits with 3 or more outputs.


Ch2-9

Bridging Faults

- Two or more normally distinct points (lines) are shorted together erroneously
 - Logic effect depends on technology
 - Wired-AND for TTL

- Wired-OR for ECL



- CMOS?

Pridging Faults For CMOS Logic • The result - could be AND-bridging or OR-bridging - depends on the inputs VDD (f and g) are AND-bridging fault pull to VDD GND Ch2-11

CMOS Transistor Stuck-Open (I) • Transistor stuck-open - May cause the output to be floating - The fault exhibits sequential behavior - Need two-pattern test (to set it to a known value first) Responses: Fault-free 0→1 Faulty 0→0 Ch2-13

Summary of Stuck-Open Faults

- First Report:
 - Wadsack, Bell System Technology, J., 1978
- Recent Results
 - Woodhall et. al, ITC-87 (1-micron CMOS chips)
 - 4552 chips passed the test
 - 1255 chips (27.57%) failed tests for stuck-at faults
 - 44 chips (0.97%) failed tests for stuck-open faults
 - 4 chips with stuck-open faults passed tests for stuck-at faults
- Conclusion
 - Stuck-at faults are about 20 times more frequent than stuckopen faults
 - About 91% of chips with stuck-open faults may also have stuck-at faults
 - Faulty chips escaping tests for stuck-at faults = 0.121%

Ch2-15

Functional Faults

- Fault effects modeled at a higher level than logic for functional modules, such as
 - Decoder
 - Multiplexers
 - Adders
 - Counters
 - ROMs

Functional Faults of Decoders

- **f(L_i/L_k):** One active output, but wrong one
 - Instead of input line Li, Lk is selected
- $f(L_i/L_{i+k})$: More than one active outputs
 - In addition to line L_i, L_k is also selected
- **f(L_i/0):** No active output
 - None of the lines is selected

Ch2-17

Memory Faults

- Parametric Faults
 - Any fault that causes the response to deviate from its fault-free nominal value by some amount
 - Ex. A cell with parametric delay fault (with for example 93% more than normal)
 - Due to all kinds of factors like PVT variation
- Functional Faults
 - Stuck Faults in Address Register, Data Register, and Address Decoder
 - Cell Stuck Faults
 - Adjacent Cell Coupling Faults
 - Pattern-Sensitive Faults

Memory Faults

- Pattern-sensitive faults: the presence of a faulty signal depends on the signal values of the neighboring cells
 - Mostly in DRAMs

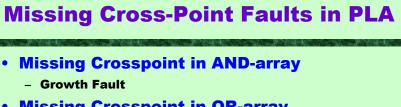
0 0 0	0	0	a=b=0 → d=0
0	d	b	a=b=0 → d=0 a=b=1 → d=1
0	а	0	u===1 2 u=1

- Adjacent cell coupling faults
 - Pattern sensitivity between a pair of cells

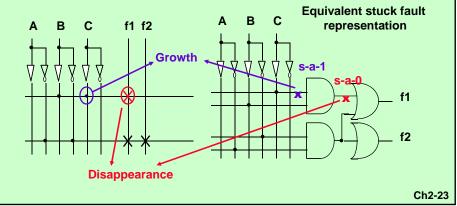
Ch2-19

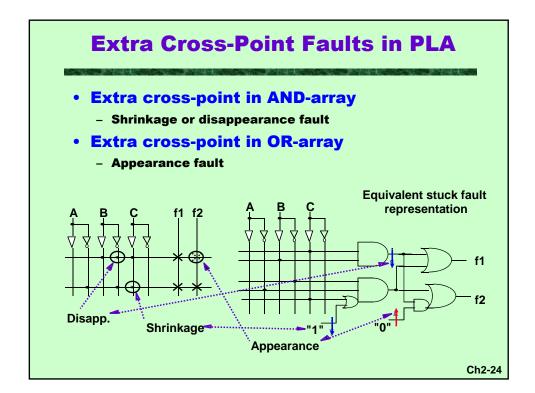
Memory Testing

- Test could be time-consuming
 - The length of the test sequence for memory testing could be prohibitively long
- Example:
 - A pattern sensitive test is 5n² long for an n-bit RAM
 - Testing a 1-M bit chip at 10ns pattern would take 14 hours
 - For a 64-M bit chip, it would take 6 years


PLA Faults

- Stuck-at Faults
- Cross-point Faults
 - Extra/Missing Transistors
- Bridging Faults
- Break Faults


Ch2-21


Ch2-22

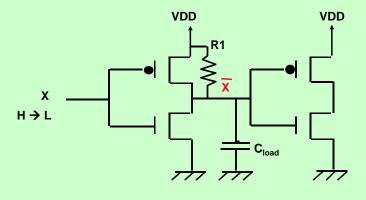
• s-a-0 & s-a-1 faults - on inputs, input inverters, product lines, and outputs are easy to simulate in its gate-level model A B C f1 f2 A B C Gate-level model A B C Gate-level model AND-Array OR-Array

- Missing Crosspoint in OR-array
 - Disappearance fault

Summary of PLA Faults

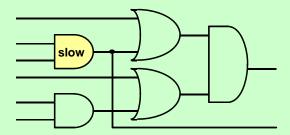
- Cross-Point Faults
 - 80 ~ 85% covered by stuck-fault tests
 - Layout-dependence in folded PLA
- Bridging Faults
 - 99% covered by stuck-fault tests
 - Layout-dependence in all PLAs
 - (Ref: Agrawal & Johnson, ICCD-86)

Ch2-25


Delay Testing

- Chip with Timing Defects
 - may pass the DC stuck-fault testing, but fail when operated at the system speed
 - For example, a chip may pass the test under 10
 MHz operation, but fail under 100 MHz
- Delay Fault Models
 - Gate-Delay Fault
 - Path-Delay Fault

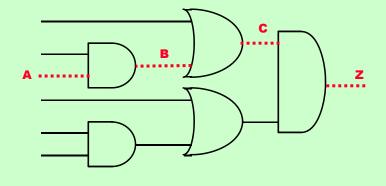
Gate-Delay Fault (I)


Slow to Rise

 $-\overline{x}$ is slow to rise when channel resistance R1 is abnormally high

Ch2-27

Gate-Delay Fault (II)

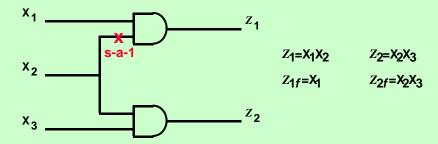


Test Based on Gate-Delay Fault

 May not detect those delay faults that result from the accumulation of a number of small incremental delay defects along a path !! (Disadvantage)

Path-Delay Fault

- Associated with a Path (e.g., A-B-C-Z)
 - Whose delay exceeds the clock interval
- More complicated than gate-delay fault
 - Because the number of paths grows exponentially

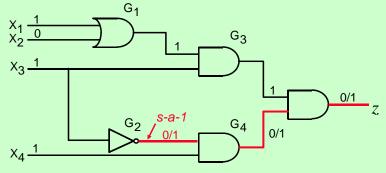

Ch2-29

Fault Detection

- Fault Activation
- Fault Propagation

Definition Of Fault Detection

- A test (vector) t detects a fault f iff
 - t detects $f \Leftrightarrow z(t) \neq z_f(t)$
- Example


The test $(x_1,x_2,x_3) = (100)$ detects f because $z_1(100)=0$ while $z_{1f}(100)=1$

Ch2-31

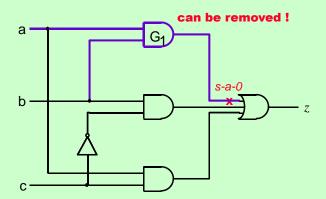
Fault Detection Requirement

- A test t that detects a fault f
 - (1) Activate f (or generate a fault effect at the site of the fault)
 - (2) Propagate the fault effect to a primary output w
- Sensitized Line:
 - A line whose faulty value is different from its fault-free one is said to be sensitized by the test in the faulty circuit
- Sensitized Path:
 - A path composed of sensitized lines is called a sensitized path

z (1011)=0 z_f (1011)=1 1011 detects the fault f (G $_2$ stuck-at 1)

 v/v_f : v = signal value in the fault free circuit $v_f = \text{signal value in the faulty circuit}$

Ch2-33

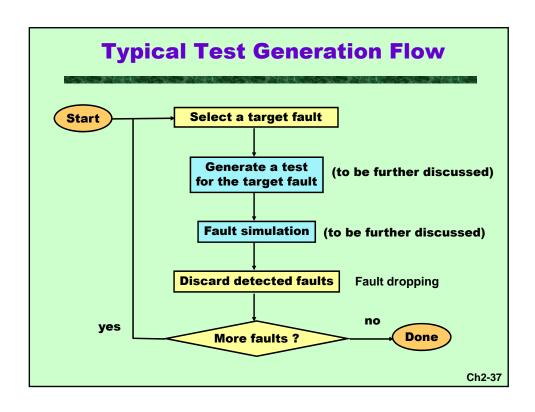

Detectability

- A fault f is said to be detectable
 - if there exists a test t that detects f;
 otherwise,

f is an undetectable fault

- For an undetectable fault f
 - No test can simultaneously activate f and create a sensitized path to a primary output

Undetectable Fault



- G₁ output stuck-at-0 fault is undetectable
 - Undetectable faults do not change the function of the circuit
 - The related circuit can be deleted to simplify the circuit

Ch2-35

Test Set

- Complete detection test set:
 - A set of tests that detect any detectable faults in a class of faults
- The quality of a test set
 - is measured by fault coverage
- Fault coverage:
 - Fraction of faults that are detected by a test set
- The fault coverage
 - can be determined by fault simulation
 - >95% is typically required for single stuck-at fault model
 - >99.9% in IBM

Fault Collapsing

- Fault Equivalence
- Fault Dominance
- Checkpoint Theorem

Fault Equivalence

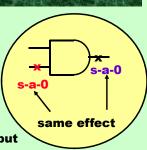
Distinguishing test

– A test t distinguishes faults α and β if

$$Z_{\alpha}(t) \oplus Z_{\beta}(t) = 1$$

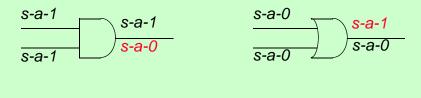
Equivalent Faults

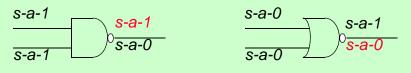
- Two faults, α & β are said to be equivalent in a circuit, iff the function under α is equal to the function under β for any input combination (sequence) of the circuit.
- No test can distinguish between α and β


Ch2-39

Fault Equivalence

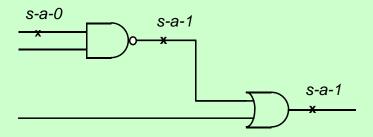
- AND gate:
 - all s-a-0 faults are equivalent
- OR gate:
 - all s-a-1 faults are equivalent
- NAND gate:
 - all the input s-a-0 faults and the output s-a-1 faults are equivalent

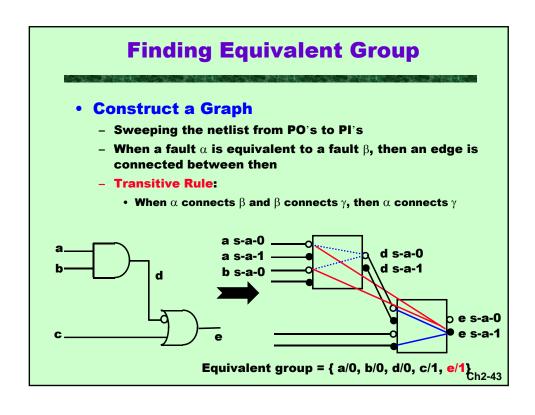


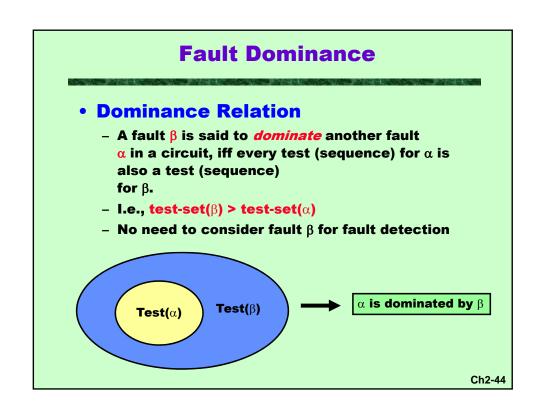

- all input s-a-1 faults and the output s-a-0 faults are equivalent
- Inverter:
 - input s-a-1 and output s-a-0 are equivalent input s-a-0 and output s-a-1 are equivalent

Equivalence Fault Collapsing

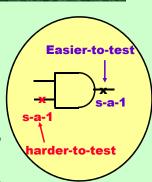
 n+2 instead of 2(n+1) faults need to be considered for n-input gates



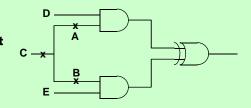

Ch2-41


Equivalent Fault Group

- In a combinational circuit
 - Many faults may form an equivalent group
 - These equivalent faults can be found by sweeping the circuit from the primary outputs to the primary inputs


Three faults shown are equivalent!

Fault Dominance


- AND gate:
 - Output s-a-1 dominates any input s-a-1
- NAND gate:
 - Output s-a-0 dominates any input s-a-1
- OR gate:
 - Output s-a-0 dominates any input s-a-0
- NOR gate:
 - Output s-a-1 dominates any input s-a-0
- Dominance fault collapsing:
 - The reduction of the set of faults to be analyzed based on dominance relation

Ch2-45

Stem v.s. Branch Faults

C: stem of a multiple fanout A & B: branches

Detect A sa1:

$$z(t) \oplus z_f(t) = (CD \oplus CE) \oplus (D \oplus CE) = D \oplus CD = 1$$

$$\Rightarrow$$
 (C = 0, D = 1)

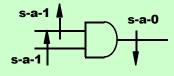
• Detect C sa1:

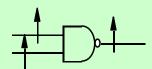
$$z(t) \oplus z_f(t) = (\mathbf{C}\mathbf{D} \oplus \mathbf{C}\mathbf{E}) \oplus (\mathbf{D} \oplus \mathbf{E}) = \mathbf{1}$$

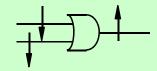
$$\Rightarrow$$
 (C = 0, D = 1) or (C = 0, E = 1)

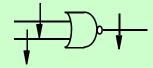
- Hence, C sa1 dominates A sa1
- Similarly
 - C sa1 dominates B sa1
 - C sa0 dominates A sa0
 - C sa0 dominates B sa0
- In general, there might be no equivalence or dominance relations between stem and branch faults Ch2-46

Analysis of a Single Gate

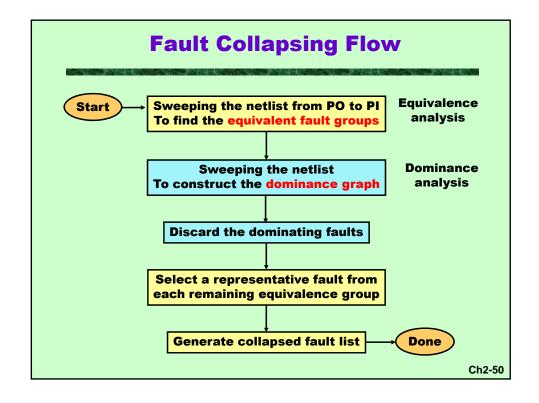

AB	C	A sa1	B sa1	C sa1	A sa0	B sa0	C sa0
00	0			1			
01	0	1		1			
10	0		1	1			
11	1				0	0	0


- Fault Equivalence Class
- **Negligible fault**
- (A s-a-0, B s-a-0, C s-a-0)
- Fault Dominance Relations
 - (C s-a-1 > A s-a-1) and (C s-a-1 > B s-a-1)
- Faults that can be ignored:
 - A s-a-0, B s-a-0, and C s-a-1

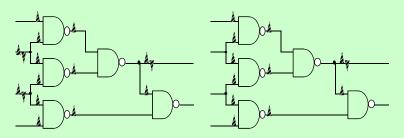

Ch2-47


Fault Collapsing

- Equivalence + Dominance
 - For each n-input gate, we only need to consider
 n+1 faults during test generation



Rule When fault α dominates fault β, then an arrow is pointing from α to β Application Find out the transitive dominance relations among faults a s-a-0 d s-a-0 d s-a-1 ch2-49

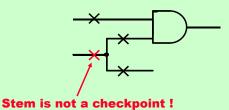

Prime Fault

 \square α is a prime fault if every fault that is dominated by α is also equivalent to α

Ch2-51

Why Fault Collapsing?

- Memory and CPU-time saving
- Ease testing generation and fault simulation

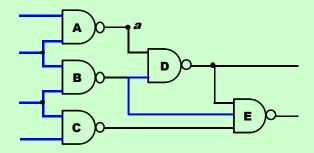


* 30 total faults \rightarrow 12 prime faults

Checkpoint Theorem

Checkpoints for test generation

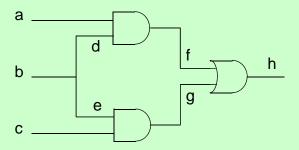
- A test set detects every fault on the primary inputs and fanout branches is complete
- I.e., this test set detects all other faults too
- Therefore, primary inputs and fanout branches form a sufficient set of checkpoints in test generation
- In fanout-free combinational circuits, primary inputs are the sole checkpoints


Ch2-53

Why Inputs + Branches Are Enough?

Example

- Checkpoints are marked in blue
- Sweeping the circuit from PI to PO to examine every gate, e.g., based on an order of (A->B->C->D->E)
- For each gate,


output faults are detected if every input fault is detected

Fault Collapsing + Checkpoint

• Example:

- 10 checkpoint faults
- a s-a-0 <=> d s-a-0 , c s-a-0 <=> e s-a-0 b s-a-0 > d s-a-0 , b s-a-1 > d s-a-1
- 6 tests are enough

