
1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 11
Logic Diagnosis

OutlineOutline

 Introduction

Combinational Logic Diagnosis

Scan Chain Diagnosis

Logic BIST Diagnosis

Conclusion

Ch11-2

2

What would you do when chips fail?What would you do when chips fail?

 Is it due to design bugs?
 If most chip fails with the same syndrome when

running an application

I i d i i ld l ? Is it due to parametric yield loss?
 Timing-related failure?

– Insufficient silicon speed?

 Noise-induced failure?
– supply noise, cross-talk, leakage, etc.?

 Lack of manufacturability?

Ch11-3

– inappropriate layout?

 Is it due to random defects?
 Via misalignment, Via/Contact void, Mouse bite,
 Unintentional short/open wires, etc.

Problem: Fault DiagnosisProblem: Fault Diagnosis

Circuit
Under

Diagnosis

expected response

This chapter focuses more on diagnosis of defects or faults, not design bugs

Diagnosis
(CUD)test patterns

=

faulty response

not equal !

Ch11-4

Question: Where are the fault locations ?

a chip with defects inside

3

Diagnosis For Yield ImprovementDiagnosis For Yield Improvement

Golden
Reference

Model Physical Failure Analysis

Logic Diagnosis
Defect Mechanisms

Scanning Electronic Microscope (SEM)
Focused Ion Beam (FOB)

Via void
Mouse bite, etc.

Ch11-5

A Set Of
Potential

Defect Locations

Tune the Manufacturing
Process or Design

for Yield Improvement

Quality Metrics of DiagnosisQuality Metrics of Diagnosis
 Success rate

 The percentage of hitting at least one defect in the physical failure
analysis

 This is the ultimate goal of failure analysis

Di ti l ti Diagnostic resolution
 Total number of fault candidates reported by a tool

 The perfect diagnostic resolution is 1

 Though perfect resolution does not necessarily imply high hit rate

 First-hit index
 Used for a tool that reports a ranked list of candidates

 Refers to the index of the first candidate in the ranked list that turns
t t b t d f t it

Ch11-6

out to be a true defect site

 Smaller first-hit index indicates higher accuracy

 Top-10 hit
 Used when there are multiple defects in the failing chip

 The number of true defects in the top 10 candidates

4

ChallengeChallenge

Do whatever you want,
but give me that damnbut give me that damn
bug(s) in less than 5

candidates.

Ch11-7

failure analysis people
under time-to-market pressure

Supporting CircuitrySupporting Circuitry
Supporting Circuitry:

Makes Logic’s inputs controllable and outputs observable

memory

Scan out

M
U

X

ff

op_mode

Logic

Logic
Test input

ff ff

shift
register

Ch11-8

Scan out

LogicLogic

register

5

Design For DiagnosisDesign For Diagnosis

Complexity
Of

Di i

Original
Design

Diagnosis

Separated
Logic &
Memory

interface circuitry

Logic Design

Scan-chain

Ch11-9

More Supporting Circuitry

With Full-Scan

Possible Assumptions Used in DiagnosisPossible Assumptions Used in Diagnosis

 Stuck-At Fault Model Assumption

 The defect behaves like a stuck-at fault

 Single Fault Assumption

 Only one fault affecting any faulty output

 Logical Fault Assumption

 A fault manifests itself as a logical error

 Full-Scan Assumption
 The chip under diagnosis has to be full-scanned

Ch11-10

 The chip under diagnosis has to be full-scanned

Note: A diagnosis approach less dependent on the fault assumptions
is more capable of dealing with practical situations.

6

Examples of FaultsExamples of Faults

 Node Fault

VDD

 Short Fault (Bridging)



A

B A

bridging

C Most diagnosis algorithms performs
at the gate level, trying to identify the





Ch11-11

B

GND

at the gate level, trying to identify the
troubling signals or cells

Byzantine Open FaultByzantine Open Fault

 Definition of Byzantine Fault:
 A fault that causes an ambiguous voltage level

 ~ 2.5 v
G2

‘1’ ‘1’

pseudo ‘0’

pseudo ‘1’

open fault
G1

Ch11-12

G3‘1’
‘0’

7

A Byzantine Node TypeA Byzantine Node Type

A B C Z Zf

0 0 0 1 1

C

B

VDD

driver to ‘1’

Truth Table

0 0 1 0 0

0 1 0 1 1

0 1 1 0 0

1 0 0 1 ~0

1 0 1 0 0

faulty
min-term

A

bridging

Z

B

C

B

Ch11-13

1 1 0 0 0

1 1 1 0 0

GND

B

driver to ‘0’
The faulty output

could be ambiguous
The faulty output

could be ambiguous

Fault ClassificationFault Classification

Fault in Logic IC

affects
functionality

affects
timing

Functional Fault

Node Fault
Open Fault

functionality

Delay Fault

Gate-Delay Path-Delay

timing

Ch11-14

Open Fault
Short Fault

Byzantine Fault

Fault Fault

8

OutlineOutline

 Introduction
 Combinational Logic Diagnosis
 Cause-Effect Analysis
 Effect-Cause Analysis
 Chip-Level Strategy
 Diagnostic Test Pattern Generation

 Scan Chain Diagnosis

Ch11-15

 Scan Chain Diagnosis
 Logic BIST Diagnosis
 Conclusion

TerminologyTerminology

 Device Under Diagnosis (DUD): The Failing Chip

 Circuit Under Diagnosis (CUD): The Circuit Model

 Failing Input Vector: Causes Mismatchesg p

input
vector x

o
mismatched PO

t h d PO

Failing chip

Ch11-16

v o
o
o
x

matched PO

mismatched PO

matched PO
matched PO

Gate-level CUD

9

CauseCause--Effect AnalysisEffect Analysis

 Fault dictionary (pre-analysis of all causes)
 Records test response of every fault under the applied

test settest set

 Built by intensive fault simulation process

 A chip is diagnosed (effect matching)
 By matching up the failing syndromes observed at the

tester with the pre-stored fault dictionary

Ch11-17

Fault Dictionary ExampleFault Dictionary Example

a
b
c

gCircuit under
Diagnosis {f1, f2, f3, f4, f5}

A diagnosis session:
traverse from a path from root to a leaf

Circuits
Test vectors in terms of (a, b, c)
v1 v2 v3 v4 v5

fault-free 0 0 0 0 1
f1 0 1 1 1 1
f 1 1 1 0 1

(a) Circuit under diagnosis
output=0

v1

output=1

{f1, f4, f5}

0 1
v2

f4

{f2, f3}

0 1
v2

f2f3{f1, f5}

Ch11-18

f2 1 1 1 0 1
f3 1 0 0 1 1
f4 0 0 1 0 0
f5 0 1 1 0 1

(b) Full-response dictionary
(c) Diagnostic tree

0 1
v4

f1f5

10

Fault Dictionary Reduction Fault Dictionary Reduction –– P&RP&R

Fault
Output Response (z1, z2)
t1 t2 t3 t4

f1 1 0 10 1 1 10
f2 0 0 00 1 1 00
f3 0 0 00 0 0 00

(a) Full-response table

Fault
Pass-fail + Extra outputs

t t t t

(c) P&R compression dictionary

3

f4 0 1 00 0 0 01
f5 0 1 00 0 1 01
f6 0 1 00 0 1 01
f7 1 0 00 1 0 00
f8 1 1 11 1 1 11

Fault
Pass (0) or Fail (1)

t1 t2 t3 t4

f1 1 1 0 1

ID t1 t2 t3 t4

f1 1 1 1 0 1 1

f2 1 0 0 0 1 1

f3 1 0 0 1 0 1

f4 1 0 0 1 0 0

f5 1 0 0 1 1 0

f6 1 0 0 1 1 0

f7 1 1 0 1 0 1

Ch11-19
(b) Pass-fail dictionary

f2 1 0 0 1
f3 1 0 1 1
f4 1 0 1 0
f5 1 0 1 0
f6 1 0 1 0
f7 1 0 1 1
f8 0 1 0 1

f8 0 1 1 0 1 1

Response of z1 Response of z2

Detection Fault DictionaryDetection Fault Dictionary

Fault
ID

Output Response (z1, z2)

t1 t2 t3 t4

f1 10 10 11 10
f2 00 00 11 00
f3 00 00 00 00

(a) Full-response table

(c) Detection dictionary

failing output vectors

f3 00 00 00 00
f4 01 00 00 01
f5 01 00 01 01
f6 01 00 01 01
f7 10 00 10 00
f8 11 11 11 11

Fault
ID

Pass (1) or Fail (0)

t1 t2 t3 t4

Fault
ID

Detection information
(Test ID : Output Vector)

f1 t1:10 t2:10 t4:10;

f2 t1:00 t4:00;

f3 t1:00 t3:00 t4:00;

f4 t1:01 t3:00;

f5 t1:01 t3:01;

(c) Detection dictionary

Ch11-20

(b) Pass-fail dictionary

f1 1 1 0 1

f2 1 0 0 1

f3 1 0 1 1

f4 1 0 1 0

f5 1 0 1 0

f6 1 0 1 0

f7 1 0 1 1

f8 0 1 0 1

f6 t1:01 t3:01;

f7 t1:10 t3:10 t4:00;

f8 t2:10 t4:11;

11

OutlineOutline

 Introduction
 Combinational Logic Diagnosis
 Cause-Effect Analysis
 Effect-Cause Analysis
 Chip-Level Strategy
 Diagnostic Test Pattern Generation

 Scan Chain Diagnosis

Ch11-21

 Scan Chain Diagnosis
 Logic BIST Diagnosis
 Conclusion

Terminology: Mismatched OutputTerminology: Mismatched Output

failing chip

Effect-cause analysis does not build fault dictionary
It predicts fault locations by analyzing CUD from mismatch PO’s

input
vector

v

0
0
0
0
0

mismatched PO1

0

failing PO

failing PO

Ch11-22

v

mismatched POCUD

0

0

0

1

12

Structural Pruning Structural Pruning –– Intersection or Union?Intersection or Union?

z2 z2primary
inputs

z1 z1

z3 z3

(a) Cone intersection.

inputs

Fault candidate setCUD

Ch11-23

(b) Cone union when there are multiple faults.

z2

z3

z2

z3

primary
inputs

Fault candidate setCUD

Backtrace AlgorithmBacktrace Algorithm

 Trace back from each mismatched PO
 To find out suspicious faulty locations

 Functional Pruning
 During the traceback, some signals can be

disqualified from the fault candidate set based
on their signal values.

 Rules
 (1) At a controlling case (i.e., 0 for a NAND

gate): Its fanin signals with non-controlling

Ch11-24

values (i.e., 1) are excluded from the candidate
set.

 (2) At a non-controlling case (i.e., 1 for a NAND
gate): Every fanin signal remains in the
candidate set.

13

Backtrace ExampleBacktrace Example

Target
mismatched

0 1b

All suspicious fault locations are marked in red.

mismatched
output1

1

1
0

1

1

0

b

c

e

f

Ch11-25

10

1
a

d

f

Terminology Terminology –– InjectionInjection

An injection at a signal f flips its current value
which could create value-change events downstream.

f = ‘1’

x
o
o

f = ‘0’ x
o
o

Ch11-26

v
o
x
x

v

A mismatched output
could be fixed by the injection!

O: correct output
X: failing output

o
xo?
x

14

Terminology Terminology –– Curable OutputCurable Output

 Diagnosis Criterion
 A signal is more suspicious if it has more curable outputs

f = ‘1’

x
o
o

f = ‘0’ x
o
o

Ch11-27

v x
x

v o
o

cured

cured

An injection at f fixes two mismatched outputs
 Thus, f has two curable outputs !

O: correct output
X: failing output

Terminology Terminology –– Curable VectorsCurable Vectors
v is a curable vector by f
 because an injection at f exists such that

it cures all mismatches without creating new one

Curable vector is a stronger diagnosis indicator than curable output !

x f = ‘0’ o cured

g g p

Ch11-28

v

f = ‘1’ o
o
x
x

v

o
o
o
o

cured

cured

15

Example of Curable VectorExample of Curable Vector

0
1

x1 = 0
x2 = 1
x3 = 1

failing

f
1 0

0
1



1 0

x1

x2

cured

x4 = 1

(a) Failing Chip

Ch11-29

1

1

1

1 0 0 1

1
0

x2

x3

x4

1

(b) Circuit Under Diagnosis

Why Curable Vector ?Why Curable Vector ?

 Information theory
 A less probable event contains more information

 Curable output is an easy-to-satisfy criterion, high aliasing

C bl t i h d t ti f it i l li i Curable vector is a hard-to-satisfy criterion, low aliasing

 Niche input vector
– Is an failing input vector that activates only one fault

 Not all failing input vectors are equal !

Ch11-30

– Is an failing input vector that activates only one fault

– Likely to be a curable vector of certain signals

– Few, but tells more about the real fault locations

16

InjectInject--andand--Evaluate ParadigmEvaluate Paradigm

input vectors
design
model

failing chip
response

Calculate the no. of “curable vectors” of each signal

Calculate the no. of “curable outputs” of each signal

Sort the signals by the no. of “correctable vectors”,
If tied, sort by the no. of “correctable outputs”

Sorting
Criteria

Ch11-31

y p

ranking of each signal’s possibility
of being a defect location

Detailed Computation Detailed Computation ––
InjectInject--andand--Evaluate ParadigmEvaluate Paradigm

CUD
netlist

failing
test vectors

failing chip
syndromes

Set initial candidate set by structural pruningSet initial candidate set by structural pruning

for each failing input vector v {
Step 1: perform logic simulation;
Step 2: for each candidate signal f {

Step 2.1: flip the value at f ; /* injection */
Step 2.2: run event-driven fault simulation; /*evaluation */
Step 2.3: calculate certain metrics /* ranking */

}

Ch11-32

a list of ranked candidate signals

}
}
Sort the candidate signals by the calculated metrics;

17

RewardReward--andand--Penalty HeuristicPenalty Heuristic
Rank1: curable vector count
Rank2 = (curable output count – 0.5 * new mismatched output count)

0
1

x1 =0
x2 =1

failing

f

0
1

1 0

x1

cured

12

x3 =1
x4 =0

(a) Failing Chip.

passing

Ch11-33

1

1

1

f
1 0

0 1

0
1

x2

x3

x4
(b) Circuit Under Diagnosis.

10
new

mismatch

Targeting Bridging FaultsTargeting Bridging Faults

Even in a realistic bridging fault, there is only one victim at any time.
This victim will expose his location by owning some curable vectors.

w1A

B

C
bridging

Ch11-34

w2

C
D

18

SLAT ParadigmSLAT Paradigm

CUD
failing

input vectors
failing chip
response

Ref: SLAT (Single Location At a Time) paradigm [Bartenstein 2001]
Note: A SLAT vector is a curable vector

Phase 1: Finding SLAT (Single Location at A Time) vectors:
(1) Fault simulation, (2) Output matching

Phase 2: Finding valid fault multiplets
(1) Finding single-fix candidates

(2) Finding double-fix candidates

Ch11-35

A number of valid fault multiplets

(2) Finding double-fix candidates
(3) Finding triple-fix candidates, etc.

Example: SLAT ParadigmExample: SLAT Paradigm
Failing
Input

Vectors

Signals in the CUD

f1 f2 f3 f4 f5 f6 f7

v1 * *

v2 * * *2

v3 * * *

v4 * *

v5 * *

v6 * *

v7 * *

v8 * *

Ch11-36

v8

v9 * *

v10 * *

A mark * means the corresponding vector is
a SLAT vector of the corresponding signal.

(f3 and f5)
is a valid fault multiplet

19

OutlineOutline

 Introduction
 Combinational Logic Diagnosis Combinational Logic Diagnosis
 Cause-Effect Analysis
 Effect-Cause Analysis
 Chip-Level Strategy
 Diagnostic Test Pattern Generation

 Scan Chain Diagnosis

Ch11-37

g
 Logic BIST Diagnosis
 Conclusion

Structurally Dependent and Independent Structurally Dependent and Independent
FaultsFaults

z1
fault f1 mismatched output

inputs
z2

z3

fault f2

f lt f

mismatched output

mismatched output

Ch11-38

fault f3

Fault f1 is an independent fault.
Faults f2 and f3 are dependent faults.

20

Dependency GraphDependency Graph

z1fault
f1

Direct divide-and-Conquer
does not work well !

z1

z2 z3

z2

z3
fault

f2

dependency graph

Ch11-39

2 3

one connected component

Two independent faults, f1 and f2, lead to one diagnosis block.

Main StrategyMain Strategy::
DetachDetach--DivideDivide--andand--thenthen--ConquerConquer

Phase 1: Isolate Independent Faults

 Search for prime candidates Search for prime candidates

 Use word-level information

Phase 2: Locate Dependent Faults As Well

 Perform partitioning

Ai t fi di f lt i h bl k

Ch11-40

 Aim at finding one fault in each block

21

Prime CandidatesPrime Candidates

A signal f is a prime candidate if
(1) All failing input vectors are partially curable by f
(2) Curable-Output-Set(f) is not covered by any other’s

f1
f3

f1 & f2
are prime !

syndrome
set 1

Ch11-41

f2
p

syndrome
set 2

Fake Prime CandidatesFake Prime Candidates

 Structurally Independent Faults
 are often prime candidates

 Fake Prime Candidates
 are prime candidates that are NOT really faults - aliasing

f1 f3

f4
Example: Dependent Double Faults f1 & f2

May create fake prime candidates {f1, f2, f3}.

Ch11-42

f2
f5

22

WordWord--Level Registers and OutputsLevel Registers and Outputs

Word-Level Output: O1

Signals in a design are often defined in words.
This property can be used to differentiate fake prime candidates from the real ones.

module design(O1, ...)
output[31:0] O1;
reg[31:0] R1, R2;
reg[5:0] State

Word-Level Registers: R1, R2, State

Ch11-43

reg[5:0] State
...

endmodule

WordWord--Level Prime CandidatesLevel Prime Candidates

f1

Note: Z and R are two word-level output groups.

f1

f2

f3

f4

f5

f2

f3

R

Z

R

Z

Ch11-44

Original prime candidates: {f1, f2}
Word-level prime candidates {f1, f2}

Assumed original prime candidates: {f3, f4 , f5}
{f4 , f5} will be identified as fake

 Final Word-level prime candidates {f3}

23

Efficiency of Using WordEfficiency of Using Word--Level Info.Level Info.

 Without word-level Information

 2.4 real faults out of 72.3 candidates
 With word-level Information

 1.23 real faults out of 3.65 candidates

of candidates Original
After

Filtering
Filtering

Ratio

Prime
2 375 1 23 48 2 %

Ch11-45

Prime
Candidates 2.375 1.23 48.2 %

Fake Prime
Candidates 69.96 2.42 96.5 %

Overall FlowOverall Flow

failing
input vectors

design
model

failing chip
response

Phase 1:
(1) Find Word-Level Prime Candidates

Phase 2:
(1) Remove explained outputs and their fanin cones
(2) Partition the rest model into blocks
(3) P f di i f h bl k

Ch11-46

(3) Perform diagnosis for each block

Rank candidates produced
in phases 1 & 2

24

Grouping Using Dependency GraphGrouping Using Dependency Graph

X
X
X

a
b
c

a
b

An example with five faults
One of them is identified as the prime candidate

X
X

X

X

c

e

f

c

i f
j

c
d

e
X

X

y
z

yz
prime

candidates

Ch11-47

X
X

X

X
X

X

g

i
j
k

h

h
g

j

k

Removed Explained Faulty OutputsRemoved Explained Faulty Outputs

X
X
X
X

a
b
c
d

X
X
X
X

a
b
c
dX

X

X
X

e

f
g

d

X

X

y
z

prime
candidates

X

X

X
X

e

f
g

syndromes
at y and z
are fully

explained

Ch11-48

X

X
X

X

i
j
k

h X

X
X

X

i
j
k

h

25

Grouping ExampleGrouping Example

a b

c
d

X
X
X
X

a
b
c
d

i f
j

d

e

X

X

X
X

e

f
g

Ch11-49

h
g

k
X

X
X

X

i
j
k

h

Two independent diagnosis blocks
Are successfully derived!

SummarySummary

 Strategy

 (1) Search For Word-Level Prime Candidates

 (2) Identify Independent Faults First

 (3) Locate Dependent Faults As Well

 Effectiveness

 identify 2.98 faults in 5 signal inspections

 find 3.8 faults in 10 signal inspections

Ch11-50

26

Diagnostic Test Pattern GenerationDiagnostic Test Pattern Generation

a

b
c

e

d

a1

d1

d2

g
Model for differentiating vector generation

DTPG helps to increase diagnostic resolution

fault-free circuit
c

b

a e

d

a2

d2

f

g

d1 stuck-at 1

x

c

a2

d2

f

⊕

z/0

Ch11-51

e

d

a2

d1

f

g

d2 stuck-at 0 ⊕

OutlineOutline

 Introduction

 Combinational Logic Diagnosis

 Scan Chain Diagnosis
 Preliminaries

 Hardware-Assisted Method

 Signal-Profiling Based Method

Ch11-52

 Logic BIST Diagnosis

 Conclusion

27

Scan Test and DiagnosisScan Test and Diagnosis

Flush test of scan chains
(pumping random patterns and checking response)

Pass or Fail?

Test Combinational Logic

Pass Fail

Find failing scan chain(s)
Classify fault types

Ch11-53

Scan Chain Diagnosis

Commonly Used Fault Types in Scan ChainsCommonly Used Fault Types in Scan Chains

Scan Chain Faults

Functional Faults Timing Faultsg

Setup-Time
Violation Fault

Stuck-at
Bridging

Hold-Time
Violation Fault

Ch11-54

Each fault could be permanent or intermittent.

Slow-To-Rise
Fault

Slow-To-Fall
Fault

28

A StuckA Stuck--At Fault In the ChainAt Fault In the Chain

Effect: A killer of the scan-test sequence

D Q

input
pins

output
pins

D Q D Q

Combinational Logic

scan-input
(SI)

scan-output
(SO)M

U

M
U

M

11010100 00000000

Ch11-55

D Q

clock

D Q D Q

U
X U
X

M
U

X

scan-enable

11010100 00000000

s-a-0 ?
All-0 syndrome

A Realistic Bridging Fault ModelA Realistic Bridging Fault Model





bridging

clock

Scan
input
(SI)

Scan
output
(SO)

D Q

M
UX

M
UX

M
UX

M
UX

F1 F2 F3 F4

bridging

(a) Bridging between a flip-flop and a logic cell.

Ch11-56

(b) Our bridging fault model.

If(==1) faulty = 
else faulty = F2

faulty


F2

29

Potential HoldPotential Hold--Time Fault?Time Fault?

(Negative Edge-Triggered Flip-Flop)

D Q
Y

Master Slave

D Q
Y

CLK = low

Master Slave

normal

shut down
too slowly

Ch11-57

CLK = high

CLK = low

Master Slave

D Q
Y

faulty

Example: Faulty Syndrome of a Scan ChainExample: Faulty Syndrome of a Scan Chain

SI
(scan input pin)

SO
(scan output pin)

A scan chain

Fault Type Scan-In Pattern Observed Syndrome

Stuck-at-0 1100110011001100 0000000000000000

Stuck-at-1 1100110011001100 1111111111111111

Slow-to-Rise 1100110011001100 1000100010001000

Sl t F ll 1100110011001100 1101110111011100

A faulty flip-flop

Ch11-58

Slow-to-Fall 1100110011001100 1101110111011100

A underlined bit in the observed image is failing.

The rightmost bit goes into the scan first

The rightmost bit gets out of the scan first

30

Augmentation of a FlipAugmentation of a Flip--Flop for Easy Flop for Easy
DiagnosisDiagnosis

DFF
MUX

(From logic)

(from scan chain)
QD

SC

DFF
MUX

(From logic)

(from scan chain) QD

(a) A normal scan flip-flop.

Ch11-59

DFF
()

SCInvert

(b) A modified scan flip-flop for easy inversion.

Fault Location via Inversion OperationFault Location via Inversion Operation

SI SO

A scan chain

Stuck-at-0

(1) Original bitstream pattern = (1111111111111111)

(2) After scan-in: snapshot image = (1111000000000000)

(3) After inversion: snapshot image = (0000011111111111)

Fault-to-SOSI-to-fault

Ch11-60

(3) After inversion: snapshot image = (0000011111111111)

(4) After scan-out: observed image = (0000011111111111)

The fault location is at the edge between 0’s and 1’s

31

Scan Chain Diagnosis FlowScan Chain Diagnosis Flow

Circuit
Under

Di i

Diagnostic
Test Sequence

G t

Diagnostic
Test Sequences

Diagnosis Generator
q

Fault-Free
Observed Images

Signal Profiling
Obser ed ImagesDi i

Test Application

Based
Diagnosis Program

Faulty FF’s
location

Observed Images
Of Failing Chip

Diagnosis

Definition: Snapshot ImageDefinition: Snapshot Image

Def: A snapshot image is the combination of flip-flop values
at certain time instance

input
pins

output
pins

Scan
input

Scan
output

Mission Logic

0
D Q

1 0

M
U

X

M
U

X

M
U

Xx 1

M
U

X

Ch11-62

clock

p
(SI)

p
(SO)

0 1 0

Xx
s-a-0 1

X

Snapshot image: {(F1, F2, F3, F4) | (0, 1, 0, 1)}

F1 F2 F3 F4

32

Definition: Observed ImageDefinition: Observed Image
Def: An observed image is the scanned-out version of

a snapshot image.

Mi i L i
input
pins

output
pins

Scan
input
(SI)

Scan
output
(SO)

Mission Logic

0
D Q

1 0

M
U

X

M
U

X

M
U

Xx
s-a-0 1

M
U

X

F1 F2 F3 F4

Ch11-63

clock

(S) (SO)

Snapshot image: {(F1, F2, F3, F4) | (0, 1, 0, 1)}
Observed image: {(F1, F2, F3, F4) | (0, 0, 0, 1)}

1 2 3 4

Modified InjectModified Inject--andand--Evaluate ParadigmEvaluate Paradigm

Step 1: Scan-in an ATPG pattern core
logic

Step 2: Capture the response to FF’s

x x x x

core
logic

x1011

1 0 0 0

logic

x

core
l i

Ch11-64

0 1 1 0

logic

x
0010

Step 3: Scan-out and compare

A stuck-at-0 fault is assumed
at the output of the 2nd FF from SI

33

Test Application: RunTest Application: Run--andand--ScanScan

Step 1: Apply a test sequence from PI’s
 Setting up a snapshot image at FF’s

0 1 1 0

core
logic

x
S-A-0

0 1 1 0

core
logic

x 0010

SO

S-A-0Less distorted image

Test
Sequence

Ch11-65

Step 2: Scan-out an observed image

up-stream part
will be distorted

The fault location is embedded in the observed image

Signal ProfilingSignal Profiling
A profile is the distribution of certain statistics of the flip-flops.

faulty flip-flop

Scan
core
logic

Failing chip

Up-stream Down-stream

0 0 0.65 0.35

core
logic

Test
Sequences

Shifting
0.41 0.51 0.61 0.41

perturbed image

x

similardifferent

Ch11-66

Fault-free model

0.4 0.5 0.6 0.4
fault-free image

0.4 0.5 0.6 0.4

Fault-free profile

Comparing failing profile with the fault-free profile
 Could reveal the fault location

34

Profile AnalysisProfile Analysis

Fault-free images
(say 100 of them)

Failing images
(say 100 of them) Collected from tester

Derive the fault-free profile

Derive the failing profile

Derive the difference profile
A difference image

= fault-free image ⊕ failing image

Ch11-67

report
a ranked list

of fault locations

Perform filtering on the difference profile

Perform edge detection to derive ranking profile

Example: Filtering & Edge DetectionExample: Filtering & Edge Detection
Profiling difference

0.4

0.6

0.8

S
P
 (
%

)
eq

u
en

cy
 (

%
)

Difference Profile

0

0.2

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155

DFF Index

S
ig

n
al

-1
 F

re

0.6

0.8
Smooth Profile Ranking ProfileRanking (or suspicion) ProfileFiltered Difference Profile

Filtering & Edge Detection

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

DFF IndexScan Input  FF index  Scan Output

35

Computation of AverageComputation of Average--Sum FilteringSum Filtering

 (Average-sum filtering) Assume that the difference
profile is given and denoted as D[i], where i is the index
of a flip-flop. We use the following formula to computeof a flip flop. We use the following formula to compute
a smoothed difference profile, SD[i]:

SD[i] = 0.2*(D[i-2]+ D[i-1]+ D[i]+ D[i+1]+ D[i+2])

Ch11-69

Computation of Edge DetectionComputation of Edge Detection

 The true location of the faulty flip-flop is likely to be the left-
boundary of the transition region in the difference profile. To detect
this boundary, we can use a simply edge detection formula defined
b lbelow.

 (Edge detection) On the smoothed difference profile SD[i], the
following formula can be used to compute the faulty frequency of
each flip-flop as a suspicious profile.















]1[][

]2[][

]3[][

iSDiSD

iSDiSD

iSDiSD

Ch11-70













 






]3[][

]2[][

]1[][

]1[][
]1,1,1,1,1,1[][

iSDiSD

iSDiSD

iSDiSD

iSDiSD
isuspicion

36

Summary of Scan Chain DiagnosisSummary of Scan Chain Diagnosis

 Hardware Assisted
 Extra logic on the scan chain
 Good for stuck-at fault

 Fa lt Sim lation Based Fault Simulation Based
 To find a faulty circuit matching the syndromes [Kundu 1993]

[Cheney 2000] [Stanley 2000]
 Tightening heuristic  upper & lower bound [Guo 2001][Y.

Huang 2005]
 Use single-excitation pattern for better resolution [Li 2005]

 Profiling-Based Method
 Locate the fault directly from the difference profiles obtained

b d t t

Ch11-71

by run-and-scan test
 Applicable to bridging faults
 Use signal processing techniques such as filtering and edge

detection

OutlineOutline

 Introduction
 Combinational Logic Diagnosis
 Scan Chain Diagnosis
 Logic BIST Diagnosis
 Overview
 Interval-Based Method

Ch11-72

 Masking-Based Method
 Conclusion

37

A Logic BIST ArchitectureA Logic BIST Architecture

PRPG (Pseudo-Random Pattern Generator)

Core
Logic

Ch11-73

MISR (Multiple-Input Signal Analyzer)

All flip-flops are assumed to be observable
through scan chains.

scan out
(as the signature)

Diagnosis for BISTed LogicDiagnosis for BISTed Logic

 Diagnosis in a BIST environment requires
 determining from compacted output responses

which test vectors have produced a faulty response
(time information)

 determining from compacted output responses
which scan cells have captured errors (space
information)

 The true fault location inside the logic

Ch11-74

g
 Can then be inferred from the above space and time

information using previously discussed
combinational logic diagnosis

38

Binary Search To Locate 1Binary Search To Locate 1stst Failing VectorFailing Vector

Time (or test vector index)

S

Ch11-75

Space
(or scan cell

index)

1st BIST session

2nd
3rd

BIST session length:
147423
 First failing at vector #4

Interval UnloadingInterval Unloading--Based DiagnosisBased Diagnosis
Time (or test vector index)

Space
(or scan cell

index)

failingfailing

Ch11-76

A signature is scanned out to the tester
for comparison at the end of each interval

failing
interval

Interval index 1 2 3 4 5 6 7

failing
interval

39

Deterministic MaskingDeterministic Masking--Based DiagnosisBased Diagnosis

PRPG (Pseudo-Random Pattern Generator) Scan chain index (X)

ex

7

1 2 3 4 5 6 7 8

Core
Logic

S
ca

n
 s

li
ce

 i
n

d
e

6

5

4

3

2

1

Ch11-77

MISR (Multiple-Input Signal Analyzer)

(a) STUMP-based BIST architecture (b) Scan cell matrix

Cell partition:
X = {3,4} (chain set)
Y = 2 (lower bound)
Z = 6 (upper bound)

Scan slice

Circuitry to Support Deterministic MaskingCircuitry to Support Deterministic Masking

PRPG (Pseudo-Random Pattern Generator)

Core
Logic

0
0
1
1

Ch11-78

MISR (Multiple-Input Signal Analyzer)

1
0
0
0
0

X Y

0 1 0

Z

1 1 0

≧ ≦

Counter

40

A Search for Scan Cells Capturing ErrorsA Search for Scan Cells Capturing Errors

Core
Logic

PRPG (Pseudo-Random Pattern Generator)

Scan cells
Capturing errors

MISR (Multiple-Input Signature Register)

Logic

(Y, Z)=(1, 7)

(a) Scan cells capturing errors in the fourth scan chain

Ch11-79

(Y, Z)=(1, 4) (Y, Z)=(5, 7)

(Y, Z)=(1, 2) (Y, Z)=(3, 4) (Y, Z)=(5, 6) (Y, Z)=(7, 7)

(Y, Z)=(3, 3) (Y, Z)=(4, 4) 9 BIST sessions

(b) The search tree

ConclusionsConclusions
 Logic diagnosis for combinational logic

 Has been mature

 Good for not just stuck-at faults, but also bridging faults

 Scan chain diagnosis Scan chain diagnosis
 Making good progress …

 Fault-simulation-based, or signal-profiling based

 Diagnosis of scan-based logic BIST
 Hardware support is often required

 Interval-unloading, or masking-based

 Future challenges

Ch11-80

 Future challenges
 Performance (speed) debug

 Diagnosis for logic with on-chip test compression and
decompression

 Diagnosis for parametric yield loss due to nanometer effects

