

What You can Benefit from this Course?

Values of Acquired Knowledge

- Making ICs more testable
- Making ICs/Boards/Systems more debuggable
- Making ICs Faster Time-to-Market
- Making ICs Faster Time-to-Volume

Academic Training

- Testing is a rich field as you will know.
- Testing is a good topic for MS/Ph.D. theses.

Career Development

- IC 設計公司 (讓晶片的可測試性更高)
- 半導體廠(故障診斷,良率追蹤與分析與改善)
- 測試產業 (量產測試之規劃與執行)
- 電子系統廠 (系統故障診斷,可靠度分析與改善)

Ch1-3

Design Verification, Testing and Diagnosis

• Design Verification:

 Ascertain the design perform its specified behavior

Testing:

 Exercise the system and analyze the response to ascertain whether it behaves correctly after manufacturing

• Diagnosis:

 To locate the cause(s) of misbehavior after the incorrect behavior is detected

Ch1-5

Manufacturing Defects

Material Defects

- bulk defects (cracks, crystal imperfections)
- surface impurities

Processing Faults

- missing contact windows
- parasitic transistors
- oxide breakdown

Time-Dependent Failures

- dielectric breakdown
- electro-migration

Packaging Failures

- contact degradation
- seal leaks

Faults, Errors and Failures

- Fault:
 - A physical defect within a circuit or a system
 - May or may not cause a system failure
- Error:
 - Manifestation of a fault that results in incorrect circuit (system) outputs or states
 - Caused by faults
- Failure:
 - Deviation of a circuit or system from its specified behavior
 - Fails to do what it should do
 - Caused by an error
- Fault ---> Error ---> Failure

Ch1-7

Reliability Test

- Temperature Related
 - Hi-Temperature Life Test
 - Low-Temperature Life Test
 - Temperature-Cycling Test
- Humidity Test
- Salt Mist Test
- UV (Ultra-Violet) Test
- ESD Test
 - ESD stands for Electro-Static Discharge
- Whole Mechanical Test

Detailed Reliability Test Items

Temperature Related

- Operation: 0°C/120hr ~ 70°C/120hr (商規)
- Operation: -40°C/120hr ~ 85°C/120hr (工規)
- Storage: -40°C/200hr ~ 85°C/500hr
- Junction Temperature: Max. 95°C

Humidity Test

- Operation: 25°C/95% humidity (商規)
- Operation: 40°C/95% humidity (工規)
- Storage: 85°C/95% humidity

Salt Mist Test

- Salt Water Spray

UV Test

- UV (254nm), 15Ws/cm²
- X-ray exposure, 0.1Gy/1hr

ESD Test

- For example, For Contact Pads, ±4KV, Human Body Mode

Whole Mechanical Test

- Vibration (15G, 10 to 2KHz), Impact, Torque, Bending, Drop test

Ch1-9

Courses on Agilent 93000 at CIC

Sample Information: (What to expect from that kind of course)

上課地點	新竹CIC - 訓練教室B (<u>新竹市科學園區展業—路26號八樓</u>)
課程說明	本課程將介紹如何利用Agilent 93000 SoC Tester來進行數位晶片的測試, 課程內容包含loadboard使用方式、測試程式開發、量測結果分析。
課程大綱	(1) Agilent 93000 SoC Tester 介紹 (2) Loadboard 使用方法 (3) Test Pattern 轉換 (4) Test flow 建立 (5) Result Analysis
	Ch1-11

Purpose of Testing

- Verify Manufacturing of Circuit
 - Improve System Reliability
 - Diminish System Cost
- · Cost of repair
 - goes up by an order of magnitude each step away from the fab. line

Fault Coverage

- Fault Coverage T
 - Is the measure of the ability of a set of tests to detect a given class of faults that may occur on the device under test (DUT)

$$T = \frac{\text{No. of detected faults}}{\text{No. of all possible faults}}$$

Defect Level

Defect Level

- Is the fraction of the shipped parts that are defective (單位 ppm or ppb)

$$DL = 1 - Y^{(1-T)}$$

Y: yield

T: fault coverage

Ch1-15

DPM v.s.	Yield	and	Coverage
----------	-------	-----	----------

Yield	Fault Coverage	Defective PPM
50%	90%	67,000
75%	90%	28,000
90%	90%	10,000
95%	90%	5,000
99%	90%	1,000
90%	90%	10,000
90%	95%	5,000
90%	99%	1,000
90%	99.9%	100

Ch1-17

Why Testing Is Difficult?

- Test application time could explode for exhaustive testing of VLSI
 - For a combinational circuit with 50 inputs, we need $2^{50} = 1.126 \times 10^{15}$ test patterns.
 - Assume one test per 10⁻⁷sec, it takes 1.125x10⁸sec = 3.57yrs. to test such a circuit.
 - Test generation for sequential circuits are even more difficult due to the lack of controllability and observability at flip-flops (latches)
- Functional testing
 - may NOT be able to detect the physical faults

DEC Alpha Chip (1994)

- 64-bit RISC
- 200 MHz
- 400 MIPS
- 200 Mflops
- 16.8 x 13.9 mm² die
- 0.68 million transistors
- 431-pin package
- 3.3 V
- 30 W power consumption

