
國立清華大學
電機工程學系

102 學年度第一學期

EE-6250
超大型積體電路測試超大型積體電路測試

VLSI Testing

授課教師：黃錫瑜

2013 年 Fall Semester

清清
華
大
學
電電
機
系

超超
大
型
積
體體
電
路
測
試試

講
義

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 1
Introduction

Course Flow

Introduction

Fault Modeling

Fault Simulation

Automatic Test Pattern Generation

Design-for-Testability and Scan Test

Delay Test

Built-In Self-Test

IC test
ATPG

DfT

BISG

Ch1-2

Test Compression

Parametric Interconnect Testing

Logic Diagnosis

Board-level test

Die-to-Die test

Diagnosis

Boundary-Scan Test

2

What You can Benefit from this
Course?

 Values of Acquired Knowledge
- Making ICs more testable
- Making ICs/Boards/Systems more debuggableg y gg
- Making ICs Faster Time-to-Market
- Making ICs Faster Time-to-Volume

 Academic Training
- Testing is a rich field as you will know.
- Testing is a good topic for MS/Ph.D. theses.

Ch1-3

 Career Development
- IC 設計公司 (讓晶片的可測試性更高)
- 半導體廠 (故障診斷，良率追蹤與分析與改善)
- 測試產業 (量產測試之規劃與執行)
- 電子系統廠 (系統故障診斷，可靠度分析與改善)

Chip Design & Manufacturing Flow

Idea
IC Fabrication

Wafer
(h d d f di)

Architecture Design

Block
diagram

(hundreds of dies)

Sawing & Packaging

Final chips

Ch1-4Ch1-4

Circuit & Layout Design

Layout

Testing

Bad chips Good chips
customers

3

Design Verification, Testing
and Diagnosis

• Design Verification:
– Ascertain the design perform its specified – Ascertain the design perform its specified

behavior

• Testing:
– Exercise the system and analyze the response to

ascertain whether it behaves correctly after
manufacturing

Ch1-5Ch1-5

• Diagnosis:
– To locate the cause(s) of misbehavior after the

incorrect behavior is detected

Manufacturing Defects

• Material Defects
– bulk defects (cracks, crystal imperfections)
– surface impurities

• Processing Faults
– missing contact windows
– parasitic transistors
– oxide breakdown

• Time-Dependent Failures

Ch1-6Ch1-6

– dielectric breakdown
– electro-migration

• Packaging Failures
– contact degradation
– seal leaks

4

Faults, Errors and Failures

• Fault:
– A physical defect within a circuit or a system
– May or may not cause a system failure

• Error:
– Manifestation of a fault that results in incorrect circuit
(system) outputs or states
– Caused by faults

• Failure:

Ch1-7Ch1-7

– Deviation of a circuit or system from its specified behavior
– Fails to do what it should do
– Caused by an error

• Fault ---> Error ---> Failure

Reliability Test

• Temperature Related
– Hi-Temperature Life Test
– Low-Temperature Life Test
– Temperature-Cycling Test

• Humidity Test
• Salt Mist Test
• UV (Ultra-Violet) Test

ESD Test

Ch1-8Ch1-8

• ESD Test
– ESD stands for Electro-Static Discharge

• Whole Mechanical Test

5

Detailed Reliability Test Items

• Temperature Related
– Operation: 00C/120hr ~ 700C/120hr (商規)
– Operation: -400C/120hr ~ 850C/120hr (工規)
– Storage: -400C/200hr ~ 850C/500hr
– Junction Temperature: Max. 950C

• Humidity Test
– Operation: 250C/95% humidity (商規)
– Operation: 400C/95% humidity (工規)
– Storage: 850C/95% humidity

• Salt Mist Test
– Salt Water Spray

• UV Test

Ch1-9Ch1-9

• UV Test
– UV (254nm), 15Ws/cm2

– X-ray exposure, 0.1Gy/1hr

• ESD Test
– For example, For Contact Pads, ±4KV, Human Body Mode

• Whole Mechanical Test
– Vibration (15G, 10 to 2KHz), Impact, Torque, Bending, Drop test

Scenario of Manufacturing Test

TEST VECTORS

Manufactured
Circuits

CIRCUIT RESPONSE

Ch1-10Ch1-10

Comparator

CIRCUIT RESPONSE

PASS/FAILCORRECT
RESPONSES

6

Courses on Agilent 93000 at CIC

Sample Information: (What to expect from that kind of course)

Test head
Host

Ch1-11Ch1-11

Purpose of Testing

• Verify Manufacturing of Circuit
– Improve System Reliability
– Diminish System Cost

• Cost of repair
– goes up by an order of magnitude each step

away from the fab. line

50

500
100

1000

Cost
Cost
Per

1000

100

Ch1-12Ch1-12

0.5

5

50

IC
Test

Board
Test

System
Test

Warranty
Repair

10

1

per
fault

(Dollars)

B. Davis, “The Economics of Automatic Testing” McGraw-Hill 1982

IC Test Board
Test

System
Test

Warranty
Repair

Per
Fault

(dollars) 1

10

7

Testing and Quality

Shipped Parts
ASIC

Fabrication TestingYield:

Fraction of
Good parts

R j t

Quality:
Defective parts
Per Million (PPM)

Or Parts Per Billion
(PPB)

Ch1-13Ch1-13

Rejects
()

Quality of shipped part is a function of
yield Y and the test (fault) coverage T.

Fault Coverage

• Fault Coverage T
– Is the measure of the ability of a set of tests to

detect a given class of faults that may occur on
the device under test (DUT)

T =
No. of detected faults

Ch1-14Ch1-14

T =
No. of all possible faults

8

Defect Level

• Defect Level
– Is the fraction of the shipped parts that

are defective (單位 ppm or ppb)

DL = 1 – Y(1-T)

Ch1-15Ch1-15

Y: yield
T: fault coverage

Defect Level v.s. Fault Coverage

Defect Level

1.0 Y = 0.01
Y = 0 1

0 2

0.4

0.6

0.8

Y = 0.1

Y = 0.25

Y = 0.5

Y = 0.75

Y = 0 9

Ch1-16

Fault Coverage (%)

0 20 40 60 80 100

0.2 Y = 0.9

(Williams IBM 1980)

High fault coverage Low defect level

9

DPM v.s. Yield and Coverage

Fault CoverageYield Defective PPM

50% 90% 67,000
75% 90% 28,000
90% 90% 10,000
95% 90% 5,000
99% 90% 1,000

Ch1-17Ch1-17

90% 90% 10,000
90% 95% 5,000
90% 99% 1,000
90% 99.9% 100

Why Testing Is Difficult ?

• Test application time could explode for
exhaustive testing of VLSIexhaustive testing of VLSI
– For a combinational circuit with 50 inputs, we need

250 = 1.126x1015 test patterns.
– Assume one test per 10-7sec, it takes 1.125x108sec =

3.57yrs. to test such a circuit.
– Test generation for sequential circuits are even more

difficult due to the lack of controllability and

Ch1-18Ch1-18

observability at flip-flops (latches)

• Functional testing
– may NOT be able to detect the physical faults

10

DEC Alpha Chip (1994)

• 64-bit RISC
200 MH• 200 MHz

• 400 MIPS
• 200 Mflops
• 16.8 x 13.9 mm2 die
• 0.68 million transistors

Ch1-19Ch1-19

• 431-pin package
• 3.3 V
• 30 W power consumption

The Infamous Design/Test Wall

30 years of experience proves that
test after design does not work!

Functionally correct!
We're done!

Oh no!
What does

this chip do?!

Ch1-20Ch1-20

Design Engineering Test Engineering

11

spec.

Old Design & Test Flow

design flow

layout
test

patterns

Low-quality test patterns
 high defect level

Ch1-21Ch1-21

manufacturing

spec.

New Design and Test Flow

Introduces circuitry to

Design flow

layout
better test
patterns

good
chips

DFT flow

Introduces circuitry to
make design testable

Ch1-22Ch1-22

manufacturing

12

New Design Mission

• Design circuit to optimally satisfy their
design constraints in terms of area, g ,
performance and testability.

TESTABILITY
How high is the fault coverage

we can achieve?

Ch1-23Ch1-23

PERFORMANCE AREA

Power Consumption

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 2
Fault Modeling

Functional v.s. Structural Testing

• I/O functional tests inadequate for
f t imanufacturing

• Exhaustive testing is prohibitively
expensive

Ch2-2

Question: How to Generate Compact yet High-Quality Test Vectors?

2

Why Fault Model ?

• Fault model identifies target faults
– Model faults most likely to occur

F lt d l li it th f t t • Fault model limits the scope of test
generation
– Create tests only for the modeled faults

• Fault model makes effectiveness
measurable by experiments
– Fault coverage can be computed for specific test

Ch2-3

patterns to reflect its effectiveness

• Fault model makes analysis possible
– Associate specific defects with specific test patterns

Scientific Study: Hypothesis (Assumption)  Evaluation  Refinement

Fault Modeling

• Fault Modeling
Model the effects of physical defects on the – Model the effects of physical defects on the
logic function and timing

• Physical Defects
– Silicon Defects
– Photolithographic Defects
– Mask Contamination

P V i ti

Ch2-4

– Process Variation
– Defective Oxides

3

Common Fault Types
Used To Guide Test Generation

• Stuck-at Faults
• Bridging Faults
• Open Faults
• Transistor Stuck-On Faults
• Delay Faults
• IDDQ Faults (Quiescent current at VDD pin)

M F lt

Ch2-5

• Memory Faults

IDDQ Testing: canary in the coalmine, alarming of un-modeled defects

金絲雀

Single Stuck-At Fault

Fault-Free Response
Test Vector

Faulty Response

0

1

1

1

0

1/0

1/0

stuck-at-0

Ch2-6

Assumptions:
• Only One line is faulty
• Faulty line permanently set to 0 or 1
• Fault can be at an input or output of a gate

4

Multiple Stuck-At Faults

• Several stuck-at faults occur at the
same time
– Mostly used in logic diagnosis

• For a circuit with k lines
– there are 2k single stuck-at faults
– there are 3k-1 multiple stuck-at faults

• A line could be stuck-at-0, stuck-at-1, or fault-free

Ch2-7

• One out of 3k resulting circuits is fault-free

Why Single Stuck-At Fault Model?

• Complexity is greatly reduced
– Many different physical defects may be modeled by the

same logical single stuck at faultsame logical single stuck-at fault

• Stuck-at fault is technology independent
– Can be applied to TTL, ECL, CMOS, BiCMOS etc.

• Design style independent
– Gate array, standard cell, custom VLSI

• Detection capability of un-modeled defects

Ch2-8

– Empirically, many defects accidentally detected by test
derived based on single stuck-at fault

• Cover a large percentage of multiple stuck-at
faults

Single SA model survives well (due to its simplicity and effectiveness)

5

Multiple Faults

• Multiple stuck-fault coverage by
single-fault tests of combinational
circuit:
– 4-bit ALU (Hughes & McCluskey, ITC-84)

All double and most triple-faults covered.
– Large circuits (Jacob & Biswas, ITC-87)

Almost 100% multiple faults covered for circuits

Ch2-9

p
with 3 or more outputs.

Bridging Faults

• Two or more normally distinct points
(lines) are shorted together erroneously

L i ff t d d t h l– Logic effect depends on technology
– Wired-AND for TTL

– Wired-OR for ECL

A

B

f

g

A f

A

B

f

g

A f

Ch2-10

– CMOS ?

A

B

f

g

A

B

f

g

6

Bridging Faults For CMOS Logic

• The result
– could be AND-bridging or OR-bridging

depends on the inputs– depends on the inputs

VDD

A

VDD

C

E.g., (A=B=0) and (C=1, D=0)
(f and g) are AND-bridging fault

pull to VDD

Ch2-11

B A

GND

f

DC

GND

gbridging

pull to zero

CMOS Transistor Stuck-On

?

IDDQVDD

Example:
N-type transistor

• Transistor Stuck-On
– May cause ambiguous logic level

0 stuck-on

GND

is always ON

Ch2-12

y g g
– Depends on the relative impedances of the pull-up and pull-

down networks

• When Input Is Low
– Both P and N transistors are conducting, causing increased

quiescent current, could be detected by IDDQ test

7

CMOS Transistor Stuck-Open (I)

• Transistor stuck-open
– May cause the output to be floating
– The fault exhibits sequential behavior– The fault exhibits sequential behavior
– Need two-pattern test (to set it to a known value first)

stuck-open

Responses:

Ch2-13

10

A two-pattern test

Responses:
Fault-free 01

Faulty 00

Fault Coverage in a CMOS Chip

80

100 stuck faults only

%
)

20

40

60

80

stuck and open faults

C
o

ve
ra

g
e

(%

Ch2-14

0

1000 2000 3000

Test Vectors

8

Summary of Stuck-Open Faults

• First Report:
– Wadsack, Bell System Technology, J., 1978

• Recent ResultsRecent Results
– Woodhall et. al, ITC-87 (1-micron CMOS chips)
– 4552 chips passed the test
– 1255 chips (27.57%) failed tests for stuck-at faults
– 44 chips (0.97%) failed tests for stuck-open faults
– 4 chips with stuck-open faults passed tests for stuck-at faults

• Conclusion

Ch2-15

Conclusion
– Stuck-at faults are about 20 times more frequent than stuck-

open faults
– About 91% of chips with stuck-open faults may also have

stuck-at faults
– Faulty chips escaping tests for stuck-at faults = 0.121%

Functional Faults

• Fault effects modeled at a higher
level than logic for functional
modules, such as
– Decoder
– Multiplexers
– Adders

Ch2-16

– Counters
– ROMs

9

Functional Faults of Decoders

Decoder

A
A’B’

AB’

• f(Li/Lk):
– Instead of input line Li, Lk is selected

• f(Li/Li+k):

Decoder

B
A’B
AB

More than one active outputs

One active output, but wrong one

Ch2-17

f(Li/Li+k):
– In addition to line Li, Lk is also selected

• f(Li/0):
– None of the lines is selected

More than one active outputs

No active output

Memory Faults

• Parametric Faults
– Any fault that causes the response to deviate from its

fault-free nominal value by some amount
– Ex. A cell with parametric delay fault (with for

example 93% more than normal)
– Due to all kinds of factors like PVT variation

• Functional Faults
– Stuck Faults in Address Register, Data Register,

and Address Decoder

Ch2-18

and Address Decoder
– Cell Stuck Faults
– Adjacent Cell Coupling Faults
– Pattern-Sensitive Faults

10

Memory Faults

• Pattern-sensitive faults: the presence of a
f lt i l d d th i l l faulty signal depends on the signal values
of the neighboring cells
– Mostly in DRAMs

0 0 0
0 d b
0 a 0

a=b=0  d=0
a=b=1  d=1

Ch2-19

• Adjacent cell coupling faults
– Pattern sensitivity between a pair of cells

0 a 0

Memory Testing

• Test could be time-consuming
– The length of the test sequence for memory testing g q y g

could be prohibitively long

• Example:
– A pattern sensitive test is 5n2 long for an n-bit RAM
– Testing a 1-M bit chip at 10ns pattern would take 14

hours

Ch2-20

– For a 64-M bit chip, it would take 6 years

11

PLA Faults

• Stuck-at Faults
• Cross-point Faults

– Extra/Missing Transistors

• Bridging Faults
• Break Faults

Ch2-21

Stuck-at Faults in PLA

• s-a-0 & s-a-1 faults
– on inputs, input inverters, product lines, and

outputs are easy to simulate in its gate level outputs are easy to simulate in its gate-level
model

A B C

P1

Gate-level model

A B C f1 f2

P1

Ch2-22

f1

f2

P2

P1

P2

AND-Array OR-Array

12

Missing Cross-Point Faults in PLA

• Missing Crosspoint in AND-array
– Growth Fault

• Missing Crosspoint in OR-arrayMissing Crosspoint in OR array
– Disappearance fault

A B C f1 f2 A B C

Growth
s-a-1

s-a-0

Equivalent stuck fault
representation

Ch2-23

f1

f2

Disappearance

xx

Extra Cross-Point Faults in PLA

• Extra cross-point in AND-array
– Shrinkage or disappearance fault

• Extra cross point in OR array• Extra cross-point in OR-array
– Appearance fault

Equivalent stuck fault
representationA B C f1 f2 A B C

f1

Ch2-24

f1

f2

Disapp.
"1"Shrinkage "0"

Appearance

13

Summary of PLA Faults

• Cross-Point Faults
– 80 ~ 85% covered by stuck-fault tests80 85% covered by stuck fault tests
– Layout-dependence in folded PLA

• Bridging Faults
– 99% covered by stuck-fault tests
– Layout-dependence in all PLAs

Ch2-25

– (Ref: Agrawal & Johnson, ICCD-86)

Delay Testing

• Chip with Timing Defects
– may pass the DC stuck-fault testing but fail – may pass the DC stuck-fault testing, but fail

when operated at the system speed
– For example, a chip may pass the test under 10

MHz operation, but fail under 100 MHz

• Delay Fault Models
– Gate-Delay Fault

Ch2-26

y
– Path-Delay Fault

14

Gate-Delay Fault (I)

• Slow to Rise
– x is slow to rise when channel resistance R1 is

b ll hi habnormally high

VDD VDD

X
X

R1

Ch2-27

Cload

H  L

Gate-Delay Fault (II)

slow

• Test Based on Gate-Delay Fault

slow

Ch2-28

• Test Based on Gate-Delay Fault
– May not detect those delay faults that result

from the accumulation of a number of small
incremental delay defects along a path !!
(Disadvantage)

15

Path-Delay Fault

• Associated with a Path (e.g., A-B-C-Z)
– Whose delay exceeds the clock interval

M li t d th t d l f lt• More complicated than gate-delay fault
– Because the number of paths grows exponentially

A Z

C

B

Ch2-29

A Z

Fault Detection

• Fault Activation
• Fault Propagation

16

Definition Of Fault Detection

• A test (vector) t detects a fault f iff
– t detects f  z(t) ≠zf(t)

E l• Example

x

X1

X2

Z1

s-a-1 Z1=X1X2 Z2=X2X3

Z1f =X1 Z2f =X2X3

Ch2-31

X3
Z2

The test (x1,x2,x3) = (100) detects f because
z1(100)=0 while z1f (100)=1

Fault Detection Requirement

• A test t that detects a fault f
– (1) Activate f (or generate a fault effect at the site of

the fault)the fault)
– (2) Propagate the fault effect to a primary output w

• Sensitized Line:
– A line whose faulty value is different from its fault-free

one is said to be sensitized by the test in the faulty
circuit

• Sensitized Path:

Ch2-32

• Sensitized Path:
– A path composed of sensitized lines is called a

sensitized path

17

Fault Sensitization

X1
X2

G1

G3

1
0

1
1

X3

X4

G2 G4

1

1

s-a-1
0/1

1

0/1

0/1
z

Ch2-33

z (1011)=0 zf (1011)=1
1011 detects the fault f (G2 stuck-at 1)
v/vf : v = signal value in the fault free circuit

vf = signal value in the faulty circuit

Detectability

• A fault f is said to be detectable
– if there exists a test t that detects f ;

otherwise,
f is an undetectable fault

• For an undetectable fault f
– No test can simultaneously activate f and

create a sensiti ed path to a primar o tp t

Ch2-34

create a sensitized path to a primary output

18

Undetectable Fault

a G1

can be removed !

x
s-a-0

b z

Ch2-35

• G1 output stuck-at-0 fault is undetectable
– Undetectable faults do not change the function of the circuit
– The related circuit can be deleted to simplify the circuit

c

Test Set

• Complete detection test set:
– A set of tests that detect any detectable faults in a

class of faultsclass of faults

• The quality of a test set
– is measured by fault coverage

• Fault coverage:
– Fraction of faults that are detected by a test set

• The fault coverage

Ch2-36

– can be determined by fault simulation
– >95% is typically required for single stuck-at fault

model
– >99.9% in IBM

19

Typical Test Generation Flow

Select a target faultStart

Generate a test
for the target fault

Fault simulation

(to be further discussed)

(to be further discussed)

Ch2-37

Discard detected faults

More faults ? Done
yes no

Fault dropping

Fault Collapsing

• Fault Equivalence
• Fault Dominance

Ch k i t Th• Checkpoint Theorem

20

Fault Equivalence

• Distinguishing test
A test t disting ishes fa lts and  if– A test t distinguishes faults  and  if

• Equivalent Faults
– Two faults,  &  are said to be equivalent

in a circuit iff the function under  is equal to

   Z t Z t  1

Ch2-39

in a circuit , iff the function under  is equal to
the function under  for any input combination
(sequence) of the circuit.

– No test can distinguish between and 

Fault Equivalence

• AND gate:
– all s-a-0 faults are equivalent

• OR gate: x
x

s-a-0• OR gate:
– all s-a-1 faults are equivalent

• NAND gate:
– all the input s-a-0 faults and the output

s-a-1 faults are equivalent

• NOR gate:

s-a-0
s-a-0

same effect

Ch2-40

– all input s-a-1 faults and the output
s-a-0 faults are equivalent

• Inverter:
– input s-a-1 and output s-a-0 are equivalent

input s-a-0 and output s-a-1 are equivalent

21

Equivalence Fault Collapsing

• n+2 instead of 2(n+1) faults need to
be considered for n input gatesbe considered for n-input gates

s-a-1

s-a-1

s-a-1 s-a-1

s-a-0

s-a-0

s-a-0
s-a-0

Ch2-41

s-a-1

s-a-1

s-a-1 s-a-1
s-a-0

s-a-0

s-a-0
s-a-0

Equivalent Fault Group

• In a combinational circuit
– Many faults may form an equivalent group

Th i l t f lt b f d b i th – These equivalent faults can be found by sweeping the
circuit from the primary outputs to the primary inputs

s-a-0 s-a-1
x x

Ch2-42

s-a-1
x

Three faults shown are equivalent !

22

Finding Equivalent Group

• Construct a Graph
– Sweeping the netlist from PO’s to PI’s

Wh f lt i i l t t f lt  th d i – When a fault  is equivalent to a fault , then an edge is
connected between then

– Transitive Rule:
• When  connects  and  connects , then  connects 

d s-a-0
d 1

a
b

a s-a-0
a s-a-1

Ch2-43

d s-a-1

e s-a-0
e s-a-1

b d

c e

Equivalent group = { a/0, b/0, d/0, c/1, e/1}

b s-a-0

Fault Dominance

• Dominance Relation
– A fault  is said to dominate another fault

i i it iff t t () f i  in a circuit, iff every test (sequence) for  is
also a test (sequence)
for .

– I.e., test-set() > test-set()
– No need to consider fault  for fault detection

Ch2-44

Test() Test()  is dominated by 

23

Fault Dominance

• AND gate:
– Output s-a-1 dominates any input s-a-1 Easier-to-test

• NAND gate:
– Output s-a-0 dominates any input s-a-1

• OR gate:
– Output s-a-0 dominates any input s-a-0

• NOR gate:
Output s a 1 dominates any input s a 0

x
x

s-a-1
s-a-1

harder-to-test

Ch2-45

– Output s-a-1 dominates any input s-a-0

• Dominance fault collapsing:
– The reduction of the set of faults to be analyzed

based on dominance relation

Stem v.s. Branch Faults

A

C

D
x

x
C: stem of a multiple fanout
A & B: branches

• Detect A sa1:

• Detect C sa1:

z t  zf t   CDCE  DCE DCD1

 C 0, D1 
z t  zf t   CDCE  DE 1

 C 0 D 1  or C 0 E 1 

B

E
x

Ch2-46

• Hence, C sa1 dominates A sa1
• Similarly

– C sa1 dominates B sa1
– C sa0 dominates A sa0
– C sa0 dominates B sa0

• In general, there might be no equivalence or
dominance relations between stem and branch faults

 C0, D1  or C 0, E1 

24

Analysis of a Single Gate

A
C

AB C A

sa1

B

sa1

C

sa1

A

sa0

B

sa0

C

sa0

00 0 1

• Fault Equivalence Class

B
C 00 0 1

01 0 1 1

10 0 1 1

11 1 0 0 0

Negligible fault

Ch2-47

– (A s-a-0, B s-a-0, C s-a-0)

• Fault Dominance Relations
– (C s-a-1 > A s-a-1) and (C s-a-1 > B s-a-1)

• Faults that can be ignored:
– A s-a-0, B s-a-0, and C s-a-1

Fault Collapsing

• Equivalence + Dominance
– For each n-input gate, we only need to consider

n+1 faults during test generation

s-a-0s-a-1

s-a-1

Ch2-48

25

Dominance Graph

• Rule
– When fault  dominates fault , then an arrow is

pointing from  to pointing from  to 

• Application
– Find out the transitive dominance relations among

faults

d s-a-0
d 1

a
b

a s-a-0
a s-a-1

Ch2-49

d s-a-1

e s-a-0
e s-a-1

b d

c e

Fault Collapsing Flow

Start Sweeping the netlist from PO to PI
To find the equivalent fault groups

Equivalence
analysis

Discard the dominating faults

Sweeping the netlist
To construct the dominance graph

Dominance
analysis

Ch2-50

Select a representative fault from
each remaining equivalence group

DoneGenerate collapsed fault list

26

Prime Fault

�  is a prime fault if every fault that is
dominated by  is also equivalent to


Ch2-51

Why Fault Collapsing ?

• Memory and CPU-time saving
• Ease testing generation and fault • Ease testing generation and fault

simulation

Ch2-52

* 30 total faults  12 prime faults

27

Checkpoint Theorem

• Checkpoints for test generation
– A test set detects every fault on the primary inputs

and fanout branches is complete
– I.e., this test set detects all other faults too
– Therefore, primary inputs and fanout branches form a

sufficient set of checkpoints in test generation
– In fanout-free combinational circuits, primary inputs

are the sole checkpoints

Ch2-53

Stem is not a checkpoint !

Why Inputs + Branches Are Enough ?

• Example
– Checkpoints are marked in blue
– Sweeping the circuit from PI to PO to examine every p g y

gate, e.g., based on an order of (A->B->C->D->E)
– For each gate,
output faults are detected if every input fault is detected

A a

Ch2-54

B

C

D

E

28

Fault Collapsing + Checkpoint

• Example:
– 10 checkpoint faults

a

d

– a s-a-0 <=> d s-a-0 , c s-a-0 <=> e s-a-0
b s-a-0 > d s-a-0 , b s-a-1 > d s-a-1

– 6 tests are enough

Ch2-55

b

c

d

e

f

g

h

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 3
Fault Simulation

Outline

• Fault Simulation for Comb. Ckt
B i f L i Si l ti– Basic of Logic Simulation

– Parallel Fault Simulation
– Deductive Fault Simulation
– Concurrent Fault Simulation

• Approximation Approach

Ch3-2

• Techniques for Sequential Circuits

Note: Comb. Ckt: Combinational Circuits

2

Why Fault Simulation ?

• To evaluate the quality of a test set
– I.e., to compute its fault coverage

• Part of an ATPG program
– A vector usually detects multiple faults
– Fault simulation is used to compute the faults

accidentally detected by a particular vector

• To construct fault-dictionary

Ch3-3

– For post-testing diagnosis

• To Evaluate the fault coverage of a
functional patterns

Conceptual Fault Simulation

Faulty Circuit #n (D/0)

Patterns
(Sequences)
(Vectors)

Response
Comparison

Fault-free Circuit

Faulty Circuit #1 (A/0)

Faulty Circuit #2 (B/1)

Detected?

Ch3-4

Primary
Inputs
(PIs)

Primary Outputs
(POs)

A B

C
D

Logic simulation on both good (fault-free) and faulty circuits

3

Some Basics for Logic Simulation

• For fault simulation purpose,
– mostly the gate delay is assumed to be zero unless the

delay faults are considered Our main concern is the delay faults are considered. Our main concern is the
functional faults

• The logic values
– can be either two (0, 1) or three values (0, 1, X)

• Two simulation mechanisms:
– Oblivious compiled-code:

i it i t l t d i t d ll t t d

Ch3-5

• circuit is translated into a program and all gates are executed
for each pattern. (may have redundant computation)

– Interpretive event-driven:
• Simulating a vector is viewed as a sequence of value-change

events propagating from the PI’s to the PO’s
• Only those logic gates affected by the events are re-evaluated

Compiled-Code Simulation

A
B E

• Compiled code
– LOAD A /* load accumulator with value of A */
– AND B /* calculate A and B */

B
C Z

D

Ch3-6

– AND C /* calculate E = AB and C */
– OR D /* calculate Z = E or D */
– STORE Z /* store result of Z */

4

Event-Driven Simulation

A
B
C

E

Z
D

1
0
0

1
1
1

00
0?

G1
G2

0?

Initialize the events at PI’s
In the event-queue

Pick an event
Evaluate its effect

Start

D00

Ch3-7

More event in Q ? Done

Schedule the newly born events
In the event-queue, if any

yes no

Complexity of Fault Simulation

#Gate (G)

#Pattern (P)

#Fault (F)

• Complexity ~ F ‧P‧G ~ O(G3), where G is the no. of gates

Ch3-8

Complexity F P G O(G), where G is the no. of gates
• The complexity is higher than logic simulation by a factor of F,
while usually is much lower than ATPG

• The complexity can be greatly reduced using
• Fault dropping and other advanced techniques

5

Characteristics of Fault Simulation

• Fault activity with respect to fault-free
circuit

i ft b th i ti d i – is often sparse both in time and in space.

• For example
– F1 is not activated by the given pattern, while F2

affects only the lower part of this circuit.

0 F1(s-a-0)

Ch3-9

1

1

F2(s-a-0)
×

×
×

Fault Simulation Techniques

• Serial Fault Simulation
– trivial single-fault single-pattern

• Parallel Fault Simulation
• Deductive Fault Simulation
• Concurrent Fault Simulation

Ch3-10

6

Parallel Fault Simulation

• Simulate multiple circuits at a time:
– The inherent parallel operation of computer words to

i l t f lt i it i ll l ith f lt f simulate faulty circuits in parallel with fault-free
circuit

– The number of faulty circuits, or faults, can be
processed simultaneously is limited by the word
length, e.g., 32 circuits for a 32-bit computer

• Extra Cost:
A t l h f i l f lt f lt f

Ch3-11

– An event, a value-change of a single fault or fault-free
circuit leads to the computation of the entire word

– The fault-free logic simulation is repeated for each
pass

Example: Parallel Fault Simulation

• Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0)

• Bit-space: (FF denotes fault-free)
fault-free

p ()
J/0 B/1 F/0 FF

A

B

C E G

1

0
1

0 1 0 0

1 1 1 1

0 1 0 0 0 1 0 1

1 0 1 1

J/0

×
×

00 x 0 0

B/1

1

Ch3-12

B
D

F

H

J

1
1 0 0 1

1 1 0 1

1 0 1 1

F/0

×

×

0
Q: What faults are detected?

0 1 0 0

7

Example: Parallel-Pattern Simulation

• Consider one fault F/0 and four patterns: P3,P2,P1,P0
Bit-Space: P3 P2 P1 P0

A

B

C

D E

G0 1 0 1

1 1 1 1

0 1 0 1

1 0 1 0
0 1 0 1

1 1 0 1

Ch3-13

x

B

F

H
J

0 1 0 1

1 0 0 0
1 0 0 11 0 0 1 0 0 0 0
0 0 0 0

Parallel-Pattern v.s. Parallel-Fault

• P1, P2, P3 are patterns events
• F1 F2 F3 are faultsP1

Parallel-pattern

• F1, F2, F3 are faults
• Complexity

– Is proportional to the events that
need to be processed

– The value-change events (upper
figure) seems to be fewer than
the fault-events (lower figure)

– Hence, parallel-pattern seems to

PIs POs

P3

P1
P2

F

Parallel-fault

Ch3-14

, p p
be more efficient than parallel-
fault methods

P

F1

F2

F3

POsPIs

8

Deductive Fault Simulation

• Simulate all faulty circuits in one pass
– For each pattern, sweep the circuit from PI’s to PO’s.
– During the process, a list of faults is associated with

each line
– The list contains faults that would produce a fault

effect on this line
– The union fault list at every PO contains the detected

faults by the simulated input vector

Ch3-15

• Major operation: fault list propagation
– Related to the gate types and values
– The size of the list may grow dynamically, leading to a

potential memory explosion problem

Controlling Value of a Logic Gate

A

B
Z

Whenever there is a ‘0’ in the inputs, Z will be ‘0’
 Controlling value for NAND gate is ‘0’
 Non-Controlling value is ‘1’ Non Controlling value is 1

Gate Type Controlling

Value

Non-Controlling

Value

AND ‘0’ ‘1’

OR ‘1’ ‘0’

Ch3-16

OR 1 0

NAND ‘0’ ‘1’

NOR ‘1’ ‘0’

9

Example: Fault List Propagation

Fault-free simulation results: {A=0, B=0, C=0}
Q: What is the detected fault list at line C?

(Reasoning) To create a fault effect at line C we need {A=1 B=1}

A
C

LA
LC

0

0
0

(Reasoning) To create a fault effect at line C, we need {A=1, B=1}
 which means that we need a fault effect at A as well as B
 It can be achieved in faulty circuits LA · LB
Also C/1 is a new fault to be included in the fault list of C

Ch3-17

LA is the set of all faults not in LA

LA, LB, LC are fault list propagated to their respective lines

B
C

LB
LC0

Example: Fault List Propagation

Consider a two-input AND-gate:
A

B
C

LA

LB
LC

LA, LB, LC are detected fault list
at their respective lines

Case 1: A=1, B=1, C=1 at fault-free,
LC = LA + LB + {C/0}

Case 2: A=1, B=0, C=0 at fault-free,
LC = LA · LB + {C/1}

p g
BLB

Non-controlling case:

Controlling cases:

Ch3-18

LC LA LB + {C/1}
Case 3: A=0, B=0, C=0 at fault-free,

LC = LA · LB + {C/1}

LA is the set of all faults not in LA

10

Example: Deductive Simulation (1)

• Consider 3 faults: B/1, F/0, and J/0

G1
A

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

0 0

1

Ch3-19

LB = {B/1}, LF = {F/0}, LA = , LC=LD = {B/1}

Fault List at PI’s:

Example: Deductive Simulation (2)

• Consider 3 faults: B/1, F/0, and J/0

G1
A

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

0 0

1

G

E

Ch3-20

Fault Lists at G and E:

LB = {B/1}, LF = {F/0}, LA =  LC=LD = {B/1},
LG = (LA * LC) = {B/1}
LE = (LD) = {B/1}

11

Example: Deductive Simulation (3)

• Consider 3 faults: B/1, F/0, and J/0

A G1

x

x

x
B C

D
E

F

H

J0

1

11

0 0

1H

Ch3-21

Computed Fault List at H:

LB = {B/1}, LF = {F/0}, LC=LD = {B/1},
LG = {B/1}, LE = {B/1}
LH = (LE + LF) = {B/1, F/0}

Example: Deductive Simulation (4)

• Consider 3 faults: B/1, F/0, and J/0

G1
A

x

x

x
B C

D
E

F

H

J0

1

11 J

0 0

1

Ch3-22

Final Fault List at the output J:

LB = {B/1}, LF = {F/0}, LC=LD = {B/1},
LG = {B/1}, LE = {B/1}
LH = {B/1, F/0},
LJ = (LG · LH) {F/0, J/0}

12

Example: Even-Driven
Deductive Fault Simulation

• When A changes from 1 to 0

A GA

x

x

x
B

C

D
E

F

G

H

J

10

0

1

1

1

00

1

0

Ch3-23

LB = {B/1}, LF = {F/0}, LA = 
LC=LD = {B/1}, LG = ,
LE = {B/1}, LH = {B/1,F/0}, LJ = {B/1,F/0,J/0}

Event-driven operation:

F

Concurrent Fault Simulation

• Simulate all faulty circuits in one pass:
– Each gate retains a list of fault copies, each of which

stores the status of a fault exhibiting difference from stores the status of a fault exhibiting difference from
fault-free values

• Simulation mechanism
– is similar to the conceptual fault simulation except

that only the dynamical difference w.r.t. fault-free
circuit is retained.

• Theoretically,

Ch3-24

y,
– all faults in a circuit can be processed in one pass

• Practically,
– memory explosion problem may restrict the number of

faults that can be processed in each pass

13

Concurrent Fault Simulation

Fault-free

1 Y1

0
0 0

1

1
1

0

F100

F73Can be

survivor

Y

As compared to deductive fault simulation
Concurrent fault simulation can process

multiple patterns in a single run of simulation

Ch3-25

0
0

1

1
1

F73

F2survivor

Can be
dropped

Example: Concurrent Simulation (1)

• Consider 3 faults: B/1, F/0, and J/0

x

x

x
B

C

D

E

G

H

J

1

0

1

1

1

0

1

A

Ch3-26

LG = {10_0, B/1:11_1} LE = {0_1, B/1:1_0}

x
F

1

Fault
Free

A fault B/1

14

Example: Concurrent Simulation (2)

• Consider 3 faults: B/1, F/0, and J/0

x

x

x
B

C

D
E

G

H

J

1

0

1

1

1
1

0

A

Ch3-27

LG = {10_0, B/1:11_1} LE = {0_1, B/1:1_0}
LH = {11_1, B/1:01_0, F/0:10_0}

x
F

1

Example: Concurrent Simulation (3)

• Consider 3 faults: B/1, F/0, and J/0

A

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11

1

0

A

Ch3-28

LG = {10_0, B/1:11_1} LE = {0_1, B/1:1_0}
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:10_1, F/0:00_0, J/0:01_0}

F

dropped

15

Example: Concurrent Simulation (4)

• When A changes from 1 to 0

A

x

x

x
B

C

D
E

G

H

J

10

0

1

1

1

00

1

Ch3-29

LG = {00_0, B/1:01_0} LE = {0_1, B/1:1_0}
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:00_0, F/0:00_0, J/0:01_0}

x
F

1

Fault List Including New Borns

A

B
D0

0

0

B

A/1

B/1

0
0

1

01
0

Ch3-30

D/1

1

1
0

0

16

Fault List Propagation

A

B

D0

0
0

C

E0

0
0

C

A

B

D1

0
0 E0

0

A/1: 10_0 C/1: 01_1

B/1: 01_0 D/1: 10_1

D/1: 00_1 E/1: 00_1

*

These 2 faults are
not propagated
after evaluation

propagated

Ch3-31

B 0
C 0

0

*A/0: 00_0 *B/1: 10_1

*B/1: 11_1 C/1: 01_1

*D/1: 10_1 *D/1: 10_1

E/1: 00_1

Outline

• Fault Simulation for Comb. Circuits
• Approximation Approach

– Critical Path Tracing
– Probabilistic Approach

• Techniques for Sequential Circuits

Ch3-32

17

Sensitive Input and Critical Path

1
0

0

iSensitive input
Non-sensitive input

Z PO
Sensitized ?

• Sensitive Input of a gate:
– A gate input i is sensitive if complementing the value of i

changes the value of the gate output

• Critical line

i

i is critical if Z is sensitized to at least one PO

Ch3-33

Critical line
– Assume that the fault-free value of w is v in response to t
– A line w is critical w.r.t. a pattern t iff t detects the fault

w stuck-at v

• Critical paths
– Paths consisting of critical lines only

Basics of Critical Path Tracing

Z is critical PO

sensitization
Path(s)1

0
0

• A gate input i is critical w.r.t. a pattern t if
– (1) the gate output is critical and
– (2) i is a sensitive input to t

Z is critical0

PO is sensitive to i, or i is critical
i

Ch3-34

– Use recursion to prove that i is also critical

• In a fanout-free circuit
– the criticality of a line can be determined by

backward traversal to the sensitive gate’s inputs from
PO’s, in linear time

18

Analysis of Critical Path Tracing

• Three-step Procedure:
– Step 1: Fault-free simulation
– Step 2: Mark the sensitive inputs of each gate
– Step 3: Identification of the critical lines by backward

critical path tracing)

• Complexity is O(G)
– Where G is the gate count
– for fanout-free circuits --- very rare in practice

Ch3-35

y p

• Application
– Applied to fanout-free regions, while stem faults are

still simulated by parallel-pattern fault simulator.

Example of Critical Path Tracing

sensitive input, critical line

A

B
(stem)

C
D E

F

G

H
J

0

(fanout-free region)

1

1

1
1

0
1

Ch3-36

Detected faults in the fanout-free region:
{J/0, H/0, F/0, E/0, D/1}
Question: is B stuck-at-1 detected ?

19

Anomaly of Critical Path Tracing

• Stem criticality is hard to infer from branches.
E.g. is B/1 detectable by the given pattern?

x
B

C

D E

F

G

H J

1

1

10
0

1
1

Ch3-37

• It turns out that B/1 is not detectable even though both C
and D are critical, because their effects cancel out each
other at gate J, (i.e., fault masking problem)

• There is also a so-called multiple path sensitization problem.

Multiple Path Sensitization

A
1

B
(stem)

C

D

F

G 1

H 1 J

1

1

1

1

(fanout-free region)

Ch3-38

Both C and D are not critical, yet B is critical and B/0
can be detected at J by multiple path sensitization.

20

Parallel and Distributed Simulation

• To share the fault simulation effort
– by a number of processors either tightlyby a number of processors either tightly

connected as in parallel computation or loosely
connected as in distributed computation.

• The speed-up
– with respect to the processor number depends on

the degree of duplicated computation, and the
communication overhead among processors.

Ch3-39

• The distributed simulation
– on a cluster of networked workstations is

especially appealing.

Distributed Simulation Techniques

• Fault Partition
– Distributes faults among many processors.
– Works relatively well for both combinational and

sequential circuits.

• Pattern Partition
– Distributes patterns among processors.

• no duplicated logic simulation
– Works well for combinational circuits.

C

Ch3-40

• Circuit Partition
– Difficult to achieve synchronization without

incurring excessive communication overhead.

21

Distributed Fault Simulation

• Typical Speed-up versus No. of Processors

Speed-up
Ratio

Ch3-41

Processor

• Diminished increase of speed-up ratio with more processors

Fault Grading

• Approximate fault coverage
– Can be obtained in much shorter computational – Can be obtained in much shorter computational

time than regular fault simulation.
– Not suitable for high fault-coverage requirement.

• Typical fault grading methods:
– Toggle test, e.g. DATAS
– Detection probability computation, e.g. STAFAN

Ch3-42

– Fault sampling
• estimate from a selected subset of total faults

– Test set sampling
• estimate from a subset of complete test sequence

22

STAFAN

• Compute fault detection probability
from logic simulation.
– dl = detection probability of s-a-0 on l = C1(l)O(l)

– dl = detection probability of s-a-1 on l = C0(l)O(l)

C l
count
n

l
count
n

S l
sensitization count

0
0

1
1

() , ()

()

 



- -

-

C

Ch3-43

S l
n

O l S l O m

()

() () () m
l

- m is the immediate successor of l
- observability can be computed backwards from POs

STAFAN (cont.)

n
f

n
f dd)1(1  n is the no. of vectors

the summation of
each fault’s detection
probability





n
fd

 is the set of faults of interest

Statistical Fault Coverage

Ch3-44

• More sophisticated than toggle test
with same computation complexity

23

Outline

• Fault Simulation for Comb. Circuits
• Approximation Approach

– Toggle Counting
– Critical Path Tracing
– Probabilistic Approach

• Techniques for Sequential Circuits

Ch3-45

Fault Grading for
Functional Input Sequence

Inputs:Inputs:
(1) A test application program
(2) A sequential design

Output: The fault coverage

Application: High-Performance CPU DesignsApplication: High Performance CPU Designs

Major challenge: often too time-consuming

24

Sequential Design Model

A

Sequential Circuits

FFs FFs

clk

Comb.
logic

Comb.
logic

A
B
C out1

out2

Ch3-47

FFs

Combinational
Logic

A
B
C

OUT1
OUT2

Hoffman Model

Time-Frame-Expansion Model

Ex: Input Sequence (‘0’, ‘0’, ‘0’)
State Sequence (S0  S1  S2  S3)

‘0’ ‘0’ ‘0’

f

‘0’

f

‘0’

PO’s

f

‘0’

PO’s PO’sPO PO PO

S0 S1 S2 S3

Ch3-48

Time-frame: 1 2 3

A single fault becomes multiple faults in
the time-frame-expansion model

PPI PPO
Notations: PPI: pseudo primary inputs (I.e., outputs of flip-flops)

PPO: pseudo primary outputs (I.e., inputs of flip-flops)

25

Hypertrophic Faults

• A hypertrophic fault
– Is a fault that diverges from the fault-free circuit with

a large number of Xs, which usually is a stuck-at fault
occurring at a control line and thus prevents the
circuit initialization

• A small number of hypertrophic faults
– account for a large percentage of fault events and

CPU time

• These faults are sometimes dropped

Ch3-49

– as potentially detected faults to reduce simulation
time. However, the resultant fault coverage then
becomes approximate

A potentially detected fault is
a fault detected only when the circuit is
powered on in certain states, not every state.

F lt E l tiFault Emulation

We can utilize FPGA to speed up the sequential fault grading

26

FPGA-Based Emulation Process

ASIC netlist

Compilationp
(format translation, partitioning, mapping)

Bit-stream downloading

Bit-Stream

i.e.,
Programming FPGA’s

Ch3-51

Emulation
hardware

FPGA chips

Serial Fault Emulation by FPGA’s

ASIC netlist

Fault list generation
Compilation

Bit t d l di Fault list generation

Fault emulation

Fault injection

Bit-stream downloading

Test

Fault-free FPGA’s Fault list

Pick next fault

join

Ch3-52

More faults

Fault
coverage

sequence

END

yes
no

Report fault coverage

27

Fault Injection Should Be Efficient !

• Fault Injection
– Is to convert a fault-free FPGA implementation to a

faulty one
– If not efficient, could become the new bottleneck

• (1) Static Fault Injection
– Directly changes the configuration of the fault-free

implementation to a faulty one

• (2) Dynamic Fault Injection

Ch3-53

(2) Dynamic Fault Injection
– Do not change the configuration directly
– Fault inject is injected through the control of some

hardware originally built-in to the netlist

Static Fault Injection

E 0A

Faulty CLB

A
B

C Z

E s-a-0A
B

C Z

Simplify to

Bit t f th ti i it

Ch3-54

Portion that needs to be modified and re-programmed
into the FPGAs through partial re-programming

Bit-stream of the entire circuit

28

Example: FPGA-implementation

Two faults are being considered:
A stuck-at 1
G stuck-at-0

A
B

C

CLB1
CLB2

Ch3-55

D
E

F

CLB1
G s-a-0

Dynamic Fault Injection (I)

Fault Activation Control
x y

enable (Produce 1-hot output)

A
B
C

D
E

CLB1
CLB2

Ch3-56

E
F

(x=1, y=0)  The above netlist behaves like A s-a-1 faulty circuit
(x=0, y=1)  The above netlist behaves like G s-a-0 faulty circuit

29

Dynamic Fault Injection (II)

(1) Conservatively map only 4-input function to a CLB,
which is originally assumed to be capable of realizing 5-input function.

(2) Extra input, I.e., x, is reserved for the control of dynamic fault injection.

Good

Faulty
Function
f(a,b,c,d)

MUX

a
b
c
d

0

1

Z

Ch3-57

A Configurable Logic Block (CLB)
with a dynamic fault injected (activated with x=1)

Good
Function
g(a,b,c,d)

X

Overview of Dynamic Fault
Injection (II)

CLB CLB CLB CLB CLBFPGA

In the following configuration:
5 faults are injected (one for each column), but only 1 is activated

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

FPGA

faulty

Ch3-58

CLB CLB CLB CLB CLB

FF FF FF FFFF
1 0 0 0 0

Circular shift-register

CSR
clock

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 4
Automatic Test Pattern Generation

General ATPG Flow

• ATPG (Automatic Test Pattern Generation)
– Generate a set of vectors for a set of target faults

B i fl• Basic flow
Initialize the vector set to NULL

Repeat

Generate a new test vector

Evaluate fault coverage for the test vector

If the test vector is acceptable, then add it to the vector set

ch4-2

Until required fault coverage is obtained

• To accelerate the ATPG
– Random patterns are often generated first to detect easy-

to-detect faults, then a deterministic TG is performed to
generate tests for the remaining faults

2

Combinational ATPG

• Test Generation (TG) Methods
Based on Truth Table– Based on Truth Table

– Based on Boolean Equation
– Based on Structural Analysis

• Milestone Structural ATPG Algorithms
– D-algorithm [Roth 1967]

9 V l d D l ith [Ch 1978]

ch4-3

– 9-Valued D-algorithm [Cha 1978]
– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

A Test Pattern

t k t 1

A Fully Specified Test Pattern
(every PI is either 0 or 1)

stuck-at 10
0
1
1 1

0/1
0/1

A Partially Specified Test Pattern
(certain PI’s could be undefined)

ch4-4

stuck-at 01
x
x
x x

x
1/0

1/0

(certain PI s could be undefined)

3

Test Generation Methods
(From Truth Table)

Ex: How to generate tests
for the stuck at 0 faultfor the stuck-at 0 fault
(fault ? abc f f

000
001
010
011
100
101
110

0
0
0
0
0
1
1

0
0
0
0
0
1
0

a

f

b

 stuck-at 0

ch4-5

110
111

1
1

0
1

c

Test Generation Methods
(Using Boolean Equation)

f = ab+ac, f= ac

T th t f ll t t f f lt

a

f

b
 stuck-at 0

T = the set of all tests for fault 

= ON_set(f⊕f

= ON_set(f)  OFF_set(f) + OFF_set(f) ON_set(f)

= {(a,b,c) | (ab+ac)(ac)' + (ab+ac)'(ac) = 1 }

= {(a,b,c) | abc'=1}

= { (110) }. High complexity !!

c

Boolean equation

ch4-6

* ON_set(f): All input combinations to which f evaluates to 1.
OFF_set(f): All input combinations to which f evaluates to 0.
Note: a function is characterized by its ON_SET

Since it needs to compute the faulty
function for each fault.

4

Boolean Difference

• Physical Meaning of Boolean Difference
– For a logic function F(X)=F(x1, ..., xi, ..., xn), find all the input

combinations that make a value-change at xi also cause a value-
change at F.g

• Logic Operation of Boolean Difference
– The Boolean difference of F(X) w.r.t. input xi is

where Fi(0) = F(x1, ..., 0, ..., xn) and Fi(1) = F(x1, ..., 1, ..., xn).

dF(x)/dxi = Fi(0)⊕Fi(1) = Fi(0) · Fi(1)’ + Fi(0)’ · Fi(1)
Where

Fi(0) = F(x1, …, 0, …, xn)
Fi(1) = F(x1, …, 1, …, xn)

ch4-7

F

0
1

0

1

1
0

or

x1

xi

xn

circuit
F

1

0
1

0

0
1

or

x1

xi

xn

circuit

• Illustrations of Boolean Difference

Chain Rule

fA
G(f(A B) {C D})G(f(A, B), {C, D})
{A,B} and {C,D} have no
variables in common

B
C

D

f = AB
G = f + CD

dG/df = (C’ + D’)
df/dA = B

ch4-8

dG/dA = (dG/df) · (df/dA) = (C’+D’) · B

An Input vector v sensitizes a fault effect from A to G
Iff v sensitizes the effect from A to f and from f to G

5

Boolean Difference (con’t)

• Boolean Difference
– With respect to an internal signal, w, Boolean

diff t th t f i t bi ti difference represents the set of input combinations
that sensitize a fault effect from w to the primary
output F

• Calculation
– Step 1: convert the function F into a new one G that

takes the signal w as an extra primary input
– Step 2: dF(x1, …, xn)/dw = dG (x1, …, xn, w)/dw w

ch4-9

1 n 1 n

x

w

G

x1

xn

w
F

x1

xn

Free w.
.
.

.

.

.

Test Gen. By Boolean Difference

Case 1: Faults are present at PIs.

a
b

x

c

F = ab + ac
b

F(a=0) = 0
F(a=1) = (b+c)

Fault Sensitization Requirement:
dF/d F(0) F(1) 0 (b) (b)

ch4-10

Test-set for a s-a-1 = {(a,b,c) | a' (b+c)=1} = {(01x), (0x1)}.
Test-set for a s-a-0 = {(a,b,c) | a (b+c)=1} = {(11x), (1x1)}.

dF/da = F(a=0) ⊕ F(a=1) = 0 ⊕ (b+c) = (b+c)

Fault activation
requirement

Fault sensitization
requirement

No need to compute
The faulty function !!

6

Test Generation By Boolean
Difference (con’t)

Case 2: Faults are present at internal lines.

a
b x

h

c

F = ab + ac

b h

G(i.e., F with h floating) = h + ac
dG/dh = G(h=0) ⊕G(h=1) = (ac ⊕ 1) = (a’+c’)

ch4-11

Test-set for h s-a-1 is
{ (a,b,c)| h‘ (a'+c')=1 } = { (a,b,c)| (a'+b') (a'+c')=1 } = { (0xx), (x00) }.

Test-set for h s-a-0 is
{(a,b,c)| h (a'+c')=1} = {(110)}.

For fault activation For fault sensitization

Outline

• Test Generation (TG) Methods
– Based on Truth Table
– Based on Boolean Equation
– Based on Structural Analysis
– D-algorithm [Roth 1967]
– 9-Valued D-algorithm [Cha 1978]

PODEM [Goel 1981]

ch4-12

– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

7

Test Generation Method
(From Circuit Structure)

• Two basic goals
– (1) Fault activation (FA)
– (2) Fault propagation (FP)
– Both of which requires Line Justification (LJ), I.e., finding Both of which requires Line Justification (LJ), I.e., finding

input combinations that force certain signals to their desired
values

• Notations:
– 1/0 is denoted as D, meaning that good-value is 1 while

faulty value is 0
– Similarly, 0/1 is denoted D’

– Both D and D’ are called fault effects (FE)

ch4-13

fault propagation

fault activation

c

a

f
b

1/0

0

1

1

0

Common Concepts for Structural TG

• Fault activation
– Setting the faulty signal to either 0 or 1 is a Line

Justification problemJustification problem

• Fault propagation
– (1) select a path to a PO  decisions
– (2) Once the path is selected  a set of line

justification (LJ) problems are to be solved

• Line Justification
– Involves decisions or implications

ch4-14

– Involves decisions or implications
– Incorrect decisions: need backtracking

a
b cTo justify c=1  a=1 and b=1 (implication)

To justify c=0  a=0 or b=0 (decision)

8

Ex: Decision on Fault Propagation

f1G5

G1

G2

a
b
c

d

{ G5, G6 }

– Fault activation
• G1=0  { a=1, b=1, c=1 }  { G3=0 }

– Fault propagation: through G5 or G6

f2G6
G3

G4e

G5 G6

decision tree

fail success

ch4-15

– Decision through G5:
• G2=1  { d=0, a=0 }  inconsistency at a  backtrack !!

– Decision through G6:
•  G4=1  e=0  done !! The resulting test is (111x0)

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.

Various Graphs

A Combinational Circuit: is usually modeled as a DAG, but not tree

Graph = (V, E)

DAG
(Directed Acyclic Graph)

Digraph
(directed graph)

ch4-16

(y p)

Tree

9

Ex: Decisions On Line Justification

a
b
c
d

k

l
q l=1 k=1

fail

q=1

r=1

FA  set h to 0

d

e
f
h

p

r
m
n
o

s

The corresponding
decision tree

m=1 o=1
n=1

J-frontier: is the set of gates
whose output value is known
(I 0 1) b t i t i li d

fail

success

r 1

ch4-17

– FA  set h to 0
– FP  e=1, f=1 (o=0) ; FP  q=1, r=1
– To justify q=1  l=1 or k=1
– Decision: l =1  c=1, d=1  m=0, n=0  r=0  inconsistency at r 

backtrack !
– Decision: k=1  a=1, b=1
– To justify r=1  m=1 or n=1 (c=0 or d=0)  Done ! (J-frontier is )

(I.e., 0 or 1), but is not implied
by its input values.
Ex: initially, J-frontier is {q=1, r=1}

Decision point

Branch-and-Bound Search

• Test Generation
– Is a branch-and-bound search
– Every decision point is a branching point
– If a set of decisions lead to a conflict (or bound), a

backtrack is taken to explore other decisions
– A test is found when

• (1) fault effect is propagated to a PO
• (2) all internal lines are justified

– No test is found after all possible decisions are tried

ch4-18

p
 Then, target fault is undetectable

– Since the search is exhaustive, it will find a test if one
exists

For a combinational circuit, an undetectable fault is also a
redundant fault  Can be used to simplify circuit.

10

Implications

• Implications
– Computation of the values that can be uniquely p q y

determined
• Local implication: propagation of values from one

line to its immediate successors or predecessors
• Global implication: the propagation involving a

larger area of the circuit and re-convergent fanout

• Maximum Implication Principle

ch4-19

– Perform as many implications as possible
– It helps to either reduce the number of problems

that need decisions or to reach an inconsistency
sooner

Local Implications (Forward)

0

Before

0

After

0
x

1
1

1
x a

0

x

x

J-frontier={ ...,a }

0
x

1
1

1
0 a

0

1

0

J-frontier={ ... }

ch4-20

a

D'
D a

x D-frontier={ ...,a }

a

D'
D a

0 D-frontier={ ... }

11

Local Implications (Backward)

x 1 1 1

Before After

x
x

x
1

x
x J-frontier={ }

1

0

0

1
1

0
1

x
x 0

0

1

J-frontier={ ...,a }

ch4-21

x J-frontier={ ... }

x
1

x

a x a
{ , }

1 1

1

Global Implications

dx
Before

x
After

d

• Unique D-Drive Implication

g
x

x
D

x
x

D

1

D

x

x

x

x

g

e e

ch4-22

– Suppose D-frontier (or D-drive) is {d, e},  g is a dominator
for both d and e, hence a unique D-drive is at g

g is called a dominator of d:
because every path from d to an PO passes through g

12

Learning for Global Implication

• Static Learning
– Global implication derived by contraposition law
– Learn static (I.e., input independent) signal implications

AB => ~B  ~A

(, p p) g p

• Dynamic Learning
– Contraposition law + other signal values
– Is input pattern dependent

A

B

D

F1

A

B

D

F0

1

ch4-23

B

C E

F

F=1 implies B=1
Because B=0  F=0

(Static Learning)

B

C E

F0

F=0 implies B=0 When A=1
Because {B=1, A=1}  F=1

(Dynamic Learning)

Early Detection of Inconsistency

Aggressive implication may
help to realize that the sub-
tree below is fruitless, thus
avoiding unnecessary searchavoiding unnecessary search

q=1

r=1
s=
1

u=
1

t=1
v=
1

A potential

ch4-24

success

v=
1

f

f f

f

f f

p
sub-tree

sub-tree without a solution

13

Ex: D-Algorithm (1/3)

• Five logic values
– { 0, 1, x, D, D’ }

h

Try to propagate
Fault effect thru G1
 Set d to 1

d' 0

Try to propagate
Fault effect thru G2
 Set j,k,l,m to 1

1

D

n

d

e
e'

d

i

j

k

1

0

D’
G1

0

G2
0

1

ch4-25

1

1

1

D

f
f'

k

l

m

ga
b
c

D0
1
1

D’ ≠

Conflict at k
 Backtrack !

Ex: D-Algorithm (2/3)

• Five logic values
– { 0, 1, x, D, D’ }

d'
h

0
Try to propagate

n

d

e
e'

d

i

j

k

1

0

D’
G1

0

G2

1

D

0

1

Fault effect thru G2
 Set j,l,m to 1

ch4-26

f
f'

k

l

m

ga
b
c

D0
1
1

1

1

D

0

1

D’ ≠

Conflict at m
 Backtrack !

D’ (next D-frontier chosen)

14

Ex: D-Algorithm (3/3)

• Five logic values
– { 0, 1, x, D, D’ }

d'
h

0

Try to propagate
Fault effect thru G2
 Set j,l to 11

n

d

e
e'

d

i

j

k

1

0

D’
G1

0

G2

1

D

0

1

Fault propagation
and line justification
are both complete
 A test is found !

ch4-27

f
f'

k

l

m

ga
b
c

D0
1
1

D’

1

D

D’ (next D-frontier chosen)

0

1

This is a case of
multiple path sensitization !

D-Algorithm: Value Computation

Decision Implication Comments

a=0 Active the fault
e=1 Propagate via k

k=D’a 0 Active the fault
h=1
b=1 Unique D-drive
c=1
g=D

d=1 Propagate via i
i=D’
d’=0

j=1 Propagate via n

k=D’
e’=0
j=1

l=1 Propagate via n
m=1

n=D
f’=0
f=1
m=D’ Contradiction

ch4-28

k=1
l=1
m=1

n=D
e’=0
e=1
k=D’ Contradiction

f=1 Propagate via m
m=D’
f’=0
l=1
n=D

15

Decision Tree on D-Frontier

• The decision tree below
– Node  D-frontier
– Branch  Decision Taken
– A Depth-First-Search (DFS) strategy is often used

d

e'

d'
h

i

j

1

0

D’
G1

1
0

1

{i,k,m}

{k,m,n}

i

ch4-29

n
e

f
f'

k

l

m

ga
b
c

D0
1
1

G2

D’

1

D

0

1

0

1

D’

{m,n}F

F S

n k

mn

9-Value D-Algorithm

• Logic values (fault-free / faulty)
– {0/0 0/1 0/u 1/0 1/1 1/u u/0 u/1 u/u}{0/0, 0/1, 0/u, 1/0, 1/1, 1/u, u/0, u/1, u/u},
– where 0/u={0,D'}, 1/u={D,1}, u/0={0,D}, u/1={D',1},

u/u={0,1,D,D'}.

• Advantage:
– Automatically considers multiple-path

sensitization, thus reducing the amount of search
i D l ith

ch4-30

in D-algorithm
– The speed-up is NOT very significant in practice

because most faults are detected through single-
path sensitization

16

Example: 9-Value D-Algorithm

d

d'
h 1/u  1/1

D’ (=0/1)

Decision Tree

0/1

0/u
1/u

n
e

e'

i

j

kga
b

u/1

G1

D (1/0)0/1
u/1

G2
D(=1/0)

u/1

D (0/1)

u/0

1/u

u/1

{i, k, m}

{k, m, n}

i

n

D’(0/1)

1/u

ch4-31

f

f'
l

m

b
c

()u/1
u/1

u/1

u/1

u/1

success

No-backtrack !

D’ or 1

u/0

u/1

1/u

Final Step of 9-Value D-Algorithm

• To derive the test vector
• A = (0/1)  0 (take the fault-free one)
• B = (1/u)  1
• C = (1/u)  1
• D = (u/1)  1
• E = (u/1)  1
• F = (u/1)  1

• The final vector

ch4-32

• The final vector
– (A,B,C,D,E,F) = (0, 1, 1, 1, 1, 1)

17

Outline

• Test Generation (TG) Methods
– Based on Truth Table
– Based on Boolean Equation
– Based on Structural Analysis
– D-algorithm [Roth 1967]
– 9-Valued D-algorithm [Cha 1978]

PODEM [Goel 1981]

ch4-33

– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

PODEM: Path-Oriented DEcision
Making

• Fault Activation (FA) and Propagation (FP)
– lead to sets of Line Justification (LJ) problems. The LJ problems

can be solved via value assignments. can be solved via value assignments.

• In D-algorithm
– TG is done through indirect signal assignment for FA, FP, and LJ,

that eventually maps into assignments at PI’s

– The decision points are at internal lines

– The worst-case number of backtracks is exponential in terms of
the number of decision points (e.g., at least 2k for k decision
nodes)

ch4-34

• In PODEM
– The test generation is done through a sequence of direct

assignments at PI’s

– Decision points are at PIs, thus the number of backtracking might
be fewer

18

Search Space of PODEM

• Complete Search Space
– A binary tree with 2n leaf nodes, where n is the number of PI’s

• Fast Test Generation

0 1
b

0 1

0 1

b

a

Fast Test Generation
– Need to find a path leading to a SUCCESS terminal quickly

ch4-35

c

d

0

d

1

d

0 1
c

d

0

d

1
c

d

0

d

1

F F F F

c

d

S S F F

Objective() and Backtrace()

• PODEM
– Also aims at establishing a sensitization path based on fault

activation and propagation like D-algorithm
– Instead of justifying the signal values required for sensitizing the

selected path, objectives are setup to
guide the decision process at PI’s

• Objective
– is a signal-value pair (w, vw)

• Backtrace
B kt d i d bj ti i t PI i t th t i

ch4-36

– Backtrace maps a desired objective into a PI assignment that is
likely to contribute to the achievement of the objective

– Is a process that traverses the circuit back from the objective
signal to PI’s

– The result is a PI signal-value pair (x, vx)
– No signal value is actually assigned during backtrace !

往輸入端追蹤

19

Objective Routine

• Objective Routine Involves
– The selection of a D-frontier, G

Th l ti f ifi d i t t f G– The selection of an unspecified input gate of G

Objective() {
/* The target fault is w s-a-v */
/* Let variable obj be a signal-value pair */
if (the value of w is x) obj = (w, v’);
else {

select a gate (G) from the D-frontier;

fault activation

fault propagation

ch4-37

g ()
select an input (j) of G with value x;
c = controlling value of G;
obj = (j, c’);

}
return (obj);

}

p p g

後追蹤 Backtrace Routine

• Backtrace Routine
– Involves finding an all-x path from objective site to a

PI, I.e., every signal in this path has value x

Backtrace(w, vw) {
/* Maps objective into a PI assignment */
G = w; /* objective node */
v = vw; /* objective value */
while (G is a gate output) { /* not reached PI yet */

inv = inversion of G;
l t i t (j) f G ith l

, , y g p

ch4-38

select an input (j) of G with value x;
G = j; /* new objective node */
v = v⊕inv; /* new objective value */

}
/* G is a PI */ return (G, v);

}

20

Example: Backtrace

Objective to achieve: (F, 1)
PI assignments:

(1) A = 0  fail
(2) B = 1 succeed

A
B

FC D

E

x
x

x

x
x x

=>

The first time of backtracing

(2) B 1  succeed

A
B

FC D

E

0
1

1

x
x x

ch4-39

A
B

FC D

E

0
1

1

x
x x

A
B

FC D

E

0
1

1

0
1 1

=>

The second time of backtracing

PI Assignment in PODEM

aAssume that: PI’s: { a, b, c, d }

0 1

0 1

0

b

cfailure

Assume that: PI s: { a, b, c, d }
Current Assignments: { a=0 }
Decision: b=0  objective fails
Reverse decision: b=1
Decision: c=0  objective fails
Reverse decision: c=1
Decision: d=0

ch4-40

0 1

d

S

0

failureFailure means fault effect cannot be
propagated to any PO under current
PI assignments

21

Example: PODEM (1/3)

d

d'
h

0

1 Select D-frontier G2 and
set objective to (k,1)
 e = 0 by backtrace

n

d

e

e'

i

j

kga
b

1
D’

G1

D0
1
1

G2

1

0

1

1

0

 e 0 by backtrace
 Break the sensitization

across G2
 Backtrack !

ch4-41

f

f'
l

m

c 1

Example: PODEM (2/3)

d

d'
h

0

1 Select D-frontier G3 and
set objective to (e,1)
 No backtrace is needed

n

d

e

e'

i

j

kga
b

1
D’

G1

D0
1
1

G2

 No backtrace is needed
 Success at G3

G3

1
0

1

ch4-42

f

f'
l

m

c 1

G4

22

Example: PODEM (3/3)

d

d'
h

0

1 Select D-frontier G4 and
set objective to (f,1)
 No backtrace is needed

n

d

e

e'

i

j

kga
b

1
D’

G1

D0
1
1

G2

1

D’

D

0

1

 No backtrace is needed
 Success at G4 and G2
 D appears at one PO
 A test is found !!

G3

ch4-43

f

f'
l

m

c 1

G4

1
0

1

D’

PODEM: Value Computation

Objective PI assignment Implications D-frontier Comments
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i k mc=1 c=1 g=D i,k,m
d=1 d=1 d’=0

i=D’ k,m,n
k=1 e=0 e’=1

j=0
k=1
n=1 m no solutions !  backtrack

e=1 e’=0 reverse PI assignment

Assignments need to be
reversed during backtracking

ch4-44

j=1
k=D’ m,n

l=1 f=1 f’=0
l=1
m=D’
n=D

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1
0

D’

D0
1
1

1

D’

1

D

0

1

0

1
D’

1

23

Decision Tree in PODEM

0 a

b

0

1

1

1

1

c

d

e

ffail

ch4-45

• Decision node: the PI selected through backtrace for value assignment
• Branch: the value assignment to the selected PI

ffail

success

Terminating Conditions

• D-algorithm
– Success:

(1) F lt ff t t t t (D f ti t b t)(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty

– Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

• PODEM

ch4-46

– Success:
• Fault effect seen at an output

– Failure:
• Every PI assignment leads to failure, in which D-frontier

is empty while fault has been activated

24

PODEM: Recursive Algorithm

PODEM () /* using depth-first-search */

begin
If(error at PO) return(SUCCESS);If(error at PO) return(SUCCESS);

If(test not possible) return(FAILURE);

(k, vk) = Objective(); /* choose a line to be justified */

(j, vj) = Backtrace(k, vk); /* choose the PI to be assigned */

Imply (j, vj); /* make a decision */

If (PODEM()==SUCCESS) return (SUCCESS);

Imply (j, vj’); /* reverse decision */

ch4-47

If (PODEM()==SUCCESS) return(SUCCESS);

Imply (j, x);

Return (FAILURE);

end

What PI to assign ?

j=vj

Recursive-call

j=vj’

Recursive-call
If necessary

Overview of PODEM

• PODEM
– examines all possible input patterns implicitly but

exhaustively (branch-and-bound) for finding a test

– It is complete like D-algorithm (I.e., will find one if a
test exists)

• Other Key Features
– No J-frontier, since there are no values that require

justification
– No consistency check, as conflicts can never occur
– No backward implication, because values are

ch4-48

propagated only forward
– Backtracking is implicitly done by simulation rather

than by an explicit and time-consuming save/restore
process

– Experimental results show that PODEM is generally
faster than the D-algorithm

25

• In Objective() and Backtrace()
– Selections are done arbitrarily in original PODEM

The Selection Strategy in PODEM

– The algorithm will be more efficient if certain
guidance used in the selections of objective node
and backtrace path

• Selection Principle
– Principle 1: Among several unsolved problems

•  Attack the hardest one 1

ch4-49

• Ex: to justify a ‘1’ at an AND-gate output
– Principle 2: Among several solutions for solving a

problem
•  Try the easiest one
• Ex: to justify a ‘1’ at OR-gate output

1

• Controllability of a signal w
– CY1(w): the probability that line w has value 1.
– CY0(w): the probability that line w has value 0.

Controllability As Guidance

CY0(w): the probability that line w has value 0.
– Example:

• f = ab
• Assume CY1(a)=CY0(a)=CY1(b)=CY0(b)=0.5
CY1(f)=CY1(a)xCY1(b)=0.25,
CY0(f)=CY0(a)+CY0(b)-CY0(a)xCY0(b)=0.75

• Example of Smart Backtracing
– Objective (c, 1)  choose path ca for backtracing

Obj ti (0)  h th  f b kt i

ch4-50

– Objective (c, 0)  choose path ca for backtracing

CY1(a) = 0.33
CY0(a) = 0.67

CY1(b) = 0.5
CY0(b) = 0.5

a

b
c

26

Testability Analysis

• Applications
– To give an early warning about the testing problems

that lie aheadthat lie ahead
– To provide guidance in ATPG

• Complexity
– Should be simpler than ATPG and fault simulation, I.e.,

need to be linear or almost linear in terms of circuit
size

• Topology analysis

ch4-51

• Topology analysis
– Only the structure of the circuit is analyzed
– No test vectors are involved
– Only approximate, reconvergent fanouts cause

inaccuracy

SCOAP
(Sandia Controllability/Observability Analysis Program)

• Computes six numbers for each node N
– CC0(N) and CC1(N)

• Combinational 0 and 1 controllability of a node N

– SC0(N) and SC1(N)
• Sequential 0 and 1 controllability of a node N

– CO(N)
• Combinational observability

ch4-52

y

– SO(N)
• Sequential observability

值越大代表越困難

27

General Characteristic of
Controllability and Observability

Controllability calculation: sweeping the circuit from PI to PO
Observability calculation: sweeping the circuit from PO to PI

Boundary conditions:
(1) For PI’s: CC0 = CC1 = 1 and SC0 = SC1 = 0
(2) For PO’s: CO = SO = 0

ch4-53

Controllability Measures

– CC0(N) and CC1(N)

• The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

– SC0(N) and SC1(N)

• The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

x1

x2
Y

ch4-54

CC0(Y) = min [CC0(x1) , CC0(x2)] + 1
CC1(Y) = CC1(x1) + CC1(x2) + 1
SC0(Y) = min [SC0(x1) , SC0(x2)]
SC1(Y) = SC1(x1) + SC1(x2)

28

Controllability Measure (con’t)

– CC0(N) and CC1(N)

• The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

– SC0(N) and SC1(N)

• The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

x1
x2 Y
x3

ch4-55

CC0(Y) = CC0(x1) + CC0(x2) + CC0(x3) + 1
CC1(Y) = min [CC1(x1), CC1(x2), CC1(x3)] + 1
SC0(Y) = SC0(x1) + SC0(x2) + SC0(x3)
SC1(Y) = min [SC1(x1) , SC1(x2) , SC1(x3)]

Observability Measure

– CO(N) and SO(N)

• The observability of a node N is a function of the
output observability and of the cost of holding all
other inputs at non-controlling values

x1
x2 Y
x3

Example: X1 observable: (Y observable) + (side-inputs 配合)

ch4-56

x3

CO(x1) = CO(Y) + CC0(x2) + CC0(x3) + 1
SO(x1) = SO(Y) + SC0(x2) + SC0(x3)

29

PODEM: Example 2 (1/3)

Initial objective=(G5,1).
G5 is an AND gate  Choose the hardest-1
 Current objective=(G1,1).
G1 i AND t  Ch th h d t 1G1 is an AND gate  Choose the hardest-1
 Arbitrarily, Current objective=(A,1). A is a PI  Implication  G3=0.

A
B

CY1=0.25

CY1=0.656

G5

G7

G1
1/01

ch4-57

C
G6

CY1 0.656 G7
G2

G3

G4
0

PODEM: Example 2 (2/3)

The initial objective satisfied? No!  Current objective=(G5,1).
G5 is an AND gate  Choose the hardest-1  Current objective=(G1,1). g j ()
G1 is an AND gate  Choose the hardest-1
 Arbitrarily, Current objective=(B,1). B is a PI  Implication  G1=1, G6=0.

A
B

CY1=0.25

CY1=0 656

G5

G7

G1
1/01

1

1

ch4-58

C
G6

CY1=0.656 G7
G2

G3

G4
0

0

0

30

PODEM: Example 2 (3/3)

The initial objective satisfied? No!  Current objective=(G5,1).
The value of G1 is known  Current objective=(G4,0).
The value of G3 is known  Current objective=(G2,0).
A, B is known  Current objective=(C,0).
C is a PI  Implication  G2=0, G4=0, G5=D, G7=D.

A
B

C

CY1=0.25

CY1=0.656

G5

G7

G1

G2

1/0=D1

1

1

D
0

0

1

ch4-59

C
G6

G2

G3

G4
0

0

No backtracking !!

0

If The Backtracing Is Not Guided (1/3)

Initial objective=(G5,1).
Choose path G5-G4-G2-A  A=0.
Implication for A=0  G1=0, G5=0 Backtracking to A=1.Implication for A 0  G1 0, G5 0  Backtracking to A 1.
Implication for A=1  G3=0.

A
B

C

G5

G7

G1

G2

1 1/0

ch4-60

G6

G3

G4

0

31

The initial objective satisfied? No!  Current objective=(G5,1).
Choose path G5-G4-G2-B B=0.

If The Backtracing Is Not Guided (2/3)

Choose path G5 G4 G2 B  B 0.
Implication for B=0  G1=0, G5=0  Backtracking to B=1.
Implication for B=1  G1=1, G6=0.

A
B

C

G5

G7

G1

G2

1

1

1
1/0

ch4-61

C
G6

G2

G3

G4

0

0

If The Backtracing Is Not Guided (3/3)

The initial objective satisfied? No!  Current objective=(G5,1).
Choose path G5-G4-G2-C  C=0.p
Implication for C=0 G2=0, G4=0, G5=D, G7=D.

A
B

C
G6

G5

G7

G1

G2

G

1

1

1
1/0=D

D

A

B

C

F

F

0 1

100
0 1

ch4-62

0

G6

G3

G4 0
C

S

F
0

Two times of backtracking !!

0

32

ECAT Circuit: PODEM (1/3)

a g 0->D'
0

Fault activation

b

c
d
e
f

i

h m
p

j

l

x

ch4-63

n

k

j

a g 0->D'0

ECAT Circuit: PODEM (2/3)

b

c
d
e
f

i

h m
p

j

l

x

1

1

0

1

0

side-input
requirement

ch4-64

n

k

j 0

33

a
b

g 0->D'

x
0

ECAT Circuit: PODEM (3/3)

b

c
d
e
f

i

h m

n

p

j

l

1

1

0

1

0

0

0
0

0

D D

objective

ch4-65

k 1

No backtracking !!

Outline

• Test Generation (TG) Methods
– Based on Truth Table
– Based on Boolean Equation
– Based on Structural Analysis
– D-algorithm [Roth 1967]
– 9-Valued D-algorithm [Cha 1978]

PODEM [Goel 1981]

ch4-66

– PODEM [Goel 1981]
– FAN [Fujiwara 1983]

34

FAN (Fanout Oriented) Algorithm

• FAN
Introduces two major extensions to PODEM’s – Introduces two major extensions to PODEM’s
backtracing algorithm

• 1st extension
– Rather than stopping at PI’s, backtracing in FAN

may stop at an internal lines

• 2nd extension

ch4-67

– FAN uses multiple backtrace procedure, which
attempts to satisfy a set of objectives
simultaneously

Headlines and Bound Lines

• Bound line
– A line reachable from at least one stem

• Free line
– A line that is NOT bound line

• Head line
– A free line that directly feeds a bound line

HE

ch4-68

Bound lines

Head lines

A

B

C

J

F
K

L

M

35

Decision Tree (PODEM v.s. FAN)

Head lines

A

HE

F

K

M

Assume that:
Bound linesA

B

C

J
L

A

B

1

10

All makes J = 0

Objective is (J, 0)

J is a head line
 Backtrace stops at J
 Avoid unnecessary search

ch4-69

CS

S

1

10

0

PODEM FAN

J

S

0 1

Why Stops at Head Lines ?

• Head lines are mutually independent
– Hence, for each given value combination at head

lines, there always exists an input combination
to realize it.

• FAN has two-steps
– Step 1: PODEM using headlines as pseudo-PI’s

ch4-70

– Step 2: Generate real input pattern to realize the
value combination at head lines.

36

Why Multiple Backtrace ?

• Drawback of Single Backtrace
– A PI assignment satisfying one objective may preclude

achieving another one and this leads to backtrackingachieving another one, and this leads to backtracking

• Multiple Backtrace
– Starts from a set of objectives (Current_objectives)
– Maps these multiple objectives into a head-line

assignment k=vk that is likely to
• Contribute to the achievement of a subset of the objectives
• Or show that some subset of the original objectives cannot

ch4-71

• Or show that some subset of the original objectives cannot
be simultaneously achieved

1

0

1

0Multiple objectives
May have conflicting
Requirements at a stem

Example: Multiple Backtrace

H

G

A1

E1
E

A

B
E2

I
A2

1

0

0

1

1

1

1
1

0
conflicting stem

HB

C J
0

(I,1), (J,0)
(J,0), (G,0)
(G,0), (H,1)
(H,1), (A1,1), (E1,1)

Current_objectives Processed entry Head_objectivesStem_objectives

(I,1)
(J,0)
(G,0)
(H,1)

11

1Consistent stem

ch4-72

(A1,1), (E1,1), (E2,1), (C,1)
(E1,1), (E2,1), (C,1)
(E2,1), (C,1)
(C,1)
Empty  restart from (E,1)
(E,1)
(A2,0)
empty

(A1,1)
(E1,1)
(E2,1)
(C,1)

(E,1)
(A2,0)

A
A,E
A,E
A,E
A
A
A
A

C
C
C
C
C

37

Multiple Backtrace Algorithm

Mbacktrace (Current_objectives) {
while (Current_objectives ≠) {

remove one entry (k, vk) from Current_objectives;
switch (type of entry) {switch (type of entry) {
1. HEAD_LINE: add (k, vk) to Head_objectives;
2. FANOUT_BRANCH:

j = stem(k);
increment no. of requests at j for vk; /* count 0s and 1s */
add j to Stem_objectives;

3. OTHERS:
inv = inversion of k; c = controlling value of k;

ch4-73

inv inversion of k; c controlling value of k;
select an input (j) of k with value x;
if ((vk⊕ inv) == c) add(j, c) to Current_objectives;
else { for every input (j) of k with value x

add(j, c’) to Current_objectives; }
}

} TO BE CONTINUED …

Multiple Backtrace (con’t)

Mbacktrace (Current_objectives) {
while (Current_objectives ≠) {body in previous page}
if(Stem objectives≠) { if(Stem_objectives≠) {

remove the highest-level stem (k) from Stem_Objectives;
vk = most requested value of k;
/* recursive call here */
add (k, vk) to Current_objectives;
return (Mbacktrace(Current_objectives);

}

ch4-74

}
else { remove one objective (k, vk) from Head_objectives;

return (k, vk)
}

}

38

References

[1] Sellers et al., "Analyzing errors with the Boolean difference", IEEE Trans. Computers,
pp. 676-683, 1968.

[2] J. P. Roth, "Diagnosis of Automata Failures: A Calculus and a Method", IBM Journal
of Research and Development, pp. 278-291, July, 1966.

[2'] J. P. Roth et al., "Programmed Algorithms to Compute Tests to Detect and
Distinguish Between Failures in Logic Circuits", IEEE Trans. Electronic Computers,
pp. 567-579, Oct. 1967.

[3] C. W. Cha et al, "9-V Algorithm for Test Pattern Generation of Combinational Digital
Circuits", IEEE TC, pp. 193-200, March, 1978.

[4] P. Goel, "An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits", IEEE Trans. Computers, pp. 215-222, March, 1981.

[5] H. Fujiwara and T. Shimono, "On the Acceleration of Test Generation Algorithms",

ch4-75

IEEE TC, pp. 1137-1144, Dec. 1983.

[6] M. H. Schulz et al., "SOCRATES: A Highly Efficient Automatic Test Pattern Generation
System", IEEE Trans. on CAD, pp. 126-137, 1988.

[6'] M. H. Schulz and E. Auth, "Improved Deterministic Test Pattern Generation with
Applications to Redundancy Identification", IEEE Trans CAD, pp. 811-816, 1989.

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 5
Design For Testability

& Scan Test

Outline

• Introduction
– Why DFT?
– What is DFT?

• Ad-Hoc Approaches
• Full Scan
• Partial Scan

ch5-2

• Partial Scan

2

Why DFT ?

• Direct Testing is Way Too Difficult !
– Large number of FFs
– Embedded memory blocks
– Embedded analog blocks

• Design For Testability is inevitable
• Like death and tax

ch5-3

• Like death and tax

Design For Testability

• Definition
– Design For Testability (DFT) refers to those design Design For Testability (DFT) refers to those design

techniques that make test generation and testing
cost-effective

• DFT Methods
– Ad-hoc methods
– Scan, full and partial
– Built-In Self-Test (BIST)

ch5-4

– Boundary scan

• Cost of DFT
– Pin count, area, performance, design-time, test-time

3

Why DFT Isn’t Universally Used
Previously?

– Short-sighted view of management

– Time-to-market pressurep ss

– Life-cycle cost ignored by development
management/contractors/buyers

– Area/functionality/performance myths

– Lack of knowledge by design engineers

Testing is someone else’s problem

ch5-5

– Testing is someone else s problem

– Lack of tools to support DFT until recently

We don’t’ have to worry about this management barrier any more
 Most design teams now have DfT people

Important Factors

• Controllability
– Measure the ease of controlling a lineg

• Observability
– Measure the ease of observing a line at PO

• Predictability
– Measure the ease of predicting output values

• DFT deals with ways of improving

ch5-6

• DFT deals with ways of improving
– Controllability
– Observability
– Predictability

4

Outline

• Introduction
• Ad-Hoc Approaches

– Test Points
– Design Rules

• Full Scan
• Partial Scan

ch5-7

• Partial Scan

Ad-Hoc Design For Testability

• Design Guidelines
– Avoid redundancy
– Avoid asynchronous logic
– Avoid clock gating (e.g., ripple counter)
– Avoid large fan-in
– Consider tester requirements (tri-stating, etc.)

• Disadvantages

ch5-8

– High fault coverage not guaranteed
– Manual test generation
– Design iterations required

5

Some Ad-Hoc DFT Techniques

• Test Points
• Initialization
• Monostable multivibrators

– One-shot circuit

• Oscillators and clocks
• Counters / Shift-Registers

– Add control points to long counters

Delay
element

One-shot

input output

input

ch5-9

• Partition large circuits
• Logical redundancy
• Break global feedback paths

p

output

On-Line Self-Test & Fault Tolerance
By Redundancy

• Information Redundancy
– Outputs = (information-bits) + (check-bits)
– Information bits are the original normal outputs
– Check bits always maintains a specific pre-defined

logical or mathematical relationship with the
corresponding information bits

– Any time, if the information-bits and check-bits violate
the pre-defined relationship, then it indicates an error

Hard are Red ndanc

ch5-10

• Hardware Redundancy
– Use extra hardware (e.g., duplicate or triplicate the

system) so that the fault within one module will be
masked (I.e., the faulty effect never observed at the
final output)

6

Module Level Redundancy

• Triple Module Redundancy (TMR)
– majority voting on three identical modules’

outputs help mask out faults that occur in a outputs help mask out faults that occur in a
single module

Module

Majority verdict 0

1

0

ch5-11

Module

Module

voter
0

0

Test Point Insertion

• Employ test points to enhance
– Controllability

– Observability

• CP: Control Points
– Primary inputs used to enhance controllability

• OP: Observability Points
– Primary outputs used to enhance observability

0
OP

(extra PI) (extra PO)

ch5-12

1

Add 0-CP

Add 1-CP

Add OP

OP

(extra PI)

7

0/1 Injection Circuitry

• Normal operation
When CP_enable = 0

• Inject 0j
– Set CP_enable = 1 and CP = 0

• Inject 1
– Set CP_enable = 1 and CP = 1

C1 MUX

0 w

ch5-13

C1
C2MUX

1

CP

CP_enable

Inserted circuit for controlling line w

Single I/O Port for Multiple Test
Points

• Constraints of using test points
– A large demand on I/O pins

Thi t i t b h t li d b – This constraint can be somewhat relieved by
using MUX & DEMUX at the cost of increasing
the test time

MUX

OP1
OP2
OP3 output pin

For OP

Input pin
For CP

CP1
CP2
CP3DEMUX

dispatcher

ch5-14

C1 C2 C3 Cn

OPN

N = 2n

(multiplexing observation points)

CPN

C1 C2 C3 Cn

N = 2n

(demultiplexing control points)

8

Sharing Between Test Points &
Normal I/O

• Advantage: Even fewer I/O pins for Test Points
• Overhead: Extra MUX delay for normal I/O• Overhead: Extra MUX delay for normal I/O

Output
pins

n 2-to-1
MUX’s n

n

Normal
functional

outputs

n 1-to-2
DEMUX’s

nInput
pins n

Normal
Functional

inputs

ch5-15

pn

n

SELECT
PIN

Observation
points

n

SELECT
PIN

n
CP’s

Control Point Selection

• Impact
– The controllability of the fanout-cone of the added y

point is improved

• Common selections
– Control, address, and data buses
– Enable / Hold inputs
– Enable and read/write inputs to memory

ch5-16

– Clock and set/clear signals of flip-flops
– Data select inputs to multiplexers and

demultiplexers

9

Example: Use CP to Fix DFT Rule
Violation

• DFT rule violations
– The set/clear signal of a flip-flop is generated by other

logic, instead of directly controlled by an input pinlogic, instead of directly controlled by an input pin
– Gated clock signals

• Violation Fix
– Add a control point to the set/clear signal or clock signals

QD QD

ch5-17

logic

clearCK

logic

clearCK
Violation

fix

CLEAR

Example: Fixing Gated Clock

• Gated Clocks
– Advantage: power dissipation of a logic design can thus

reducedreduced
– Drawback: the design’s testability is also reduced

• Testability Fix

QD

CK Violation

QD

CK

ch5-18

Gated
CKCK_enable

Violation
fix

CK_enable

CK
CP_enable

MUX

10

Example: Fixing Tri-State Bus
Contention

• Bus Contention
– A stuck-at-fault at the tri-state enable line may cause

b t ti lti l ti d i t dbus contention – multiple active drivers are connected
to the bus simultaneously

• Fix
– Add CPs to turn off tri-state devices during testing

Enable line stuck-at-1 x

(A Bus Contention Scenario in the presence of a fault)

ch5-19

Enable line active

Enable line stuck at 1 x

0 0

1 1

Unpredictable voltage on bus may
cause a fault to go unnoticed

Example: Partitioning Counters

• Consider a 16-bit ripple-counter
– Could take up to 216 = 65536 cycles to test

– After being partitioned into two 8-bit counters below, it
can be tested with just 2x28 = 512 cycles

Trigger clock
For 2nd 8-bit

counter
Q0

Q1

Q2

Q3 8 bit co nters

Q8

Q9

Q10

Q11

start
start

ch5-20

Q7

8-bit counters
Q3

Q4

Q5

Q6

MUX

CK
CP_enable

8-bit counters Q12

Q13

Q14

Q15

CK_for_Q8

11

Observation Point Selection

• Impact
– The observability of the fanin-cone (or transitive y (

fanins) of the added OP is improved

• Common choice
– Stem lines having a large number of fanouts
– Global feedback paths
– Redundant signal lines

O t t f l i d i h i i t

ch5-21

– Output of logic devices having many inputs
• MUX, XOR trees

– Output from state devices
– Address, control and data buses

(常為電路區塊間之介面訊號)

Problems of CP & OP

• Large number of I/O pins
– Add MUXes to reduce the number of I/O pins

– Serially shift CP values by shift-registers

• Larger test time

X Z

X’ Z’Shift-register R1 Shift-register R2

ch5-22

X Zg

control Observe

12

Outline

• Introduction
• Ad-Hoc Approaches
• Full Scan

– The Concept
– Scan Cell Design
– Random Access Scan

ch5-23

• Partial Scan

What Is Scan ?

• Objective
– To provide controllability and observability at internal

state variables for testingg

• Method
– Add test mode control signal(s) to circuit

– Connect flip-flops to form shift registers in test mode

– Make inputs/outputs of the flip-flops in the shift register

controllable and observable

ch5-24

• Types
– Internal scan

• Full scan, Partial scan, Random access

– Boundary scan

13

The Scan Concept

Combinational
LogicLogic

FF

FF

Mode Switch
(normal or test)

Scan In

ch5-25

FF

FF

Scan Out

A Logic Design Before Scan Insertion

input output

Combinational Logic

D Q

input
pins

clock

output
pins

D Q D Q

ch5-26

Sequential ATPG is extremely difficult:
due to the lack of controllability and observability at flip-flops.

clock

14

Example: A 3-stage Counter

input output

Combinational LogicCombinational Logic

q1
q

1

D
Q

pins

clock

p
pins

1

D
Q

1

D
Q

q1 q2
q3

 g stuck-at-0 q2
q3

ch5-27

It takes 8 clock cycles to set the flip-flops to be (1, 1, 1),
for detecting the g stuck-at-0 fault

(220 clock cycles for a 20-stage counter !)

A Logic Design After Scan Insertion

input output

Combinational Logic
q1

1
D Q

put
pins

output
pins

1
D Q

1
D Qscan-input

(SI)

scan-output
(SO)

M
U

X

M
U

X

M
U

X

 g stuck-at-0 q2
q3

q1
q2

q3

ch5-28

Scan Chain provides an easy access to flip-flops
Pattern Generation is much easier !!

clock
scan-enable

Note: Scan Enable (SE), not shown here, controls every MUX.

15

Procedure of Applying Test Patterns

• Notation
– Test vectors T = < ti

I, ti
F > i= 1, 2, …

Output Response R = < r O r F > i= 1 2

PI’s PO’s
Comb.

– Output Response R = < ri
O, ri

F > i= 1, 2, …

• Test Application

– (1) i = 1;

– (2) Scan-in t1
F /* scan-in the first state vector for PPI’s */

– (3) Apply ti
I /* apply current input vector at PI’s */

– (4) Observe ri
O /* observe current output response at PO’s */

PPI’s PPO’s
portion

ch5-29

(4) Observe ri / observe current output response at PO s /

– (5) Capture PPOs to FFs as ri
F /* capture the response at PPO’s to FFs */

• (Set to ‘Normal Mode’ by raising SE to ‘1’ for one clock cycle)

– (6) Scan-out ri
F while scanning-in ti+1

F /* overlap scan-in and scan-out */

– (7) i = i+1; Goto step (3)

Testing Scan Chain ?

• Common practice
– Scan chain is often first tested before testing the core logic

by a so-called flush test - which pumps random vectors in

and out of the scan chain

• Procedure (flush test of scan chain)
– (1) i = 0;

– (2) Scan-in 1st random vector to flip-flops

ch5-30

– (3) Scan-out (i)th random vector while scanning-in (i+1)th

vector for flip-flops.

• The (i)th scan-out vector should be identical to (i)th vector

scanned in earlier, otherwise scan-chain is mal-functioning

– (4) If necessary i = i+1, goto step (3)

16

MUX-Scan Flip-Flop

– Only D-type master-slave flip-flops are used

– All flip-flop clocks controlled from primary inputs

• No gated clock allowedg

– Clocks must not feed data inputs of flip-flops

– Most popularly supported in standard cell libraries

D

SC (normal / test)

ch5-31

Normal
Master-
Slave

Flip-flopSI (scan input)

CLK

Two-Port Dual-Clock Scan FF

• Separate normal clock from the clock used for
scanning
– D: normal input data– D: normal input data

– CK1: normal clock

– SI: scan input

– CK2: scan clock

D Q D Q

Q1

Q2

D
CK1

master
latch

ch5-32

Q

CK

D Q

CKSI
CK2

slave
latch

17

Race-Free Scan FF

• Use two-phase clocking
– CK1 and CK2 are two-phase non-overlapping

clocks which insure race-free operation

Q1

D

CK1
CK2

ch5-33

D Q

CK

D Q

CK

Q2

SI
SC

CK1
CK2

LSSD flip-flop (1977 IBM)

• LSSD: Level Sensitive Scan Design
– Less performance degradation than MUX-scan FF

• Clocking
– Normal operation: non-overlapping CK1=1  CK3=1
– Scan operation: non-overlapping CK2=1  CK3=1

D

CK1

Q2Q1

ch5-34

C

SD

CK2
CK3

想辦法將 MUX
融入FF設計中，

以降低 Scan 對速度的負面影響

18

Symbol of LSSD FF

1D

Latch 1

QD Q1 (normal level-sensitive 1D

2D

CK1

CK2

QD

SI

C

A

D

Latch 2

Q

latch output)

SO

ch5-35

CKB

Scan Rule Violation Example

Q2Q1

D
Flip
Fl

D
Flip
Fl

D1 D2

Flop Flop

Clock Rule violation:
Flip-flops cannot form a shift-register

D1 Q2

A workaround

ch5-36

D
Flip
Flop

D
Flip
Flop

Clock

D1

D2

Q2

All FFs are triggered by the same clock edge
Set and reset signals are not controlled by any internal signals

19

Some Problems With Full Scan

• Problems
Major Commercial Test Tool Companies

Synopsys
Mentor-Graphics

SynTest (華騰科技)

– Area overhead
– Possible performance degradation
– High test application time
– Power dissipation

• Features of Commercial Tools

Cadence

ch5-37

– Scan-rule violation check (e.g., DFT rule check)
– Scan insertion (convert a FF to its scan version)
– ATPG (both combinational and sequential)
– Scan chain reordering after layout

Performance Overhead

• The increase of delay along the
normal data paths include:p
– Extra gate delay due to the multiplexer
– Extra delay due to the capacitive loading of the

scan-wiring at each flip-flop’s output

• Timing-driven partial scan
– Try to avoid scan flip-flops that belong to the

ch5-38

timing critical paths
– The flip-flop selection algorithm for partial scan

can take this into consideration to reduce the
timing impact of scan to the design

20

Scan-Chain Reordering

– Scan-chain order is often decided at gate-level
without knowing the physical locations of the cells

– Scan-chain consumes a lot of routing resources, and
could be minimized by re-ordering the flip-flops in the
chain after layout is known

Scan-In

S O t S O t

Scan-In
1

3

5

1

2

3

ch5-39

Scan-Out Scan-Out

Layout of a scan design A better scan-chain order

Scan cell

2

4

5

4

Overhead of Scan Design

– Number of CMOS gates = 2000
– Fraction of flip-flops = 0.478

Scan

implementation

Predicted

overhead

Actual area

overhead

Normalized

operating

frequency

None 0 0 1.0

ch5-40

Hierarchical 14.05% 16.93% 0.87

Optimized 14.05% 11.9% 0.91

21

Random Access Scan

• Comparison with Scan-Chain
– More flexible – any FF can be accessed in constant time

Test time could be reduced– Test time could be reduced
– More hardware and routing overhead

ec
o

d
er

Y address

QD
MUX

Test
data

Normal
data

1

0

FF

FF

ch5-41

X decoder

Y
 d

X address X-enable

Y-enable

Outline

• Introduction
• Ad-Hoc Approaches
• Full Scan
• Partial Scan

ch5-42

22

Partial Scan

• Basic idea
– Select a subset of flip-flops for scan
– Lower overhead (area and speed)
– Relaxed design rules

• Cycle-breaking technique
– Cheng & Agrawal, IEEE Trans. On Computers, April 1990
– Select scan flip-flops to simplify sequential ATPG
– Overhead is about 25% off than full scan

ch5-43

• Timing-driven partial scan
– Jou & Cheng, ICCAD, Nov. 1991
– Allow optimization of area, timing, and testability

simultaneously

Full Scan vs. Partial Scan

scan design

full scan partial scan

every flip-flop is a scan-FF NOT every flip-flop is a scan-FF

test time longer shorter

ch5-44

hardware overhead

fault coverage

ease-of-use

more

~100%

easier

less

unpredictable

harder

23

A Partial-Scan DfT Flow

Circuit file

Flip-flop selection

Flip-flop list Test model generator

Test model

Circuit modifier

Circuit with

ch5-45

Test generation (stg3)

Test vectors

Circuit with
Partial scan

Directed Graph Of A Synchronous
Sequential Circuit

3 A circuit with six flip-flopsprimary
inputs

1 2 4 5 6

3
Graph of the circuit

primary
inputs

inputs

primary
inputs

primary
outputs

ch5-46

1 2 4 5 6

L=3

L=1
L=2

Graph of the circuit

Depth D=4

24

Partial Scan For Cycle-Free
Structure

• Select minimal set of flip-flops
– To eliminate some or all cycles– To eliminate some or all cycles

• Self-loops of unit length
– Are not broken to reduce scan overhead

– The number of self-loops in real design can be quite large

• Limit the length of

ch5-47

– Consecutive self-loop paths

– Long consecutive self-loop paths in large circuits may
pose problems to sequential ATPG

Test Generation for Partial Scan
Circuits

• Separate scan clock is used
• Scan flip-flops are removed

– And their input and output signals are added to the
PO/PI lists

• A sequential circuit test generator
– is used for test generation

• The vector sequences
Are then converted into scan sequences

ch5-48

– Are then converted into scan sequences
– Each vector is preceded by a scan-in sequence to set

the states of scanned flip-flops
– A scan-out sequence is added at the end of applying

each vector

25

Partial Scan Design

PI PO

Scan In

PPI

PI

PPO

PO

1 2

3

4 5 6

Scan In
Scan Out

ch5-49

Scan OutScan Flip-Flops: {2, 5}
Non-Scan FFs: {1, 3, 4, 6}

Trade-Off of Area Overhead v.s.
Test Generation Effort

CPU
Time

Area Overhead

Area
overhead

Test
Generation
Complexity

ch5-50

Non-Scan Only Self-Loops
Remain

Feedback
Free Circuit

Full-Scan

26

Summary of Partial-Scan

• Partial Scan
– Allows the trade-off between test generation effort

and hardware overhead to be automatically explored

• Breaking Cycles
– Dramatically simplifies the sequential ATPG

• Limiting the Length of Self-Loop Paths
– Is crucial in reducing test generation effort for large

circuits

ch5-51

circuits

• Performance Degradation
– Can be minimized by using timing analysis data for

flip-flop selection

1

Chapter 6Chapter 6

Delay TestingDelay Testing

Acknowledgements:

ch6-1

Mainly based on the lecture notes of
“VLSI Test Principles and Architectures”

Introduction of Delay TestingIntroduction of Delay Testing

 Delay Faulty:
 Fault that cause delay across a circuit to

violate certain timing constraintviolate certain timing constraint

 Delay Fault Models:
 Path delay fault

– Too much delay along a path

 Transition fault (or Gate delay fault)

ch6-2

– Too much delay across a particular gate

2

Basic Delay TestingBasic Delay Testing

 Delay Test Pattern:
 A two-pattern test: <v1, v2>
 v1 is an initialization vectorv1 is an initialization vector
 v2 causes the fault to be detected

00

01
circuit

V1  V2

Captured
Next Clock Cycle

Passing

ch6-3

11

Challenge: The launch time and capture time are just away
by a high-speed clock cycle time

Failing

Applications of Delay TestsApplications of Delay Tests

 Launch-off shifting (LOS) g ()
 Aka (also known as) skewed-load

 v1 is arbitrary, v2 is derived by a 1-bit shift of v1

 Launch-off capture (LOC)
 Aka broadside or double-capture

 v1 is arbitrary, v2 is derived from v1 through the

ch6-4

circuit function

3

Timing Sequence of LaunchTiming Sequence of Launch--offoff--ShiftingShifting
PROS: Easier Test Generation to achieve a Higher Fault Coverage
CONS: Hard to produce the Scan-Enable signal ‘SE’

(Note: ‘SE’ has to go LOW between S1 and C1)

CK

SE

Shift Window Launch Window Shift Window

… …S1 C1

d

V1 V2

ch6-5

S1 is a shifting cycle
C1 is a capture cycle
d is the fast clock cycle time

Example of LOSExample of LOS
Question:

v1 is {y1=‘0’, y2=‘0’, y3=‘1’}
What is vector v2 if using LOS?

0?

0? circuit

V1  V2

What is vector v2 if using LOS?
Assuming scan chain order y3y2y1

y1

y2

ch6-6

1?

SI (‘1’)

y3

4

Timing Sequence of LaunchTiming Sequence of Launch--offoff--CaptureCapture

PROS: Scan-Enable signal ‘SE’ to easy to produce
CONS: Fault Coverage is Lower than LOS

CK

SE

Shift Window Launch Window Shift Window

… …
C1 C2

d

V1 V2

ch6-7

C1 is a capture cycle
C2 is a capture cycle, too
d is the fast clock cycle time

Easier to produce

Transition Fault ModelTransition Fault Model
 Assumption:

 a large/gross delay is present at a circuit node

 Path independence:p
 Irrespective of which path the effect is propagated, the

gross delay defect will be arriving late at an observable
point

 De-facto standard in Industry
 Simple and the number of faults is linear to circuit size
 Also needs 2 vectors to test a fault

 Formulation of transition-fault test generation:
 Node x slow to rise (x STR) can be modeled simply as

ch6-8

 Node x slow-to-rise (x-STR) can be modeled simply as
two stuck-at faults

 (1) First time-frame: x/1 needs to be excited
 (2) Second time-frame: x/0 needs to be excited and

propagated

5

Ex: LOS Pattern GenerationEx: LOS Pattern Generation

 Target fault:

- A slow-to-rise

y1

y2 x
A

Slow-to-rise

y3

SI

B

y2
A

1y1
A 0

0 1/0

Test Requirement:
1st time frame: initialize a1 to ‘0’
2nd time frame: detect a2 s-a-0 fault

ch6-9

Final 1st Pattern: (y1, y2, y3, SE) = (0, 1, 1, 0)  Shifted to become 2nd Pattern

1st Time Frame 2nd Time Frame

y3

SE

A

B0

1

0

y2

y3

x
A

B

1

1

a1 x a2

0/1
Detected

Ex: LOC Pattern GenerationEx: LOC Pattern Generation

 Target fault:

- A slow-to-rise

x1

x2 x
A

Slow-to-rise

Free
PIs

x3
B

A
x1

A 0
0 x1’ 1/0

2

Test Requirement:
1st time frame: initialize a1 to ‘0’
2nd time frame: detect a2 s-a-0 fault

1

ch6-10

1st Time Frame 2nd Time Frame

A

B0

x2

y

x
A

B

0 x2’ x a2a1

0/1

1

1
Detected

6

SummarySummary
 More and more ICs require delay testing (or called

timing testing, performance testing), to ensure that
an IC can perform up to its target speed.an IC can perform up to its target speed.

 Better understand what LOS, LOC means, since
It’s industrial practice.

 Some IC, e.g., CPU, needs to go through speed
binning process, to determine the “quality bin” of
each IC and its sell price.

 Delay test is still a tough issue and still evolving

ch6-11

 Delay test is still a tough issue and still evolving.
Rigorous delay testing also aims to detect “small
defects” so as to reduce the test escape of latent
defects that might hurt an IC’s reliability in its field.

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 7
Built-In Self-Test

Design-for-Testability

• Design activities for generating a set of
test patterns with a high fault coverage.

• Methodology
– Logic

• Automatic Test Pattern Generation (ATPG)
• Scan Insertion (to ease the ATPG process)
• Built-In Self-Test

ch7-2

– Memory (SRAM, DRAM, …)
• Built-In Self-Test

User Core

SRAM

SRAM
Logic

2

Outline

• Basics
• Test Pattern Generation
• Response Analyzers
• BIST Examples
• Memory BIST

ch7-3

y

Definition & Advantages of BIST

• Built-In Self-Test (BIST) is a design-for-
t t bilit (DFT) t h i i hi h t titestability (DFT) technique in which testing
(test generation , test application) is
accomplished through built-in hardware
features.
– [V.D. Agrawal, C.R. Kime, and K.K. Saluja]

ch7-4

Can lead to significant test time reduction
Especially attractive for embedded cores

3

Good Things About BIST

• At-Speed Testing
– catching timing defects

• Fast
– reduce the testing time and testing costs
– a major advantage over scan

• Board-level or system-level testing

ch7-5

– can be conducted easily in field

General Organization of BIST

Test GeneratorSimple on-chip
pattern generation

Circuit Under Test
(CUT)

To avoid expensive

pattern generation

signature

off-line
pre-computed

fault-free
signature

ch7-6

Response Compressor
To avoid expensive

bit-to-bit comparison +
signature

Pass-or-fail

4

Why Compression ?

• Motivation
– Bit-to-bit comparison is infeasible for BIST

Si t l i• Signature analysis
– Compress a very long output sequence into a single

signature
– Compare the compressed word with the pre-stored

golden signature to determine the correctness of the
circuit

• Problems

ch7-7

– Many output sequences may have the same signature
after the compression leading to the aliasing problem

– Poor diagnosis resolution after compression

Aliasing Effect in Response
Compression

• Aliasing - the probability that a faulty
response is mapped to the same signature as
th f lt f i it (魚目混珠) 錯變成對的機率the fault-free circuit (魚目混珠) 錯變成對的機率

output response space signature space








fault-free

ch7-8


 



Response compression is a mapping
from the output response space to the signature space
In this example, aliasing prob. = 1 / 4 = 25%

5

BIST Issues

• Area Overhead
P f D d ti• Performance Degradation

• Fault Coverage
– Most on-chip generated patterns may not

achieve a very high fault coverage

• Diagnosability

ch7-9

– The chip is even harder to diagnose due to
response compression

Random Pattern Resistant Faults

• An RPRF cannot be detected by random patterns
• is a major cause of low fault coverage in BIST

Fault coverage inadequate coverage can be boosted by
test points, ATPG patterns, … ?

ch7-10

Pseudo-random pattern length

6

Example: Hard-To-Detect Fault

• Hard-to-detect faults
– Faults that are not covered by random testing
– E.g., an output signal of an 18-input AND gate

Hard-to-detect fault

ch7-11

x
stuck-at-0

Reality of Logic BIST

• BIST is NOT a replacement for scan
– it is built on top of full-scanp

• BIST does NOT result in fewer patterns
– it usually uses many more patterns than ATPG patterns

• BIST does NOT remove the need for testers
– tester still required to

• initiate test

ch7-12

• read response
• apply ATPG patterns to other part of IC

7

BIST Techniques

• Stored-Vector Based
Micro instruction support– Micro-instruction support

– Stored in ROM

• Hardware-Based Pattern Generators
– Counters
– Linear Feedback Shift Registers

C ll l A t t

ch7-13

– Cellular Automata

Linear Feedback Shift Register
(LFSR)

• Flip-Flop: one cycle delay
• XOR gate: modulo-2 addition
• Connection: modulo-2 multiplication

+

Type 1: Out-Tap Type 2: In-Tap

ch7-14

D1 D2 D3 D4 D1 D2 D3 D4+z
y1 y2 y3 y4 y1 y2 y3 y4z

z = y4 + y1 = D4(z) + D(z) z = y4 = D(y3 + y4) = D(D3(z) + z)
= D4(z) + D(z)

8

LFSR – Example

16-bit shift register16 bit shift register

7th 9th 12th 16th

This sixteen-stage LFSR will autonomously generates a maximum length of

ch7-15

g y g g
216-1 = 65,535 state before the sequence repeats
The seed (I.e., initial state of the LFSR) should not be all-0 state.
All 0-state is called a forbidden seed.

LFSR Example

1 0 0 0
0 0 0 1

D4 D2
D

1D
3+

0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1
1 0 1 1

D4D3D2D1

z y1 y2 y3 y4

y1(t+1)
y2(t+1)
y3(t+1)
y4(t+1)

1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

y1(t)
y2(t)
y3(t)
y4(t)

＝

ch7-16

0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

g x x x()   4 1 1
repeating

Characteristic polynomial

9

Ex: Primitive LFSR – State Diagram

0000

The register cycles through all 24-1 states
if the seed is not all-0

 Such a LFSR is called primitive

1000 0001

1100 0010

1110

1111

0100

1001

ch7-17

 Such a LFSR is called primitive

0111

1011

0101
1010

1101

0011

0110

Primitive Polynomials
(Up to Degree 100)

013424)(xxxxxxp Note: “24 4 3 1 0” means

ch7-18

10

Galois Field GF(2)

• Operation
– Modulo-2 addition, subtraction, multiplication, and

division of binary data

• Properties
– Modulo-2 addition and subtraction are identical
– 0+0=0, 0+1=1, 1+0=1, 1+1=0
– 0-0=0, 0-1=1, 1-0=1, 1-1=0

ch7-19

Bit-stream
multiplication

Bit-stream
division

Why LFSR ?

• Simple and regular structure
– D-flip-flops and XOR gates

• Compatible with scan DFT design
• Capable of exhaustive and/or pseudo

exhaustive testing
– If the LFSR is properly configured

• Low aliasing probability

ch7-20

g p y
– The fault coverage lost due to the response

compression is less than other compression schemes

11

LFSR – Definitions

• Maximum-length sequence
– A sequence generated by an n-stage LFSR is called a

maximum-length sequence if it has a period of 2n-1
– A maximum-length sequence is called m-sequence

• Primitive polynomial
– The characteristic polynomial associated with a

maximum-length sequence is called a primitive
polynomial

I d ibl l i l

ch7-21

• Irreducible polynomial
– A polynomial is irreducible if it cannot be factorized

into two (or more) parts, I.e., it is not divisible by any
polynomial other than 1 and itself.

LFSR – Properties

• No. of 1s and 0s
– The number of 1s in an m-sequence differs from the

number of 0s by only oney y

• Pseudo-random sequence
– The sequence generated by an LFSR is called a pseudo-

random sequence

• The correlation
– Between any two output bits is very close to zero

• Consecutive run of 1s and 0s

ch7-22

• Consecutive run of 1s and 0s
– An m-sequence produces an equal number of runs of 1s

and 0s.
– In every m-sequence, one half the runs have length 1,

one fourth have length 2, one eighth have length 3, and
so forth

12

LFSR – Polynomial Multiplication

g x x x()   4 3 1
1101

1
3 2x x 

D1D2D3+D4+

Output stream D4 D3 D2 D1 Input stream
0 0 0 0 1 1 0 1

1 1 0 0 1 1 0 1
1 0 1 0 1 1 0 1

1 0 1 0 1 1 0 1

Add-and-shift

ch7-23

1 0 1 0 1 1 0 1
1 0 1 1 0 1 0 1
x7 x5 x4 x2 1

   x x x x x x x x4 3 3 2 7 5 4 21 1 1         

LFSR – Polynomial Division
(Example)

Input
011011011

Output
11001

M(x)

Q(x)g x x x()   4 3 1

D1 D2 D3 + D4+

M(x) D1 D2 D3 D4 Q(x)
0 1 1 0 1 1 0 1 1 0 0 0 0

0 1 1 0 1 1 0 1 1
0 1 1 0 0 1 0 0 1
0 1 1 0 0 1 0 0 1

after 4
shifts

M(x) D1 D2 D3 + D4+

x+x2+x4+x5+x7+x8 1+x+x4

Quotient

ch7-24

0 1 1 0 0 1 0 0 1
0 0 1 0 1 1 0 0 1

1 0 1 1 1 1 0 0 1
1 +x +x41 +x2+x3

(x8+x7+x5+x4+x2+x)  (x4+x3+1) = x4+x+1
R(x) = x3+x2+1

Remainder

13

LFSR – Summary

• LFSRs have two types
– In-tap and Out-tap– In-tap and Out-tap

• LFSRs
– Can be used to implement polynomial

multiplication and division in GF(2)

• As polynomial multiplier
– LFSRs are capable of generating pseudo random

ch7-25

LFSRs are capable of generating pseudo random
vectors

• As polynomial divisors
– LFSRs are capable of compressing test response

Cellular Automaton (CA)

– An one-dimensional array of cells
– Each cell contains a storage device and next

state logicg
– Next state is a function of current state of the

cell and its neighboring cells

Next
State

Next
State

Next
State

ch7-26

D
Q

State

D
Q

D
Q

State State

Three-cell neighbor

. . .

14

Cellular Automata – Name

• Name of CA functions
– Is determined by its truth table

A A A A A A A A Next State K Map FCAState A0 A1 A2 A3 A4 A5 A6 A7

Ci+1

Ci

Ci-1

Next State K-Map FCA

A0 A2

A1 A3 A5

A4 A6

A7

Name Ai
i 

7

2 (defined by Wolfram)

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

ch7-27

i
i0

Example: F C CCA i i 1

Name = 64+32+4+2
= 102

0 1 0 1

(y)

0 1 0 1

CiCi-1

00 01 11 10Ci+1

0
1

Cellular Automata – Hardware

CA with Null Boundary Condition

0

D
Q

Fca

D
Q

Fca

D
Q

Fca

D
Q

Fca

D
Q

Fca

D
Q

Fca

0 0

ch7-28

Q Q Q Q Q Q

Standard – All the CAs are of the same type
Hybrid – The CAs are of different type

15

Cellular Automata – Hardware

CA with cyclic Boundary Condition

Fca Fca Fca Fca Fca Fca

ch7-29

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

Outline

• Basics
T t P tt G ti• Test Pattern Generation
– How to generate patterns on chip using

minimum hardware, while achieving
high fault coverage

• Response Analyzers

ch7-30

• BIST Examples
• Memory BIST

16

On-Chip Pattern Generation

PG Hardware Pattern Generated

• Stored Patterns
• Counter Based
• LFSR Based

C ll l A t t

• Deterministic
• Pseudo-Exhaustive
• Pseudo-Random

P d R d

ch7-31

• Cellular Automata • Pseudo-Random

Pseudo Random Patterns: Random patterns with a specific sequence
defined by a seed

Counter Based Pattern Generation

• Generates regular test sequences
– Such as walking sequence and counting sequence for

memory interconnect testingmemory interconnect testing

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

Walking Sequence
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

Counting Sequencecycle
1
2
3
4
5
6

ch7-32

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 0 1
1 1 0
1 1 1

coupling between interconnects
can be tested by walking sequence

6
7
8

line id 1 2 3 4 5 6 7 8

chip1 chip2

17

On-Chip Exhaustive Testing

• Exhaustive testing
– Apply all possible input combinations to CUD
– A complete functional testing
– 100% coverage on all possible faults

• Limitation
– Only applicable for circuits with medium number of

inputs

ch7-33

6-stage
LFSR

Circuit Under Test
(CUD)

Signature
Analyzer

(SA)

Pseudo Exhaustive Testing (PET)

– Apply all possible input combinations to
 titi d b i itevery partitioned sub-circuits

– 100% fault coverage on single faults and
multiple faults within the sub-circuits

– Test time is determined by the number
of sub-circuits and the number of inputs

ch7-34

to the sub-circuit
– Partitioning is a difficult task

18

Example for Pseudo-Exhaustive
Testing

ch7-35

10 vectors are enough to pseudo-exhaustively test this circuit,
Compared to 26=64 vectors for naive exhaustive testing

LFSR-Based Pattern Generation

– Apply random test sequence generated
b LFSR/CAby LFSR/CA

– Simplest to design and implement
– Lowest in hardware overhead
– Fault coverage

• Is a function of the test length and the

ch7-36

random testability of the circuits
• Certain circuits are more resistant to random

patterns than others

19

Pseudo Random Testing Hardware

Combinational Sequential

LFSR

Combinational
circuit

LFSR

Combinational
circuit

ch7-37

SA SA

(Circular BIST)

BIST – Pseudo Random Testing
Hardware

Shift register
10-stage

LFSR
LFSR

Circuit Under Test
S
R

S
R

S
R

CUT CUT

ch7-38

SA

(CEBT)

SA

(STUMPS)

test-per-clock configuration test-per-scan configuration

20

Weighted Pseudo Random Testing

It was observed that weighted random patterns could
achieve higher fault coverage in most cases !

LFSR
0

123 193 61 114 228 92 25

0

LFSR Based Weighted Cellular Automaton

ch7-39

1/8 3/4 1/2 7/8 1/2 0.8 0.6 0.8 0.4 0.5 0.3 0.3

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Signal of An Arbitrary Weight

• To implement a signal
– with a signal-1 probability (weight) of 5/32

• Procedure
(1) Decompose into a sum of basic weights

5/32 = 4/32 + 1/32 = 1/8 + 1/32

(2) Use AND and OR gates to realize the weight

ch7-40

LF
S

R a signal with a
weight of 5/32

1/8

1/32

z = y1y2y3 + y1y2y3y4y5

y1
y2
y3

y4
y5

21

Outline

• Basics
T t P tt G ti• Test Pattern Generation

• Response Analyzers
– How to compress the output response

without losing too much accuracy

• BIST Examples

ch7-41

p
• Memory BIST

Types of Response Compression

• Ones-counting compression
• Transition-counting compression
• Signature Analysis

ch7-42

22

Ones-Counting Signature

• Procedure
– Apply the predetermined patterns
– Count the number of ones in the output

sequence

Test
Pattern

CUT

R0=00000000
R1=11000000
R2=10000000

ch7-43

Counter
Clock

OC(R0) = 0
OC(R1) = 2
OC(R2) = 1

signature

Zero-Aliasing Test Set for Ones-
Counting

• Notations
– T0: set of test vectors whose fault-free response is 0T0: set of test vectors whose fault free response is 0
– T1: set of test vectors whose fault-free response is 1

• Theorem
– The following new test set does NOT suffer from

fault masking using ones count testing
– T = {T0, (|T0|+1) copies of every pattern in T1}

ch7-44

– Note that the fault masking only occurs when a fault
is detected by the same number of patterns in T0
and T1; the above new test set avoid this condition

23

Transition-Counting Signature

• Procedure
– Apply predetermined patternspp y p p
– Count the number of 01 and 10 transitions

Test
Pattern

CUT

DFF

ch7-45

CounterClock

Transition count

Aliasing of Transition-Counting

• Consider a sub-sequence of bits
(rj 1 rj rj+1 …)(… rj-1 rj rj+1 …)

If rj-1 is not equal to rj+1, then an error occurring at
rj will not be detected by transition counting.

• Example
1. (0, 1, 1)  (0, 0, 1)
2. (0, 0, 1)  (0, 1, 1)

ch7-46

(, ,) (, ,)
3. (1, 1, 0)  (1, 0, 0)
4. (1, 0, 0)  (1, 1, 0)

24

Aliasing of Transition Counting

• Aliasing Probability
– NotationsNotations

• m: the test length
• r: the number of transitions

– Highest when r=m/2
– No aliasing when r=0 or r=m
– For combinational circuits, permutation of the

i t lt i diff t i t

ch7-47

input sequence results in a different signature
– One can reorder the test sequence to minimize

the aliasing probability

Signature Analysis by LFSR

• Procedure
– Apply predetermined patterns
– Divide the output sequence by LFSR

Test
Pattern

CUT LFSR

ch7-48

Pattern

25

Example: Aliasing Probability

• Assume that
– Output number to be compressed has m=4 bitsp p
– The compression is done by dividing output

number by a divisor of 2n-1, (e.g., the divisor is
22-1 = 3 when n=2)

– The remainder is taken as the signature

• Possible signatures

ch7-49

output = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
remainder = 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
aliasing prob. when signature is 0 = (2m/(2n-1)) / 2m

= 1/ (2n-1) ~ 2-n

Multiple Input Shift Register (MISR)
(Temporal Compression)

• A MISR compacts responses from multiple
circuit outputs into a signaturep g

D Q D Q D Q D Q+ + ++

ch7-50

clock

Aliasing probability of m stage = 2-m

26

Outline

• Basics
• Test Pattern Generation
• Response Analyzers
• BIST Examples
• Memory BIST

ch7-51

Key Elements in a BIST Scheme

• Test pattern generator (TPG)
• Output response analyzer (ORA)Output response analyzer (ORA)

– Also called Signature Analyzer (SA)

• The circuit under test (CUT)
• A distribution system (DIST)

– which transmits data from TPG’s to CUT’s and from
CUT’s to ORA’s

ch7-52

– e.g., wires, buses, multiplexers, and scan paths

• A BIST controller
– for controlling the BIST circuitry during self-test
– could be off-chip

27

HP Focus Chip (Stored Pattern)

• Chip Summary
– 450,000 NMOS devices, 300,000 Nodes
– 24MHz clocks, 300K-bit on-chip ROM
– Used in HP9000-500 Computer

• BIST Micro-program
– Use microinstructions dedicated for testing
– 100K-bit BIST micro-program in CPU ROM
– Executes 20 million clock cycles

ch7-53

– Executes 20 million clock cycles
– Greater than 95% stuck-at coverage
– A power-up test used in wafer test, system test,

field test

Logic BIST Example

• Features
– [Bardell 1982, 84]
– Self-Test using LFSR and Parallel MISRg
– Multiple scan chains to reduce test time

...

PIs

ML
F

Scan path

Scan path

ch7-54

...

POs

M
IS

R

F
S

R

Scan path

Scan path

CUT

Seed Signature

28

Scan-Based Logic BIST
Architecture

d d tt t

called STUMPS architecture by Mentor Graphics

pseudo-random pattern generator

ch
ai

n
4

ch
ai

n
2

ch
ai

n
3

ch
ai

n
1

primary
input pins

primary
output pins

ch7-55

multiple input signature register

Built-In Logic Block Observation
(BILBO)

Z1 Z2

...

Zn

B1

c c c

0

1

M
U

X

QD

Q

Q1

D

Q

Q

Q2

...

...

QD

Q

Qn-1

D

Q

Q

Qn

S0

Si

B2

scan-in
Scan-out

ch7-56

B1 B2 operation mode
0 0 shift register
0 1 LFSR pattern generation
1 1 MISR response compressor
1 0 parallel load (normal operation)

c
0
0
0
1

...

29

Example: BILBO-Based BIST

• Test procedure
– each logic block C1, C2, C3 are tested in a serial

manner
– BIST controller needs to configure each BILBO

registers properly during self-testing

C1

BILBO1

BILBO2

when testing C1
BILBO1 is a PRPG
BILBO2 is a MISR

ch7-57

BILBO2

C2

BILBO3

C3

Concurrent BILBO

Logic with self-loop
top-row of D-FFs  MISR

bottom-row of D-FFs  PRPG

BILBO

C1

ch7-58

needs to be
PRPG and MISR
simultaneously

concurrent BILBO

30

Outline

• Basics
• Test Pattern Generation
• Response Analyzers
• BIST Examples
• Memory BIST

ch7-59

The Density Issues

• Historical -Rule
– The number of bits per chip has quadrupled– The number of bits per chip has quadrupled

roughly every 3.1 (or ) years

• Density Induced Faults
– The cells are closer together

– More sensitive to influences of neighbors

ch7-60

o e se s t e to ue ces o e g bo s

– More vulnerable to noise on the address and
data lines

31

Test Time May Get Too Long !

• For today’s memory chips
– Test time becomes a big issue !
– We can afford nothing but linear test algorithm

• Example
– assume that the clock cycle time is 100 ns

n 64n n•log2n 3n3/2 2n2

Testing time (in seconds)Algorithm
complexity

Capacity

ch7-61

16k
64k
256k
1M
4M
16M

0.1
0.4
1.7
6.7

26.8
1.8

0.023
0.1

0.47
2.1
9.2

40.3

0.63
5.03
40.3
5.4
43
5.7

54
14
3.8
61
41
2Mins

Mins

Mins

Hrs

Hrs

Days

Years

Hrs

Mins

IC Failure Rate Versus Time

Def: failure rate
The no. of failures per unit time as a fraction of
total population

IC’s failure rate is like a bathtub curve with three stages:C s a u e ate s e a bat tub cu e t t ee stages
1. Infant mortality stage: typically a few weeks
2. Normal life failure stage: up to 25 years or so
3. Wear-out stage

infant
mortality normal life

failure rate

wear-out
failures

failure
rate


ch7-62

Short period of accelerated stress test prior to shipment
 To eliminate the infant mortality

Time

>>

failure rate

32

Memory Model

address register column decoder refresh logic
address

ro
w

 d
ec

od
er write drive

data register

Memory
Cell

Array
address
decoder data

R/W

ch7-63

data register

sense amplifier

read/write
control circuit

R/W

enable

clk

Memory Array

2L- K B it Line
S torage C ell

P roblem : A SP E C T R A T IO or H E IG H T >> W ID T H

R
ow

 D
ec

od
er

A K

A K + 1

A L -1

W ord L ine

S en se A m p lifiers / Drivers

M .2 K

A m p lify s wing to
r ail- to-rai l am p litu d e

ch7-64

Input-Output
(M bits)

Colu m n Dec ode r
A 0

A K -1

S elect s ap p rop riate
word

33

Fault Models

• Stuck-At Faults (SAF)
– cell, data line, address line, etc.

• Open Faults (SAF)Open Faults (SAF)
– open in data line or in address line

• Transition Faults (TF)
– Cell can be set to 0, but not to 1

• Address Faults (AF)
– faults on decoders

• Coupling Faults (CF)

1 0 1

0 0

1 0 1

cell is affected

ch7-65

• Coupling Faults (CF)
– short or cross-talk between data (or address) lines
– A cell is affected by one of its neighboring cells

• Neighborhood Pattern Sensitive Fault (NPSF)
– A cell is affected by when its neighbors form a pattern

cell is affected

Example Faults
• SAF : Cell stuck
• SAF : Driver stuck
• SAF : Read/write line stuck
• SAF : Chip-select line stuck
• SAF : Data line stuck

Fault Models

• SAF : Data line stuck
• SAF : Open in data line
• CF : Short between data lines
• CF : Cross-talk between data lines
• AF : Address line stuck
• AF : Open in address line
• AF : Open decoder

ch7-66

• AF : Open decoder
• AF : Shorts between address lines
• AF : Wrong access
• AF : Multiple access
• TF : Cell can be set to 0 but not to 1 (or vice-versa)
• NPSF : Pattern sensitive interaction between cells

34

Simple Test Algorithms

• Test Algorithm
– is an abstract description of a sequence of test patterns.

• Commonly Used Algorithms

– Background patterns

– Checkerboard patterns

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

ch7-67

– March Patterns
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

A March Algorithm

(Forward march that changes each cell’s content from 0 to 1)

1 0 0 0
0 0 0 0
0 0 0 0

1 1 0 0
0 0 0 0
0 0 0 0

1 1 1 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

(Backward march that changes each cell’s content from 1 back to 0)

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 1 1 1
1 1 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0

ch7-68

1 1 1 1
1 1 1 1
1 1 1 0

1 1 1 1
1 1 1 1
1 1 0 0

1 1 1 1
1 1 1 1
1 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 0
0 0 0 0

1 1 1 1
1 1 1 1
1 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 0 0
0 0 0 0

1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

35

normal
inputs tester/BIST

BIST Circuit

Example: A Memory BIST

clock
FSM-1

pattern generator

M
U

X
test

patterns
Memory

S C cu

ou
tp

u
t b

u
ff

delay buffer

ch7-69

reset

pass_or_fail

memory
response

fer

comparator

test_done

Finite State Machine for March Alg.

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 11 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

S1
WRITE-0

S5
READ-1

if(a != N) a++; if(a != N) a++;

S4
READ-1

S3
WRITE-1

S2
READ-0

if(a != N) a++;

if(a == N)
a=0;

if(a == N)
a=0;

1 1 1 1

1 1 1 1

1 1 1 1

1 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

ch7-70

START

a = 0;

END

; a 0;

Notations of this extended state transition graph:
a: variable for address
N: number of cells

36

Testing Procedure of BISTed Memory

normal
inputs

tester/
BISTset the test mode to BIST

Start

BIST Memory

M
U

X

test
patterns

clk

reset

apply clocking signals to input pin clk

set input signal reset to 1 for
more than one clock cycles

set input signal reset to 0 to
start the BIST operation

ch7-71

memory
response

pass_or_fail

test_done

wait until the output response
of the output pin test_done is 1

catch the response of output pin pass_or_fail

Done

A Waveform Example

clock

R W R R W R R W R R W R R W R

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

reset

cmd

data

address

ch7-72

pass_or_fail
test_done

37

Quality Measures of BIST

TesterBIST-vs.-Tester
Profile

pass fail

pass

fail

B
I
S
T

Profile

(I) (III)

(II) (IV)誤殺者

漏網之魚

ch7-73

1. False Negative Ratio: (II) / #chips e.g., (1/20) = 5%
2. False Positive Ratio: (III) / #chips e.g., (2/20) = 10%

To minimize region (II) and (III):

1

Chapter 8Chapter 8

Test CompressionTest Compression

Acknowledgements:
M i l b d th l t t f

ch8-1

Mainly based on the lecture notes of
Chapter 6, “VLSI Test Principles and Architectures”

What is this Chapter about?What is this Chapter about?

 Introduce the basic concepts of test data
compression

 Focus on stimulus compression and
response compaction techniques

 Present and discuss commercial tools on
test compression

ch8-2

2

Test CompressionTest Compression

 Introduction

Test Stimulus Compression

Test Response Compaction

 Industry Practices

Concluding Remarks

ch8-3

IntroductionIntroduction

 Why do we need test compression?
 Test data volume

 Test time

 Test pins

 Why can we compress test data?
 Test vectors have a lot of “don’t care” (X’s)

ch8-4

3

70

Tes

Test Test DData ata VVolume olume v.sv.s. . GGate ate CCountount

10

20

30

40

50

60

st D
ata V

o
lu

m
e (G

Test data volume
increases with circuit size

ch8-5

(Source: Blyler, Wireless System Design, 2001)

1 2 4 8 16 32 64
0

10

Gate count (M)

G
b

)

increases with circuit size

Test Compression CategoriesTest Compression Categories

Test Stimulus Compression
 (1) Code-based schemes

 (2) Linear-decompression-based schemes

 (3) Broadcast-scan-based schemes

Test Response Compaction
 Space compaction

ch8-6

p p

 Time compaction

 Mixed time and space compaction

4

Architecture for Test CompressionArchitecture for Test Compression

Core

D
eco

m
p

resso

C
o

m
p

acto
r

Stimulus Response Compacted
Response

Compressed
Stimulus

Low-Cost
ATE

ch8-7
r

Test Stimulus CompressionTest Stimulus Compression

 Code-based schemes
 Dictionary code (fixed-to-fixed)

 Huffman code (fixed-to-variable)

 Run-length code (variable-to-fixed)

 Golomb code (variable-to-variable)

 Linear-decompression-based schemes

ch8-8

 Broadcast-scan-based schemes

5

Dictionary CodeDictionary Code

 Dictionary code (fixed-to-fixed)

ch8-9

A test vector is considered as a two-dimensional image
In multiple scan chains (e.g., n scan chains as shown)

Huffman CodeHuffman Code
 Huffman code (fixed-to-variable)

ch8-10
A test vector is partitioned into a number of 4-bit patterns

Each is code from ATE

6

Huffman Tree Huffman Tree
(More Frequent Symbol, Shorter Code)(More Frequent Symbol, Shorter Code)

 Huffman code (fixed-to-variable)

ch8-11

Bottom-up
construction

RunRun--Length CodeLength Code
 Run-length code (variable-to-fixed)

ch8-12

7

GolombGolomb CodeCode
 Golomb code (variable-to-variable)

ch8-13

Example of Example of GolombGolomb CodeCode

 Golomb code (variable-to-variable)

ch8-14

8

Test Stimulus CompressionTest Stimulus Compression

 Code-based schemes

 Linear-decompression-based schemes

 Broadcast-scan-based schemes

ch8-15

LinearLinear--DecompressionDecompression--Based SchemesBased Schemes
Seed of LFSR: (X1, X2, X3, X4)

Compressed
Test vector

To be applied
From ATE

ch8-16

9

Matrix Form Matrix Form
(Linear(Linear--DecompressionDecompression--Based Schemes)Based Schemes)

Decompressor
Matrix (?)

Compressed Test Vector + Seed (?)

Original
Test

Vector

ch8-17

(Given)

Solving Linear Solving Linear DecompressorDecompressor & Its Seed& Its Seed
(Z is Test Vector)

(Z Vector with only care bits) Pivot elements indicated in circles

ch8-18

10

Hardware for LinearHardware for Linear--DecompressorDecompressor

XOR
Network

XOR Network

ch8-19

MISR

s1 s2 s3

XOR XOR NNetwork: a 3etwork: a 3--toto--5 5 EExamplexample

ch8-20

o1 o2 o3 o4 o5

11

Test Stimulus CompressionTest Stimulus Compression

 Code-based schemes

 Linear-decompression-based schemes

 Broadcast-scan-based schemes

ch8-21

Basic Concept: BroadcastBasic Concept: Broadcast--ScanScan

{SC1, SC2, …, SCk} shares the same test patterns applied by ATE

ch8-22

12

ATPG Supporting BroadcastATPG Supporting Broadcast--ScanScan

 Force ATPG tool to generate patterns for
broadcast scan (by binding certain PI’s together)(y g g)

ch8-23

Reconfigurable Broadcast ScanReconfigurable Broadcast Scan

 Reconfigurable broadcast scan
 Static reconfiguration

– The reconfiguration can only be done when a new
pattern is to be applied

 Dynamic reconfiguration
– The configuration can be changed while scanning in

a pattern

ch8-24

13

BroadcastBroadcast--Scan Based SchemeScan Based Scheme

 First configuration is: 1->{2,3,6}, 2->{7}, 3->{5,8}, 4->{1,4}

 Second configuration is: 1->{1,6}, 2->{2,4}, 3->{3,5,7,8}g , , , , , , ,

ch8-25

First Partition Second Partition

Compatibility Graph Compatibility Graph –– Finding CliquesFinding Cliques

O i i l T t P tt

First Partition Second Partition

Original Test Pattern

1 3

2

Cliques (fully connected sub-graphs):

ch8-26

4

5

6

7

8

Cliques (fully connected sub-graphs):
(1){SC2, SC3, SC6, SC7}  (000X1)
(2){SC5, SC8}  (0X1XX)
(3){SC1, SC4}  (111X0)
 Overall 8 sub-patterns down to 3

14

BroadcastBroadcast--Scan Based SchemeScan Based Scheme

ch8-27

Test Response CompactionTest Response Compaction
(or Called Output Compaction)(or Called Output Compaction)
 Space compaction

 Time compaction

 Mixed time and space compaction

Unlike lossless input stimulus compression,
O t t ti i ft l l di t li i

ch8-28

Output compaction is often lossy, leading to aliasing…

15

Test Response CompactionTest Response Compaction

ch8-29

Space (Output) CompactionSpace (Output) Compaction

 Space (output) compaction
 Zero-aliasing output compaction

 X-compactor

 X-blocking & X-masking techniques

 X-impact-aware ATPG

ch8-30

16

ZeroZero--Aliasing Output CompactionAliasing Output Compaction

 Zero-aliasing linear compaction

ch8-31

Example: Response GraphExample: Response Graph

Faulty response

ch8-32

Fault-free

Fault-freeFaulty response

00

11

01

10

3-colorable

17

Architecture of XArchitecture of X--CompactorCompactor

 X-compactor with 8 inputs and 5 outputs

ch8-33

XX--compact Matrixcompact Matrix

 00111 SC1

Out1 Out2 Out3 Out4 Out5

 SC1 drives {Out1, Out2, Out3}

Matrix Form:























11001

10101

10011

01011

01101

M

SC2

SC3

SC4

SC5

SC6 155881 3

2

1

xxx OutOut

Out

Out

MSC 














ch8-34










 11100

11010

11001

SC7

SC8

 87654321 SCSCSCSCSCSCSCSCSC 

5

4

Out

Out











18

XX--Blocking or Masking TechniquesBlocking or Masking Techniques

 X-blocking (or X-bounding, X-avoiding)
 X’s can be blocked before reaching the response

compactor

 To ensure that no X’s will be observed

 May still have fault coverage loss

 Add area overhead and may impact delay

ch8-35

XX--Blocking by SelectionBlocking by Selection

 Illustration of the X-blocking scheme

ch8-36

(This is a bit stream provided by ATE)
Final Output

To ATE

19

XX--Masking by Masking LogicMasking by Masking Logic
‘X’

‘1’

Final Output
To ATE

ch8-37

When there is an X in a scan chain output,
a controlling value , i.e., ‘1’ in this example, is issued to mask it out

Could be on-chip LFSR

XX--Tolerance by Tolerance by
CounterCounter--Based Output SelectionBased Output Selection

XX

ch8-38

Dynamic path means counter operation can be changed at any scan cycle

{0, +1, -1, +2, -2, etc.)

20

XX--ImpactImpact--Aware ATPGAware ATPG

 Concept
 Simply use ATPG to algorithmically handle the

impact of residual X’s on the space compactor

 Without adding any extra circuitry

ch8-39

Example: Handling X in ATPGExample: Handling X in ATPG
Path (G5G6SC4G8q) might be contaminated by ‘X’ at f
(1) Propagate the fault effect through (f1G3G2SC2G7p)  b=0, c=1
(2) Kill the X by assigning g to ‘1’  SC4=0  q is observable() y g g g q

ch8-40

21

OutputOutput--CompactorCompactor--Aware ATPGAware ATPG
 f2/1 fault could be masked as propagated to p

 Block aliasing by assigning a to ‘0’

ch8-41

Time CompactionTime Compaction

 Time compaction
 A time compactor uses sequential logic to

compact test responses

 MISR is most widely adopted

 n-stage MISR can be described by specifying a
characteristic polynomial of degree n

ch8-42

22

MultipleMultiple--Input Signature Register Input Signature Register

ch8-43

Mixed Time & Space CompactionMixed Time & Space Compaction

 Mixed time and space compaction

ch8-44

23

Industry PracticesIndustry Practices

 OPMISR+

E b dd d D t i i ti T t Embedded Deterministic Test

 Virtual Scan and UltraScan

 Adaptive Scan

 ETCompression

ch8-45

Industry Solutions CategoriesIndustry Solutions Categories

 Linear-decompression-based schemes
 Two steps

– ETCompression, LogicVision

– TestKompress, Mentor Graphics

– SOCBIST, Synopsys

 Broadcast-scan-based schemes
 Single step

– SPMISR+ Cadence

ch8-46

– SPMISR+, Cadence

– VirtualScan and UltraScan, SynTest

– DFT MAX, Synopsys

24

General General SScan can AArchitecture for OPMISR+ rchitecture for OPMISR+

ch8-47

EDT (EDT (TestKompressionTestKompression)) AArchitecturerchitecture

ch8-48

25

 Test compression is
 An effective method for reducing test data volume

Concluding RemarksConcluding Remarks

 An effective method for reducing test data volume
and test application time with relatively small cost

 An effective test structure for embedded hard cores

 Easy to implement and capable of producing high-
quality tests

 Successful as part of standard design flow

ch8-49

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 9
Boundary Scan

Objectives

• Standards for board level testing
• Used for

– Chips
– Chip interconnections
– Modules
– Modules interconnections
– Subsystems

53 ICs + 40 discrete devices

Through-hole
mounting

Surface
mount

ch9-2

– Systems
– Multi-chip modules

• Die-to-board integration

2

Board Testing Setup

ch9-3

TDI: Test Data In
TDO: Test Data Out
TMS: Test Mode Selection
TCK: Test Clock
TRST*: Test Reset

A Printed Circuit Board with
Boundary Scan

Boundary scan use 4 or 5 wire bus to provide accessibility to the
I/O pins of selected on-board IC  thereby facilitating board-level testing

TDI

ch9-4

TDO

3

History

• 1985
– Joint European Test Action Group (JETAG, Philips)

• 1986
– VHSIC Element-Test & Maintenance (ETM) bus standard (IBM et al.)

– VHSIC Test & Maintenance TM Bus Structure (IBM et al.)

• 1988
– Joint Test Action Group (JTAG) proposed Boundary Scan Standard

• 1990
– Boundary Scan approved as IEEE Std. 1149.1-1990

– Boundary Scan Description Language (BSDL) proposed by HP

ch9-5

Boundary Scan Description Language (BSDL) proposed by HP

• 1993
– 1149.1a –1993 approved to replace 1149.1-1990

• 1994
– 1149.1b BSDL approved

• 1995
– 1149.5 approved

Overview of P1149 Family

Testing of digital chips and
Interconnections between

Number Title Status

1149.1 Std. 1149.1-1990
Std. 1149.1a-1993

Chips

Extended Digital Serial
Interface

Direct Access Testability
Interface

Mixed Signal Test Bus

1149.2

1149.3

1149 4

Std. 1149.1b-1994 (BSDL)

Near Completion

Discontinue

Started Nov 1991

ch9-6

Mixed-Signal Test Bus

Standard Module Test and
Maintenance (MTM) Bus
Protocol

Unification

1149.4

1149.5

1149

Started Nov. 1991

Std. 1149.5-1995

Not yet started

4

Basic Chip Architecture of 1149.1

Boundary
Scan Cell

Boundary
Scan path

Internal
Logic

Sin Sout

I/O Pins I/O Pins

ch9-7

Miscellaneous registers

Instruction register

Bypass register

TAP controller

M
U
X

TDI

TRST*

TMS
TCK

TDO

Boundary Scan Circuitry in a Chip

Design Spec Reg

Test Data Registers
TDI: Test Data In
TDO: Test Data Out
TMS: Test Mode Selection
TCK: Test Clock Design-Spec. Reg.

Device-ID Reg.

Boundary Scan Reg.

Bypass Reg. (1 bit)

M
U
X

M
U
X

T
A
P

TDO
TDI

TRST*

ClockDR
ShiftDR

UpdateDR
Reset

1D

C1 EN

select3

TCK: Test Clock
TRST*: Test Reset

ch9-8

Instruction Register

TAP
Controller

S
TMS
TCK

p

ClockIR
ShiftIR

UpdateIR

IR decode TCK

Enable
3

5

Hardware Components of 1149.1

• TAP (Test Access Port)
– TMS, TCK, TDI, TDO, TRST* (optional)

• TAP Controller
– A finite state machine with 16 states
– Input: TCK, TMS
– Output: 9 or 10 signals including ClockDR, UpdateDR,

shiftDR, ClockIR, UpdateIR, ShiftIR, Select, Enable, TCK,
and the optional TRST*

• IR (Instruction Register)

ch9-9

• IR (Instruction Register)
• TDR (Test Data Register)

– Mandatory: boundary scan register and bypass register
– Optional: device-ID register, design-specific registers,

etc.

Bus Protocol

Serially send instruction over

IR Configuration Scan-In Launch Capture Scan-Out

y
TDI into instruction register

Test circuitry is configured
To respond to instruction
(Scan in data through TDI)

ch9-10

Execute test instruction

Shift out test results through TDO
New test data on TDI can be shifted in simultaneously

6

A Typical Boundary Scan Cell

MUX
0

1

IN
OUT

SOUT

MUX
0

1 1D Q

QA

1D Q

QB

1

SIN ShiftDR

ClockDR UpdateDR

Mode_Control

ch9-11

• Operation Modes
– Normal: Mode_control=0; INOUT
– Scan: ShiftDR=1, ClockDR; TDI…SINSOUT…TDO
– Capture: ShiftDR=0, ClockDR; INQA, OUT driven by IN or QB

– Update: Mode_Control=1, UpdateDR; QBOUT投

捕

State Diagram of TAP Controller

S l t IR SS l t DR S

Test-Logic-
Reset

Control of data registers Control of instr. registers

1
1 1

1
0

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Select-DR-Scan

Capture-DR

Exit1-DR

Shift-DR

Run-Test / Idle

1

1

1

0 0

1

0

0

0

1

0

0

0

1

0

1

ch9-12

Pause-IR

Exit2-IR

Update-IR

Pause-DR

Exit2-DR

Update-DR

0 00 0

1

1

1

1

0
1 1 0

7

States of TAP Controller

– Test-Logic-Reset: normal mode

– Run-Test/Idle: wait for internal test such as BIST

– Select-DR-Scan: initiate a data-scan sequence

– Capture-DR: load test data in parallel

– Shift-DR: load test data in series

– Exit1-DR: Finish phase-1 shifting of data

– Pause-DR: Temporarily hold the scan operation

ch9-13

(allow the bus master to reload data)

– Exit2-DR: finish phase-2 shifting of data

– Update-DR: parallel load from associated shift registers

Instruction Set

• EXTEST
– Test Interconnection between chips and board

• SAMPLE/PRELOAD
– Sample and shift out data or shift data only

• BYPASS
– Bypass data through a chip

ch9-14

• Optional
– Intest, RunBist, CLAMP, Idcode, usercode, High-Z,

etc.

8

EXTEST

0Internal
Logic

Internal
Logic

Chip1 Chip2

1. Shift-DR
(chip 1)

TDI

TAP Controller

g

Registers

TAP Controller

Registers

0Internal
Logic

Registers

0 Internal
Logic

Registers

TDI

TDI

TDITDO

TDO
TDO

(chip 1)

2. Update-DR
(chip 1)

3. Capture-DR
(chip 2)

ch9-15

TDI

TAP Controller

g

TAP Controller

TAP Controller

Internal
Logic

Registers

TAP Controller

0 Internal
Logic

RegistersTDITDO

TDO

4. Shift-DR
(chip 2)

EXTEST

TDO

Output
M
U
XQBQA

M
U
X

Internal
Logic

TDI

Input

QA QB

1. Shift-DR
(Chip1)

TDO

TDI
TDO

M
U
X

M
U
X

Internal
Logic

Input

2. Update-DR
(Chip1)

Output to
Chip2

QAQA QBQB

M
U
X

M
U
X

Internal
Logic

Input from
Chip1

3. Capture-DR
(C)

Output

QAQA QBQB

ch9-16

TDI
TDO

X X(Chip2) QAQA QBQB

Output
M
U
XQBQA

M
U
X

Internal
Logic

TDI

Input
4. Shift-DR

(Chip2)
QA QB

TDO

9

SAMPLE/PRELOAD

OutputM
U
X

M
U

Internal
Logic

Input

SAMPLE
X

QBQA

U
X

TDI TDO

M
U
X

M
U
X

Internal
Logic

Input

PRELOAD Output

QA

QA
QA

QB

QB
QB

ch9-17

TDI TDO

Sample/Preload is one instruction that allows
1. Sample and shift (out) or
2. Shift (in) only

BYPASS

Internal
Logic

ch9-18

TAP Controller

Bypass
Register

(1 bit)
TDI TDO

10

INTEST

0

Internal
Logic

1 Shift-DR
0

Internal
Logic2.Update-DR

TAP Controller

RegistersTDI TDO

1.Shift-DR

TAP Controller

RegistersTDI
TDO

2.Update DR

ch9-19
TAP Controller

0Internal
Logic

Registers
TDI TDO

3.Capture-DR

TDO

TAP Controller

0Internal
Logic

RegistersTDI

4. Shift-DR

INTEST

TDO

Output
M
U
XQBQA

M
U
X

Internal
Logic

TDI

Input

QA QB
1. Shift-DR

TDO

TDI
TDO

M
U
X

M
U
X

Internal
Logic

Input

2. Update-DR
Output

QAQA QBQB

M
U
X

M
U

Internal
Logic

Input

3 Capture DR
Output

QA QB

ch9-20

TDI
TDO

X X3. Capture-DR QAQA QBQB

OutputM
U
XQBQA

M
U
X

Internal
Logic

TDI

Input

4. Shift-DR
QA QB

TDO

11

A Printed Circuit Board With 1149.1

Chip1 Chip2

(Ring configuration, test controller on board)

TAP Controller

Internal
Logic

Internal
Logic

TDI

M
U
X

M
U
X

Registers Registers

M
U
X

Registers

TAP Controller

TAP Controller

ch9-21

Chip3

TDO

TMS

TCK

MASTER
Controller Internal

Logic

Test Bus Configuration

#1

Application chips

TDI

TCK
TMS

#1
Bus

Application chips

TDI

TCK
TMS

TDO

TD0

TDI

TMS

TCK

#2

Bus
master

TDO

TDI

TCK

TMS
TDO

TDI

TD0
TDI

TMS1
TMS2

TMSN

TCK

#2

Bus
master

TDO

TDI

TCK

TMS

TDO

ch9-22

Ring configuration

#N

TDI

TCK
TMS

TDO
#N

TDI

TCK

TMS

TDO

Star configuration

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 10
High-Speed Interconnect Testing

Outline

 Introduction
 Problem Objective Review and Motivation Problem, Objective, Review, and Motivation

 Pulse-Vanishing Test (PV-Test)

 VOT-Based Oscillation Test

2

2

Testing Interconnects in 3D IC

Problem Addressed:
To develop a low-cost method to test the delay fault

i t d ith th TSV (Th h Sili Vi)

TSV

TSV

TSV

DIE1 DIE2

associated with the TSV (Through Silicon Via)

3

TSV

3D-IC using TSVs

TSV

Delay fault

SEM Photos of TSV Defects
(0.18um Through Silicon Stacking at ITRI)

TSV Void Misaligned micro-bump

A partially faulty TSV may not operate as fast as we expect
(and it could deteriorate over time…)

Missing bump Structural damage

26.3µm
61.4µm

51.7µm

4

Missing bump Structural damage

3

Testing Interconnects in 2.5-D IC

 For each die, interposer wires are like Pseudo-IOs
 Boundary scan cells needed for (1) Die Test, and (2) Interconnect Test

Die #1

interposer

Die
#2

Die
#3

Die
#4

TSV TSV

: Boundary scan cell

TAP TAP TAP

TAP

TAP

: IEEE-1149 TAP controller

5

TDI TDOControls

Controls: Boundary Scan Control Signals {TCK, TRST, TMS}

Parametric Faults in
High-Speed Die-to-Die Interposer Wires

(1) Resistive Open Fault in an interposer wire
(2) Resistive Bridging Fault between two interposer wires

1

2

Die #1 Die #2 Die #3 Die #4

Inter
-poser

Micro-bump

1 2

6

C4 bumps for connecting to package substrate

4

Objective and Challenge

Objective: To detect parametric faults (e.g., <1ns delay fault)
May need to maintain a pitcher-catcher timing relationship across dies

(This type of cross-die clock synchronization may not be easy)
 There are so other choices There are so other choices…

Pitching
die

Catching
die

w
ra

p
p

er

w
ra

p
p

er

TCK1 TCK2

TCK1

×

7

TCK1

TCK2

delay threshold (e.g., 1ns)

Note: test clocks TCK1 and TCK2 are low-speed test clocks (e.g., 10MHz)

Outline

 Introduction

 Pulse-Vanishing Test (PV-Test) Pulse-Vanishing Test (PV-Test)
- At-speed testing for high-speed interconnects

 VOT-Based Oscillation Test

8

5

Electrical Model of an Interposer Wire

An interposer wire is decomposed into multiple segments of r and c

rmb is the resistance of the micro-bump

ReceiverDriver

A

rmb rmb

c c c c c c c c c c

r r r r r r r r r r

WO

mb is t e esista ce of t e ic o bu p

9

‘IW-delay’: interposer wire delay from A to WO

Resistive Open Fault Model

Driver
rmb rmbr r r r r r r r r r

Rwire = N · r

(a) Fault-free model of an interconnect.

c c c c c c c c c c

r r

Excessively large resistance Ropen

Driver

A WO B

10

(b) Faulty model of an interconnect with a resistive open fault.

rmb rmb

c c c c c c c c c c

r r r r r r r r r

A WO B

6

Resistive Bridging Fault Model

11

Pulse-Vanishing Test (PV-Test)

Pulse-Vanishing Test:
(1) Test Stimulus: A short-duration pulse (0-1-0)
(2) Fault Detection Criterion:

If the pulse vanishes at the receiver’s output, then there is a delay fault

Driver
BA

Receiver
fault-free interposer wire

p p y

Threshold

WO

at-speed clock cycle time (e.g., 1ns)

12

Driver
A WO

Receiver
faulty interposer wire
(with high resistance)

‘0’
B

Threshold

7

Primitive DfT Circuit
(for Pulse-Vanishing Test)

Driver Interposer Wire (IW)
under testA0

functional
input

TM

BWO
Receiver

LAUNCH
CELL

CAPTURE
CELL

1ns

A

(‘0’ initially)

FF
D Q 1

p

R

SE

FF

D Q‘1’

(‘0’ initially)

BWO

Threshold

‘1’

13

A two-pulse signal (shared by all IWs)

At-speed clock cycle time (e.g., 1ns) PV-test
controller

Vanishing Pulse Width
(for 1000 m Long Interposer Wire)

Def: Vanishing Pulse-Width (VPW)
The pulse-width of the applied test pulse above which
the pulse will vanish at the receiver

0.9

1.1

1.3

1.5

1.7

1.9

2.1

n
is

h
in

g-
P

ul
se

 W
id

th

(n
s)

14

0.5

0.7

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

V
an

Interposer wire delay (ns)

fault-free

Comment: A larger test pulse width implies larger delay test threshold

8

Boundary-Scan Compatible Launch Cell

When ‘PVT_fire’ is ‘1’:
(1) 2nd FF behaves like a toggle-type FF
(2) Two-Pulse signal ‘TP’ is applied to the clock port of 2nd FF

0

1

FF

D
Q

FF

D Q
0

1

In
(from core)

SI

1

0

Out
(to IW)

SO TM

1

Q1

Q2

15

Shift_DR

Update_DR1

Clock_DR

PVT_fire
1

0

PVT_fire
TP

Note: Q2 needs to be initialized to ‘0’ before a test session

Boundary-Scan Compatible Capture Cell

When ‘PVT_fire’ is ‘1’:
(1) 1st FF is set to ‘1’ if receiving a clock pulse, otherwise stays ‘0’
(2) Input signal ‘IN’ is applied to the clock port of 1st FF

0

1

FF

D
Q

FF

D Q
0

1

In
(from IW)

SI

Shif DR

Out
(to core)

SO TM

1

1

0

‘1’

In

PVT_fire
Q1

Q2‘0’’1’

16

Shift_DR

Update_D
R2Clock_DR

0

PVT_fire

Note: Q1 needs to be initialized to ‘0’ before a test session
The final test result is stored at Q1

9

Built-In Self-Test Architecture

P

er

: launch cell : capture cell
Interposer

WiresP
V

 T
est W

rap
p

er P
V

 T
es

t
W

ra
p

pe

Die 1
(Master)

Die 2
(Slave)

Test
Scheduler

TDI

17

Tester

{TCK,
Start_BIST} pass/fail {TCK, TRST, TMS}

TDOTDI

PV-test
Controller

PV-Test Procedure
(Scan-In, Init, Pulse, Scan-Out)

Time
Scan Scan Scan Init Scan Scan Scan ScanPulseScan

Scan-Out Results
from Q1 of each capture cell

‘Init’: Update the value of Q1 to Q2 in every launch cell
‘Pulse’: Perform pulse-launch and pulse-capture in the same test clock cycle

Scan-In all-’0’ pattern
to Q1 of every launch cell

Initialize
Launch cells

Pulse
Cycle

18

10

Simulation Waveforms of a PV-Test

Scan-In Init Pulse Scan-Out

TCLK

States Scan In Init Pulse Scan Out

Inadequate pulse at
2nd capture cell

States

PVT_fire

Test_Pulse

Out_IW1

Out_IW2

Out IW3

All launch cells fire

19

Failing bit

Out_IW3

Out_IW4

Pass/Fail

Test Result: Interposer wire IW2 is faulty!

Test Time

A PV-test session using 10MHz test clock is about
0 82 ms for 1024 interposer wires0.82 ms for 1024 interposer wires
26.21 ms for 32K (32,768) interposer wires

20

11

Area Overhead

Area overhead

Type Cell Name Layout Area (m*m)

Estimation is based on a 90nm CMOS process

yp y ( )

Basic
Cells

INVERTER 2.82

2-input NAND Cell 2.94

MUX Cell 8.47

FF Cell 17.64

B i

Boundary Scan Cell 52.22

Launch Cell 92 56

21

Basic
Macros

Launch Cell 92.56

Capture Cell 69.16

PV-test controller 670.3

Overhead
Percentage
Over 1149.1

55.55% for 1024 interposer wires

54.9% for 32,768 interposer wires

Summary of PV-Test

The interposer needs to be tested alone and thoroughly.
And also, when a 2.5-D IC fails,

We know if the interposer should be responsible

 Advantages of Pulse-Vanishing Test
- Simple fault detection scheme (No post-processing)

- Delay Test without die-to-die high-speed clock synchronization

- Boundary-Scan-Like Test Architecture (55.55% overhead)

We know if the interposer should be responsible.

22

- On-the-spot Diagnosis (good for future self-repair)

12

Outline

 Introduction

 Pulse-Vanishing Test (PV-Test) Pulse-Vanishing Test (PV-Test)

 VOT-Based Oscillation Test
- Characterization-based parametric fault testing

23

Concept 1:
It’s a matter of transition time measurement!

A TSV with delay fault  Longer Rise/Fall Time

Normal TSV
 Sh t i ti

TSV1

Observation point

24

 Shorter rise time

Resistive TSV
 Longer rise time

To be measured…

13

Concept 2: Use Schmitt-Trigger Inverter
- Hysteresis proportional to the input Transition time

V

Schematic

Smaller hysteresis

Vout (v)

1.8

VoutVin

VDD
Larger hysteresis

25

VTH(1-0) =1.27(v)VTH(0-1) =0.54(v)

Vin(v)
1.8

VDD

Architecture of VOT Scheme (Per TSV Pair)
(VOT: Variable Output Threshold)

Use Variable-Threshold Output Inverter for each TSV:
(1) Control signal Z = 0  Normal Inverter
(2) Control signal Z = 1  Schmitt-Trigger Inverter (WITH HYSTERESIS)

Z1

TSV1

Die1 Die2

OR_enable2

26

TSV2

OR_enable1 Z2

14

Brief Summary of our Idea

TSV Delay  Transition Time

Transition Time  Oscillation Period Change

(Easily Measurable)

(from normal to Schmitt-Trigger)

27

Schematic of a VOT Inverter

(c) ST inverter (Z=1) (b) normal inverter (Z=0) (a) overall schematic
VDDVDDVDD

Z

Vin VoutVin

VDD

VoutVin
Vout

VDD

28

Z

15

Three Oscillation Periods in VOT-Analysis

(1) Normal mode:

Oscillation period=T

(2) TSV1-in-ST mode

Oscillation period=TREF

Oscillation period=TST1

TSV1 delay ~ T1 (TST1 – TREF)

29

(3) TSV2-in-ST mode

Oscillation period=TST2

TSV1 delay T1 (TST1 TREF)

TSV2 delay ~ T2 (TST1 – TREF)

Example: Predict the Delay of Each TSV

RTSV1=10 (Ω) CTSV1=400 (fF) RTSV2 =1 (kΩ) CTSV2=800 (fF)

endpoint of TSV1
Smaller

Waveforms under the normal configuration TREF = 4.42 ns

endpoint of TSV2

endpoint of TSV1

Larger
Transition times

Transition times

Waveforms under the Schmitt-Trigger configuration

TST1 = 5.05 ns

T 6 49d i t f TSV2

endpoint of TSV1

30

Normal Configuration: TREF = 4.42 ns
TSV1-in-ST Configuration: TST1 = 5.05 ns (smaller increase from TREF)
TSV2-in-ST Configuration: TST2 = 6.49 ns (larger increase from TREF)

∆TST1 = 5.05 – 4.42 = 0.63 ns
∆TST2 = 6.49 – 4.42 = 2.07 ns

TST2 = 6.49 nsendpoint of TSV2

16

Ex: Correlation between TSV Delay and T

 Fault Population: Resistive Open Faults
 An outlier in measurable T is an outlier in TSV delay

T = TST  TREF

T

F lt

31

Fault
Free

RO, MUX Tree, and Measurement Circuits

32

17

Ring Oscillator (RO)
(for One Pair of Interposer Wires)

Two extra Control Signals (to support bridging fault detection):
(1) ‘Osc_en’: enabling signal for oscillation
(2) ‘Tri en’: tri-state enabling signal for the driver of IW2

IW1

Interposer

Die 1 Die 2

Test_Mode ‘1’ ‘Z1’

functional
input

output

Observ.
point

(2) Tri_en : tri state enabling signal for the driver of IW2

33

IW2

‘Z2’‘Osc_en’ Test_Mode

functional
input

‘Tri_en’output

Three Test Strategies

Principles:
(1) All ROs oscillate concurrently to detect “resistive open faults”
(2) One RO oscillates at a time to detect “inter-RO resistive bridging faults”
(3) No RO oscillates to detect “intra-RO resistive bridging faults”

Test Strategy RO Settings Test Actions

AO-strategy
(All Oscillation)

Every RO is Active

Measure
{TREF ,TST1 ,TST2}

of every RO in
sequence

Target RO is Active
Measure

{T T T }

Test
OPEN

Test

34

OO-strategy
(One Oscillation)

g
(One RO at a time)

{TREF,TST1 ,TST2}
of the target RO

The others are
Grounded

NA

NO-strategy
(No Oscillation)

Every RO is Half-
Floating

Measure {TREF }
of every RO

Inter-RO
BRIDGING

Test
Intro-RO

BRIDGING

18

AO-strategy (All-Oscillation)
(to detect an open fault)

Interposer

Test_Mode ‘1’ ‘Z1’

Die 1 Die 2Active RO

slow IW

35

‘Z2’‘Osc_en’ = ‘1’ ‘Tri_en’ = ‘1’ Test_Mode

An open fault occurring to an interposer wire.

‘1’ ‘Z1’
Interposer

OO-strategy (One-Oscillation)
(to detect an inter-RO bridging fault)

An inter-RO bridging fault will slow down the speed over a victim IW.

Test_Mode ‘1’ ‘Z1’Die 1 Die 2

‘Z2’ Test_Mode

Active RO

‘Osc_en’ = ‘1’ ‘Tri_en’ = ‘1’

victim IW

36‘Z2’‘Osc_en’ = ‘0’ ‘Tri_en’ = ‘1’

‘0’

‘0’

aggressor IW

Grounded RO

19

NO-strategy (No-Oscillation)
(to detect an intro-RO bridging faults)

The existence of an intro-RO bridging fault will
cause a half-floating RO to oscillate abnormally.

Interposer

Die 1 Die 2

Test_Mode ‘1’ ‘Z1’

FloatingOscillation

37

‘Z2’ Test_Mode‘Osc_en’ = ‘1’ ‘Tri_en’ = ‘0’
Half-Floating RO

Waveform of ‘End Point’ and ‘Observation point’ in NO-strategy

100ns 200ns

Test Mode

100ns 200ns
1V

0V
1V

1V

0V

1Vu
lt

1 kΩ

100 kΩ

500 kΩ

ra
 B

ri
dg

e
F

au
lt

R
es

is
ta

n
ce

0.5v

1V

0V
1V

0V
1V

1V

0V

1V

0V

1V

tr
a-

B
ri

d
g

in
g

 F
au

Fault is Detected!

38

200ns100ns 200ns

1 MΩ

In
tr

End point
100ns

Observation point

0.4v
0V
1V

0V

0V

1V

0V

W
ea

ke
r

In
t

Fault is not Undetected!

20

Example for an Inter-Bridging Fault

Consistent slower rise time

39

Example for an Inter-Bridging Fault

30

40

50

u
rr
e
n
ce
s AO‐strategy

0

10

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95N
o
. o

f
o
cc
u

Normalized Tdriff (%)

40

50

e
n
ce
s

1000um IW
1K Open Fault

5K Inter Bridging Fault
Resistance at mid‐point

OO‐strategy

40

0

10

20

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95N
o
. o

f
o
cc
u
rr
e

Normalized Tdriff (%)

at micro bumpof 500um and 1000um IWs

21

Fault Type Classification

41

Normalized Tdrift for Outlier Analysis

For each IW wi, we have two versions of T:

)()()(__ isimREFisimSTisim wTwTwT 

Tdrift(wi) respresents the drifting amount of a measurement
version of T away from its simulation version:

)()()(isimimeasureidrift wTwTwT 

)()()(__ imeasureREFimeasureSTimeasure wTwTwT 

42

To take into account of the wire-length diversity, we further
normalize it:

%100)_(












sim

simmeasure
drift T

TT
TNormalized

22

Testing and Characterization Flow

43* IW : Interposer Wire

Fault Detection
(Finding Outliers in Normalized Tdrift)

30
40
50

ur
re

nc
es Population: 1000 interposer wires of various wire

lengths in [100 m, 1000 m] ,
among which three are faulty.

0

10
20

0 0.05 0.1 0.15 0.2 0.25

N
o.

 o
f

oc
cu

Tdrift (ns)

40
50

en
ce

s

100um IW
1K Delay Fault

550um IW
1K Delay Fault

1000um IW
1K Delay Fault

44

0
10
20
30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

N
o.

 o
f

oc
cu

rr
e

Normalized Tdrift (%)

1K Delay Fault
at micro bump

1K Delay Fault
at micro bump

1K Delay Fault
at micro bump

23

Fault Detection Capability
(For Resistive Open Faults)

MDRopen: Minimum Detectable Open Fault Resistance
This metric refers to the open fault resistance value beyond which
h d h d d h f l f ll b d

245 

the proposed test method can detect the fault successfully based
on the outlier analysis using 3 rule.

Detectable Extra-RC: (MDRopen) * (Cdownstream)

R iD i

MDRopen

50.7 ps

45

ReceiverDriver

A Y

rmb rmb

c c c c c c c c c c

r r r r r r r r r

WO

Cdownstream

Resistive Open Fault Detection Capability

A resistive open fault occurring at the micro-bump of the
driver side of a 1000um long interposer wire.

Pseudo
Chip Conditions

MDRopen
(Min. Detectable Open

Fault Resistance)

Detectable
Extra‐RC

#1 (FF & ‐10% RC) 245 50.7 ps

#2 (FF) 76 17.5 ps

#3 (SS) 113 26.0 ps

(& %)

46

#4 (SS & +10% RC) 78 19.7 ps

Average 145 31.4 ps

24

Process Drift from Simulation Model

40

45

50

SS-corner

FF-corner

10

15

20

25

30

35

of

 o
cc

u
rr

en
ce

s

SS-corner &
+ 10% {RIW & CIW}

FF-corner &
- 10% {RIW & CIW}

S
im

u
latio

n
 M

o
d

e

47

0

5

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40

Normalized T drift (%)

l

Fault-Free IW-Delays vs. T
for Various Pseudo Chip Conditions

0 5

Implication: Regression mode derived by TT corner
Is applicable under process variations.

0.2

0.3

0.4

0.5

IW
‐D
e
la
y
(n
s)

╳ SS‐corner & +10% {RIW , CIW}
▲ SS‐corner
▓ TT corner

Average Error: 7.9 ps
Maximum Error: 30.9 ps

48

0

0.1

0 0.1 0.2 0.3 0.4

I

T (ns)

▓ TT‐corner
◆ FF‐corner
┼ FF‐corner & ‐10% {RIW , CIW}

25

Summary of VOT-Based Oscillation Test

The interposer needs to be tested alone and thoroughly.
And also, when a 2.5-D IC fails,

We know if the interposer should be responsibleWe know if the interposer should be responsible.

~55%
Over boundary

Layout of an ROTest Time

11 ms for 1024 wires
413 ms for 32K wires

49

Over boundary
scan testUsing 10MHz TCLK

Conclusion

Criterion PV-test VOT-based oscillation test

Basic Concept Check if pulse will vanish Measure T

Fault Detection
Scheme

Test threshold based Outlier analysis

Area overhead 55.5% over IEEE-1149.1 55.7% over IEEE-1149.1

Test time
0.82 ms for 1024 wires
26.21 ms for 32K wires

4.7 ms for 1024 wires
177 ms for 32K wires

Other benefits
No post-processing

On-the-spot diagnosis
Delay characterization

P ki

50

Outlier analysis: A measurement sample that significantly deviates away from
the entire population indicates a fault

Other benefits On the spot diagnosis
Easier self-repair

Process tracking

1

EE-6250

國立清華大學電機系

超大型積體電路測試
VLSI Testing

Chapter 11
Logic Diagnosis

OutlineOutline

 Introduction

Combinational Logic Diagnosis

Scan Chain Diagnosis

Logic BIST Diagnosis

Conclusion

Ch11-2

2

What would you do when chips fail?What would you do when chips fail?

 Is it due to design bugs?
 If most chip fails with the same syndrome when

running an application

I i d i i ld l ? Is it due to parametric yield loss?
 Timing-related failure?

– Insufficient silicon speed?

 Noise-induced failure?
– supply noise, cross-talk, leakage, etc.?

 Lack of manufacturability?

Ch11-3

– inappropriate layout?

 Is it due to random defects?
 Via misalignment, Via/Contact void, Mouse bite,
 Unintentional short/open wires, etc.

Problem: Fault DiagnosisProblem: Fault Diagnosis

Circuit
Under

Diagnosis

expected response

This chapter focuses more on diagnosis of defects or faults, not design bugs

Diagnosis
(CUD)test patterns

=

faulty response

not equal !

Ch11-4

Question: Where are the fault locations ?

a chip with defects inside

3

Diagnosis For Yield ImprovementDiagnosis For Yield Improvement

Golden
Reference

Model Physical Failure Analysis

Logic Diagnosis
Defect Mechanisms

Scanning Electronic Microscope (SEM)
Focused Ion Beam (FOB)

Via void
Mouse bite, etc.

Ch11-5

A Set Of
Potential

Defect Locations

Tune the Manufacturing
Process or Design

for Yield Improvement

Quality Metrics of DiagnosisQuality Metrics of Diagnosis
 Success rate

 The percentage of hitting at least one defect in the physical failure
analysis

 This is the ultimate goal of failure analysis

Di ti l ti Diagnostic resolution
 Total number of fault candidates reported by a tool

 The perfect diagnostic resolution is 1

 Though perfect resolution does not necessarily imply high hit rate

 First-hit index
 Used for a tool that reports a ranked list of candidates

 Refers to the index of the first candidate in the ranked list that turns
t t b t d f t it

Ch11-6

out to be a true defect site

 Smaller first-hit index indicates higher accuracy

 Top-10 hit
 Used when there are multiple defects in the failing chip

 The number of true defects in the top 10 candidates

4

ChallengeChallenge

Do whatever you want,
but give me that damnbut give me that damn
bug(s) in less than 5

candidates.

Ch11-7

failure analysis people
under time-to-market pressure

Supporting CircuitrySupporting Circuitry
Supporting Circuitry:

Makes Logic’s inputs controllable and outputs observable

memory

Scan out

M
U

X

ff

op_mode

Logic

Logic
Test input

ff ff

shift
register

Ch11-8

Scan out

LogicLogic

register

5

Design For DiagnosisDesign For Diagnosis

Complexity
Of

Di i

Original
Design

Diagnosis

Separated
Logic &
Memory

interface circuitry

Logic Design

Scan-chain

Ch11-9

More Supporting Circuitry

With Full-Scan

Possible Assumptions Used in DiagnosisPossible Assumptions Used in Diagnosis

 Stuck-At Fault Model Assumption

 The defect behaves like a stuck-at fault

 Single Fault Assumption

 Only one fault affecting any faulty output

 Logical Fault Assumption

 A fault manifests itself as a logical error

 Full-Scan Assumption
 The chip under diagnosis has to be full-scanned

Ch11-10

 The chip under diagnosis has to be full-scanned

Note: A diagnosis approach less dependent on the fault assumptions
is more capable of dealing with practical situations.

6

Examples of FaultsExamples of Faults

 Node Fault

VDD

 Short Fault (Bridging)



A

B A

bridging

C Most diagnosis algorithms performs
at the gate level, trying to identify the





Ch11-11

B

GND

at the gate level, trying to identify the
troubling signals or cells

Byzantine Open FaultByzantine Open Fault

 Definition of Byzantine Fault:
 A fault that causes an ambiguous voltage level

 ~ 2.5 v
G2

‘1’ ‘1’

pseudo ‘0’

pseudo ‘1’

open fault
G1

Ch11-12

G3‘1’
‘0’

7

A Byzantine Node TypeA Byzantine Node Type

A B C Z Zf

0 0 0 1 1

C

B

VDD

driver to ‘1’

Truth Table

0 0 1 0 0

0 1 0 1 1

0 1 1 0 0

1 0 0 1 ~0

1 0 1 0 0

faulty
min-term

A

bridging

Z

B

C

B

Ch11-13

1 1 0 0 0

1 1 1 0 0

GND

B

driver to ‘0’
The faulty output

could be ambiguous
The faulty output

could be ambiguous

Fault ClassificationFault Classification

Fault in Logic IC

affects
functionality

affects
timing

Functional Fault

Node Fault
Open Fault

functionality

Delay Fault

Gate-Delay Path-Delay

timing

Ch11-14

Open Fault
Short Fault

Byzantine Fault

Fault Fault

8

OutlineOutline

 Introduction
 Combinational Logic Diagnosis
 Cause-Effect Analysis
 Effect-Cause Analysis
 Chip-Level Strategy
 Diagnostic Test Pattern Generation

 Scan Chain Diagnosis

Ch11-15

 Scan Chain Diagnosis
 Logic BIST Diagnosis
 Conclusion

TerminologyTerminology

 Device Under Diagnosis (DUD): The Failing Chip

 Circuit Under Diagnosis (CUD): The Circuit Model

 Failing Input Vector: Causes Mismatchesg p

input
vector x

o
mismatched PO

t h d PO

Failing chip

Ch11-16

v o
o
o
x

matched PO

mismatched PO

matched PO
matched PO

Gate-level CUD

9

CauseCause--Effect AnalysisEffect Analysis

 Fault dictionary (pre-analysis of all causes)
 Records test response of every fault under the applied

test settest set

 Built by intensive fault simulation process

 A chip is diagnosed (effect matching)
 By matching up the failing syndromes observed at the

tester with the pre-stored fault dictionary

Ch11-17

Fault Dictionary ExampleFault Dictionary Example

a
b
c

gCircuit under
Diagnosis {f1, f2, f3, f4, f5}

A diagnosis session:
traverse from a path from root to a leaf

Circuits
Test vectors in terms of (a, b, c)
v1 v2 v3 v4 v5

fault-free 0 0 0 0 1
f1 0 1 1 1 1
f 1 1 1 0 1

(a) Circuit under diagnosis
output=0

v1

output=1

{f1, f4, f5}

0 1
v2

f4

{f2, f3}

0 1
v2

f2f3{f1, f5}

Ch11-18

f2 1 1 1 0 1
f3 1 0 0 1 1
f4 0 0 1 0 0
f5 0 1 1 0 1

(b) Full-response dictionary
(c) Diagnostic tree

0 1
v4

f1f5

10

Fault Dictionary Reduction Fault Dictionary Reduction –– P&RP&R

Fault
Output Response (z1, z2)
t1 t2 t3 t4

f1 1 0 10 1 1 10
f2 0 0 00 1 1 00
f3 0 0 00 0 0 00

(a) Full-response table

Fault
Pass-fail + Extra outputs

t t t t

(c) P&R compression dictionary

3

f4 0 1 00 0 0 01
f5 0 1 00 0 1 01
f6 0 1 00 0 1 01
f7 1 0 00 1 0 00
f8 1 1 11 1 1 11

Fault
Pass (0) or Fail (1)

t1 t2 t3 t4

f1 1 1 0 1

ID t1 t2 t3 t4

f1 1 1 1 0 1 1

f2 1 0 0 0 1 1

f3 1 0 0 1 0 1

f4 1 0 0 1 0 0

f5 1 0 0 1 1 0

f6 1 0 0 1 1 0

f7 1 1 0 1 0 1

Ch11-19
(b) Pass-fail dictionary

f2 1 0 0 1
f3 1 0 1 1
f4 1 0 1 0
f5 1 0 1 0
f6 1 0 1 0
f7 1 0 1 1
f8 0 1 0 1

f8 0 1 1 0 1 1

Response of z1 Response of z2

Detection Fault DictionaryDetection Fault Dictionary

Fault
ID

Output Response (z1, z2)

t1 t2 t3 t4

f1 10 10 11 10
f2 00 00 11 00
f3 00 00 00 00

(a) Full-response table

(c) Detection dictionary

failing output vectors

f3 00 00 00 00
f4 01 00 00 01
f5 01 00 01 01
f6 01 00 01 01
f7 10 00 10 00
f8 11 11 11 11

Fault
ID

Pass (1) or Fail (0)

t1 t2 t3 t4

Fault
ID

Detection information
(Test ID : Output Vector)

f1 t1:10 t2:10 t4:10;

f2 t1:00 t4:00;

f3 t1:00 t3:00 t4:00;

f4 t1:01 t3:00;

f5 t1:01 t3:01;

(c) Detection dictionary

Ch11-20

(b) Pass-fail dictionary

f1 1 1 0 1

f2 1 0 0 1

f3 1 0 1 1

f4 1 0 1 0

f5 1 0 1 0

f6 1 0 1 0

f7 1 0 1 1

f8 0 1 0 1

f6 t1:01 t3:01;

f7 t1:10 t3:10 t4:00;

f8 t2:10 t4:11;

11

OutlineOutline

 Introduction
 Combinational Logic Diagnosis
 Cause-Effect Analysis
 Effect-Cause Analysis
 Chip-Level Strategy
 Diagnostic Test Pattern Generation

 Scan Chain Diagnosis

Ch11-21

 Scan Chain Diagnosis
 Logic BIST Diagnosis
 Conclusion

Terminology: Mismatched OutputTerminology: Mismatched Output

failing chip

Effect-cause analysis does not build fault dictionary
It predicts fault locations by analyzing CUD from mismatch PO’s

input
vector

v

0
0
0
0
0

mismatched PO1

0

failing PO

failing PO

Ch11-22

v

mismatched POCUD

0

0

0

1

12

Structural Pruning Structural Pruning –– Intersection or Union?Intersection or Union?

z2 z2primary
inputs

z1 z1

z3 z3

(a) Cone intersection.

inputs

Fault candidate setCUD

Ch11-23

(b) Cone union when there are multiple faults.

z2

z3

z2

z3

primary
inputs

Fault candidate setCUD

Backtrace AlgorithmBacktrace Algorithm

 Trace back from each mismatched PO
 To find out suspicious faulty locations

 Functional Pruning
 During the traceback, some signals can be

disqualified from the fault candidate set based
on their signal values.

 Rules
 (1) At a controlling case (i.e., 0 for a NAND

gate): Its fanin signals with non-controlling

Ch11-24

values (i.e., 1) are excluded from the candidate
set.

 (2) At a non-controlling case (i.e., 1 for a NAND
gate): Every fanin signal remains in the
candidate set.

13

Backtrace ExampleBacktrace Example

Target
mismatched

0 1b

All suspicious fault locations are marked in red.

mismatched
output1

1

1
0

1

1

0

b

c

e

f

Ch11-25

10

1
a

d

f

Terminology Terminology –– InjectionInjection

An injection at a signal f flips its current value
which could create value-change events downstream.

f = ‘1’

x
o
o

f = ‘0’ x
o
o

Ch11-26

v
o
x
x

v

A mismatched output
could be fixed by the injection!

O: correct output
X: failing output

o
xo?
x

14

Terminology Terminology –– Curable OutputCurable Output

 Diagnosis Criterion
 A signal is more suspicious if it has more curable outputs

f = ‘1’

x
o
o

f = ‘0’ x
o
o

Ch11-27

v x
x

v o
o

cured

cured

An injection at f fixes two mismatched outputs
 Thus, f has two curable outputs !

O: correct output
X: failing output

Terminology Terminology –– Curable VectorsCurable Vectors
v is a curable vector by f
 because an injection at f exists such that

it cures all mismatches without creating new one

Curable vector is a stronger diagnosis indicator than curable output !

x f = ‘0’ o cured

g g p

Ch11-28

v

f = ‘1’ o
o
x
x

v

o
o
o
o

cured

cured

15

Example of Curable VectorExample of Curable Vector

0
1

x1 = 0
x2 = 1
x3 = 1

failing

f
1 0

0
1



1 0

x1

x2

cured

x4 = 1

(a) Failing Chip

Ch11-29

1

1

1

1 0 0 1

1
0

x2

x3

x4

1

(b) Circuit Under Diagnosis

Why Curable Vector ?Why Curable Vector ?

 Information theory
 A less probable event contains more information

 Curable output is an easy-to-satisfy criterion, high aliasing

C bl t i h d t ti f it i l li i Curable vector is a hard-to-satisfy criterion, low aliasing

 Niche input vector
– Is an failing input vector that activates only one fault

 Not all failing input vectors are equal !

Ch11-30

– Is an failing input vector that activates only one fault

– Likely to be a curable vector of certain signals

– Few, but tells more about the real fault locations

16

InjectInject--andand--Evaluate ParadigmEvaluate Paradigm

input vectors
design
model

failing chip
response

Calculate the no. of “curable vectors” of each signal

Calculate the no. of “curable outputs” of each signal

Sort the signals by the no. of “correctable vectors”,
If tied, sort by the no. of “correctable outputs”

Sorting
Criteria

Ch11-31

y p

ranking of each signal’s possibility
of being a defect location

Detailed Computation Detailed Computation ––
InjectInject--andand--Evaluate ParadigmEvaluate Paradigm

CUD
netlist

failing
test vectors

failing chip
syndromes

Set initial candidate set by structural pruningSet initial candidate set by structural pruning

for each failing input vector v {
Step 1: perform logic simulation;
Step 2: for each candidate signal f {

Step 2.1: flip the value at f ; /* injection */
Step 2.2: run event-driven fault simulation; /*evaluation */
Step 2.3: calculate certain metrics /* ranking */

}

Ch11-32

a list of ranked candidate signals

}
}
Sort the candidate signals by the calculated metrics;

17

RewardReward--andand--Penalty HeuristicPenalty Heuristic
Rank1: curable vector count
Rank2 = (curable output count – 0.5 * new mismatched output count)

0
1

x1 =0
x2 =1

failing

f

0
1

1 0

x1

cured

12

x3 =1
x4 =0

(a) Failing Chip.

passing

Ch11-33

1

1

1

f
1 0

0 1

0
1

x2

x3

x4
(b) Circuit Under Diagnosis.

10
new

mismatch

Targeting Bridging FaultsTargeting Bridging Faults

Even in a realistic bridging fault, there is only one victim at any time.
This victim will expose his location by owning some curable vectors.

w1A

B

C
bridging

Ch11-34

w2

C
D

18

SLAT ParadigmSLAT Paradigm

CUD
failing

input vectors
failing chip
response

Ref: SLAT (Single Location At a Time) paradigm [Bartenstein 2001]
Note: A SLAT vector is a curable vector

Phase 1: Finding SLAT (Single Location at A Time) vectors:
(1) Fault simulation, (2) Output matching

Phase 2: Finding valid fault multiplets
(1) Finding single-fix candidates

(2) Finding double-fix candidates

Ch11-35

A number of valid fault multiplets

(2) Finding double-fix candidates
(3) Finding triple-fix candidates, etc.

Example: SLAT ParadigmExample: SLAT Paradigm
Failing
Input

Vectors

Signals in the CUD

f1 f2 f3 f4 f5 f6 f7

v1 * *

v2 * * *2

v3 * * *

v4 * *

v5 * *

v6 * *

v7 * *

v8 * *

Ch11-36

v8

v9 * *

v10 * *

A mark * means the corresponding vector is
a SLAT vector of the corresponding signal.

(f3 and f5)
is a valid fault multiplet

19

OutlineOutline

 Introduction
 Combinational Logic Diagnosis Combinational Logic Diagnosis
 Cause-Effect Analysis
 Effect-Cause Analysis
 Chip-Level Strategy
 Diagnostic Test Pattern Generation

 Scan Chain Diagnosis

Ch11-37

g
 Logic BIST Diagnosis
 Conclusion

Structurally Dependent and Independent Structurally Dependent and Independent
FaultsFaults

z1
fault f1 mismatched output

inputs
z2

z3

fault f2

f lt f

mismatched output

mismatched output

Ch11-38

fault f3

Fault f1 is an independent fault.
Faults f2 and f3 are dependent faults.

20

Dependency GraphDependency Graph

z1fault
f1

Direct divide-and-Conquer
does not work well !

z1

z2 z3

z2

z3
fault

f2

dependency graph

Ch11-39

2 3

one connected component

Two independent faults, f1 and f2, lead to one diagnosis block.

Main StrategyMain Strategy::
DetachDetach--DivideDivide--andand--thenthen--ConquerConquer

Phase 1: Isolate Independent Faults

 Search for prime candidates Search for prime candidates

 Use word-level information

Phase 2: Locate Dependent Faults As Well

 Perform partitioning

Ai t fi di f lt i h bl k

Ch11-40

 Aim at finding one fault in each block

21

Prime CandidatesPrime Candidates

A signal f is a prime candidate if
(1) All failing input vectors are partially curable by f
(2) Curable-Output-Set(f) is not covered by any other’s

f1
f3

f1 & f2
are prime !

syndrome
set 1

Ch11-41

f2
p

syndrome
set 2

Fake Prime CandidatesFake Prime Candidates

 Structurally Independent Faults
 are often prime candidates

 Fake Prime Candidates
 are prime candidates that are NOT really faults - aliasing

f1 f3

f4
Example: Dependent Double Faults f1 & f2

May create fake prime candidates {f1, f2, f3}.

Ch11-42

f2
f5

22

WordWord--Level Registers and OutputsLevel Registers and Outputs

Word-Level Output: O1

Signals in a design are often defined in words.
This property can be used to differentiate fake prime candidates from the real ones.

module design(O1, ...)
output[31:0] O1;
reg[31:0] R1, R2;
reg[5:0] State

Word-Level Registers: R1, R2, State

Ch11-43

reg[5:0] State
...

endmodule

WordWord--Level Prime CandidatesLevel Prime Candidates

f1

Note: Z and R are two word-level output groups.

f1

f2

f3

f4

f5

f2

f3

R

Z

R

Z

Ch11-44

Original prime candidates: {f1, f2}
Word-level prime candidates {f1, f2}

Assumed original prime candidates: {f3, f4 , f5}
{f4 , f5} will be identified as fake

 Final Word-level prime candidates {f3}

23

Efficiency of Using WordEfficiency of Using Word--Level Info.Level Info.

 Without word-level Information

 2.4 real faults out of 72.3 candidates
 With word-level Information

 1.23 real faults out of 3.65 candidates

of candidates Original
After

Filtering
Filtering

Ratio

Prime
2 375 1 23 48 2 %

Ch11-45

Prime
Candidates 2.375 1.23 48.2 %

Fake Prime
Candidates 69.96 2.42 96.5 %

Overall FlowOverall Flow

failing
input vectors

design
model

failing chip
response

Phase 1:
(1) Find Word-Level Prime Candidates

Phase 2:
(1) Remove explained outputs and their fanin cones
(2) Partition the rest model into blocks
(3) P f di i f h bl k

Ch11-46

(3) Perform diagnosis for each block

Rank candidates produced
in phases 1 & 2

24

Grouping Using Dependency GraphGrouping Using Dependency Graph

X
X
X

a
b
c

a
b

An example with five faults
One of them is identified as the prime candidate

X
X

X

X

c

e

f

c

i f
j

c
d

e
X

X

y
z

yz
prime

candidates

Ch11-47

X
X

X

X
X

X

g

i
j
k

h

h
g

j

k

Removed Explained Faulty OutputsRemoved Explained Faulty Outputs

X
X
X
X

a
b
c
d

X
X
X
X

a
b
c
dX

X

X
X

e

f
g

d

X

X

y
z

prime
candidates

X

X

X
X

e

f
g

syndromes
at y and z
are fully

explained

Ch11-48

X

X
X

X

i
j
k

h X

X
X

X

i
j
k

h

25

Grouping ExampleGrouping Example

a b

c
d

X
X
X
X

a
b
c
d

i f
j

d

e

X

X

X
X

e

f
g

Ch11-49

h
g

k
X

X
X

X

i
j
k

h

Two independent diagnosis blocks
Are successfully derived!

SummarySummary

 Strategy

 (1) Search For Word-Level Prime Candidates

 (2) Identify Independent Faults First

 (3) Locate Dependent Faults As Well

 Effectiveness

 identify 2.98 faults in 5 signal inspections

 find 3.8 faults in 10 signal inspections

Ch11-50

26

Diagnostic Test Pattern GenerationDiagnostic Test Pattern Generation

a

b
c

e

d

a1

d1

d2

g
Model for differentiating vector generation

DTPG helps to increase diagnostic resolution

fault-free circuit
c

b

a e

d

a2

d2

f

g

d1 stuck-at 1

x

c

a2

d2

f

⊕

z/0

Ch11-51

e

d

a2

d1

f

g

d2 stuck-at 0 ⊕

OutlineOutline

 Introduction

 Combinational Logic Diagnosis

 Scan Chain Diagnosis
 Preliminaries

 Hardware-Assisted Method

 Signal-Profiling Based Method

Ch11-52

 Logic BIST Diagnosis

 Conclusion

27

Scan Test and DiagnosisScan Test and Diagnosis

Flush test of scan chains
(pumping random patterns and checking response)

Pass or Fail?

Test Combinational Logic

Pass Fail

Find failing scan chain(s)
Classify fault types

Ch11-53

Scan Chain Diagnosis

Commonly Used Fault Types in Scan ChainsCommonly Used Fault Types in Scan Chains

Scan Chain Faults

Functional Faults Timing Faultsg

Setup-Time
Violation Fault

Stuck-at
Bridging

Hold-Time
Violation Fault

Ch11-54

Each fault could be permanent or intermittent.

Slow-To-Rise
Fault

Slow-To-Fall
Fault

28

A StuckA Stuck--At Fault In the ChainAt Fault In the Chain

Effect: A killer of the scan-test sequence

D Q

input
pins

output
pins

D Q D Q

Combinational Logic

scan-input
(SI)

scan-output
(SO)M

U

M
U

M

11010100 00000000

Ch11-55

D Q

clock

D Q D Q

U
X U
X

M
U

X

scan-enable

11010100 00000000

s-a-0 ?
All-0 syndrome

A Realistic Bridging Fault ModelA Realistic Bridging Fault Model





bridging

clock

Scan
input
(SI)

Scan
output
(SO)

D Q

M
UX

M
UX

M
UX

M
UX

F1 F2 F3 F4

bridging

(a) Bridging between a flip-flop and a logic cell.

Ch11-56

(b) Our bridging fault model.

If(==1) faulty = 
else faulty = F2

faulty


F2

29

Potential HoldPotential Hold--Time Fault?Time Fault?

(Negative Edge-Triggered Flip-Flop)

D Q
Y

Master Slave

D Q
Y

CLK = low

Master Slave

normal

shut down
too slowly

Ch11-57

CLK = high

CLK = low

Master Slave

D Q
Y

faulty

Example: Faulty Syndrome of a Scan ChainExample: Faulty Syndrome of a Scan Chain

SI
(scan input pin)

SO
(scan output pin)

A scan chain

Fault Type Scan-In Pattern Observed Syndrome

Stuck-at-0 1100110011001100 0000000000000000

Stuck-at-1 1100110011001100 1111111111111111

Slow-to-Rise 1100110011001100 1000100010001000

Sl t F ll 1100110011001100 1101110111011100

A faulty flip-flop

Ch11-58

Slow-to-Fall 1100110011001100 1101110111011100

A underlined bit in the observed image is failing.

The rightmost bit goes into the scan first

The rightmost bit gets out of the scan first

30

Augmentation of a FlipAugmentation of a Flip--Flop for Easy Flop for Easy
DiagnosisDiagnosis

DFF
MUX

(From logic)

(from scan chain)
QD

SC

DFF
MUX

(From logic)

(from scan chain) QD

(a) A normal scan flip-flop.

Ch11-59

DFF
()

SCInvert

(b) A modified scan flip-flop for easy inversion.

Fault Location via Inversion OperationFault Location via Inversion Operation

SI SO

A scan chain

Stuck-at-0

(1) Original bitstream pattern = (1111111111111111)

(2) After scan-in: snapshot image = (1111000000000000)

(3) After inversion: snapshot image = (0000011111111111)

Fault-to-SOSI-to-fault

Ch11-60

(3) After inversion: snapshot image = (0000011111111111)

(4) After scan-out: observed image = (0000011111111111)

The fault location is at the edge between 0’s and 1’s

31

Scan Chain Diagnosis FlowScan Chain Diagnosis Flow

Circuit
Under

Di i

Diagnostic
Test Sequence

G t

Diagnostic
Test Sequences

Diagnosis Generator
q

Fault-Free
Observed Images

Signal Profiling
Obser ed ImagesDi i

Test Application

Based
Diagnosis Program

Faulty FF’s
location

Observed Images
Of Failing Chip

Diagnosis

Definition: Snapshot ImageDefinition: Snapshot Image

Def: A snapshot image is the combination of flip-flop values
at certain time instance

input
pins

output
pins

Scan
input

Scan
output

Mission Logic

0
D Q

1 0

M
U

X

M
U

X

M
U

Xx 1

M
U

X

Ch11-62

clock

p
(SI)

p
(SO)

0 1 0

Xx
s-a-0 1

X

Snapshot image: {(F1, F2, F3, F4) | (0, 1, 0, 1)}

F1 F2 F3 F4

32

Definition: Observed ImageDefinition: Observed Image
Def: An observed image is the scanned-out version of

a snapshot image.

Mi i L i
input
pins

output
pins

Scan
input
(SI)

Scan
output
(SO)

Mission Logic

0
D Q

1 0

M
U

X

M
U

X

M
U

Xx
s-a-0 1

M
U

X

F1 F2 F3 F4

Ch11-63

clock

(S) (SO)

Snapshot image: {(F1, F2, F3, F4) | (0, 1, 0, 1)}
Observed image: {(F1, F2, F3, F4) | (0, 0, 0, 1)}

1 2 3 4

Modified InjectModified Inject--andand--Evaluate ParadigmEvaluate Paradigm

Step 1: Scan-in an ATPG pattern core
logic

Step 2: Capture the response to FF’s

x x x x

core
logic

x1011

1 0 0 0

logic

x

core
l i

Ch11-64

0 1 1 0

logic

x
0010

Step 3: Scan-out and compare

A stuck-at-0 fault is assumed
at the output of the 2nd FF from SI

33

Test Application: RunTest Application: Run--andand--ScanScan

Step 1: Apply a test sequence from PI’s
 Setting up a snapshot image at FF’s

0 1 1 0

core
logic

x
S-A-0

0 1 1 0

core
logic

x 0010

SO

S-A-0Less distorted image

Test
Sequence

Ch11-65

Step 2: Scan-out an observed image

up-stream part
will be distorted

The fault location is embedded in the observed image

Signal ProfilingSignal Profiling
A profile is the distribution of certain statistics of the flip-flops.

faulty flip-flop

Scan
core
logic

Failing chip

Up-stream Down-stream

0 0 0.65 0.35

core
logic

Test
Sequences

Shifting
0.41 0.51 0.61 0.41

perturbed image

x

similardifferent

Ch11-66

Fault-free model

0.4 0.5 0.6 0.4
fault-free image

0.4 0.5 0.6 0.4

Fault-free profile

Comparing failing profile with the fault-free profile
 Could reveal the fault location

34

Profile AnalysisProfile Analysis

Fault-free images
(say 100 of them)

Failing images
(say 100 of them) Collected from tester

Derive the fault-free profile

Derive the failing profile

Derive the difference profile
A difference image

= fault-free image ⊕ failing image

Ch11-67

report
a ranked list

of fault locations

Perform filtering on the difference profile

Perform edge detection to derive ranking profile

Example: Filtering & Edge DetectionExample: Filtering & Edge Detection
Profiling difference

0.4

0.6

0.8

S
P
 (
%

)
eq

u
en

cy
 (

%
)

Difference Profile

0

0.2

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155

DFF Index

S
ig

n
al

-1
 F

re

0.6

0.8
Smooth Profile Ranking ProfileRanking (or suspicion) ProfileFiltered Difference Profile

Filtering & Edge Detection

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

DFF IndexScan Input  FF index  Scan Output

35

Computation of AverageComputation of Average--Sum FilteringSum Filtering

 (Average-sum filtering) Assume that the difference
profile is given and denoted as D[i], where i is the index
of a flip-flop. We use the following formula to computeof a flip flop. We use the following formula to compute
a smoothed difference profile, SD[i]:

SD[i] = 0.2*(D[i-2]+ D[i-1]+ D[i]+ D[i+1]+ D[i+2])

Ch11-69

Computation of Edge DetectionComputation of Edge Detection

 The true location of the faulty flip-flop is likely to be the left-
boundary of the transition region in the difference profile. To detect
this boundary, we can use a simply edge detection formula defined
b lbelow.

 (Edge detection) On the smoothed difference profile SD[i], the
following formula can be used to compute the faulty frequency of
each flip-flop as a suspicious profile.















]1[][

]2[][

]3[][

iSDiSD

iSDiSD

iSDiSD

Ch11-70













 






]3[][

]2[][

]1[][

]1[][
]1,1,1,1,1,1[][

iSDiSD

iSDiSD

iSDiSD

iSDiSD
isuspicion

36

Summary of Scan Chain DiagnosisSummary of Scan Chain Diagnosis

 Hardware Assisted
 Extra logic on the scan chain
 Good for stuck-at fault

 Fa lt Sim lation Based Fault Simulation Based
 To find a faulty circuit matching the syndromes [Kundu 1993]

[Cheney 2000] [Stanley 2000]
 Tightening heuristic  upper & lower bound [Guo 2001][Y.

Huang 2005]
 Use single-excitation pattern for better resolution [Li 2005]

 Profiling-Based Method
 Locate the fault directly from the difference profiles obtained

b d t t

Ch11-71

by run-and-scan test
 Applicable to bridging faults
 Use signal processing techniques such as filtering and edge

detection

OutlineOutline

 Introduction
 Combinational Logic Diagnosis
 Scan Chain Diagnosis
 Logic BIST Diagnosis
 Overview
 Interval-Based Method

Ch11-72

 Masking-Based Method
 Conclusion

37

A Logic BIST ArchitectureA Logic BIST Architecture

PRPG (Pseudo-Random Pattern Generator)

Core
Logic

Ch11-73

MISR (Multiple-Input Signal Analyzer)

All flip-flops are assumed to be observable
through scan chains.

scan out
(as the signature)

Diagnosis for BISTed LogicDiagnosis for BISTed Logic

 Diagnosis in a BIST environment requires
 determining from compacted output responses

which test vectors have produced a faulty response
(time information)

 determining from compacted output responses
which scan cells have captured errors (space
information)

 The true fault location inside the logic

Ch11-74

g
 Can then be inferred from the above space and time

information using previously discussed
combinational logic diagnosis

38

Binary Search To Locate 1Binary Search To Locate 1stst Failing VectorFailing Vector

Time (or test vector index)

S

Ch11-75

Space
(or scan cell

index)

1st BIST session

2nd
3rd

BIST session length:
147423
 First failing at vector #4

Interval UnloadingInterval Unloading--Based DiagnosisBased Diagnosis
Time (or test vector index)

Space
(or scan cell

index)

failingfailing

Ch11-76

A signature is scanned out to the tester
for comparison at the end of each interval

failing
interval

Interval index 1 2 3 4 5 6 7

failing
interval

39

Deterministic MaskingDeterministic Masking--Based DiagnosisBased Diagnosis

PRPG (Pseudo-Random Pattern Generator) Scan chain index (X)

ex

7

1 2 3 4 5 6 7 8

Core
Logic

S
ca

n
 s

li
ce

 i
n

d
e

6

5

4

3

2

1

Ch11-77

MISR (Multiple-Input Signal Analyzer)

(a) STUMP-based BIST architecture (b) Scan cell matrix

Cell partition:
X = {3,4} (chain set)
Y = 2 (lower bound)
Z = 6 (upper bound)

Scan slice

Circuitry to Support Deterministic MaskingCircuitry to Support Deterministic Masking

PRPG (Pseudo-Random Pattern Generator)

Core
Logic

0
0
1
1

Ch11-78

MISR (Multiple-Input Signal Analyzer)

1
0
0
0
0

X Y

0 1 0

Z

1 1 0

≧ ≦

Counter

40

A Search for Scan Cells Capturing ErrorsA Search for Scan Cells Capturing Errors

Core
Logic

PRPG (Pseudo-Random Pattern Generator)

Scan cells
Capturing errors

MISR (Multiple-Input Signature Register)

Logic

(Y, Z)=(1, 7)

(a) Scan cells capturing errors in the fourth scan chain

Ch11-79

(Y, Z)=(1, 4) (Y, Z)=(5, 7)

(Y, Z)=(1, 2) (Y, Z)=(3, 4) (Y, Z)=(5, 6) (Y, Z)=(7, 7)

(Y, Z)=(3, 3) (Y, Z)=(4, 4) 9 BIST sessions

(b) The search tree

ConclusionsConclusions
 Logic diagnosis for combinational logic

 Has been mature

 Good for not just stuck-at faults, but also bridging faults

 Scan chain diagnosis Scan chain diagnosis
 Making good progress …

 Fault-simulation-based, or signal-profiling based

 Diagnosis of scan-based logic BIST
 Hardware support is often required

 Interval-unloading, or masking-based

 Future challenges

Ch11-80

 Future challenges
 Performance (speed) debug

 Diagnosis for logic with on-chip test compression and
decompression

 Diagnosis for parametric yield loss due to nanometer effects

	Cover.pdf
	ch1.introduction
	ch2.fault_modeling
	ch3.fault_simulation
	ch4.ATPG
	ch5.DFT
	ch6.delay_test
	ch7.BIST
	ch8.test_compression
	ch9.boundary_scan
	ch10.interconnect
	ch11.diagnosis

