g b 4
TR X
102 B&p % - 5y

EE-6250
A2~ AT RRIF
VLSI Testing

o I —

R F A

2013 & Fall Semester

te v b g ot

CEPESE LY

EE-6250
AZ & AT BRI
VLSI Testing

=

Chapter 1
Introduction

Course Flow

Introduction]
Fault Modeling]
Fault Simulation]

Automatic Test Pattern Generation] ATPG

IC test

Design-for-Testability and Scan Test] DfT

Built-In Self-Test) BISG

Test Compression]

Board-level test Boundary-Scan Test

Die-to-Die test

(
(
{
{
[
[Delay Test]
[
[
[
[
[

Parametric Interconnect Testing]

Diagnosis Logic Diagnosis

Ch1-2

What You can Benefit from this
Course?

® Values of Acquired Knowledge
- Making ICs more testable
- Making ICs/Boards/Systems more debuggable
- Making ICs Faster Time-to-Market
- Making ICs Faster Time-to-Volume

® Academic Training
- Testing is a rich field as you will know.
- Testing is a good topic for MS/Ph.D. theses.

o Career Development
- 1C B&ETAE] GEM A HYRTHEME E)
- #%ﬁ“ﬁz (fE2 T - BARIBHE TN)
- OHEESE (BRI BB T)
- BT R GEEIEZE - TSR OTESGE)

Ch1-3
Chip Design & Manufacturing Flow
{ 1 IC Fabrication
,:] Wafer
Architecture Design (hundreds of dies)

1 Sawing & Packaging

N
lock / >
g /<>

1 Circuit & Layout Design 1 Testing

5y f Layout 4 \ \‘* ‘a
- | o

Ch1l-4

=

virio AT ‘ Bad chips ‘ | Good chips |

Design Verification, Testing
and Diagnosis

e Design Verification:

— Ascertain the design perform its specified
behavior

e Testing:
— Exercise the system and analyze the response to

ascertain whether it behaves correctly after
manufacturing

e Diagnosis:

— To locate the cause(s) of misbehavior after the
incorrect behavior is detected

Ch1-5

Manufacturing Defects

Material Defects

- bulk defects (cracks, crystal imperfections)
- surface impurities

Processing Faults

— missing contact windows

— parasitic transistors

— oxide breakdown

Time-Dependent Failures

— dielectric breakdown

— electro-migration

Packaging Failures

— contact degradation
- seal leaks

Ch1-6

Faults, Errors and Failures

Fault:
— A physical defect within a circuit or a system
— May or may not cause a system failure
Error:

— Manifestation of a fault that results in incorrect circuit
(system) outputs or states

— Caused by faults

Failure:
— Deviation of a circuit or system from its specified behavior

- Fails to do what it should do
— Caused by an error

Fault ---> Error ---> Failure

Ch1-7

Reliability Test

e Temperature Related
— Hi-Temperature Life Test
- Low-Temperature Life Test
- Temperature-Cycling Test

e Humidity Test
e Salt Mist Test
e UV (Ultra-Violet) Test

e ESD Test
— ESD stands for Electro-Static Discharge

e \Whole Mechanical Test

Ch1-8

Detailed Reliability Test Items

e Temperature Related
- Operation: 0°C/120hr ~ 70°C/120hr (P§H)
— Operation: -40°C/120hr ~ 85°C/120hr (T_#7)
— Storage: -40°C/200hr ~ 85°C/500hr
- Junction Temperature: Max. 95°C
e Humidity Test
— Operation: 25°C/95% humidity (p5#7)
- Operation: 40°C/95% humidity (T#7)
- Storage: 85°C/95% humidity
e Salt Mist Test
- Salt Water Spray
e UV Test
- UV (254nm), 15Ws/cm?
- X-ray exposure, 0.1Gy/1hr
e ESD Test
- For example, For Contact Pads, +4KV, Human Body Mode
* Whole Mechanical Test

— Vibration (15G, 10 to 2KHz), Impact, Torque, Bending, Drop test
Ch1-9

Scenario of Manufacturing Test

TEST VECTORS

Manufactured
Circuits

CIRCUIT RESPONSE

|

CORRECT

Comparator ——— PASS/FAIL
RESPONSES

—_—

Ch1-10

Courses on Agilent 93000 at CIC

Sample Information: (What to expect from that kind of course)

FTICIC - ek 4B (£ e gE26UE L)

1{u] #|fiiAgilent 93000 SoC Testers gl { i {5 H 1705
loadboard|! iz LR ¥ oo BEES

(1) Agilent 93000 SoC Tester -7
(2) Loadboard (i }{] 77
(3) Test Pattern {ilii
(4) Test flow 207
(5) Result Analysis

Chi1-11

Purpose of Testing

e Verify Manufacturing of Circuit
— Improve System Reliability
— Diminish System Cost

e Cost of repair

— goes up by an order of magnitude each step
away from the fab. line

1000
500
Cost 100 |
Per 50
Fault 10 =]
(dollars) —
0.5

IC Test Board System Warranty
Test Test Repair

B. Davis, “The Economics of Automatic Testing” McGraw-Hill 1982
‘ Ch1-12

Testing and Quality

Shipped Parts

ASIC : Testing
Fabrication Yle|d'- Quality:
Fraction of Defective parts
Good parts

Per Million (PPM)

Or Parts Per Billion

X (PPB)
Rejects

Quality of shipped part is a function of
yield Y and the test (fault) coverage T.

Ch1-13

Fault Coverage

e Fault Coverage T

— Is the measure of the ability of a set of tests to
detect a given class of faults that may occur on
the device under test (DUT)

No. of detected faults

No. of all possible faults

Ch1-14

Defect Level

e Defect Level

— Is the fraction of the shipped parts that
are defective (Efiz ppm or ppb)

DL =1-YQD

Y: yield
T: fault coverage

Ch1-15

Defect Level v.s. Fault Coverage

Defect Level

1.0 —
Y=01 Y =0.01
0.8 Y =0.25
06 |
Y =05
0.4 [
Y =0.75
o2 -
0 20 40 60 80 100
(Williams 1BM 1980) Fault Coverage (%)

High fault coverage — Low defect level

Ch1-16

DPM v.s. Yield and Coverage

Yield Fault Coverage Defective PPM

50% 90% 67,000
75% 90% 28,000
90% 90% 10,000
95% 90% 5,000
99% 90% 1,000
90% 90% 10,000
90% 95% 5,000
90% 99% 1,000
90% 99.9% 100

Ch1-17

Why Testing Is Difficult ?

e Test application time could explode for
exhaustive testing of VLSI

— For a combinational circuit with 50 inputs, we need
250 = 1.126x1015 test patterns.

- Assume one test per 107sec, it takes 1.125x108sec =
3.57yrs. to test such a circuit.

— Test generation for sequential circuits are even more
difficult due to the lack of controllability and
observability at flip-flops (latches)

e Functional testing
- may NOT be able to detect the physical faults

Ch1-18

DEC Alpha Chip (1994)

e 64-bit RISC
e 200 MHz
e 400 MIPS
i = 200 Mflops
. * 16.8 x 13.9 mm? die
& < 0.68 million transistors
e 431-pin package
e 3.3V
e 30 W power consumption

Ch1-19
The Infamous Design/Test Wall
30 years of experience proves that
test after design does not work!
ettt Oh no!
.~ e What does
Functionally correct! _-'. LT 1 I:T ‘ this chip do?!
We're done! I
| I |
L T 1
O | ; | r | . |
| I | I [T |
| I |
L1
| I |
f %] :] I|| II| N\ <O/
L1
| I |
| . | L Il L ||
Design Engineering — Test Engineering
Ch1-20

10

Old Design & Test Flow

Low-quality test patterns
- high defect level

New Design and Test Flow

Introduces circuitry to
make design testable
DFT flow

|
better test
patterns \
N\,

1]

New Design Mission

e Design circuit to optimally satisfy their
design constraints in terms of area,
performance and testability.

How high is the fault coverage
TESTABILITY we can achieve?

| Power Consumption |

‘ PERFORMANCE}

Ch1-23

10

T ESE ST

EE-6250
AZ & AT BRI
VLSI Testing

—

Chapter 2
Fault Modeling

Functional v.s. Structural Testing

e /O functional tests inadequate for
manufacturing

e Exhaustive testing is prohibitively
expensive

| Question: How to Generate Compact yet High-Quality Test Vectors?

Ch2-2

Why Fault Model ?

* Fault model identifies target faults
- Model faults most likely to occur

¢ Fault model limits the scope of test
generation
— Create tests only for the modeled faults

* Fault model makes effectiveness
measurable by experiments

- Fault coverage can be computed for specific test
patterns to reflect its effectiveness

* Fault model makes analysis possible
- Associate specific defects with specific test patterns

| Scientific Study: Hypothesis (Assumption) = Evaluation = Refinement

Ch2-3

Fault Modeling

 Fault Modeling

- Model the effects of physical defects on the
logic function and timing

* Physical Defects

Silicon Defects
Photolithographic Defects
Mask Contamination
Process Variation
Defective Oxides

Ch2-4

Common Fault Types
Used To Guide Test Generation

e Stuck-at Faults

e Bridging Faults

e Open Faults

e Transistor Stuck-On Faults

e Delay Faults

e IDDQ Faults (Quiescent current at VDD pin)
¢ Memory Faults

IDDQ Testing: canary in the coalmine, alarming of un-modeled defects

Ch2-5

Single Stuck-At Fault

Faulty Response

Fault-Free Re\s‘pon'se/

1/0

stuck-at-0

Assumptions:

* Only One line is faulty

* Faulty line permanently set to 0 or 1

* Fault can be at an input or output of a gate

Ch2-6

Multiple Stuck-At Faults

e Several stuck-at faults occur at the
same time

— Mostly used in logic diagnosis

e For a circuit with k lines

— there are 2k single stuck-at faults

— there are 3%-1 multiple stuck-at faults
¢ A line could be stuck-at-0, stuck-at-1, or fault-free
e One out of 3k resulting circuits is fault-free

Ch2-7

Why Single Stuck-At Fault Model?

e Complexity is greatly reduced

— Many different physical defects may be modeled by the
same logical single stuck-at fault

e Stuck-at fault is technology independent
— Can be applied to TTL, ECL, CMOS, BiCMOS etc.
¢ Design style independent
- Gate array, standard cell, custom VLSI
* Detection capability of un-modeled defects

— Empirically, many defects accidentally detected by test
derived based on single stuck-at fault

e Cover a large percentage of multiple stuck-at
faults

‘ Single SA model survives well (due to its simplicity and effectiveness) ‘
Ch2-8

Multiple Faults

* Multiple stuck-fault coverage by
single-fault tests of combinational
circuit:

— 4-bit ALU (Hughes & McCluskey, ITC-84)
All double and most triple-faults covered.

- Large circuits (Jacob & Biswas, ITC-87)
Almost 100% multiple faults covered for circuits
with 3 or more outputs.

Ch2-9

Bridging Faults

¢ Two or more normally distinct points
(lines) are shorted together erroneously

- Logic effect depends on technology
— Wired-AND for TTL

A{>o—+ A {>o f
B—[>o—§—g = B—[>o}._(:9
Ioy: I8

— Wired-OR for ECL

Ch2-10

Bridging Faults For CMOS Logic

¢ The result
- could be AND-bridging or OR-bridging

- depends on the inputs

VDD

P_C

VDD

A—y

E.g., (A=B=0) and (C=1, D=0)
(f and g) are AND-bridging fault

pull to Vpp
f
B A—| I bridging g
-c D
= pull to zero
GND 1
GND Ch2-11

CMOS Transistor Stuck-On

VDD ”?PQ
Example: 5
N-type transistor ‘| :'

is always ON

v e
o
=j

* Transistor Stuck-On
- May cause ambiguous logic level
— Depends on the relative impedances of the pull-up and pull-

down networks

e When Input Is Low
— Both P and N transistors are conducting, causing increased

quiescent current, could be detected by IDDQ test
Ch2-12

CMOS Transistor Stuck-Open (1)

e Transistor stuck-open
- May cause the output to be floating
— The fault exhibits sequential behavior
- Need two-pattern test (to set it to a known value first)

—.| stuck-open

Responses:
Fault-free 0>1

A two-pattern test Faulty 00

150 —+—

Ch2-13
Fault Coverage in a CMOS Chip
100 stuck faults only
= @ So o-.o.no.na..o..a--a--a-to.ua.uo-!h
o\o 80 .r.'.“ e S
A |
o :
2 60 |3 stuck and open faults
— |
Q 3
> e
8 40 |¢
o
2,
20
Y | |
) 1000 2000 3000
Test Vectors
Ch2-14

Summary of Stuck-Open Faults

* First Report:
- Wadsack, Bell System Technology, J., 1978

* Recent Results
- Woodhall et. al, ITC-87 (1-micron CMOS chips)
4552 chips passed the test
1255 chips (27.57%) failed tests for stuck-at faults
44 chips (0.97%) failed tests for stuck-open faults
— 4 chips with stuck-open faults passed tests for stuck-at faults

e Conclusion

- Stuck-at faults are about 20 times more frequent than stuck-
open faults

— About 91% of chips with stuck-open faults may also have
stuck-at faults

— Faulty chips escaping tests for stuck-at faults = 0.121%

Ch2-15

Functional Faults

* Fault effects modeled at a higher
level than logic for functional
modules, such as

- Decoder

Multiplexers
Adders
Counters
ROMs

Ch2-16

Functional Faults of Decoders

s A!B!
A ——
—— AB!
Decoder
—— A’B
B
AB

il k)= i :
C f(l- /Lk) One active output, but wrong one
— Instead of input line L, L, is selected

® f(l-ill-i+k): More than one active outputs
- In addition to line L;, L, is also selected

C f(LI/O): No active output

— None of the lines is selected

Ch2-17

Memory Faults

e Parametric Faults

— Any fault that causes the response to deviate from its
fault-free nominal value by some amount

— Ex. A cell with parametric delay fault (with for
example 93% more than normal)

- Due to all kinds of factors like PVT variation
¢ Functional Faults

— Stuck Faults in Address Register, Data Register,
and Address Decoder

— Cell Stuck Faults

— Adjacent Cell Coupling Faults

- Pattern-Sensitive Faults

Ch2-18

Memory Faults

e Pattern-sensitive faults: the presence of a
faulty signal depends on the signal values
of the neighboring cells

- Mostly in DRAMs

0 g 0| a=b=0+ d=0

0ldb| 5=p=1 d=1
Ola|0

* Adjacent cell coupling faults

- Pattern sensitivity between a pair of cells

Ch2-19

Memory Testing

e Test could be time-consuming

— The length of the test sequence for memory testing

could be prohibitively long
e Example:

- A pattern sensitive test is 5n? long for an n-bit RAM

— Testing a 1-M bit chip at 10ns pattern would take 14

hours

— For a 64-M bit chip, it would take 6 years

Ch2-20

10

PLA Faults

e Stuck-at Faults

e Cross-point Faults

— Extra/Missing Transistors
* Bridging Faults
* Break Faults

Ch2-21
Stuck-at Faults in PLA
* s-a-0 & s-a-1 faults
— on inputs, input inverters, product lines, and
outputs are easy to simulate in its gate-level
model
A B C fl f2 A B C
h h h Vt—‘ é—‘ Gate-level model
VYUY, | YUYVY
u T l , ‘ :
P2
RE R T a ="
AND-Array OR-Array ! P2

Ch2-22

Missing Cross-Point Faults in PLA

e Missing Crosspoint in AND-array
- Growth Fault
¢ Missing Crosspoint in OR-array

- Disappearance fault

Equivalent stuck fault

A B C fl f2 A B C representation
H H H /lGrowth \vgq& ij sl
] S~
aY’ D) x
A\
/ Sl

[Tt

Disappearance
Ch2-23

Extra Cross-Point Faults in PLA

e Extra cross-point in AND-array
- Shrinkage or disappearance fault

¢ Extra cross-point in OR-array

— Appearance fault

Equivalent stuck fault
A B C f1 f2 A B C representation
111 13
1_| 1_| hy VYVYVY

P 0 CD\‘ D 1—‘_‘2)* f1

<l
o]
<
o]
<

K ; *\—/;M@i -
Di - "
isapp f‘r’/ g

“Appearance

Ch2-24

Y

Summary of PLA Faults

e Cross-Point Faults
- 80 ~ 85% covered by stuck-fault tests
- Layout-dependence in folded PLA

* Bridging Faults
- 99% covered by stuck-fault tests
- Layout-dependence in all PLAs

- (Ref: Agrawal & Johnson, ICCD-86)

Ch2-25

Delay Testing

e Chip with Timing Defects

- may pass the DC stuck-fault testing, but fail
when operated at the system speed

- For example, a chip may pass the test under 10
MHz operation, but fail under 100 MHz

 Delay Fault Models
- Gate-Delay Fault
- Path-Delay Fault

Ch2-26

15

Gate-Delay Fault (I)

e Slow to Rise

- x is slow to rise when channel resistance R1 is
abnormally high

VDD VDD

H>L | I:

Ch2-27

Gate-Delay Fault (1)

~ -

* Test Based on Gate-Delay Fault

- May not detect those delay faults that result
from the accumulation of a number of small
incremental delay defects along a path !!
(Disadvantage)

Ch2-28

14

Path-Delay Fault

e Associated with a Path (e.g., A-B-C-2)
- Whose delay exceeds the clock interval

e More complicated than gate-delay fault
- Because the number of paths grows exponentially

Ch2-29

Fault Detection

e Fault Activation

e Fault Propagation

A)

Definition Of Fault Detection

* A test (vector) fdetects a fault fiff
- t detects f& z(f) #z(H

e Example
.
y s-a-1 Z1=X1 %o Zp=XoX3
2

21t=X 2 =X0X3

) z
Xg 2

The test (x1,x2,x3) = (100) detects f because
z,(100)=0 while z;; (100)=1

Ch2-31

Fault Detection Requirement

e A test fthat detects a fault 7

- (1) Activate f (or generate a fault effect at the site of
the fault)

- (2) Propagate the fault effect to a primary output w
* Sensitized Line:

— A line whose faulty value is different from its fault-free
one is said to be sensitized by the test in the faulty
circuit

e Sensitized Path:

- A path composed of sensitized lines is called a
sensitized path

Ch2-32

16

Fault Sensitization

Gy

1
X1
xz@—\l_ 6
Gy

1

0/1

s-a-1

G
2 / 0/1 0/1
X4 D—

z (1011)=0 z; (1011)=1
1011 detects the fault f (G, stuck-at 1)
viv; . v =signal value in the fault free circuit
v; = signal value in the faulty circuit

Ch2-33

Detectability

e A fault f is said to be detectable

— if there exists a test 7 that detects f;
otherwise,
f is an undetectable fault

e For an undetectable fault 7

— No test can simultaneously activate f and
create a sensitized path to a primary output

Ch2-34

Undetectable Fault

can be removed !

s-a-0

=

* G, output stuck-at-0 fault is undetectable

- Undetectable faults do not change the function of the circuit

L] T
)

c

— The related circuit can be deleted to simplify the circuit

Ch2-35

Test Set

e Complete detection test set:

— A set of tests that detect any detectable faults in a
class of faults

¢ The quality of a test set

— is measured by fault coverage

e Fault coverage:
- Fraction of faults that are detected by a test set

e The fault coverage
- can be determined by fault simulation

- >95% is typically required for single stuck-at fault
model

- >99.9% in IBM

Ch2-36

15

Typical Test Generation Flow

—-l Select a target fault |

Generate a test
for the target fault

(to be further discussed)

| Fault simulation | (to be further discussed)

| Discard detected faults | Fault dropping

yes no
More faults ? @

Ch2-37

Fault Collapsing

e Fault Equivalence

e Fault Dominance

e Checkpoint Theorem

19

Fault Equivalence

* Distinguishing test
- A test £ distinguishes faults o and § if
Za(()®Zg(t)=1

e Equivalent Faults

- Two faults, o & are said to be equivalent
in a circuit , iff the function under a is equal to
the function under 3 for any input combination
(sequence) of the circuit.

— No test can distinguish between o and

Ch2-39

Fault Equivalence

AND gate:

- all s-a-0faults are equivalent
OR gate:

— all s-a-7 faults are equivalent
NAND gate:

- all the input s-a-0 faults and the output
s-a-1 faults are equivalent

NOR gate:

- all input s-a-7 faults and the output
s-a-0 faults are equivalent

Inverter:

- input s-a-7 and output s-a-0 are equivalent
input s-2-0 and output s-a-7 are equivalent

s-a-0

same effect

Ch2-40

20

Equivalence Fault Collapsing

e n+2instead of 2(n+17)faults need to
be considered for n-input gates

i s-a-1 %ﬂ
sal) s-a-0 a0 s-a-0
STL s-a-1 Sﬁ)@s-a-l
sal)Os-a-o a0 s-a-0

Ch2-41

Equivalent Fault Group

¢ In a combinational circuit
- Many faults may form an equivalent group

- These equivalent faults can be found by sweeping the
circuit from the primary outputs to the primary inputs

s-a-0

s-a-1
——

Three faults shown are equivalent !

Ch2-42

2]

Finding Equivalent Group

e Construct a Graph
- Sweeping the netlist from PO’s to Pl's

— When a fault o is equivalent to a fault 3, then an edge is
connected between then

- Transitive Rule:

e When o connects (3 and } connects y, then o connects y

Equivalent group = { a/0, b/0, d/0, c/1, e/} ~ .

Fault Dominance

e Dominance Relation

— A fault j is said to dominate another fault
o in a circuit, iff every test (sequence) for a is
also a test (sequence)
for p.

- lLe., test-set(p) > test-set(a)

— No need to consider fault for fault detection

——p |o is dominated by § |

Ch2-44

)

Fault Dominance

AND gate:

— Output s-a-7 dominates any input s-a-7
NAND gate:

— Output s-a-0 dominates any input s-a-7
OR gate:

— Output s-a-0 dominates any input s-a-0
NOR gate:

— Output s-a-7 dominates any input s-a-0
Dominance fault collapsing:

— The reduction of the set of faults to be analyzed
based on dominance relation

Easier-to-test

|

arder-to-test

Ch2-45

Stem v.s. Branch Faults

P —
C: stem of a multiple fanout A

A & B: branches C —x— _jD—

B

e —
e Detect A sa1:

2(t)® ¢ (t) = (CD® CE)®(D® CE)=D®CD=1

:>(C:O, D:l)
e Detect C sa1:
Z(t)(-BZf(t):(CD(-BCE)(-B(D(-BE):l
=(C=0, D=1)0r(C=0, E=1)
¢ Hence, C sa1 dominates A sa1l
e Similarly
- Csal dominates B sa1
- Csa0 dominates A sa0
- Csa0 dominates B sa0

¢ In general, there might be no equivalence or
dominance relations between stem and branch faults ch2-46

Analysis of a Single Gate

AB| C | A|BJC|A|BJjC

A— sal | sal fsal | sa0 | sa0f sa0
B_

0
01| 0 1 1
10| O 1 1
11| 1 0| Of O

e Fault Equivalence Class Negligible fault

- (A s-a-0, B s-a-0, C s-a-0)
¢ Fault Dominance Relations
- (C s-a-1 > A s-a-1) and (C s-a-1 > B s-a-1)
¢ Faults that can be ignored:
- A s-a-0, B s-a-0, and C s-a-1
Ch2-47

Fault Collapsing

e Equivalence + Dominance

- For each n-input gate, we only need to consider
n+17 faults during test generation

el s-a-0 A
E=pi=
P 1

Ch2-48

24

Dominance Graph

e Rule

- When fault o dominates fault 3, then an arrow is
pointing from o to

e Application

- Find out the transitive dominance relations among

faults
a s-a-0
a_—|
a s-a-1
b : -
e s-a-0
c e e s-a-1
Ch2-49

Fault Collapsing Flow

Sweeping the netlist from PO to P1 | Equivalence
analysis

To find the equivalent fault groups

Sweeping the netlist Dominance
To construct the dominance graph analysis

Discard the dominating faults

Select a representative fault from
each remaining equivalence group

Generate collapsed fault list

Ch2-50

25

Prime Fault

1 a is a prime fault if every fault that is
dominated by o is also equivalent to

(0

Ch2-51

Why Fault Collapsing ?

e Memory and CPU-time saving

e Ease testing generation and fault

simulation
Y

W=

* 30 total faults > 12 prime faults

Ch2-52

Checkpoint Theorem

e Checkpoints for test generation

- A test set detects every fault on the primary inputs
and fanout branches is complete

- l.e., this test set detects all other faults too

- Therefore, primary inputs and fanout branches form a
sufficient set of checkpoints in test generation

- In fanout-free combinational circuits, primary inputs
are the sole checkpoints

Stem is not a checkpoint !

SV —
+.
/ >

Ch2-53

Why Inputs + Branches Are Enough ?

e Example
- Checkpoints are marked in blue

- Sweeping the circuit from Pl to PO to examine every
gate, e.g., based on an order of (A->B->C->D->E)

- For each gate,
output faults are detected if every input fault is detected

b
i

) D

Ch2-54

Fault Collapsing + Checkpoint

e Example:

— 10 checkpoint faults
- as-a-0<=>ds-a-0, c s-a-0 <=> e s-a-0
bs-a-0 > ds-a-0 , bs-a-1 > d s-a-1

— 6 tests are enough
=1
d
— D
e
T

Ch2-55

"= i—j‘:’-%—'\ B

EE-6250
AW T BRI
VLSI Testing

—

Chapter 3
Fault Simulation

Outline

m) - Fault Simulation for Comb. Ckt

Basic of Logic Simulation

Parallel Fault Simulation

Deductive Fault Simulation

— Concurrent Fault Simulation
e Approximation Approach
e Techniques for Sequential Circuits

Note: Comb. Ckt: Combinational Circuits

Ch3-2

Why Fault Simulation ?

e To evaluate the quality of a test set
- l.e., to compute its fault coverage
e Part of an ATPG program

— A vector usually detects multiple faults

— Fault simulation is used to compute the faults
accidentally detected by a particular vector

e To construct fault-dictionary
— For post-testing diagnosis

e To Evaluate the fault coverage of a
functional patterns

Faulty Circuit #1 (A/0)

—

Ch3-3
Conceptual Fault Simulation
Patterns Response
(Sequences) Comparison
(\Vectors) Faulty Circuit #n (D/0)
'/
Faulty Circuit #2 (B/1) |

: Detected?

1

[

Fault-free Circuit

Primary| A B
Inputs D

(Pls) c :
Primary Outputs
(POs)

Logic simulation on both good (fault-free) and faulty circuits

Ch3-4

Some Basics for Logic Simulation

e For fault simulation purpose,

- mostly the gate delay is assumed to be zero unless the
delay faults are considered. Our main concern is the
functional faults

e The logic values
— can be either two (0, 1) or three values (0, 1, X)

e Two simulation mechanisms:

— Oblivious compiled-code:

e circuit is translated into a program and all gates are executed
for each pattern. (may have redundant computation)

— Interpretive event-driven:

« Simulating a vector is viewed as a sequence of value-change
events propagating from the PI’s to the PO’s

= Only those logic gates affected by the events are re-evaluated

Ch3-5

Compiled-Code Simulation

O w >
m

e Compiled code
- LOAD A /* load accumulator with value of A*/
- AND B /* calculate A and B */
- AND C /* calculate E =AB and C*/
D /* calculate Z=E or D*/
Z

/* store result of Z*/

Ch3-6

Event-Driven Simulation

1 1 A—] 0>?

0—1 B—1]G1 E

0—1 C— z 0>?
0>0 D

@ Initialize the events at Pl’s

In the event-queue

l

Pick an event
Evaluate its effect

l

Schedule the newly born events
In the event-queue, if any

Complexity of Fault Simulation

#Gate (G)

#Fault (F
t(F)

#Pattew/

e Complexity ~ F - P - G ~ O(G®), where G is the no. of gates
« The complexity is higher than logic simulation by a factor of £,
while usually is much lower than ATPG
e The complexity can be greatly reduced using
e Fault dropping and other advanced techniques

Ch3-8

Characteristics of Fault Simulation

e Fault activity with respect to fault-free
circuit
— is often sparse both in time and in space.

e For example

- F1 is not activated by the given pattern, while F2
affects only the lower part of this circuit.

0 F1(s-a-0)
1

F2(s-a-0)
1

Ch3-9

Fault Simulation Technigues

Serial Fault Simulation

— trivial single-fault single-pattern

Parallel Fault Simulation

Deductive Fault Simulation

Concurrent Fault Simulation

Ch3-10

Parallel Fault Simulation

e Simulate multiple circuits at a time:

— The inherent parallel operation of computer words to
simulate faulty circuits in parallel with fault-free
circuit

— The number of faulty circuits, or faults, can be
processed simultaneously is limited by the word
length, e.qg., 32 circuits for a 32-bit computer

e Extra Cost:

— An event, a value-change of a single fault or fault-free
circuit leads to the computation of the entire word

— The fault-free logic simulation is repeated for each
pass

Ch3-11

Example: Parallel Fault Simulation

e Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0) fault-free
e Bit-space: (FF denotes fault-free)

ENEAERER

B/1 NBHEE

1

o[+]019 [c[oTio[g =

—
5 Tl
D

O[A[0[d 1 2.

J/io
0]2[0fo] [o]aTorq]
1

1/0|0]1

[1]1]o]1d
‘ Q: What faults are detected?

F/O

Ch3-12

Example: Parallel-Pattern Simulation

— L[[o]
QR DO —

» Consider one fault F/0 and four patterns: P3,P2,P1,PO

Bit-Space: [p3 [P2 [pP1]Po]

A

1

—_—]

F
1JoJo1 [1]o]o 1
[oJofoTo

11110 |1

Ch3-13

Parallel-Pattern v.s. Parallel-Fault

Parallel-pattern

Pls

Pls

Parallel-fault

]

POs

POs

P1, P2, P3 are patterns events
F1, F2, F3 are faults

Complexity

- Is proportional to the events that
need to be processed

- The value-change events (upper
figure) seems to be fewer than
the fault-events (lower figure)

- Hence, parallel-pattern seems to
be more efficient than parallel-
fault methods

Ch3-14

Deductive Fault Simulation

e Simulate all faulty circuits in one pass

— For each pattern, sweep the circuit from PI’s to PO’s.

— During the process, a list of faults is associated with

each line

— The list contains faults that would produce a fault
effect on this line

— The union fault list at every PO contains the detected

faults by the simulated input vector

e Major operation: fault list propagation
- Related to the gate types and values
— The size of the list may grow dynamically, leading to a

potential memory explosion problem

Ch3-15

Controlling Value of a Logic Gate

A__
s z

Whenever there is a ‘0’ in the inputs, Z will be ‘0’
=» Controlling value for NAND gate is ‘0’
= Non-Controlling value is ‘1’

Gate Type Controlling Non-Controlling
Value Value
AND ‘0 1
OR 1 ‘0
NAND ‘0 ‘v
NOR 1’ ‘0

Ch3-16

Example: Fault List Propagation

RESTHI 5l T RO 5T T SRR T T TR, T T SRR T T
Fault-free simulation results: {A=0, B=0, C=0}
Q: What is the detected fault list at line C?

(Reasoning) To create a fault effect at line C, we need {A=1, B=1}
=>» which means that we need a fault effect at A as well as B

=> It can be achieved in faulty circuits LA - LB

=>» Also C/1 is a new fault to be included in the fault list of C

LA, LB, LC are fault list propagated to their respective lines

LA is the set of all faults not in LA

Ch3-17

Example: Fault List Propagation

LA, LB, LC are detected fault list
at their respective lines LA
Consider a two-input AND-gate: { | o j’— Lc

Non-controlling case: Case 1: A=1, B=1, C=1 at fault-free,
Lc =LA+ LB+ {C/0}

Controlling cases: Case 2: A=1, B=0, C=0 at fault-free,
Lc=LA-LB+{C/1}

Case 3: A=0, B=0, C=0 at fault-free,
Lc=LA - Ls +{C/1}

LA is the set of all faults not in LA
Ch3-18

Example: Deductive Simulation (1)

» Consider 3 faults: B/1, F/0, and J/O

Fault List at PI’s:

L ={B/1}, LF={F/0}, LA=¢, Lc=LD ={B/1}

Ch3-19

Example: Deductive Simulation (2)

» Consider 3 faults: B/1, F/0, and J/0

Fault Lists at G and E:

LB = {B/1}, LF = {F/0}, LA = ¢, Lc=LD = {B/1},
Lc = (LA*Lc)={B/1}
LE = (LD) ={B/1}
Ch3-20

10

Example: Deductive Simulation (3)

» Consider 3 faults: B/1, F/0, and J/0

Computed Fault List at H:

LB ={B/1}, LF={F/0}, Lc=LD = {B/1},
LG = {B/1}, LE = {B/1}
LH = (LE + LF) = {B/1, F/0}

Ch3-21

Example: Deductive Simulation (4)

» Consider 3 faults: B/1, F/0, and J/0

Final Fault List at the output J:
Ls ={B/1}, LF={F/0}, Lc=LD = {B/1},
LG ={B/1}, LE = {B/1}
LH = {B/1, F/0},
LJ = (LG - LH) {F/0, J/0}
Ch3-22

11

Example: Even-Driven
Deductive Fault Simulation

* When A changes from 1 to 0

Event-driven operation:

LB = {B/1}, LF = {F/0}, LA= ¢
Lc=LD ={B/1}, LG = ¢,
LE = {B/1}, LH={B/1,F/0}, LJ={B/1,F/0,J/0}
Ch3-23

Concurrent Fault Simulation

e Simulate all faulty circuits in one pass:

— Each gate retains a list of fault copies, each of which
stores the status of a fault exhibiting difference from
fault-free values

e Simulation mechanism

— is similar to the conceptual fault simulation except
that only the dynamical difference w.r.t. fault-free
circuit is retained.

e Theoretically,
— all faults in a circuit can be processed in one pass

e Practically,

— memory explosion problem may restrict the number of
faults that can be processed in each pass

Ch3-24

Y

Concurrent Fault Simulation

Fault-free

20N

As compared to deductive fault simulation
F100 5 concurrent fault simulation can process

multiple patterns in a single run of simulation
Can be 0 o) F73
dropped |0

=
survivor) 1) F2

survivor

Ch3-25

Example: Concurrent Simulation (1)

» Consider 3 faults: B/1, F/0, and J/O

LG ={10 0,B/1:11 1} LE={0_1, B/1:1 0}

';ault A fault B/1
ree
Ch3-26

15

Example: Concurrent Simulation (2)

e Consider 3 faults: B/1, F/0, and J/0

LG ={10 0,B/1:11 1} LE={0_1, B/1:1 0}
LH ={11_1, B/1:01_0, F/0:10 0}

Ch3-27

Example: Concurrent Simulation (3)

» Consider 3 faults: B/1, F/0, and J/O

Lc={10 0,B/1:11 1} LE={0_1,B/1:1 0}

LH={11_1, B/1:01 0, F/0:10_0}

L) ={01_1, B/1:10_1, F/0:00_0, J/0:01_0}
dropped

Ch3-28

14

Example: Concurrent Simulation (4)

* When A changes from 1 to 0

LG ={00 0, B/1:01 0} LE={0_1,B/1:1 0}
LH = {11_1, B/1:01_0, F/0:10_0}
L3 ={01_1, B/1:00_0, F/0:00_0, J/0:01_0}

Ch3-29

Fault List Including New Borns

Ch3-30

A)

Fault List Propagation

A—o
0
B—0
These 2 faultsare | A/1: 10 0
not propagated — .
after evaluation B/1:01 0
D/1: 00_1
*
A—1
0
B—o
*A/0: 00_0
*B/1:11_1
*D/1:10_1

D E
C

C/1:01_1
/ D/1:10_1
“ropagated E/1:00_1
D D c
C

*B/1: 10_1
/ C/1:01. 1
.+ *D/1:10 1

E/1:00_1
- Ch3-31

Outline

e Fault Simulation for Comb. Circuits

e Approximation Approach

— Critical Path Tracing

— Probabilistic Approach

e Techniques for Sequential Circuits

Ch3-32

16

Sensitive Input and Critical Path

. Sensitized ?
Non-sensitive input 1 0 ensttize

Sensitive input O

/is critical if Z is sensitized to at least one PO

e Sensitive Input of a gate:

— A gate input /is sensitive if complementing the value of 7
changes the value of the gate output

e Critical line
— Assume that the fault-free value of wis vin response to ¢

— Alline wis critical w.r.t. a pattern tiff £ detects the fault
w stuck-at v’

e Critical paths

- Paths consisting of critical lines only
Ch3-33

Basics of Critical Path Tracing

sensitization

1 o _ .. Path(s)
0 Zis Crltlcal ... » PO

PO is sensitive to /, or /is critical

e A gate input /is critical w.r.t. a pattern tif
— (1) the gate output is critical and
— (2) /is a sensitive input to ¢
— Use recursion to prove that /7 is also critical

e In a fanout-free circuit

— the criticality of a line can be determined by
backward traversal to the sensitive gate’s inputs from
PO’s, in linear time

Ch3-34

Analysis of Critical Path Tracing

e Three-step Procedure:
— Step 1: Fault-free simulation
- Step 2: Mark the sensitive inputs of each gate

— Step 3: Identification of the critical lines by backward
critical path tracing)

e Complexity is O(G)
- Where G is the gate count
- for fanout-free circuits --- very rare in practice

e Application

- Applied to fanout-free regions, while stem faults are
still simulated by parallel-pattern fault simulator.

Ch3-35
Example of Critical Path Tracing
= sensitive input, —— critical line
Detected faults in the fanout-free region:
{J/0, H/0, F/0, E/O, D/1}
Question: is B stuck-at-1 detected ?
Ch3-36

15

Anomaly of Critical Path Tracing

» Stem criticality is hard to infer from branches.
E.g. is B/1 detectable by the given pattern?

1
C
o) D_DQ_E‘ 1
1
F
e It turns out that B/1 is not detectable even though both C
and D are critical, because their effects cancel out each

other at gate J, (i.e., fault masking problem)
* There is also a so-called multiple path sensitization problem.

Ch3-37

Multiple Path Sensitization

(stem)

Both C and D are not critical, yet B is critical and B/0
can be detected at J by multiple path sensitization.

Ch3-38

19

Parallel and Distributed Simulation

e To share the fault simulation effort

— by a number of processors either tightly
connected as in parallel computation or loosely
connected as in distributed computation.

e The speed-up
— with respect to the processor number depends on

the degree of duplicated computation, and the
communication overhead among processors.

e The distributed simulation

— on a cluster of networked workstations is
especially appealing.

Ch3-39

Distributed Simulation Techniques

e Fault Partition

— Distributes faults among many processors.

- Works relatively well for both combinational and
sequential circuits.

e Pattern Partition
— Distributes patterns among processors.
* no duplicated logic simulation
— Works well for combinational circuits.
e Circuit Partition

— Difficult to achieve synchronization without
incurring excessive communication overhead.

Ch3-40

20

Distributed Fault Simulation

e Typical Speed-up versus No. of Processors

Speed-up
Ratio

Processor

* Diminished increase of speed-up ratio with more processors

Ch3-41

Fault Grading

e Approximate fault coverage

— Can be obtained in much shorter computational
time than regular fault simulation.

— Not suitable for high fault-coverage requirement.

e Typical fault grading methods:
Toggle test, e.g. DATAS

Detection probability computation, e.g. STAFAN
Fault sampling

 estimate from a selected subset of total faults
Test set sampling

* estimate from a subset of complete test sequence

Ch3-42

2]

STAFAN

e Compute fault detection probability
from logic simulation.

— d, = detection probability of s-a-0 on | = C1(1)O(l)
— d, = detection probability of s-a-1 on | = CO(I)O(l)

_0-count _1-count

co(l) Cu(l)

__sensitization -count

s(l)

n
o(l) =S(1o(m) ' :D—m

- m is the immediate successor of |
- observability can be computed backwards from POs

Ch3-43

STAFAN (cont.)

df =1-(1—d,)" nis the no. of vectors

n
Zd <«— | the summation of
Statistical Fault Coverage = q‘) (H each fault’s detection

probability

@ is the set of faults of interest

e More sophisticated than toggle test
with same computation complexity

Ch3-44

)

Outline

e Fault Simulation for Comb. Circuits

e Approximation Approach

- Toggle Counting
— Critical Path Tracing
— Probabilistic Approach

m) - Techniques for Sequential Circuits

Ch3-45

Fault Grading for
Functional Input Sequence

Inputs:
(1) A test application program
(2) A sequential design
Output: The fault coverage
Application: High-Performance CPU Designs

Major challenge: often too time-consuming

25

Sequential Design Model

Sequential Circuits

- D Comb. Comb. J
2 logic FFs logic FFs—D outl
|_.L |_.L—. out2
B
clk
A— - — OUT1
B | Combinational —oyT2
c Logic
&= Hoffman Model

FFs
Ch3-47
Time-Frame-Expansion Model
Ex: Input Sequence (‘0’, 0, ‘0’)
State Sequence (S0 2 S1 2> S2 2 S3)
501 ‘0’ ‘01
PO L PO L PO
f Al f f
% — S1—
il t
PPI PPO
Notations: PPI: pseudo primary inputs (l.e., outputs of flip-flops)
PPO: pseudo primary outputs (l.e., inputs of flip-flops)
A single fault becomes multiple faults in
the time-frame-expansion model
Ch3-48

24

Hypertrophic Faults

e A hypertrophic fault

- Is a fault that diverges from the fault-free circuit with
a large number of Xs, which usually is a stuck-at fault
occurring at a control line and thus prevents the
circuit initialization
e A small number of hypertrophic faults

— account for a large percentage of fault events and
CPU time

e These faults are sometimes dropped

— as potentially detected faults to reduce simulation
time. However, the resultant fault coverage then
becomes approximate

A potentially detected fault is
a fault detected only when the circuit is
powered on in certain states, not every state.

Ch3-49

Fault Emulation

We can utilize FPGA to speed up the sequential fault grading

25

FPGA-Based Emulation Process
i.e.,
Programming FPGA’s
]

Emulation
hardware

FPGA chips —

Ch3-51

Serial Fault Emulation by FPGA'’s

Fault-free FPGA’s

Test
sequence

Fault injection %

Fault
coverage
h3-52

26

Fault Injection Should Be Efficient !

e Fault Injection

- Is to convert a fault-free FPGA implementation to a
faulty one

— If not efficient, could become the new bottleneck
e (1) Static Fault Injection

— Directly changes the configuration of the fault-free
implementation to a faulty one

e (2) Dynamic Fault Injection
— Do not change the configuration directly

- Fault inject is injected through the control of some
hardware originally built-in to the netlist

Ch3-53
Static Fault Injection
R T R T S R 1 R e, 5 T R e 5 S
Faulty CLB
A E s-a-0
Simplify to
B —
C— — Z C Z
Bit-stream of the entire circuit
¥
Portion that needs to be modified and re-programmed
into the FPGAs through partial re-programming
Ch3-54

Example: FPGA-implementation

Two faults are being considered:
A stuck-at 1
G stuck-at-0

—_—
—_—
[]

[]

[]
—

CLB1

CLB2

———
———
(]

[]

[]
f—p

Ch3-55

Dynamic Fault Injection (1)

enable

—
—
(]

(]

[J
—p

(Produce 1-hot output)

CLB1

CLB2

l—
f—
o
(]

(]
l———p

(x=1, y=0) > The above netlist behaves like A s-a-1 faulty circuit
(x=0, y=1) 2> The above netlist behaves like G s-a-0 faulty circuit

Ch3-56

5

Dynamic Fault Injection (l1)

RS 5 T RO T 1 RS T 1 R A T R S
(1) Conservatively map only 4-input function to a CLB,

which is originally assumed to be capable of realizing 5-input function.
(2) Extrainput, l.e., X, is reserved for the control of dynamic fault injection.

a
b Faulty
¢ Function
d f(a,b,c,d)
1
MUX > 7z
L | 0
Good
Function
g(a,b,c,d)
X

A Configurable Logic Block (CLB)

with a dynamic fault injected (activated with x=1) e

Overview of Dynamic Fault
Injection (II)

In the following configuration:
5 faults are injected (one for each column), but only 1 is activated

FPGA | cLe [cLe [q|etB [cLe | cLe [T
[ce e[c H|cLe | cLe

—_—
——|faulty [etB H [ce H [cea H [cra H [ce H
: .
A []
[]
) .

[ceH|ce H|[ce H|cBH | cLs
[cieH|ce]| ce | cLe H[ctB }-

s

Circular shift-register

Ch3-58

e

R XS 12

EE-6250
A AR TERZ
VLSI Testing

—

Chapter 4
Automatic Test Pattern Generation

General ATPG Flow

e ATPG (Automatic Test Pattern Generation)

- Generate a set of vectors for a set of target faults
e Basic flow
Initialize the vector set to NULL

Repeat
Generate a new test vector
Evaluate fault coverage for the test vector
If the test vector is acceptable, then add it to the vector set

Until required fault coverage is obtained
e To accelerate the ATPG

- Random patterns are often generated first to detect easy-
to-detect faults, then a deterministic TG is performed to
generate tests for the remaining faults

ch4-2

Combinational ATPG

* Test Generation (TG) Methods

- Based on Trut

h Table

- Based on Boolean Equation

- Based on Stru

ctural Analysis

* Milestone Structural ATPG Algorithms

D-algorithm [Roth 1967]
9-Valued D-algorithm [Cha 1978]
PODEM [Goel 1981]

FAN [Fujiwara 1983]

ch4-3

A Test Pattern

A Fully Specified

(every Pl is either 0 or 1)

Test Pattern

Y stuck-at 1
D_ ol

O_
0—
1
1

D1

—0/1

A Partially Specified Test Pattern
(certain PI’s could be undefined)

1 _Dstuck-at 0
] 1/0

X

X

=iy

1/0

ch4-4

Test Generation Methods
(From Truth Table)

Ex: How to generate tests

for the stuck-at 0 fault
abc | f | fa
(fault o0)?
ooo|o0]| o0
oo1/0]|o0
a S a stuck-at 0 o10/lo] o
N o11|of o
b L ‘ 100|0] 0
101 (1|1
f 110(1| 0
—: 111 (1|1
C .

ch4-5

Test Generation Methods

(Using Boolean Equation)

E::[D%SWCK at 0
f = ab+ac, fa = ac ﬁ)ﬁ ¢
Ta = the set of all tests for fault a
= ON_set(f®fa) C;ED_
= ON_set(f) * OFF_set(fa) + OFF_set(f) * ON_set(fa)
= {(a,b,c) | (ab+ac)(ac)' + (ab+ac)'(ac) =1 }4-| Boolean equation I
={(a,b,c) | abc'=1}

={(110) }. High complexity !!
Since it needs to compute the faulty
function for each faulit.

* ON_set(f): All input combinations to which f evaluates to 1.
OFF_set(f): All input combinations to which f evaluates to 0.
Note: a function is characterized by its ON_SET

ch4-6

Boolean Difference

e Physical Meaning of Boolean Difference

- For a logic function F(X)=F(x1, ..., Xi, ..., Xn), find all the input
combinations that make a value-change at xi also cause a value-
change at F.

e Logic Operation of Boolean Difference
- The Boolean difference of F(X) w.r.t. input xi is

dF (x)/dx; = F,(0)DF,(1) = F(0) - Fi(1)’ + F,(0)’ - F,(1)
Where
Fi(0) = F(Xqy aeny Oy uaey X))
Fi(1) = F(Xqy aeny 1y waey X))

¢ lllustrations of Boolean Difference

ch4-7

Chain Rule

.................
.......

B:D ' [— G(f(A, B), {C, D})

c {A,B} and {C,D} have no
variables in common

f=AB . dGldf=(C'+D)
G=f+CD dfidA = B

== dG/dA = (dG/df) - (df/dA) = (C’+D’) - B

An Input vector v sensitizes a fault effect from A to G
Iff v sensitizes the effect from A to f and from fto G

ch4-8

Boolean Difference (con’t)

e Boolean Difference

— With respect to an internal signal, w, Boolean
difference represents the set of input combinations
that sensitize a fault effect from w to the primary

output F
e Calculation

— Step 1: convert the function F into a new one G that
takes the signal w as an extra primary input

- Step 2: dF (x4, -y X,)/dW = dG (X4, aany X, W)/ dW

X1 —

X —

w

Free w .
F ——) : .-x

ch4-9

Test Gen. By Boolean Difference

Case 1: Faults are present at Pls.

a x

b

'jD_.F:ab+ac

D_
D_ F(a=0) = 0

F(a=1) = (b+c)

Fault Sensitization Requirement:
- dF/da = F(a=0) ® F(a=1) = 0 © (b+c) = (b+c)

Test-set for a s-a-1 = {(a,b,c) | a'. (b+c)=1} = {(01x), (0x1)}.
Test-set for a s-a-0 = {(a,b,c) | a . (b+c)=1} = {(11x), (1x1)}.

No need to compute
The faulty function !!

1 N
Fault activation Fault sensitization
requirement requirement

ch4-10

Test Generation By Boolean
Difference (con’t)

Case 2: Faults are present at internal lines.

o [

F=ab +ac

C

G(i.e., F with h floating) = h + ac
dG/dh = G(h=0) ®G(h=1) = (ac ® 1) = (a’+c’)

Test-set for h s-a-1 is
{ (a,b,c)| h* ¢ (a'+c")=1} = { (a,b,c)| (a'+b") « (a'+c')=1 } = { (0xx), (x00) }.
Test-set for h s-a-0 is
{(a,b,c)| h « (a'+c")=1} = {(110)}.
[N

For fault activation For fault sensitization
ch4-11

Outline

* Test Generation (TG) Methods

- Based on Truth Table
- Based on Boolean Equation
— Based on Structural Analysis

) - D-algorithm [Roth 1967]
— 9-Valued D-algorithm [Cha 1978]
— PODEM [Goel 1981]
— FAN [Fujiwara 1983]

ch4-12

Test Generation Method
(From Circuit Structure)

e Two basic goals
- (1) Fault activation (FA)
- (2) Fault propagation (FP)
- Both of which requires Line Justification (LJ), l.e., finding

input combinations that force certain signals to their desired
values

e Notations:

- 1/0 is denoted as D, meaning that good-value is 1 while
faulty value is 0

— Similarly, 0/1 is denoted D’
- Both D and D’ are called fault effects (FE)

1 a —m 1/0 —— fault activation
1 b

I_ — f
o c——P— o — fauit propagation

ch4-13

Common Concepts for Structural TG

e Fault activation

— Setting the faulty signal to either 0 or 1 is a Line
Justification problem

e Fault propagation
— (1) select a path to a PO - decisions

- (2) Once the path is selected > a set of line
justification (LJ) problems are to be solved

e Line Justification
- Involves decisions or implications
- Incorrect decisions: need backtracking

To justify c=1 > a=1 and b=1 (implication) a
To justify c=0 > a=0 or b=0 (decision) b ¢

ch4-14

Ex: Decision on Fault Propagation

4—@0—69— f1

d
b Gl CI>
o G@— f2 G5 G6
e G4 |fai| | |success |

Fault activation decision tree
e G1=0 > { a=1, b=1,c=1}> { G3=0}
Fault propagation: through G5 or G6

-

Decision through G5:

¢ G2=1 > {d=0, a=0 } > inconsistency at a > backtrack !!
Decision through G6:

¢ > G4=1 > e=0 - done !! The resulting test is (111x0)

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.

ch4-15

Various Graphs

A Combinational Circuit: is usually modeled as a DAG, but not tree

Digraph
(directed graph)

ch4-16

Ex: Decisions On Line Justification

oo oo
__57‘_
Q

success
The corresponding

0 ,
ID_E p decision tree

J-frontier: is the set of gates
whose output value is known
- FA>sethtoO (I.e., 0 or 1), but is not implied

_ = = =0) - = = by its input values.
FP > e=1, =1 (30=0); FP > q=1, r=1 | nitially, J-frontier is {q=1, r=1}
- To justify q=1 > I1=1 or k=1
- Decision: | =1 > ¢c=1, d=1 > m=0, n=0 - r=0 - inconsistency atr >
backtrack !

- Decision: k=1 > a=1, b=1

>0

— To justify r=1 > m=1 or n=1 (->¢c=0 or d=0) > Done ! (J-frontier is ¢) ch4-17

Branch-and-Bound Search

e Test Generation
- Is a branch-and-bound search
- Every decision point is a branching point
— If a set of decisions lead to a conflict (or bound), a
backtrack is taken to explore other decisions
- A test is found when
¢ (1) fault effect is propagated to a PO
¢ (2) all internal lines are justified
- No test is found after all possible decisions are tried
- Then, target fault is undetectable
— Since the search is exhaustive, it will find a test if one
exists

For a combinational circuit, an undetectable fault is also a
redundant fault > Can be used to simplify circuit.

ch4-18

Implications

e Implications
— Computation of the values that can be uniquely
determined

¢ Local implication: propagation of values from one
line to its immediate successors or predecessors

* Global implication: the propagation involving a
larger area of the circuit and re-convergent fanout
e Maximum Implication Principle
— Perform as many implications as possible

— It helps to either reduce the number of problems
that need decisions or to reach an inconsistency
sooner

ch4-19

Local Implications (Forward)

Before After

.0
= Do

D~ D

0 . L 0 .
} J-frontier={ ...,a } i(—j_D— J-frontier={ ... }
a 0 a
-

D-frontier={ ...,a } B:D—O—é) D-frontier={ ... }

ch4-20

U7 kP BV K

10

Local Implications (Backward)

Before After
X <1
Lji ! | f_l} !
X < 0
D= 3D

b |
< <

< i .
D? g J-frontier={ ... } D? 0 J-frontier={ ...,a }
<] 1

Dal 1,

ch4-21

Global Implications

Before After

¢ Unique D-Drive Implication

- Suppose D-frontier (or D-drive) is {d, e}, > g is a dominator
for both d and e, hence a unique D-drive is at g

g is called a dominator of d:
because every path from d to an PO passes through g

ch4-22

11

Learning for Global Implication

* Static Learning [A>B=>-B>~A]|

- Global implication derived by contraposition law

- Learn static (l.e., input independent) signal implications
* Dynamic Learning

- Contraposition law + other signal values
- Is input pattern dependent

A = A _1 D
c E C E

F=1 implies B=1 F=0 implies B=0 When A=1
Because B=0 > F=0 Because {B=1, A=1} > F=1
(Static Learning) (Dynamic Learning)
ch4-23

Early Detection of Inconsistency

Aggressive implication may
help to realize that the sub-
tree below is fruitless, thus
avoiding unnecessary search

A potential
sub-tree

“
Success

sub-tree without a solution

ch4-24

Y

Ex: D-Algorithm (1/3)

* Five logic values
- {0,1,x,D,D’}

D

Try to propagate

- Setdto1

Fault effect thru G1

Try to propagate

- Set j,k,I,m to 1

Fault effect thru G2

Conflict at k
- Backtrack !

ch4-25

Ex: D-Algorithm (2/3)

* Five logic values
- {0,1,x,D,D’}

=

i D
G1

Try to propagate

- Setj,I,m to 1

Fault effect thru G2

n

G2

D

(@loyh

1 o2
=i

D-frontier chosen)

Conflict at m
- Backtrack !

ch4-26

15

Ex: D-Algorithm (3/3)

* Five logic values Try to propagate
-{0,1,x,D,D’} Fault effect thru G2

) h 1 - Setj,Ito 1

Fault propagation
D’ and line justification
G1 are both complete
- Atest is found !

e‘{bou G2 p—
f—+[:

(@loyh
(e}

b | This is a case of
1 multiple path sensitization !
Do_m_
D’ (next D-frontier chosen)

ch4-27

D-Algorithm: Value Computation

Decision | Implication | Comments

e=1 Propagate via k
a=0 Active the fault k=D’ 2
h=1)
e’=0
b=1 Unique D-drive i=1
c=1 I=1 Propagate via n
9=D m=1
d=1 Propagate via i n=D

QT
I
&9
- =
b
o

=1 Propagate via n miD’ Contradiction
k=1 f=1 Propagate via m
I=1 m=D’
m=1 £=0

n’:D =1

e’=0 n=D

e=1

k=D’ Contradiction

ch4-28

Decision Tree on D-Frontier

* The decision tree below
- Node > D-frontier
- Branch - Decision Taken
— A Depth-First-Search (DFS) strategy is often used

[gleye)]
o

9-Value D-Algorithm

e Logic values (fault-free / faulty)

- {o0/0, 0/1, 0/u, 1/0, 1/1, 1/u, u/0, u/1, u/u},

— where 0/u={0,D"}, 1/u={D,1}, u/0={0,D}, u/1={D",1},
u/u={0,1,D,D"}.

e Advantage:

— Automatically considers multiple-path
sensitization, thus reducing the amount of search
in D-algorithm

— The speed-up is NOT very significant in practice
because most faults are detected through single-
path sensitization

ch4-30

A)

Example: 9-Value D-Algorithm

h 1u>11

. |
1/u J

n

—+—

0/ 9| p (1/0)
%
T—u N success

1/Lf | \J D’or1 |

(gRex]

0/1
d Decision Tree
d 0/u ,
1/u g (PR
D'(01) G)“ @

e' I
i Uy o
e G2
u/ D(=1/0)

> f

u/0

f* - " No-backtrack
)C ut ’

ch4-31

Final Step of 9-Value D-Algorithm

e To derive the test vector
e A =(0/1) > 0 (take the fault-free one)
e B=(1u) > 1
eC=(1u)>1
e D=(u1)>1
cE=(u1)>1
e F=(u1)>1

e The final vector
- (A!B!C!D!E!F) = (0! 1! 1! 1! 1! 1)

ch4-32

16

Outline

* Test Generation (TG) Methods

- Based on Truth Table
- Based on Boolean Equation
— Based on Structural Analysis
— D-algorithm [Roth 1967]
— 9-Valued D-algorithm [Cha 1978]

‘ - PODEM [Goel 1981]
— FAN [Fujiwara 1983]

ch4-33

PODEM: Path-Oriented DEcision
Making

Fault Activation (FA) and Propagation (FP)

- lead to sets of Line Justification (LJ) problems. The LJ problems
can be solved via value assignments.

In D-algorithm

- TG is done through indirect signal assignment for FA, FP, and LJ,
that eventually maps into assignments at Pl’s

- The decision points are at internal lines

- The worst-case number of backtracks is exponential in terms of
the number of decision points (e.g., at least 2k for k decision
nodes)

in PODEM

- The test generation is done through a sequence of direct
assignments at Pl's

— Decision points are at Pls, thus the number of backtracking might
be fewer

ch4-34

Search Space of PODEM

Complete Search Space

A binary tree with 2" leaf nodes, where n is the number of PI’s

Fast Test Generation
Need to find a path leading to a SUCCESS terminal quickly

Objective() and Backtrace()

PO

Also aims at establishing a sensitization path based on fault
activation and propagation like D-algorithm

Instead of justifying the signal values required for sensitizing the

selected path, objectives are setup to
guide the decision process at Pl's

Objective

is a signal-value pair (w, v,,)

Backtrace

Backtrace maps a desired objective into a Pl assignment that is

likely to contribute to the achievement of the objective

Is a process that traverses the circuit back from the objective
signal to PP’s

The result is a Pl signal-value pair (x, v,)
No signal value is actually assigned during backtrace !

ch4-36

15

Objective Routine

* Objective Routine Involves
— The selection of a D-frontier, G

— The selection of an unspecified input gate of G

Objective() {

[* The target fault is w s-a-v */

I* Let variable obj be a signal-value pair */

if (the value of w is x) obj = (w, V'); «—— fault activation

else {
select a gate (G) from the D-frontier; <« fault propagation
select an input (j) of G with value x;
c = controlling value of G;

obj = (j, ¢’);
}
return (obj);
}
ch4-37
is if gi_Backtrace Routine
* Backtrace Routine
- Involves finding an all-x path from objective site to a
Pl, l.e., every signal in this path has value x
Backtrace(w, v,,) {

I* Maps objective into a Pl assignment */

G = w; /* objective node */

v =v,; I* objective value */

while (G is a gate output) { /* not reached Pl yet */
inv = inversion of G;
select an input (j) of G with value x;
G=j; I* new objective node */
v =v@inv; /* new objective value */

}

I*GisaPl* return (G, v);

}
ch4-38

19

Example: Backtrace

Objective to achieve: (F, 1)
Pl assignments:
(1) A=0 > fall
(2) B =1 > succeed

The first time of backtracing

MDA p
50T 2% - 801 D!

X

The second time of backtracing

ch4-39

Pl Assignment in PODEM

Assume that: PI’'s: {a, b, c,d }
Current Assignments: { a=0 }
Decision: b=0 > objective fails
Reverse decision: b=1
Decision: c=0 - objective fails
Reverse decision: ¢c=1
Decision: d=0

failure
Y
Failure means fault effect cannot be failure @

propagated to any PO under current
Pl assignments l 0

ch4-40

20

Example: PODEM (1/3)

h 1 Select D-frontier G2 and
D)—— set objective to (k,1)
- e = 0 by backtrace
i D - Break the sensitization
Gl across G2

- Backtrack !

ch4-41

Example: PODEM (2/3)

h 1 Select D-frontier G3 and
}— set objective to (e,1)

- No backtrace is needed

i D - Success at G3
G1

G2

ch4-42

2]

Example: PODEM (3/3)

h 1 Select D-frontier G4 and
}— set objective to (f,1)

- No backtrace is needed

i D - Success at G4 and G2
937 - D appears at one PO

- Atestis found !!

I : 1
=Dp
i

d

e
D

f

ch4-43
PODEM: Value Computation
Objective| Pl assignment Implications| D-frontier| Comments
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i,k,m
d=1 d=1 d’=0
_ i=D’ k,mn
k=1 e=0 e'=1 Assignments need to be
szo1 reversed during backtracking
n=1 m no solutions ! > backtrack
e=1 e’=0 reverse Pl assignmen
1
k=D’ m,n
=1 f=1 =0
=1
m=D’
n=D

)

Decision Tree in PODEM

success

» Decision node: the Pl selected through backtrace for value assignment
* Branch: the value assignment to the selected Pl

ch4-45

Terminating Conditions

D-algorithm
- Success:
(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty
- Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

PODEM

- Success:
¢ Fault effect seen at an output
- Failure:

e Every Pl assignment leads to failure, in which D-frontier
is empty while fault has been activated

ch4-46

25

PODEM: Recursive Algorithm

PODEM () /* using depth-first-search */

begin
If(error at PO) return(SUCCESS);
If(test not possible) return(FAILURE);
(k, v,) = Objective(); I* choose a line to be justified */
(s v;) = Backtrace(k, vy); I* choose the Pl to be assigned */
Imply (j, v;); /* make a decision */
If (PODEM()==SUCCESS) return (SUCCESS);
Imply (j, v’); I* reverse decision */
If (PODEM()==SUCCESS) return(SUCCESS);
Imply (j, x);

What PI to assign ?

Recursive-call Recursive-call
If necessar
¢ha-47

Return (FAILURE);

end

Overview of PODEM

* PODEM

- examines all possible input patterns implicitly but
exhaustively (branch-and-bound) for finding a test

- It is complete like D-algorithm (l.e., will find one if a
test exists)

e Other Key Features

No J-frontier, since there are no values that require
justlflcatuon

— No consistency check, as conflicts can never occur

— No backward implication, because values are
propagated only forward

- Backtracking is implicitly done by simulation rather
than by an explicit and time-consuming save/restore
process

- Experimental results show that PODEM is generally
faster than the D-algorithm

ch4-48

24

The Selection Strategy in PODEM

* In Objective() and Backtrace()

— Selections are done arbitrarily in original PODEM
- The algorithm will be more efficient if certain

guidance used in the selections of objective node
and backtrace path

e Selection Principle

- Principle 1: Among several unsolved problems

* > Attack the hardest one :‘D_J_
¢ Ex: to justify a ‘1’ at an AND-gate output
— Principle 2: Among several solutions for solving a
problem

e > Try the easiest one

1
¢ Ex: to justify a ‘1’ at OR-gate output jD—

ch4-49

Controllability As Guidance

¢ Controllability of a signal w

— CY1(w): the probability that line w has value 1.
— CYO(w): the probability that line w has value 0.
- Example:

e f=ab

+ Assume CY1(a)=CYO0(a)=CY1(b)=CYO0(b)=0.5

> CY1(f)=CY1(a)xCY1(b)=0.25,

- CYO(f)=CY0(a)+CYO0(b)-CYO(a)xCYO(b)=0.75

e Example of Smart Backtracing

— Objective (c, 1) > choose path c>a for backtracing
- Objective (c, 0) > choose path c~>a for backtracing

CY1(a) = 0.33
CY0(a)=067| o —

-
CY1(b) = 0.5 b

CYO(b) = 0.5

ch4-50

25

Testability Analysis

e Applications

- To give an early warning about the testing problems
that lie ahead

- To provide guidance in ATPG
e Complexity
— Should be simpler than ATPG and fault simulation, l.e.,
need to be linear or almost linear in terms of circuit
size
e Topology analysis
— Only the structure of the circuit is analyzed
- No test vectors are involved

- Only approximate, reconvergent fanouts cause
inaccuracy

ch4-51

SCOAP

(Sandia Controllability/Observability Analysis Program)

e Computes six numbers for each node N
- CC?(N) and CC'(N)
e Combinational 0 and 1 controllability of a node N
— SCY(N) and SC'(N)
¢ Sequential 0 and 1 controllability of a node N
- CO(N)
e Combinational observability
- SO(N)

o Sequential observability

{ERA DR

ch4-52

26

General Characteristic of
Controllability and Observability

Controllability calculation: sweeping the circuit from Pl to PO
Observability calculation: sweeping the circuit from PO to PI

Boundary conditions:
(1) ForPI's: CC°=CC'=1 and SC°=SC'=0
(2) ForPO’s: CO=S0=0

_-controllability observability\

ease of controllability
ease of observability

input pins ' : output pins

ch4-53

Controllability Measures

- CC°(N) and CC'(N)

¢ The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

- SC°(N) and SC'(N)

e The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

D
CCOY) =min [CC(x1), CCOx2)] + 1
CCYY)=CC(x1) + CC(x2) +1

SCO(Y) = min [SC%(x1) , SCO(x2)]
SCY(Y) = SCY(x1) + SC(x2)

x1
x2

ch4-54

Controllability Measure (con’t)

— CCY(N) and CC"(N)
¢ The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

- SC?(N) and SC'(N)
¢ The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

2)
—2/

x3

CCY(Y) = CCO(x1) + CCY(x2) + CCO(x3) + 1
CCX(Y) = min [CC(x1), CC}(x2), CCL(x3)] + 1
SCO(Y) = SCY(x1) + SCO(x2) + SCO(x3)

SC(Y) = min [SC}(x1) , SC1(x2) , SCL(x3)]

ch4-55

Observability Measure

— CO(N) and SO(N)
* The observability of a node N is a function of the
output observability and of the cost of holding all
other inputs at non-controlling values

Example: X1 observable: (Y observable) + (side-inputs &)

x1
x2 Y
x3

CO(x1) = CO(Y) + CCO(x2) + CCO(x3) + 1
SO(x1) = SO(Y) + SCO(x2) + SC(x3)

ch4-56

5

PODEM: Example 2 (1/3)

Initial objective=(G5,1).

G5 is an AND gate > Choose the hardest-1

=> Current objective=(G1,1).

G1 is an AND gate > Choose the hardest-1

-> Arbitrarily, Current objective=(A,1). A is a Pl = Implication - G3=0.

1A —@ CY1=0.25 ___ 10
BT %
c — 5 CYD1:0_.656

Xi G €2
V 0
|38

ch4-57

PODEM: Example 2 (213

The initial objective satisfied? No! = Current objective=(G5,1).

G5 is an AND gate > Choose the hardest-1 > Current objective=(G1,1).

G1 is an AND gate > Choose the hardest-1

- Arbitrarily, Current objective=(B,1). B is a Pl > Implication > G1=1, G6=0.

1A —\ ' CY1=0.25__ 10

1 B— 1 N
N G D&@J
iy °

(€]

ch4-58

e

PODEM: Example 2 (33

The initial objective satisfied? No! > Current objective=(G5,1).
The value of G1 is known - Current objective=(G4,0).
The value of G3 is known > Current objective=(G2,0).
A, B is known > Current objective=(C,0).
C is a Pl ® Implication = G2=0, G4=0, G5=D, G7=D.

1A) 1 CY1=0.25
B _J .|>UL
0
0C — G2
e
e

Ve

Bis

CY1=0.656

Br

1/0=D

o

| No backtracking !!

ch4-59

If The Backtracing Is Not Guided (1/3)

Initial objective=(G5,1).

Choose path G5-G4-G2-A > A=0.
Implication for A=0 - G1=0, G5=0 - Backtracking to A=1.
Implication for A=1 - G3=0.

TA
B

C

v

v T
12

ch4-60

30

If The Backtracing Is Not Guided (2/3)

The initial objective satisfied? No! > Current objective=(G5,1).
Choose path G5-G4-G2-B > B=0.

Implication for B=0 > G1=0, G5=0 - Backtracking to B=1.
Implication for B=1 > G1=1, G6=0.

e
Yo

ch4-61

If The Backtracing Is Not Guided 33

The initial objective satisfied? No! = Current objective=(G5,1).
Choose path G5-G4-G2-C - C=0.
Implication for C=0 > G2=0, G4=0, G5=D, G7=D.

1/0=D

G r
=/ f€:
[
>
0
0

oC ”@—L oo

V_@@JJ@- o),

Two times of backtracking !!

ch4-62

3]

D QO

ECAT Circuit: PODEM (1/3)

Fault activation

0 a— >g$ et
X b*l:
h m
.

SRUR

U

] >

ch4-63

o =
D Q0

ECAT Circuit: PODEM (253

side-input

requirement

ch4-64

37

1¢
od
0e
of

ECAT Circuit: PODEM @3

0
X

0->D'

D

No backtracking !!

ch4-65

Outline

e Test Generation (TG) Methods

Based on Truth Table

Based on Boolean Equation
Based on Structural Analysis
D-algorithm [Roth 1967]
9-Valued D-algorithm [Cha 1978]
PODEM [Goel 1981]

FAN [Fujiwara 1983]

ch4-66

35

FAN (Fanout Oriented) Algorithm

* FAN

- Introduces two major extensions to PODEM'’s
backtracing algorithm

e 1st extension

- Rather than stopping at PI's, backtracing in FAN
may stop at an internal lines

e 2nd extension

— FAN uses multiple backtrace procedure, which
attempts to satisfy a set of objectives
simultaneously

ch4-67

Headlines and Bound Lines

* Bound line

- A line reachable from at least one stem
* Free line

— A line that is NOT bound line
* Head line

- A free line that directly feeds a bound line

i:}_ﬂi)—] u

Head lines K

A D)—l— \Boundlines
d= Dl i

ch4-68

Decision Tree (PODEM v.s. FAN)

| —

Head lines

] Assume that:

K
> Bound lines Objective is (J, 0)
L

Jis a head line
- Backtrace stops at J
- Avoid unnecessary search

FAN
ch4-69

Why Stops at Head Lines ?

e Head lines are mutually independent
- Hence, for each given value combination at head
lines, there always exists an input combination
to realize it.

e FAN has two-steps

— Step 1: PODEM using headlines as pseudo-Pl’'s

- Step 2: Generate real input pattern to realize the
value combination at head lines.

ch4-70

35

Why Multiple Backtrace ?

* Drawback of Single Backtrace

- A Pl assignment satisfying one objective > may preclude
achieving another one, and this leads to backtracking

¢ Multiple Backtrace

- Starts from a set of objectives (Current_objectives)
- Maps these multiple objectives into a head-line
assignment k=v, that is likely to
¢ Contribute to the achievement of a subset of the objectives

¢ Or show that some subset of the original objectives cannot
be simultaneously achieved

0
Multiple objectives 0 D_

_/
May have conflicting P —

Requirements at a stem j 1
ch4-71

Example: Multiple Backtrace

P
A |A2 E1 s 0

..... E 1
B = H 1 0
ly P
| Current_objectives | I Processed entry | | Stem_objectives | I Head_objectives
(1,1), (J,0) (1,1)
(J,0), (G,0) (J,0)
(G,0), (H,1) (G,0)
(H,1), (A1,1), (E1,1) (H,1)
(A1,1), (E1,1), (E2,1), (C,1) (A1,1) A
(E1,1), (E2,1), (C,1) (E1,1) AE
(E2,1), (C,1) (E2,1) AE
(C1) (C,1) AE C
Empty - restart from (E,1) A (o
(E,1) (E,1) A (o
(A2,0) (A2,0) A (o
i 2 C char

36

Multiple Backtrace Algorithm

Mbacktrace (Current_objectives) {
while (Current_objectives #¢) {
remove one entry (k, v,) from Current_objectives;
switch (type of entry) {
1. HEAD_LINE: add (k, v,) to Head_objectives;
2. FANOUT_BRANCH:
j = stem(k);
increment no. of requests at j for v,; /* count Os and 1s */
add j to Stem_objectives;
3. OTHERS:
inv = inversion of k; c = controlling value of k;
select an input (j) of k with value x;
if ((v® inv) == c) add(j, c) to Current_objectives;
else { for every input (j) of k with value x
add(j, c’) to Current_objectives; }
}
} TO BE CONTINUED ...

cha-7/3

Multiple Backtrace (con’t)

Mbacktrace (Current_objectives) {
while (Current_objectives #¢) {body in previous page}
if(Stem_objectives#)) {
remove the highest-level stem (k) from Stem_Objectives;
Vi, = most requested value of k;
I* recursive call here */
add (k, v,) to Current_objectives;

return (Mbacktrace(Current objectives);

}

else { remove one objective (k, v,) from Head objectives;
return (k, v,)

}

ch4-74

[l

[2]

[3]

[4]

[5]

[6]

[67]

References

Sellers et al., "Analyzing errors with the Boolean difference", IEEE Trans. Computers,
pp. 676-683, 1968.

J. P. Roth, "Diagnosis of Automata Failures: A Calculus and a Method", IBM Journal
of Research and Development, pp. 278-291, July, 1966.

J. P. Roth et al., "Programmed Algorithms to Compute Tests to Detect and
Distinguish Between Failures in Logic Circuits"”, IEEE Trans. Electronic Computers,
pp- 567-579, Oct. 1967.

C. W. Cha et al, "9-V Algorithm for Test Pattern Generation of Combinational Digital
Circuits", IEEE TC, pp. 193-200, March, 1978.

P. Goel, "An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits", IEEE Trans. Computers, pp. 215-222, March, 1981.

H. Fujiwara and T. Shimono, "On the Acceleration of Test Generation Algorithms",
IEEE TC, pp. 1137-1144, Dec. 1983.

M. H. Schulz et al., "SOCRATES: A Highly Efficient Automatic Test Pattern Generation
System", IEEE Trans. on CAD, pp. 126-137, 1988.

M. H. Schulz and E. Auth, "Improved Deterministic Test Pattern Generation with
Applications to Redundancy Identification”, IEEE Trans CAD, pp. 811-816, 1989.

ch4-75

35

R XS 12

EE-6250
A AR TERZ
VLSI Testing

—

Chapter 5
Design For Testability
& Scan Test

Outline

immp * Introduction
- Why DFT?
- What is DFT?

e Ad-Hoc Approaches
e Full Scan
e Partial Scan

ch5-2

Why DFT ?

e Direct Testing is Way Too Difficult !
— Large number of FFs
- Embedded memory blocks
- Embedded analog blocks

e Design For Testability is inevitable
e Like death and tax

ch5-3

Design For Testability

e Definition

— Design For Testability (DFT) refers to those design
techniques that make test generation and testing
cost-effective

e DFT Methods
— Ad-hoc methods
Scan, full and partial
— Built-In Self-Test (BIST)
Boundary scan

e Cost of DFT

- Pin count, area, performance, design-time, test-time

ch5-4

Why DFT Isn’t Universally Used
Previously?

- Short-sighted view of management
- Time-to-market pressure

— Life-cycle cost ignored by development
management/contractors/buyers

— Areal/functionality/performance myths
- Lack of knowledge by design engineers
— Testing is someone else’s problem

— Lack of tools to support DFT until recently

We don’t’ have to worry about this management barrier any more
=» Most design teams now have DfT people

chb-5

Important Factors

e Controllability

— Measure the ease of controlling a line

e Observability

— Measure the ease of observing a line at PO

e Predictability

— Measure the ease of predicting output values

e DFT deals with ways of improving
— Controllability
— Observability
— Predictability

chb-6

Outline

e Introduction
immp « Ad-Hoc Approaches

— Test Points
— Design Rules

e Full Scan
e Partial Scan

ch5-7

Ad-Hoc Design For Testability

e Design Guidelines

Avoid redundancy

Avoid asynchronous logic

Avoid clock gating (e.g., ripple counter)

Avoid large fan-in

Consider tester requirements (tri-stating, etc.)

e Disadvantages
— High fault coverage not guaranteed
— Manual test generation
— Design iterations required

ch5-8

Some Ad-Hoc DFT Techniques

e Test Points

- Initialization /—\

.. input
- Monostable multivibrators ;- Delay outpu

element
— One-shot circuit

e Oscillators and clocks

e Counters / Shift-Registers

— Add control points to long counters input Ji

e Partition large circuits :
e Logical redundancy OUtpUt—EJ—I—E-H—

e Break global feedback paths

chb5-9

On-Line Self-Test & Fault Tolerance
By Redundancy

e Information Redundancy
— Outputs = (information-bits) + (check-bits)
- Information bits are the original normal outputs

- Check bits always maintains a specific pre-defined
logical or mathematical relationship with the
corresponding information bits

— Any time, if the information-bits and check-bits violate
the pre-defined relationship, then it indicates an error
e Hardware Redundancy

- Use extra hardware (e.g., duplicate or triplicate the
system) so that the fault within one module will be
masked (l.e., the faulty effect never observed at the
final output)

ch5-10

Module Level Redundancy

e Triple Module Redundancy (TMR)

— majority voting on three identical modules’
outputs help mask out faults that occur in a
single module

— Module 1
Majority verdict O

—
Module [

— Module

ch5-11

Test Point Insertion

 Employ test points to enhance
— Controllability
— Observability
» CP: Control Points
— Primary inputs used to enhance controllability
* OP: Observability Points
— Primary outputs used to enhance observability
0 (extra PI) (extra PO)

Add 0-CP \aD O
—
Add OP
1 (extra Pl) HD_
Add 1-CP %
—_—
ch5-12

0O/1 Injection Circuitry

< Normal operation
When CP_enable =0

e Inject O
- SetCP_enable=1and CP =0
e Inject 1

- SetCP_enable=1and CP =1

/o_\
Cl MUX
1
CP
CP_enable

Inserted circuit for controlling line w
ch5-13

Cc2

l... =

Single 1I/0O Port for Multiple Test
Points

e Constraints of using test points
- A large demand on 1I/O pins

— This constraint can be somewhat relieved by
using MUX & DEMUX at the cost of increasing
the test time

dispatcher
CP1 OP1 —
| t i CP2 OP2 —
nputpin _J CP3 OP3 — ,output pin
e PEMEA] o . o | MUX For OP
°
[] [] o
—DCPN OPN J—
[1T eee] ne
Cic2C3 Cn C1C2C3 Cn
N=2n N=2n
(demultiplexing control points) (multiplexing observation points)

ch5-14

Sharing Between Test Points &
Normal 1/0

e Advantage: Even fewer 1/O pins for Test Points
e Overhead: Extra MUX delay for normal 1/O

Normal Normal
Functional functional
inputs outputs
Input y
. n n
pins n 1-to-2 n2to-1]| , Output
DEMUX'’s MUX’s n pins
—\
n n , n
CP’s observation
points
SELECT SELECT
PIN PIN

ch5-15

Control Point Selection

) Impact
— The controllability of the fanout-cone of the added
point is improved
e Common selections
— Control, address, and data buses
- Enable / Hold inputs
- Enable and read/write inputs to memory
— Clock and set/clear signals of flip-flops

— Data select inputs to multiplexers and
demultiplexers

ch5-16

Example: Use CP to Fix DFT Rule

Violation

e DFT rule violations

— The set/clear signal of a flip-flop is generated by other
logic, instead of directly controlled by an input pin

— Gated clock signals

 Violation Fix

— Add a control point to the set/clear signal or clock signals

CK D clear

logic

L]

Violation
fix

—

logic

CLEAR

—{bp of—

CK D Clear

ch5-17

Example: Fixing Gated Clock

e Gated Clocks

— Advantage: power dissipation of a logic design can thus
reduced

— Drawback: the design’s testability is also reduced

e Testability Fix

CK

CK_enable

Gated

CK

Violation
fix

CK

-

CK_enable

|:P_en able
CK

MUX

ch5-18

Example: Fixing Tri-State Bus
Contention

e Bus Contention

— A stuck-at-fault at the tri-state enable line may cause
bus contention — multiple active drivers are connected
to the bus simultaneously

* Fix
— Add CPs to turn off tri-state devices during testing

(A Bus Contention Scenario in the presence of a fault)

Enable line stuck-at-1
0 0 Unpredictable voltage on bus may
cause a fault to go unnoticed
Enable line active
1 i 1

ch5-19

Example: Partitioning Counters

* Consider a 16-bit ripple-counter
— Could take up to 216 = 65536 cycles to test

— After being partitioned into two 8-bit counters below, it
can be tested with just 2x28 =512 cycles

Trigger clock
For 27 8-bit
counter

/

Qg

QlO
Qll
QlZ
Q13
Ql4
QlS

MUX

Q |
CP_enable
K

ch5-20

10

Observation Point Selection

e Impact

— The observability of the fanin-cone (or transitive
fanins) of the added OP is improved

e Common choice
— Stem lines having a large number of fanouts
Global feedback paths
Redundant signal lines
Output of logic devices having many inputs
* MUX, XOR trees
Output from state devices

Address, control and data buses
(B REBREERE Z /rHE7)

ch5-21
Problems of CP & OP
e Large number of I/O pins
— Add MUXes to reduce the number of I/O pins
— Serially shift CP values by shift-registers
» Larger test time
X — , Z
Shift-register R1 X’ z’ Shift-register R2
@
control Observe
chb5-22

11

Outline

Introduction

Ad-Hoc Approaches

Full Scan

— The Concept

— Scan Cell Design

- Random Access Scan

Partial Scan

ch5-23

What Is Scan ?

* Objective

— To provide controllability and observability at internal
state variables for testing

e Method

— Add test mode control signal(s) to circuit
— Connect flip-flops to form shift registers in test mode

— Make inputs/outputs of the flip-flops in the shift register
controllable and observable

* Types
— Internal scan

* Full scan, Partial scan, Random access

— Boundary scan

ch5-24

Y

The Scan Concept

Il

Combinational
Logic

—_—
—_—
—_—
o
[]

Mode Switch
(normal or test)

Scan In

FF

FF

FF

Scan Out

ch5-25

A Logic Design Before Scan Insertion

Combinational Logic

i
I L]
]

nput
pins

output
pins

-

clock I_

Sequential ATPG is extremely difficult:
due to the lack of controllability and observability at flip-flops.

ch5-26

15

Example: A 3-stage Counter

input
pins

clock

Combinational Logic

q;
) g stuck-at-0
a3

;

Q
1 1

L

LI

|
D

Q
1

output
pins

It takes 8 clock cycles to set the flip-flops to be (1, 1, 1),
for detecting the g stuck-at-0 fault
(220 clock cycles for a 20-stage counter !)

ch5-27

A Logic Design After Scan Insertion

mput
pins

scan-input =
(SD
scan-enable

Combinational Logic

(¢}]
q2E|D—X— 2 stuck-at-0
d3

dp

L

L)

D @ M D
1 1

Q

-

a3

i

clock

output
pins

scan-output
(SO)

Scan Chain provides an easy access to flip-flops
Pattern Generation is much easier !!

Note: Scan Enable (SE), not shown here, controls every MUX.

ch5-28

14

* Notation
— Testvectors T=<t! tF>i=1,2, ... Hs — — PO’s
— Output Response R=<r0°,rF>i=1,2, ... p?oc;;?ct))r-l

+ Test Application HRB == [
- (Di=1
— (2) Scan-in t,* [* scan-in the first state vector for PPI’s */
— (3) Apply t;! /* apply current input vector at PI’s */

Procedure of Applying Test Patterns

(4) Observe r° [* observe current output response at PO’s */

(5) Capture PPOs to FFs as r;F /* capture the response at PPO’s to FFs */
* (Setto ‘Normal Mode’ by raising SE to ‘1’ for one clock cycle)

(6) Scan-out r;" while scanning-in t;,,7 /* overlap scan-in and scan-out */

(7) i =i+1; Goto step (3)

ch5-29

Testing Scan Chain ?

Common practice

— Scan chain is often first tested before testing the core logic
by a so-called flush test - which pumps random vectors in
and out of the scan chain

Procedure (flush test of scan chain)
- ()i=0;
— (2) Scan-in 1st random vector to flip-flops

— (3) Scan-out (i)t random vector while scanning-in (i+1)"
vector for flip-flops.

» The (i)t scan-out vector should be identical to (i)t vector
scanned in earlier, otherwise scan-chain is mal-functioning

— (4) If necessary i =i+1, goto step (3)

ch5-30

A)

MUX-Scan Flip-Flop

Only D-type master-slave flip-flops are used

All flip-flop clocks controlled from primary inputs
* No gated clock allowed

Clocks must not feed data inputs of flip-flops

Most popularly supported in standard cell libraries

D
SC (normal / test)

Normal
Master-
. Slave
Sl (scan input) Flip-flop
CLK
ch5-31
Two-Port Dual-Clock Scan FF
» Separate normal clock from the clock used for
scanning
— D: normal input data
— CKZ1: normal clock
— Sl: scan input
— CK2: scan clock 01
master
D latch
CK1™]
Q2
CK2
SI
slave
latch
ch5-32

16

Race-Free Scan FF

e Use two-phase clocking

— CK1 and CK2 are two-phase non-overlapping
clocks which insure race-free operation

o — LT L _T1

cK2 1 [[1

Q1

Q2
SC
SI

CK1
CK2

ch5-33

LSSD flip-flop (1977 IBM)

e LSSD: Level Sensitive Scan Design
— Less performance degradation than MUX-scan FF

e Clocking
— Normal operation: non-overlapping CK1=1 > CK3=1
— Scan operation: non-overlapping CK2=1 - CK3=1

TN MUX
i AFFagat e -
BIEE Scan SHEREHISAEHE

ch5-34

Symbol of LSSD FF

Latch 1
D— 1D Q
SI — 2D
C CK1
A —— CK2

Latch 2

CK

Q1 (normal level-sensitive

latch output)

SO

ch5-35
Scan Rule Violation Example
Q1 Q2
D1 — D2 —j —
D D
Flip Flip
|_>Flop D_\>Flop
Clock Rule violation:
Flip-flops cannot form a shift-register
D1 — 2
D D E
Flip Flip
|_>Flop |;2 > Flop
Clock
All FFs are triggered by the same clock edge
Set and reset signals are not controlled by any internal signals g
ch5-36

15

Some Problems With Full Scan

Major Commercial Test Tool Companies
Synopsys
° Mentor-Graphics
Problems Ly
- Area overhead Cadence

Possible performance degradation

High test application time

Power dissipation

e Features of Commercial Tools

Scan-rule violation check (e.g., DFT rule check)

Scan insertion (convert a FF to its scan version)

ATPG (both combinational and sequential)

Scan chain reordering after layout

ch5-37

Performance Overhead

e The increase of delay along the
normal data paths include:

— Extra gate delay due to the multiplexer

- Extra delay due to the capacitive loading of the
scan-wiring at each flip-flop’s output

e Timing-driven partial scan

- Try to avoid scan flip-flops that belong to the
timing critical paths

— The flip-flop selection algorithm for partial scan
can take this into consideration to reduce the
timing impact of scan to the design

ch5-38

Scan-Chain Reordering

— Scan-chain order is often decided at gate-level
without knowing the physical locations of the cells

— Scan-chain consumes a lot of routing resources, and
could be minimized by re-ordering the flip-flops in the
chain after layout is known

Scan-In H Scan-In 1
I = - }
4]| Scan-Out | scan-out
! Scan cell
> —H
Layout of a scan design A better scan-chain order ch5-39
Overhead of Scan Design
— Number of CMOS gates = 2000
— Fraction of flip-flops = 0.478
. Normalized
Scan Predicted Actual area —
implementation overhead overhead P g
frequency
None 0 0 1.0
Hierarchical 14.05% 16.93% 0.87
Optimized 14.05% 11.9% 0.91
ch5-40

20

Random Access Scan

e Comparison with Scan-Chain
— More flexible — any FF can be accessed in constant time
— Test time could be reduced
— More hardware and routing overhead

| Normal
D
Y address | 8 EE
——| 8 L
©
i -
| Y-enable
— TIIIIrod
X address_.r.l X decoder | X-enable
chb5-41
Outline
e Introduction
e Ad-Hoc Approaches
e Full Scan
nmmp » Partial Scan
chb-42

2]

Partial Scan

- Basic idea
— Select a subset of flip-flops for scan
— Lower overhead (area and speed)
— Relaxed design rules
e Cycle-breaking technique
- Cheng & Agrawal, IEEE Trans. On Computers, April 1990
— Select scan flip-flops to simplify sequential ATPG
— Overhead is about 25% off than full scan
e Timing-driven partial scan
— Jou & Cheng, ICCAD, Nov. 1991

— Allow optimization of area, timing, and testability
simultaneously

ch5-43

Full Scan vs. Partial Scan

scan design

every flip-flop is a scan-FF NOT every flip-flop is a scan-FF

test time longer shorter
hardware overhead more less
fault coverage ~100% unpredictable
ease-of-use easier harder

ch5-44

)

A Partial-Scan DfT Flow

N

Circuit file
_/

| Flip-flop selection |

| Circuit modifier Flip-flop list | Test model generator |

L Test model
Circuit with D
Partial scan

| Test generation (stg3) |

ch5-45

Directed Graph Of A Synchronous

Sequential Circuit

primary I?I A circuit with six flip-flops

inputs =

. primary
primary =1 = outputs
nputs. —— 2= {ars——{E

primary

inputs

Graph of the circuit

|-— Depth D=4

ch5-46

25

Partial Scan For Cycle-Free
Structure

e Select minimal set of flip-flops

— To eliminate some or all cycles

e Self-loops of unit length
— Are not broken to reduce scan overhead

— The number of self-loops in real design can be quite large
e Limit the length of

— Consecutive self-loop paths

— Long consecutive self-loop paths in large circuits may
pose problems to sequential ATPG

ch5-47

Test Generation for Partial Scan
Circuits

e Separate scan clock is used

e Scan flip-flops are removed
— And their input and output signals are added to the
PO/PI lists
e A sequential circuit test generator

— is used for test generation

e The vector sequences
— Are then converted into scan sequences
— Each vector is preceded by a scan-in sequence to set
the states of scanned flip-flops
— A scan-out sequence is added at the end of applying
each vector

ch5-48

24

Partial Scan Design

- i r i
& Scan Out

_ 2 4 e "E‘ Scan In
Scan Flip-Flops: {2, 5} Scan Out | |
{1, 3, 4, 6}

Non-Scan FFs:

ch5-49

Trade-Off of Area Overhead v.s.
Test Generation Effort

CPU
Time
Test Area Overhead
Generation 20%
Complexit
- e - — _— Area
overhead “Jisw
0%
%
} ' I ox
Non-Scan Only Self-Loops Feedback Full-Scan
Remain — Free Circuit

ch5-50

25

Summary of Partial-Scan

Partial Scan

- Allows the trade-off between test generation effort
and hardware overhead to be automatically explored

Breaking Cycles
— Dramatically simplifies the sequential ATPG
Limiting the Length of Self-Loop Paths

- Is crucial in reducing test generation effort for large
circuits

Performance Degradation

— Can be minimized by using timing analysis data for
flip-flop selection

ch5-51

26

Chapter 6
Delay Testing

Acknowledgements:
Mainly based on the lecture notes of
“VLSI Test Principles and Architectures”

Introduction of Delay Testing

a Delay Faulty:

= Fault that cause delay across a circuit to
violate certain timing constraint

0 Delay Fault Models:
= Path delay fault
— Too much delay along a path

= Transition fault (or Gate delay fault)
— Too much delay across a particular gate

Basic Delay Testing

0 Delay Test Pattern:
= A two-pattern test: <v1, v2>
= v1is aninitialization vector
= v2 causes the fault to be detected

V1l 2>V2
020 — Captured
—> Next Clock Cycle
021 — . . —> Passing
J- circuit
—
121 — Failing

Challenge: The launch time and capture time are just away
by a high-speed clock cycle time

Applications of Delay Tests

0 Launch-off shifting (LOS)

= Aka (also known as) skewed-load

= v1is arbitrary, v2 is derived by a 1-bit shift of v1
0 Launch-off capture (LOC)

= Aka broadside or double-capture

» v1is arbitrary, v2 is derived from v1 through the
circuit function

Timing Sequence of Launch-off-Shifting

PROS: Easier Test Generation to achieve a Higher Fault Coverage
CONS: Hard to produce the Scan-Enable signal ‘SE’
(Note: ‘'SE’ has to go LOW between S1 and C1)

Shift Window Launch Window Shift Window
V1 \/}2
CK s \il \i/S]' Ccl e
JL JI 1 L~ JL
SE <
L,

Slis ashifting cycle
Clis acapture cycle
d is the fast clock cycle time

Example of LOS

Question:
vlis {yl1='0", y2='0", y3='1"}
What is vector v2 if using LOS?
Assuming scan chain order y32y2-2y1l

V1 >V2
02? —>n1
—
07 y2 Circuit S
—

12?7 —y3

SI (1)

Timing Sequence of Launch-off-Capture

PROS: Scan-Enable signal ‘SE’ to easy to produce
CONS: Fault Coverage is Lower than LOS

Shift Window Launch Window Shift Window
V1 V2
cK cL c2
)
N 1 L~ JL
<
SE D
Easier to produce

Clis acapture cycle
C2is a capture cycle, too
d is the fast clock cycle time

Transition Fault Model

o Assumption:
= alarge/gross delay is present at a circuit node
0 Path independence:
= Irrespective of which path the effect is propagated, the
grqsts delay defect will be arriving late at an observable
poin
0 De-facto standard in Industry
= Simple and the number of faults is linear to circuit size
= Also needs 2 vectors to test a fault
0 Formulation of transition-fault test generation:

= Node x slow-to-rise (x-STR) can be modeled simply as
two stuck-at faults

= (1) First time-frame: x/1 needs to be excited

= (2) Second time-frame: x/0 needs to be excited and
propagated

0 Target fault:
- A slow-to-rise

Test Requirement:
1sttime frame: initialize al to ‘0’
2"d time frame: detect a2 s-a-0 fault

1 —
1 y2- al
1 y3- B.

1st Time Frame

Ex: LOS Pattern Generation

yl
y2

Slow-to-rise

y3

SIJ

1 y2-
1 y3~

0 SE -

2"d Time Frame

0/1
Detected

I Final 1st Pattern: (y1, y2, y3, SE) = (0, 1, 1, 0) = Shifted to become 2"d Pattern I

0 Target fault:
- A slow-to-rise

Test Requirement:
1st time frame: initialize al to ‘0’
2"d time frame: detect a2 s-a-0 fault

1st Time Frame

Ex: LOC Pattern Generation

Free x1
Pls X2

Slow-to-rise

|—X3

Dast

- 0/1 Detected

2"d Time Frame

Summary

0 More and more ICs require delay testing (or called
timing testing, performance testing), to ensure that
an IC can perform up to its target speed.

0 Better understand what LOS, LOC means, since
It's industrial practice.

o Some IC, e.g., CPU, needs to go through speed
binning process, to determine the “quality bin” of
each IC and its sell price.

0 Delay test is still atough issue and still evolving.
Rigorous delay testing also aims to detect “small
defects” so as to reduce the test escape of latent
defects that might hurt an IC’s reliability in its field.

EE E S 1Y

EE-6250
AZ AR TERP
VLSI Testing

—

Chapter 7
Built-In Self-Test

Design-for-Testability

e Design activities for generating a set of
test patterns with a high fault coverage.

e Methodology
- Logic
e Automatic Test Pattern Generation (ATPG)
e Scan Insertion (to ease the ATPG process)
e Built-In Self-Test £000000000000000
- Memory (SRAM, DRAM, ...)
e Built-In Self-Test

Uuuuduuuuuuuuuuyu

00000NNNNNNANNNN

pr——
L Y

ch7-2

Outline

Basics

Test Pattern Generation

Response Analyzers

BIST Examples
Memory BIST

ch7-3

Definition & Advantages of BIST

e Built-In Self-Test (BIST) is a design-for-
testability (DFT) technique in which testing
(test generation , test application) is
accomplished through built-in hardware

features.
- [V.D. Agrawal, C.R. Kime, and K.K. Saluja]

Can lead to significant test time reduction
Especially attractive for embedded cores

ch7-4

Good Things About BIST

e At-Speed Testing
— catching timing defects

e Fast

— reduce the testing time and testing costs
— a major advantage over scan

e Board-level or system-level testing
— can be conducted easily in field

ch7-5
General Organization of BIST
Simple on-chip Test Generator
pattern generation
off-line
Circuit Under Test pre-computed
cUT fault-free
() sighature
To avoid expensive signature
bit-to-bit comparison Response Compressor i
Pass-or-fail

ch7-6

Why Compression ?

e Motivation
— Bit-to-bit comparison is infeasible for BIST

e Signature analysis
— Compress a very long output sequence into a single
signature
— Compare the compressed word with the pre-stored
golden signature to determine the correctness of the
circuit
e Problems

- Many output sequences may have the same signature
after the compression leading to the aliasing problem

— Poor diagnosis resolution after compression

ch7-7

Aliasing Effect in Response
Compression

e Aliasing - the probability that a faulty
response is mapped to the same signature as
the fault-free circuit (4 P R3%x) 48 S Henfd &

output response space signature space

faplt-free

Response compression is a mapping
from the output response space to the signature space
In this example, aliasing prob. =1/ 4 = 25%

ch7-8

BIST Issues

e Area Overhead
e Performance Degradation

e Fault Coverage

— Most on-chip generated patterns may not
achieve a very high fault coverage

e Diagnosability

— The chip is even harder to diagnose due to
response compression

ch7-9

Random Pattern Resistant Faults

e An RPRF cannot be detected by random patterns

e is a major cause of low fault coverage in BIST

Fault coverage inadequate coverage can be boosted by

test points, ATPG patterns, ... ?

Pseudo-random pattern length

ch7-10

Example: Hard-To-Detect Fault

e Hard-to-detect faults

— Faults that are not covered by random testing
- E.g., an output signal of an 18-input AND gate

3_ szd-to-detect fault

stuck-at-0

B

PPHPUD

ch7-11

Reality of Logic BIST

e BIST is NOT a replacement for scan
— it is built on top of full-scan
e BIST does NOT result in fewer patterns
— it usually uses many more patterns than ATPG patterns

e BIST does NOT remove the need for testers

— tester still required to
* initiate test
* read response
* apply ATPG patterns to other part of IC

ch7-12

BIST Techniques

e Stored-Vector Based
— Micro-instruction support

— Stored in ROM

e Hardware-Based Pattern Generators
— Counters
- Linear Feedback Shift Registers
— Cellular Automata

ch7-13

Linear Feedback Shift Register
(LFSR)

e Flip-Flop: one cycle delay
e XOR gate: modulo-2 addition
e Connection: modulo-2 multiplication

Type 1: Out-Tap Type 2: In-Tap

O

D1 D2 —| b3 D4 [D1 |— b2 |—{ D3 D4
2 5 |yl |y2| I';?‘,’| 4 2 el yvalsly

z=y4 +yl = D%z) + D(2) z=y4 = D(y3 + y4) = D(D3(z) + 2)
= D4(z) + D(2)

ch7-14

LFSR - Example

N I O

16-bit shift register

7th 9th 12th

16th

This sixteen-stage LFSR will autonomously generates a maximum length of
216-1 = 65,535 state before the sequence repeats
The seed (l.e., initial state of the LFSR) should not be all-0 state.
All O-state is called a forbidden seed.

ch7-15

LFSR Example

4

5%

?

D. D: Ds Ds
yl y2 y3 y4
y1(t+1) 1001 |yl()
y2(t+1) | ||100|0| |y2(t)
y3(t+1) 010/0] [y3()
ya(t+1) 00110] |va®)

Characteristic polynomial

g(x)=x*"+x"+1

D
1
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1

oOrOORRORORRRROOO U

repeating —

)

ocoroorrORrRORRRLRRLRoo O

)

OO0 O0OPrPROOFRPPFRPOFRPOFR,RFRPELEO

ch7-16

Ex: Primitive LFSR - State Diagram

The register cycles through all 24-1 states
if the seed is not all-0
= Such a LFSR is called primitive

ch7-17

Primitive Polynomials
(Up to Degree 100)

Note: “24 43 1 0" means P(X)=x* +x* + x>+ x' + x°

ke Exponents il Exponents i Exponenis ke Expornenits
1 o] 26 8 ¥ 10 51 16 15 1 @ 76 36 35 1 ©
2 1 0O 27 8 ¥ 1 0 52 3 0 7T 31 30 1 @
3 1 0 28 3 o 53 |16 15 1 @ 78 |20 19 1 ©
+ 1 0 29 2 o 54 |37 36 1 0 7o o 0

5 20 30 16 15 1 0 55 24 0 |0 38 37 1 @
[1 0O 31 3 o 56 (22 21 1 O 81 4 0

7 1 0O 32 28 27 1 0 57 70 82 38 35 3 O
8 ¢ 5 10 33 |13 @ 58 |19 O 83 46 45 1 ©
o 4 0 34 |15 14 1 © 59 122 21 1 0O 84 |13 0O

10 3 0 35 2] [s]0] 1 O 85 28 27 1 ©
11 2 0 36 11 61 16 15 1 O B& 13 12 1 @O
12 7 4 30 37 12 10 2 0 2 57 56 1 0 87 13 0O

13 4 3 10 38 6 5 1 63 1 0O 88 |2 711 o
14 12 11 1 O 3o 4 O 654 4 3 1 0 80 38 0O

15 1 0O 40 (21 192 2 0O 65 18 0O 20 19 18 1 @
16 5 3 20 41 3 o 66 |10 9 1 O o1 84 83 1 ©
17 3 0 42 23 22 1 0 of 10 9@ 1 o or 13 2 1 @
18 7 0 43 G 5 1 0 68 o 0 o3 2 0

19 6 5 10 44 (27 26 1 0 69 (20 27 20 o4 21 0O

20 3 0 45 4 3 1 0 Jo 16 15 1 @ o5 11 0O

21 2 0 46 |21 20 1 O 71 6 0 96 |49 47 2 O

22 1 0 47 5 O 2 |53 47 6 0 o7 a 0

23 5 0 48 |28 27 1 0 73 |25 0 98 |11 O

24 4 3 10 4o o o T4 16 15 1 @ o0 47 45 2 O
5 3 0 S0 27 26 1 O 75 11 13 1 @ 100 |37 0O

ch7-18

Galois Field GF(2)

e Operation
— Modulo-2 addition, subtraction, multiplication, and
division of binary data
= Properties
— Modulo-2 addition and subtraction are identical
- 0+0=0, 0+1=1, 1+0=1, 1+1=0
- 0-0=0, 0-1=1, 1-0=1, 1-1=0

(34\‘2+x+l)><(x2+1‘+1 is given b el
= - :)15g”en Y. x2+x‘+1)x5+0+x3+ xZ4+0+1

LB
X tat+x+1 2%+ xt 4+ x5
X 4xtl x*+0 + x7
5 : . xt 4+ X3 X2
X" +x"+x+]1 Bit-stream Bit-stream s
e 2 P x> +0 +0
AT OE multiplication division
X +x +x +x x2 + 2% + x
£ Enitergtayt X hxtl
2
5 E P x“+x+1
0+ 2 0+1 °

Why LFSR ?

e Simple and regular structure
— D-flip-flops and XOR gates

e Compatible with scan DFT design

e Capable of exhaustive and/or pseudo
exhaustive testing
— If the LFSR is properly configured

e Low aliasing probability

— The fault coverage lost due to the response
compression is less than other compression schemes

ch7-20

10

LFSR - Definitions

e Maximum-length sequence

— A sequence generated by an n-stage LFSR is called a
maximum-length sequence if it has a period of 2"-1

- A maximum-length sequence is called m-sequence
e Primitive polynomial

— The characteristic polynomial associated with a
maximum-length sequence is called a primitive
polynomial

e Irreducible polynomial

— A polynomial is irreducible if it cannot be factorized
into two (or more) parts, l.e., it is not divisible by any
polynomial other than 1 and itself.

ch7-21

LFSR - Properties

e No. of 1s and Os

— The number of 1s in an m-sequence differs from the
number of Os by only one

e Pseudo-random sequence

— The sequence generated by an LFSR is called a pseudo-
random sequence

e The correlation

- Between any two output bits is very close to zero
e Consecutive run of 1s and Os

- An m-sequence produces an equal number of runs of 1s
and Os.

- In every m-sequence, one half the runs have length 1,

one fourth have length 2, one eighth have length 3, and
so forth

ch7-22

11

LFSR - Polynomial Multiplication

1101

44) {L g(x)=X"+x+1 X+ X+
< Das < D3 D2 D1
Output stream | D,D;D,D; | Input stream
{00000 |i1:1 01
Add-and-shift (1 /, 1/8:0:1 : 101
104 70117 0 1
101 0110 1
1011 0101
X7 x® x4 x2 1

(x“+x3+1)><(x3+x2+1):x7+x5+x4+x2+1

ch7-23

LFSR - Polynomial Division

(Example)
Input g(x)=x*+x>+1 Output Q(x)
011011011 i
M(x) — D1 D2 D3 —®—>{ Da
XAX2AXA+XE+XT+XE Tbxxe
M(X) D,D,D53D, Q(X) Quotient
011011011 00O0O0
after4 — 0110 1] 10,11
hifts 0110010 | 1
011} 0010 |01
01| 1001|001
0 0101 1001
1011 11001
Remainder > 1 +x2+x3 1+x +x4

(XBHXTHX5+XAHXZHX) + (X4+X3+1) = X4+x+1

R(X) = x3+x2+1

ch7-24

Y

LFSR - Summary

e LFSRs have two types
- In-tap and Out-tap
e LFSRs

— Can be used to implement polynomial
multiplication and division in GF(2)

e As polynomial multiplier

- LFSRs are capable of generating pseudo random
vectors

e As polynomial divisors
— LFSRs are capable of compressing test response

ch7-25
Cellular Automaton (CA)
— An one-dimensional array of cells
— Each cell contains a storage device and next
state logic
— Next state is a function of current state of the
cell and its neighboring cells
! ! !
Next Next Next
State State State
1 1 1
D D D
Q Q Q
) ¥ ¥
Three-cell neighbor
ch7-26

15

Cellular Automata - Name

e Name of CA functions
— Is determined by its truth table

State | Ao A1 A2 A3 Aa As As A7 Next State K-Map Fca
C+1l00001111 Ao | A2 | As | As
CGiloo110011 AL | As | As | A7
C-1/l01010101

7 .
Name = > A2' (defined by Wolfram)
i=0
Example: F., =C,_; ®C,
&X' 00 01 11 10 Name = 64+32+4+2
ol ol 10 |1 =102
1l o]l 1]o0 |1

ch7-27

e e —e .

Cellular Automata — Hardware

CA with Null Boundary Condition

EppRingnnnpiinsnnnni i

Fca Fca Fca Fca Fca Fca

Standard — All the CAs are of the same type
Hybrid — The CAs are of different type

ch7-28

14

Cellular Automata - Hardware

CA with cyclic Boundary Condition

1
+ e o P S—
Fca Fca Fca Fca Fca Fca
| | |
D D D D D D
Q Q Q Q Q Q
| | | | | |
ch7-29
Outline
e Basics
immp - Test Pattern Generation

- How to generate patterns on chip using
minimum hardware, while achieving
high fault coverage

Response Analyzers

BIST Examples
Memory BIST

ch7-30

A)

On-Chip Pattern Generation

PG Hardware Pattern Generated

Stored Patterns Deterministic

Counter Based Pseudo-Exhaustive
LFSR Based

Cellular Automata

Pseudo-Random

Pseudo-Random

Pseudo Random Patterns: Random patterns with a specific sequence
defined by a seed

ch7-31

Counter Based Pattern Generation

- Generates regular test sequences

- Such as walking sequence and counting sequence for
memory interconnect testing

cycle Walking Sequence Counting Sequence

1 10000000 00O

2 010000O00O0 001

3 00100000 010

4 00010000 011

5 00001000 100

6 00000100 101 chipl chip2
7 00000O01O0 110

8 00000001 111

- coupling between interconnects
can be tested by walking sequence

lineidl 2 3 4 56 7 8
ch7-32

On-Chip Exhaustive Testing

e Exhaustive testing
— Apply all possible input combinations to CUD
— A complete functional testing
— 100% coverage on all possible faults

e Limitation

— Only applicable for circuits with medium number of

inputs
6-stage —| Circuit Under Test i\lgglz:/t:gre
LFSR (CUD) (SA)

ch7-33

Pseudo Exhaustive Testing (PET)

— Apply all possible input combinations to
every partitioned sub-circuits

- 100% fault coverage on single faults and
multiple faults within the sub-circuits

— Test time is determined by the number
of sub-circuits and the number of inputs
to the sub-circuit

— Partitioning is a difficult task

ch7-34

Example for Pseudo-Exhaustive
Testing

c =
o L
e —J—, s
- cEEea
f e r

10 vectors are enough to pseudo-exhaustively test this circuit,
Compared to 26=64 vectors for naive exhaustive testing

ch7-35

LFSR-Based Pattern Generation

— Apply random test sequence generated
by LFSR/CA

— Simplest to design and implement
- Lowest in hardware overhead

- Fault coverage

e Is a function of the test length and the
random testability of the circuits

e Certain circuits are more resistant to random
patterns than others

ch7-36

15

Pseudo Random Testing Hardware

Combinational Sequential
LFSR LFSR
.. —{1—
Combinational Combinational —0—
circuit circuit
SA SA

(Circular BIST)

ch7-37
BIST - Pseudo Random Testing
Hardware
10-stage . . LESR
LFsR . M Shift register
S S S
Circuit Under Test R CuT R CUT R
SA SA
(CEBT) (STUMPS)
test-per-clock configuration test-per-scan configuration
ch7-38

19

Weighted Pseudo Random Testing

It was observed that weighted random patterns could
achieve higher fault coverage in most cases !

LFSR Based

LFSR

1/8 3/4 1/2 7/18 1/2

Weighted Cellular Automaton

—

0

123

0.8

0.6

61

0.8

04 05 03 03
ch7-39

Signal of An Arbitrary Weight

e To implement a signal
— with a signal-1 probability (weight) of 5/32

e Procedure

(1) Decompose into a sum of basic weights
5/32 = 4/32 + 1/32 = 1/8 + 1/32
(2) Use AND and OR gates to realize the weight

yl

y2

y3

LFSR

y4

y5

1/8

1/32

Z=Y1YoYs + Y1YaYaYaYs

a signal with a
weight of 5/32

ch7-40

20

Outline

Basics

Test Pattern Generation

Response Analyzers

- How to compress the output response
without losing too much accuracy

BIST Examples
Memory BIST

ch7-41

Types of Response Compression

e Ones-counting compression
e Transition-counting compression

e Signature Analysis

ch7-42

2]

Ones-Counting Signhature

e Procedure

- Apply the predetermined patterns

— Count the number of ones in the output
sequence

R0=00000000
R1=11000000
Test R2=10000000

Pattern CUT

1 Counter

|
signature OC(R0) =0
OC(R1) = 2
OC(R2) = 1

Clock

ch7-43

Zero-Aliasing Test Set for Ones-
Counting

e Notations

— TO: set of test vectors whose fault-free response is O
— T1: set of test vectors whose fault-free response is 1
e Theorem
— The following new test set does NOT suffer from
fault masking using ones count testing
— T ={TO, (|TO|+1) copies of every pattern in T1}
- Note that the fault masking only occurs when a fault

is detected by the same number of patterns in TO
and T1; the above new test set avoid this condition

ch7-44

)

Transition-Counting Signature

e Procedure

— Apply predetermined patterns
— Count the number of 021 and 120 transitions

T DFF 4~‘
Test cuT

Pattern

Clock Counter

l

Transition count

ch7-45

Aliasing of Transition-Counting

e Consider a sub-sequence of bits

(o Mg 15 Mg +4)
If r;., is not equal to ry,;, then an error occurring at
r; will not be detected by transition counting.

e Example
1. (0,1,1) > (0,0, 1)
2.(0,0,1)> (0, 1, 1)
3.(1,1,0)> (1, 0,0)
4. (1,0,0)> (1, 1,0)

ch7-46

25

Aliasing of Transition Counting

e Aliasing Probability

Notations

e m: the test length

e r: the number of transitions
— Highest when r=m/2
— No aliasing when r=0 or r=m

— For combinational circuits, permutation of the
input sequence results in a different signature

— One can reorder the test sequence to minimize
the aliasing probability

ch7-47

Signature Analysis by LFSR

e Procedure

— Apply predetermined patterns
— Divide the output sequence by LFSR

Test
Pattern

CuT LFSR

ch7-48

24

Example: Aliasing Probability

e Assume that

— Output number to be compressed has m=4 bits

— The compression is done by dividing output
number by a divisor of 2"-1, (e.g., the divisor is
22-1 = 3 when n=2)

— The remainder is taken as the signature
e Possible signatures

output =01234567891011 1213 14 15

remainder=0120120120 12 0 1 2 O

aliasing prob. when signature is 0 = (2™/(2"-1)) / 2™
=1/ (2"1) ~ 2"

ch7-49

Multiple Input Shift Register (MISR)
(Temporal Compression)

e A MISR compacts responses from multiple
circuit outputs into a signature

r

Aliasing probability of m stage = 2™

clock

ch7-50

25

Outline

Basics

Test Pattern Generation

Response Analyzers
BIST Examples
Memory BIST

ch7-51

Key Elements in a BIST Scheme

Test pattern generator (TPG)

Output response analyzer (ORA)
— Also called Signature Analyzer (SA)

The circuit under test (CUT)
A distribution system (DIST)

— which transmits data from TPG’s to CUT’s and from
CUT’s to ORA'’s

- e.g., wires, buses, multiplexers, and scan paths
A BIST controller

— for controlling the BIST circuitry during self-test
— could be off-chip

ch7-52

26

HP Focus Chip (Stored Pattern)

e Chip Summary
— 450,000 NMOS devices, 300,000 Nodes
— 24MHz clocks, 300K-bit on-chip ROM
— Used in HP9000-500 Computer

e BIST Micro-program

— Use microinstructions dedicated for testing
100K-bit BIST micro-program in CPU ROM
Executes 20 million clock cycles
Greater than 95% stuck-at coverage

A power-up test used in wafer test, system test,
field test

ch7-53

Logic BIST Example

e Features

— [Bardell 1982, 84]
— Self-Test using LFSR and Parallel MISR
— Multiple scan chains to reduce test time

|_Scan path |

|_Scan path |

CuT

|_Scan path |

T e T

W
Seed POs Signature

ISl
HSIN

ch7-54

Scan-Based Logic BIST

Architecture

called STUMPS architecture by Mentor Graphics

pseudo-random pattern generator

— ()] on <+
primary § g § g primary
mput pins © © © © output pins
multiple input signature register
ch7-55

Built-In Logic Block Observation

Bf

(BILBO)

c 1z
|

s—lo=
scan-in S

(@]
N

Scan-out

> Ql So

=

operation mode

[l el e] lve)

O r O

shift register

LFSR pattern generation

MISR response compressor
parallel load (nhormal operation)

= OOOoO|0

ch7-56

5

Example: BILBO-Based BIST

e Test procedure
— each logic block C1, C2, C3 are tested in a serial
manner
— BIST controller needs to configure each BILBO
registers properly during self-testing

¥
[BILBO1 |
when testing C1 | ! |
BILBOL1 is a PRPG %1
BILBO2 is a MISR
[BILBO2 |
v
I C, I
¥
[BILBO3 |
v
I cI |
cn/-57
Concurrent BILBO
B, B, ” Operation mode
Lepgie witidn £l o R (1) SN:al;:nal top-row of D-FFs = MISR
o 1 PRPG/MISR bottom-row of D-FFs = PRPG
| BILBO | pl ,
B, -T-[>o—4] !
C1
concurrent BILBO P CK > CK
s [T Pl o o B
needs to be U e I 2D - 2D
PRPG and MISR 0 x m? 2 r:%K 0:
simultaneously
B,
ciir-08

e

Outline

Basics

Test Pattern Generation

Response Analyzers

BIST Examples
Memory BIST

ch7-59

The Density Issues

e Historical n-Rule

— The number of bits per chip has quadrupled
roughly every 3.1 (or n) years

e Density Induced Faults
— The cells are closer together
— More sensitive to influences of neighbors

— More vulnerable to noise on the address and
data lines

ch7-60

30

Test Time May Get Too Long !

e For today’s memory chips
— Test time becomes a big issue !

— We can afford nothing but linear test algorithm

e Example
— assume that the clock cycle time is 100 ns
Algorithm Testing time (in seconds)
complexity
Capacity N 64n nelog,n 3n’? 2n?
16k 0.1 0.023 | 0.63 54
64k 0.4 0.1 5.03 14 Mins
256k 1.7 0.47 40.3 3.8Hrs
M 6.7 2.1 5.4 Mins| 61 Hrs
4M | 26.8 9.2 43 Mins| 41 Days
16M 1.8 mins| 40.3 5.7 Hrs 2 Years

ch7-61

IC Failure Rate Versus Time

Def: failure rate
The no. of failures per unit time as a fraction of
total population
IC’s failure rate is like a bathtub curve with three stages:
1. Infant mortality stage: typically a few weeks
2. Normal life failure stage: up to 25 years or so
3. Wear-out stage

failure infant wear-out
rate mortality normal life failures

A \ failure rate /

_/

Time

Short period of accelerated stress test prior to shipment
- To eliminate the infant mortality ch7-62

3]

Memory Model

address register[] column decoder refresh logic
address
- . .
5
8
address | -3
decoder | & data
RIW — - data register —
enable— read/write
control circuit
clk —
ch7-63

Memory Array

Problem: ASPECT RATIO or HEIGHT >> WIDTH

2"7" DIL LIne St C "
orage Ce
A — |
AE+1 (% Word Line
] &
Aca | 3
x
\
T T T T T T T m

Amplify swing to

Sense Amplifiers / Drivers - rail-to-rail am plitude
R N
0 Column Decoder / Selects appropriate
Ax -1 » word

Input-Output
M bits

ch7-64

32

Fault Models

e Stuck-At Faults (SAF)

— cell, data line, address line, etc.
e Open Faults (SAF)

— open in data line or in address line
e Transition Faults (TF)

— Cell can be set to O, but not to 1 ; 2 (1)
e Address Faults (AF) Al
— faults on decoders 7
e Coupling Faults (CF) cell is affected

— short or cross-talk between data (or address) lines
— A cell is affected by one of its neighboring cells

e Neighborhood Pattern Sensitive Fault (NPSF)
— A cell is affected by when its neighbors form a pattern

ch7-65
Example Faults
e SAF : Cell stuck
e SAF : Driver st'uck_ Fault Models
e SAF : Read/write line stuck
e SAF : Chip-select line stuck
e SAF : Data line stuck
e SAF : Open in data line
e CF : Short between data lines
e CF : Cross-talk between data lines
e AF : Address line stuck
e AF : Open in address line
e AF : Open decoder
e AF : Shorts between address lines
e AF : Wrong access
e AF : Multiple access
e TF : Cell can be set to 0 but not to 1 (or vice-versa)
- NPSF : Pattern sensitive interaction between cells S P

35

Simple Test Algorithms

e Test Algorithm

— is an abstract description of a sequence of test patterns.

e Commonly Used Algorithms

- Background patterns

ofoJoJo
ofoJoJo
ofoJo]o
— Checkerboard patterns ofofolo
lilmlilm mmmm
- March Patterns "ol 0] 0 0|

ch7-67

A March Algorithm

(Forward march that changes each cell’s content from 0 to 1)

oJoTo]o [0ToTo [T oTo EATo] [
0Jofo]o o[oJo]o olofo]o olololo 0lofo]o
oToloTo] ™ [olofolo] ™ [oTololo] ™ [olololo] ™ foToToTo] ™
0lofolo oloTo]o oloTolo oloTo]o 0lofo]o
olofo 0o 0
- -
0Jolo]o 0lofo]o lofofofo
[o]ofofo [oToTo]o olofo]o

(Backward march that changes each cell’s content from 1 back to 0)

010 01010 0101010

0JoJoJo
ololo]o
M‘M"!Joo = olololo] ™ *** ™ ololo]o
ololofo olofolo] olofofol ololofo olofo]o

ch7-68

34

Example: A Memory BIST

normal
inputs tester/BIST
BIST Circuit
pattern generator
clock | =] ——
| FSM-1
o
g test Memory
s patterns
delay buffer E
reset S
— memory
comparator
|
pass_or_fail test done

ch7-69

Finite State Machine for March Alg.

T e e

0] 01 0 0 0} 0 01010
ookl ™ [= Foolofo] ™ Felofolol ™ ofololo] ™
0] o] 0] [of [of of of o]

Lof of Lol of of

[of o o] eoe
= Cofoforol ™ Cofoforo] ™ fofofolol ™ *** =
Lol of of o] ol ol o]0 ol ol ol o ololol0

if(a!=N) a++;

if(a!=N) a++; if(a!=N) a++;

Notations of this extended state transition graph:
a: variable for address

N: number of cells

35

Testing Procedure of BISTed Memory

! normal tester/

‘ set the test mode to BIST ‘ s BT

i
‘ apply clocking signals to input pin clk ‘
l clk
set input signal reset to 1 for L
more than one clock cycles |
7 reset r
set input signal reset to 0 to test
start the BIST operation BIST patterns | Memory
l) 1
wait until the output response st o el
of the output pin test_done is 1 memory
! test_done response
catch the response of output pin pass_or_fail]

ch7-71

A Waveform Example

=

OIODICF ——

clock [1]

reset

=
=
=

It L
())

1 L
() =)
() 0

@@@ — E e
QRE| o
QNG| 2
QRE| o
BEE| o
REOE| o

cmd R R R
cata —— (DD o
address 0 @@@@ @ @ 4
test_done
pass_or_fail

ch7-72

36

Quality Measures of BIST

BIST-vs.-Tester Tester
Profile .
pass fail
B pass M) ‘e * .. *° () e ./EQEZﬁ
I e % s 00
S =]
T fail (1 ° HE (1V) o

To minimize region (I1) and (111):

1. False Negative Ratio: (I1) / #chips e.g., (1/20) =5%
2. False Positive Ratio: (111) / #chips e.g., (2/20) = 10%

ch7-73

Chapter 8

Test Compression

Acknowledgements:
Mainly based on the lecture notes of
Chapter 6, “VLSI Test Principles and Architectures”

ch8-1

What is this Chapter about?

a Introduce the basic concepts of test data
compression

a Focus on stimulus compression and
response compaction techniques

0 Present and discuss commercial tools on
test compression

ch8-2

Test Compression

Q Introduction

O Test Stimulus Compression
0 Test Response Compaction
QO Industry Practices

0 Concluding Remarks

ch8-3

Introduction

0 Why do we need test compression?
» Test data volume
= Testtime
= Test pins
0 Why can we compress test data?
» Test vectors have a lot of “don’t care” (X’s)

ch8-4

Test Data Volume v.s. Gate Count

0

1 2 4 8 16 32 64
Gate count (M)
(Source: Blyler, Wireless System Design, 2001)

o 70

@

2 50

w /

S 40 /

=3 /

% 30 /

o 20 7/~ Test data volume

@ 10 —_~increases with circuit size
= — \ | | |

ch8-5

Test Compression Categories

0O Test Stimulus Compression
* (1) Code-based schemes
» (2) Linear-decompression-based schemes
» (3) Broadcast-scan-based schemes

0 Test Response Compaction
= Space compaction

= Time compaction
» Mixed time and space compaction

ch8-6

Architecture for Test Compression

Compressed

Stimulus g tin nsel@) Compacted
o E= —> o) Response
O mm md S

3 — > T
S > B
- . e O
' —>]
v . —
O Emm —>
=
ch8-7

Test Stimulus Compression

m) 0 Code-based schemes
= Dictionary code (fixed-to-fixed)
» Huffman code (fixed-to-variable)
» Run-length code (variable-to-fixed)
= Golomb code (variable-to-variable)

0 Linear-decompression-based schemes
0 Broadcast-scan-based schemes

ch8-8

Dictionary Code

0 Dictionary code (fixed-to-fixed)

“scan-slica”
(n-hits)
- Aﬁ ees Scan Chain 1
Dictionary

Channels p_pits ;’E e#® Scan Chain 2

From —2 - -

Tester o .

; | |n- Scan Chain n |
S

A test vector is considered as a two-dimensional image
In multiple scan chains (e.g., n scan chains as shown)

ch8-9
Huffman Code
0 Huffman code (fixed-to-variable)

Symbol Frequency Pattern Huffman Code Selective Code
S 22 oo10|(10 1 o 00100100 00100110 0000 0010 1011 0100 001001000
N SR PR | 111 | 00100100 001001100000 0110 0010 0100 0110 00100
23 g gééé gi?o ggééé 00100110 00100010 0010 0100 0100 0110 0010 00101
: Sooooflorty | 99922 | 000t 010000100111 0010 0010 0111 01110100 0100 1
Se 2 o101fj11100 pooto1 | 11000100 01000111 0010 0010 0111 1101 0010 01001
s, 1 |1o11ffrr1o10| 01011
Ss 1 |1tooffr11011) 01100
S 1 |ooot|frtt100| ooco1
Syo 1 |r1o1ffrrriot| 01101
Sy 1 |rrrrffrrriaef 01111
S1, 1 Joorrf|frrr11t|_ooo11
Sps 0o |1110]|= \\
21; 8 igé? E) - Each is code from ATE

A test vector is partitioned into a number of 4-bit patterns

ch8-10

Huffman Tree
(More Frequent Symbol, Shorter Code)

0 Huffman code (fixed-to-variable)

Bottom-up
construction

ch8-11

Run-Length Code

0 Run-length code (variable-to-fixed)

Symbol Codeword 4
: o0 (- S Chil

0] 001 Yoy ey

001 010

0001 011
00001 100 Circut Under Test
000001 101
0000001 [10
0000000 [11

ch8-12

Golomb Code

0 Golomb code (variable-to-variable)

Group Run-Length Group Prefix Tail Codeword
A 0 0 oo 000
1 01 001
2 10 010
3 11 011
A, 4 10 0o 1000
5 01 1001
G 10 1010
7 11 1011
A, 8 110 0o 11000
9 01 11001
10 10 11010
11 11 11011

ch8-13

0 Golomb code (variable-to-variable)

Tp=001 00001 0001 00001 00004 Q000 01 001 00000001 Q0 ™

Example of Golomb Code

N e L e e e

Using Golomb code shown in Talle 6.4

Te=010 1000 011 1000 1000 1001 010 1011 014

The length of Ty is 43 bils
The length of T_Is 32 bits

ch8-14

Test Stimulus Compression

0 Code-based schemes
mm) 0 Linear-decompression-based schemes
0 Broadcast-scan-based schemes

ch8-15

Linear-Decompression-Based Schemes

Seed of LFSR: (Xy, X,, X5, X,)

Ky X7 Xz

/

Compressed

Test vector
To be applied
From ATE
X1IJ XBXS

29=X1GBX4FI€'XQ 25=XE|H':'X? z1=x2'i-P-'x5
Zyo= X, X, X, B X, Zo=X, B X, Z,=X,
Zyq = X Xy @ Xs @& X ® Xy Zy= Xy X ® X B X, Za=X, B X,
212=X3H+X?+BX1.:. ZB=X2'FI-3X5H-3XS ZA=X1-Z-EXE

ch8-16

Matrix Form
(Linear-Decompression-Based Schemes)

Decompressor Compressed Test Vector + Seed (?)

Matrix (?) /‘
0100100000] "z,

0010000000 [X Zy
1001000000| | X zZ
1000010000(| X, z,
0010001000] | X, Z.| original
1001000000| |X: Zy| Test
1100110000| | X, | = Z | Vector
o1o00100100||X| |Z]| ©VeV
1001000010(| X, Z,
1100110000| |X| |Zg
0110101100 Xq |&

00 ’

10001001)] Z
ch8-17

Solving Linear Decompressor & Its Seed

Z=1--011-----0 (Zis Test Vector) X=0111000001

0100100000 |[1] Gayssian [P200010000|0
1000010000 ||0f Eimination | @001 0000 0] 1
0010001000 (1| —— |00@co001000] 1
1001000000 |[1 coo@o10000] 1
0010001001 ||0 ooooocooo@) 1

(Z Vector with only care bits) Pivot elements indicated in circles

F=1-0--] eme X'=Mo Solution

0100100000| 1| Qaussian |1 001000000 0
100100000 0 ©|Elmination 01001000001
1001000000 1 _’UGDD{)UODUG‘Ie

ch8-18

Hardware for Linear-Decompressor

XOR
Network

x
o
Py
zZ
vl
=
o
=i

LLLLLLLLLLLLL
o T,
B LLLLLLLLLLLLL
o T,
B LLLLLLLLLLLLL
o T,
B LLLLLLLLLLLLL
DLLLLLLLLLLL
T
DLLLLLLLLLLL
T
DLLLLLLLLLLL
T
DLLLLLLLLLLL
T

d
D
v

DAL
\AL T

ch8-19

XOR Network: a 3-to-5 Example

s1s2s3

5 [1¢

ol o2 03 o4 o5

ch8-20

10

Test Stimulus Compression

0 Code-based schemes
0 Linear-decompression-based schemes
mm) 0 Broadcast-scan-based schemes

ch8-21

Basic Concept: Broadcast-Scan

{SC,, SC,, ..., SC,} shares the same test patterns applied by ATE

Scan_input

ch8-22

11

ATPG Supporting Broadcast-Scan

» Force ATPG tool to generate patterns for
broadcast scan (by binding certain PI's together)

Inputs Inputs

ch8-23

Reconfigurable Broadcast Scan

0 Reconfigurable broadcast scan

= Static reconfiguration

— The reconfiguration can only be done when a new
pattern is to be applied

» Dynamic reconfiguration

— The configuration can be changed while scanning in
a pattern

ch8-24

12

Broadcast-Scan Based Scheme

» First configuration is: 1->{2,3,6}, 2->{7}, 3->{5,8}, 4->{1,4}
» Second configuration is: 1->{1,6}, 2->{2,4}, 3->{3,5,7,8}

ScanChaini | 1 X 1 X X [X 0 0 X X
ScanChain2 | X X 0 X 1 oX 1 X 1
Scan Chain3 | X X X X 1 11 X X 1
ScanChaind | 1 1 X X 0 |0 0 X 0 1
ScanChain5 | 0 X 1 X X [X X X X X
ScanChaing | X 0 X 1 X [0 X 0 0 X
ScanChain7 | 0 X 0 X X [1 1 X X X
ScanChaing | X X 1 X X [X X 1 X X

First Partition Second Partition

ch8-25

Compatibility Graph - Finding Cliques

Scan Chain 1 1 X 1 X X

ScanChain2 X X 0 X 1

ScanChain3d X X X X 1

Original Test Pattern ScanChain4 | 1 1 X X 0
ScanChains | 0 X 1 X X

ScanChaing X 0 X 1 X

ScanChain7 0 X 0 X X

ScanChaing | X X 1 X X

2 First Partition

3 Cliques (fully connected sub-graphs):

(1){SC2, SC3, SC6, SC7} = (000X1)
(2){SC5, SC8} = (0X1XX)
(3){SC1, SC4} > (111X0)
=» Overall 8 sub-patterns down to 3

ch8-26

13

Broadcast-Scan Based Scheme

Pin Pin Pin Pin .
1 2 a3 4 Control Line

ch8-27

Test Response Compaction
(or Called Output Compaction)

O Space compaction
O Time compaction
0 Mixed time and space compaction

Unlike lossless input stimulus compression,

Output compaction is often lossy, leading to aliasing...

ch8-28

14

Test Response Compaction

LN
Test r| Gircuit Under Space

Patterns = Test Compactor =
T "\

m-bit wide p-bit wide
output patterns output patterns
Test ~_| Circuit Under ~) Time —
Patterns = Test T 7| Compactor T
n output patterns q output patterns

ch8-29

Space (Output) Compaction

0O Space (output) compaction
» Zero-aliasing output compaction
= X-compactor
» X-blocking & X-masking techniques
» X-impact-aware ATPG

ch8-30

15

Zero-Aliasing Output Compaction

Theorem 6.1

For any test set T, for a circuit that implements function C, there exists a zero-
aliasing output space compactor for C with ¢ outputs where g = [log,(|T|+1)].

Theorem 6.2

Let G be a response graph. If G is 27 colorable, then there exists a g-output zero-
aliasing space compactor for the circuit C.

ch8-31
Example: Response Graph
SAT Fault Fy
TestSet T Test Response
ert 0110
1010
1100
1011 0110
1100
sA ‘Eﬂu“* Fa Faulty response
Fault-free
3-colorable
Faulty response Fault-free

ch8-32

16

Architecture of X-Compactor

O X-compactor with 8 inputs and 5 outputs

SCH scz SC3 sC4 8Cs 5Ce SC7 sCa

L

W hd $ W v 'Jf W WoWW W VoW
XKOR |[XOR || XOR || XOR | [XOR || XOR || XOR || XOR | | XOR || XOR

v ¥ ¥ ¥ ¥ v v W ¥ W
XOR XOR XOR XOR XOR

Out 1 Out2y, Out 34 Out 4y Out 5

ch8-33

X-compact Matrix

Outl Out2 Out3 Out4 Outb

1 1 1 0 07|sct = scidrives{Outl, Out2, Out3}
1 0 1 1 0}sc _
1 1 0 1 0]scs MatrIX_Form:
1 1 0 0 1|sc4 Outl

M= 1 0 1 0 1]|scs Out2

1 0 0 1 1]|sce SCus Mgg=|0ut3|=0ut,
0 1 0 1 1|sc7 Out4

|10 0 1 1 1]scs | Outb |

SC=[SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8]

ch8-34

17

X-Blocking or Masking Techniques

0 X-blocking (or X-bounding, X-avoiding)
= X's can be blocked before reaching the response

compactor

= To ensure that no X's will be observed

= May still have fault coverage loss

» Add area overhead and may impact delay

ch8-35

X-Blocking by Selection

= |llustration of the X-blocking scheme

0

. T ¥ ‘
I.-"'-‘- —< \L‘\.I s,
JI

[;' X Source 1;‘} <

- L/
N

salect

(This is a bit stream provided by ATE)

Compactor

|—..

Final Output
To ATE

ch8-36

18

X-Masking by Masking Logic

> Mask Bit 1

Scan Out 1 X
F

Scan Out 2

Scan Out 3

When there is an X in a scan chain output,
a controlling value , i.e., ‘1" in this example, is issued to mask it out

Controller

Mask

>j >Mask Bit 2.
ﬁ%

= Mask Bit 3

Compactor ﬁL)

Final Output
To ATE

Could be on-chip LFSR

ch8-37

Counter-Based Output Selection

X-Tolerance by

Circuit Under Test

_ X X -
Scan in | 1 SEF), [SFF; [SFF, — SFf,
Sean in 2 1| SFF, [SFFy [SFF [SFF
. 7 [r ‘
Sean in 3 -+ S5FF- M SPFq SF-I-{— 5FF;
Counter
{0, +1, -1, +2, -2, etc.) control

Dynamic path means counter operation can be changed at any scan cycle

Static path

— -+« = Dvnamic path
-..,_‘__“‘
0

M Observation
LU output

¥ F
2

Counter
sequence

counter

ch8-38

19

X-Impact-Aware ATPG

0 Concept

= Simply use ATPG to algorithmically handle the
impact of residual X’s on the space compactor

= Without adding any extra circuitry

ch8-39

Example: Handling X in ATPG

Path (G5>G6->SC4->G8->q) might be contaminated by ‘X’ at f
(1) Propagate the fault effect through (f1>G3>G2->SC2->G7->p) = b=0, c=1
(2) Kill the X by assigning g to ‘1’ = SC4=0 - q is observable

—a SEE
2= b sCe A:E;_p
e I @- ..‘zﬁ'}l anan | —
:‘I_} d—g, hg Sﬁg
—
X—=f _ q
72 g)3 5
S —=— %

ch8-40

Output-Compactor-Aware ATPG

a f,/1 fault could be masked as propagated to p
0 Block aliasing by assigning ato ‘0’

SCA

| B -Iﬂ—
D

ch8-41

Time Compaction

O Time compaction

= A time compactor uses sequential logic to
compact test responses

» MISR is most widely adopted

» n-stage MISR can be described by specifying a
characteristic polynomial of degree n

ch8-42

Multiple-Input Signature Register

J

e
Mo M M, M, M., : .
v ") = g ha bR,
M,[10010
M| 01010
M| 11000
- M| 10011
WM W M 10011011

ch8-43

Mixed Time & Space Compaction

0 Mixed time and space compaction

inputs

ch8-44

22

Industry Practices

0 OPMISR+

0 Embedded Deterministic Test
0 Virtual Scan and UltraScan

0 Adaptive Scan

0 ETCompression

ch8-45

Industry Solutions Categories

0 Linear-decompression-based schemes

= Two steps
— ETCompression, LogicVision
— TestKompress, Mentor Graphics
— SOCBIST, Synopsys
0 Broadcast-scan-based schemes
= Single step
— SPMISR+, Cadence

— VirtualScan and UltraScan, SynTest
— DFT MAX, Synopsys

ch8-46

23

General Scan Architecture for OPMISR+

Mask_Enabila Scan-in & mask load streams

sScan Load Bus) Chip

il

Broadcast Scan
(Fanout Buffar Netwark)

Mask gl Mask | Mask |
I
| MISR | | MISR | | MISR |

%4
N Space Compactor
(XOR MNetwork)

Composite MIZR Observe (MO)

ch8-47

EDT (TestKompression) Architecture

ﬁ-‘I:I—}
1

/1

Circuit
Under Test

1ojoedwon

/1
—/

——

lossaidwoos(]

Compressed
Stimulus

M

Compacted

ATE Response

ch8-48

24

Concluding Remarks

0 Test compression is

= An effective method for reducing test data volume

and test application time with relatively small cost

= An effective test structure for embedded hard cores
= Easy to implement and capable of producing high-

quality tests
= Successful as part of standard design flow

ch8-49

25

Wf_"}p ELX BT

EE-6250
A~ AR T BRI
VLSI Testing

—

Chapter 9
Boundary Scan

Objectives

e Standards for board level testing

e Used for

— Chips dﬁ!;b Il-\\-f

— Chip interconnections

Through-hole Surface
- Modules mounting mount
— Modules interconnections

53 ICs + 40 discrete devices

— Subsystems
- Systems
— Multi-chip modules

e Die-to-board integration ——

ch9-2

Board Testing Setup

Debugger
software

Device
Under
Debug
JTAG
connection

TDI: Test Data In
TDO: Test Data Out
TMS: Test Mode Selection
TCK: Test Clock

TRST*: Test Reset

ch9-3

A Printed Circuit Board with
Boundary Scan

Boundary scan use 4 or 5 wire bus to provide accessibility to the

I/O pins of selected on-board IC 2 thereby facilitating board-level testing

— = 1 1 1

Application Application
logic logic
e el .
[L o e 7‘ Eae
= = 1
e
Lo P l*_.'l'_.'t"_;l*
T e e S S S P S e R i
Application Application |
logic logic |
L T
——— T ——— T~ e et

ch9-4

History

e 1985

— Joint European Test Action Group (JETAG, Philips)

* 1986

— VHSIC Element-Test & Maintenance (ETM) bus standard (IBM et al.)
— VHSIC Test & Maintenance TM Bus Structure (IBM et al.)

» 1988

— Joint Test Action Group (JTAG) proposed Boundary Scan Standard

e 1990

— Boundary Scan approved as IEEE Std. 1149.1-1990
— Boundary Scan Description Language (BSDL) proposed by HP

e 1993

— 1149.1a -1993 approved to replace 1149.1-1990

* 1994

— 1149.1b BSDL approved

e 1995

— 1149.5 approved

ch9-5

Overview of P1149 Family

Number
1149.1

1149.2

1149.3

1149.4

1149.5

1149

Title

Testing of digital chips and
Interconnections between
Chips

Extended Digital Serial
Interface

Direct Access Testability
Interface

Mixed-Signal Test Bus
Standard Module Test and
Maintenance (MTM) Bus

Protocol

Unification

Status

Std. 1149.1-1990
Std. 1149.1a-1993
Std. 1149.1b-1994 (BSDL)

Near Completion

Discontinue

Started Nov. 1991

Std. 1149.5-1995

Not yet started
ch9-6

Basic Chip Architecture of 1149.1

/O Pins /0 Pins
TDI ——>| Miscellaneous registers |—>
——>| Instruction register |—> UIPIS
TRST* | Bypass register —
TMS Vel
ch9-7

Boundary Scan Circuitry in a Chip

TDI: Test Data In .
TDO: Test Data Out Test Data Registers

TMS: Test Mode Selection

TCK: Test Clock Design-Spec. Reg. I_’
TRST*: Test Reset
Device-ID Reg. [M
U
TDO X
TDI
ClockDR |
ShiftDR SEIEE
R t
TRST* — UpdateDR ese
T™MS — TCK
TCK — ClockIR
ShiftIR
UpdatelR Enable

ch9-8

Hardware Components of 1149.1

TAP (Test Access Port)
- TMS, TCK, TDI, TDO, TRST* (optional)
TAP Controller

- A finite state machine with 16 states
— Input: TCK, TMS

— Output: 9 or 10 signals including ClockDR, UpdateDR,
shiftDR, ClocklIR, UpdatelR, ShiftIR, Select, Enable, TCK,
and the optional TRST*

IR (Instruction Register)
TDR (Test Data Register)

- Mandatory: boundary scan register and bypass register

— Optional: device-ID register, design-specific registers,
etc.

ch9-9

Bus Protocol

[IR Configurationl Scan-In Launch | Capture Scan-Out l (XX

Serially send instruction over
TDI into instruction register

Test circuitry is configured
To respond to instruction
(Scan in data through TDI)

| Execute test instruction |

Shift out test results through TDO
New test data on TDI can be shifted in simultaneously

ch9-10

A Typical Boundary Scan Cell

SOuUT
IN 0
L P ouT
0 |” L
MUX |
1 D Q 1D Q
> Q, Qs Mode_Control
SIN'" shiftbr
ClockDR UpdateDR
e Operation Modes
- Normal: Mode_control=0; IN>OUT
— Scan: ShiftDR=1, ClockDR,; TDI>...2SIN>SOUT>...>TDO
i - Capture: ShiftDR=0, ClockDR,; IN=>Q,, OUT driven by IN or Qg
- Update: Mode_Control=1, UpdateDR; Qg>0OUT
ch9-11
State Diagram of TAP Controller
Control of data registers Control of instr. registers

Test-Logic-
Reset

0
1
A
C Run-Test / Idle L
0

Update-DR

0
ch9-12

States of TAP Controller

— Test-Logic-Reset: normal mode

- Run-Test/ldle: wait for internal test such as BIST
— Select-DR-Scan: initiate a data-scan sequence

— Capture-DR: load test data in parallel

- Shift-DR: load test data in series

- Exitl-DR: Finish phase-1 shifting of data

- Pause-DR: Temporarily hold the scan operation
(allow the bus master to reload data)

- Exit2-DR: finish phase-2 shifting of data

— Update-DR: parallel load from associated shift registers

ch9-13

Instruction Set

EXTEST

— Test Interconnection between chips and board
SAMPLE/PRELOAD

— Sample and shift out data or shift data only
BYPASS

- Bypass data through a chip

Optional

- Intest, RunBist, CLAMP, Idcode, usercode, High-Z,
etc.

ch9-14

Chipl Chip2
1. Shift-DR Internal Internal
(chip 1) Logic Logic
2. Update-DR Internal Internal
3 c(ggtlﬁr?-DR Logic Logic
(chip 2) I : [TRegisters _|———{ @™ O ® Registers Ha 100
- - TAP COTrotter -
. Internal Internal
4. Shift-DR Logic Logic
(chip 2)
oI [Registers _|——{ |mT00 oI ® Registers .
rrp-comrotTr Tho-15
Input
1. Shift-DR @__
(Chip1)
T DI
Input 7 [Output to
2. Update-DR Internal w| chiz
Chip) oo) Lo e
| I - o
TDO
Input from
Chipl —
M
3. Capture-DR . v | Output
o A QB
(Chip2) o |
TDO
4. Shift-DR ~ —*7
Output

(Chip2) [@__
1 TDI

ch9-16

SAMPLE/PRELOAD

Input
SAMPLE M Output
X u
aCy x
‘ TDI
Input
PRELOAD Output
:

Fro

Sample/Preload is one instruction that allows
1. Sample and shift (out) or
2. Shift (in) only

ch9-17

BYPASS

Internal
Logic

Bypass L

TDI] Register TDO
(1 bit)

TAP Controller |

ch9-18

INTEST

B i i .
: InLterr.1aI : : Internal :
1ShiftDR 1 o0t ' 2Update-DR Logic "
X .
X] i .
=—|ml—l =—|ml—-
== e . .
[n [|
" Internal o . | Internal o=
3.Capture-DR § Logic s 4. Shift-DR F== Logic [Emm
l i
. : T B a1
I IJ ITDo ™ g .TDO
e — - T . |
ch9-19
Input
. M Internal
1. Shift-DR [@__ X Logic
TTDI
Input — S
2 U d te-DR ’S Internal M| Output
- Update- % X[\ o5
|TD| o TDO -
Input — _
t' Internal n Output
3. Capture-DR o @s || 2 £ X
[o1 - 100 —
Input
- M Internal M | Output
4. Shift-DR - __Ig :Logic) o
el TDO
ch9-20

10

A Printed Circuit Board With 1149.1

(Ring configuration, test controller on board)

Chipl

Internal
Logic

Chip2

Internal

Logic

e |
—1 _Registers 'E

L
|—>I TAP Controller |

. L
1_TAP Controller I—

|

Registers

u {_TAP controller I—
w
U
x

Internal
Logic
—*—
—T—
Chip3
1111 1
ch9-21
Test Bus Configuration
Application chips Application chips
TDI izl
s #1 s #1
Bus DO Bus DO
master master
00 |— LTDI '_';_%? — LTDI
TCK TCK
TDI &= T™MS 2 ¥mgé ’% T™S 2
TDO ° DO
™S [° [
® c TMSN . o
TCK e s oK . .
L L] L]
TDI
o T
e oo
TDO
Ring configuration Star configuration
ch9-22

11

EE-6250
AL S AR BRI
VLSI Testing

S

Chapter 10
High-Speed Interconnect Testing

Outline

4 Introduction

€ Problem, Objective, Review, and Motivation
€ Pulse-Vanishing Test (PV-Test)
€ VOT-Based Oscillation Test

Testing Interconnects in 3D IC

Problem Addressed:

To develop a low-cost method to test the delay fault
associated with the TSV (Through Silicon Via)

— (s —
m piEr () TV J—

oo O o O O GJ () Tsv)
i (77—

Delay fault

DIE2

3D-IC using TSVs

SEM Photos of TSV Defects
(0.18um Through Silicon Stacking at ITRI)

A partially faulty TSV may not operate as fast as we expect
(and it could deteriorate over time...)
L "I SV Yofdeee™
26.3um

;:me prgim

- =

~ Missing bump -

Testing Interconnects in 2.5-D IC

@ For each die, interposer wires are like Pseudo-10s
€ Boundary scan cells needed for (1) Die Test, and (2) Interconnect Test

: IEEE-1149 TAP controller = : Boundary scan cell

interposer

Controls TDI DO
Controls: Boundary Scan Control Signals {TCK, TRST, TMS}

Parametric Faults in
High-Speed Die-to-Die Interposer Wires

(1) Resistive Open Fault in an interposer wire 0
(2) Resistive Bridging Fault between two interposer wires @

Micro-bump

Inter
-poser

C4 bumps for connecting to package substrate

Objective and Challenge

Objective: To detect parametric faults (e.g., <1ns delay fault)
=>May need to maintain a pitcher-catcher timing relationship across dies

(This type of cross-die clock synchronization may not be easy)
=» There are so other choices...

— ! —
Pitching o I"%—" Catching
die s S die
z z
TCK1
TCK1
TCK2]

de@ threshold (e.g., 1ns)

Note: test clocks TCK1 and TCK2 are low-speed test clocks (e.g., 10MHz)

Outline

& Introduction

€ Pulse-Vanishing Test (PV-Test)
- At-speed testing for high-speed interconnects
€ VOT-Based Oscillation Test

Electrical Model of an Interposer Wire

An interposer wire is decomposed into multiple segments of r and ¢

I IS the resistance of the micro-bump

Driver Receiver

‘\ /

‘IW-delay’: interposer wire delay from A to WO

Resistive Open Fault Model

rmb rmb
>
A cycze WO¥ B

C

s |
3]
=
(3]
e |
(3]
s |
(3}
1=
(3}
] |
(2]
o |
(3]
1p=—{
[l |
e |

(a) Fault-free model of an interconnect.

Excess:vely large resistance R

open

Driver
[I I‘mIc Ic Ic Ic Ic Ic Ic Ic wo

(b) Faulty model of an interconnect with a resistive open fault.

10

Resistive Bridging Fault Model

Driver iiiiiiiiii Receiver
——] -
A Y,

TITTITITIT

Bridging fault model between two interposer wires.

11

Pulse-Vanishing Test (PV-Test)

Pulse-Vanishing Test:
(1) Test Stimulus: A short-duration pulse (0-1-0)
(2) Fault Detection Criterion:
If the pulse vanishes at the receiver’s output, then there is a delay fault

Driver . . Receiver
A [fault-free interposer wire wo I: B

Threshold-/-A

— .
at-speed clock cycle time (e.g., 1ns)

faulty interposer wire

Driver (with high resistance) Receiver
A wo B

Threshold--—-—i-

12

Primitive DfT Circuit
(for Pulse-Vanishing Test)

LAUNCH CAPTURE
CELL TMm CELL
functional Driver Interposer Wire (IW) Receiver fl_
input

I under test wo

D Q=1
t G
SE €> ’ ¥
Threshold- (‘O initially)
(‘0 initially)
f | r | Atwo-pulse signal (shared by all IWs)
<>
At-speed clock cycle time (e.g., 1ns) PV-test

controller

13

Vanishing Pulse Width
(for 1000 yum Long Interposer Wire)

Def: Vanishing Pulse-Width (VPW)
The pulse-width of the applied test pulse above which
the pulse will vanish at the receiver

010
= 1009
ho} 19 o) e
= A\ e
“Oe Rl
; 17 s\ e
g ce”
o 15 g‘a\x\ T
= . P
nl- 8 1.3 - “G as\“ g = *®
- A\ T e

2 - W L
G 09 -
c
g o7 Ttaultfre

05 = vy : : : :

05 0.7 0.9 11 13 15 17 1.9 21

Interposer wire delay (ns)

Comment: A larger test pulse width implies larger delay test threshold

14

Boundary-Scan Compatible Launch Cell

When ‘PVT_fire’is ‘1":
(1) 2" FF behaves like a toggle-type FF
(2) Two-Pulse signal ‘TP’ is applied to the clock port of 27 FF

SO ™

In 1‘

(from core) [0<} B out
Q (to IW)
St — FF FF _i—|_
D> . D>
Shift DR | r PVT fire
Clock_DR IULre t
PVT _fire
Update_DR1

| Note: Q2 needs to be initialized to ‘0’ before a test session

15

Boundary-Scan Compatible Capture Cell

When ‘PVT_fire’is ‘1"
(1) 1st FFis set to ‘1’ if receiving a clock pulse, otherwise stays ‘0’
(2) Input signal ‘IN" is applied to the clock port of 1st FF

SO ™

1

In
(from IW) | PVT fire — Out
0) g o Q, o Q (to core)
SI —|

L Q,
1 e |01 -

Shift_DR—I_I'I'_n 3 P r>

PVT_fire Upda te_D
Clock_DR R2

Note: Q1 needs to be initialized to ‘0’ before a test session
The final test result is stored at Q1

16

Built-1n Self-Test Architecture

P : launch cell © : capture cell
Interposer
Wires
2 z
7 3
= 2
Die 1 s 8 Die 2
(Master) |38 =| (Slave)
Test H i
Scheduler : :
[€ TDOTDI snnafannnnndur H .
7 . 1 A .
: | T - Y
J '..........-.................\. PV-test
{TCK, I , ‘ Controller
Start_BIST}| |pass/fail {TCK, TRST, TMS}
Tester

17

PV-Test Procedure
(Scan-In, Init, Pulse, Scan-Out)

—<ScanXScanXScanXScanX Init XPuIse)(ScanXScanXScanXScan>—>
J\)\ J\
I 1
Scan-In all-'0’ pattern Initialize Pulse Scan-Out Results
to Q, of every launch cell Launch cells Cycle from Q, of each capture cell

‘Init’: Update the value of Q, to Q, in every launch cell
‘Pulse’: Perform pulse-launch and pulse-capture in the same test clock cycle

18

Simulation Waveforms of a PV-Test

TCLK

States | Scan-In | mnit Pulse] Scan-Out l
PVT_fire
Test_Pulse All launch cells fire |
out_IW1 |
: i— Inadequate pulse at
Out_IwW2 g7 21 capture cell
out_Iw3 P
Out_IW4 | Failir:g bit
Pass/Fail LI i | s l
Test Result: Interposer wire IW2 is faulty!
19
Test Time
R 2 R A T R A T R T T R S 8 X R
@ A PV-test session using 10MHz test clock is about
0.82 ms for 1024 interposer wires
26.21 ms for 32K (32,768) interposer wires
20

10

Area Overhead

Estimation is based on a 90nm CMOS process

Area overhead
Type Cell Name Layout Area (um*um)
INVERTER 2.82
Basic 2-input NAND Cell 2.94
Cells MUX Cell 8.47
FF Cell 17.64
Boundary Scan Cell 52.22
Basic Launch Cell 92.56
Macros Capture Cell 69.16
PV-test controller 670.3
Overhead 55.55% for 1024 interposer wires
Percentage . .
Over 1149.1 54.9% for 32,768 interposer wires

21

The interposer needs to be tested alone and thoroughly.

Summary of PV-Test

And also, when a 2.5-D IC fails,

We know if the interposer should be responsible.

€ Advantages of Pulse-Vanishing Test
Simple fault detection scheme (No post-processing)
Delay Test without die-to-die high-speed clock synchronization

Boundary-Scan-Like Test Architecture (55.55% overhead)

On-the-spot Diagnosis (good for future self-repair)

22

1/

Outline

€ Introduction
€ Pulse-Vanishing Test (PV-Test)

€ VOT-Based Oscillation Test
- Characterization-based parametric fault testing

23
Concept 1:
It’s a matter of transition time measurement!
A TSV with delay fault = Longer Rise/Fall Time
| —DormayPe—
J
Observation point
Normal TSV
= Shorter rise time J
Resistive TSV : ;
=» Longer rise time ¢ IE
To be measured...
24

12

Concept 2: Use Schmitt-Trigger Inverter
- Hysteresis proportional to the input Transition time

Smaller hysteresis

Schematic I
Voo - I /
Larger hysteresis
Vour (V) gerhy
_q 1.8 m L RS DU T
I " A
‘/in VOUt n: Y
I VDD II.Z':: " '
e ez 'I-n.'c.' T l.:-l ST T ‘/’_n(v)
! ! 1.8
— v v

V(-1 =0-54(v) Vini1.0) =1.27(v)
25

Architecture of VOT Scheme (Per TSV Pair)
(VOT: Variable Output Threshold)

Use Variable-Threshold Output Inverter for each TSV:
(1) Control signal Z =0 - Normal Inverter
(2) Control signal Z =1 > Schmitt-Trigger Inverter (WITH HYSTERESIS)

1 1 R y4
el 1 OR_enable2

OR _enable1 Z;
26

VK,

Brief Summary of our Idea

TSV Delay = Transition Time

Transition Time = Oscillation Period Change

(from normal to Schmitt-Trigger)

(Easily Measurable)

27

Schematic of a VOT Inverter

(a) overall schematic (b) normal inverter (Z=0) (c) ST inverter (Z=1)
v, Voo

£] P
LYYy L LYY

= Vout Vip — —— Vou Vip = Vout
— l Vfg —L —L ‘ Vop

—57 T —57 —57

28

14

Three Oscillation Periods in VOT-Analysis

(1) Normal mode:
Oscillation period=T g

(2) TSV1-in-ST mode
Oscillation period=Tgr,
| TSV1 delay ~ AT, (Tsr, — Trer) |

(3) TSV2-in-ST mode
Oscillation period=Tgr,
| TSV2 delay ~ AT, (Tsr, - Trep) |

29

Example: Predict the Delay of Each TSV

Rrsvs=10 () Cyrsy4=400 (fF) Rysy, =1 (kQ) Cys,=800 (fF)
Waveforms under the normal configuration T,..= 4.42 ns

) Smaller
endpoint of TSV1 ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ Transition times

) Larger
endpoint of TSV2 /\/\/\/\/\/\/\/\ Transition times

Waveforms under the Schmitt-Trigger configuration

endpoint of TSV1 ﬂ ﬂﬂﬂﬂ ﬂ ﬂ Tsry= 5.05ns

endpoint of TSV2 /\/\/\/\/\/ Tsr,= 6.49 ns

Normal Configuration: Tpee= 4.42 ns
TSV1-in-ST Configuration: Tgr;= 5.05 ns (smaller increase from Tggr)
TSV2-in-ST Configuration: Tg,= 6.49 ns (larger increase from Tp)
ATgrs= 5.05—4.42=0.63 ns
ATgr, = 6.49—-4.42=2.07 ns

OU

15

Ex: Correlation between TSV Delay and AT

€ Fault Population: Resistive Open Faults
4 An outlier in measurable AT is an outlier in TSV delay

0.6
05 — AT = TST - TREF

Free
o T T T 1

0 0.1 0.2 0.3 0.4
TSV_delay (ns}

31

RO, MUX Tree, and Measurement Circuits

[

0

scillation
Period
Measurement

_ 8-bit Result / (

* i
TDO T A Address Config

<
TDI
MEA SCAN (0/1: hold/shift)]
RO access port

32

16

Ring Oscillator (RO)
(for One Pair of Interposer Wires)

Two extra Control Signals (to support bridging fault detection):
(1) ‘Osc_en’: enabling signal for oscillation
(2) ‘Tri_en’: tri-state enabling signal for the driver of IW2

Test_Mode

Interposer || A........-Jeceeeemniiierennineeenn,

it i B
input
Observﬁ“
point
functic;nal
: : 6 input
‘Osc_en’ ‘Z2’ outpu ‘Tri_en’ Test_Mode
33
Three Test Strategies
RO T RO T S R T R T 5 T AR S i T R

Principles:

(1) All ROs oscillate concurrently to detect “resistive open faults”

(2) One RO oscillates at a time to detect “inter-RO resistive bridging faults”
(3) No RO oscillates to detect “intra-RO resistive bridging faults”

Test Strategy RO Settings Test Actions
Measure
Test AO-strategy i i {Trer Tsr1: Tsra}
OPEN (All Oscillation) Every ROIs Active of every RO in
sequence
T EEEE——S—S—S—S—————"5 5.5
Test Target RO is Active Measure
Inter-RO 00 (One RO at a time) {Trer Tsry Tsrok
BRIDGING SUEEDY of the target RO
(One Oscillation)
The others are NA
Grounded
IntTr(;?I;O NO-strategy Every RO is Half- Measure {Tger}
BRIDGING (No Oscillation) Floating of every RO
34

AO-strategy (All-Oscillation)
(to detect an open fault)

Test_ Mode <1’ 71’

‘Osc_en’= ‘1’ 4 ‘Tri_en’= ‘1’ Test_Mode

An open fault occurring to an interposer wire.

35
OO-strategy (One-Oscillation)
(to detect an inter-RO bridging fault)
An inter-RO bridging fault will slow down the speed over a victim IW.
‘1’ V4K
E- -------------------------------- : Interposer Frensssannnnas ! :
Active RO
: L victim IW :
‘Oscé_en’ =1 z2’ : ‘Tri_en’ = ‘1Test_Mode
i Test_Mode ‘1’ Die 1} Die 2 ‘§1 ’ :
Eaggressor W
ébrounded RO
;Osc';_.ér;:.:":b., :22.:.........& "};Ilén:':"i, ”

15

NO-strategy (No-Oscillation)
(to detect an intro-RO bridging faults)

The existence of an intro-RO bridging fault will
cause a half-floating RO to oscillate abnormally.

Test_Mode <1’ 71’

Floating

Die 2

ie Oscillatior:

Y YT T Ha|f-F|OatIng RO H
‘Osc_en’ =1’ ‘z2’ ‘Tri_en’=‘0" Test_Mode

37

Waveform of ‘End Point” and “Observation point’ in NO-strategy

100ns _ 200ns 100ns 200ng
1v 1v
Test Mode J
ov oy —
1 k.Q ||nr||||||||IIlll"I'IIIII|IiII|I|nu|||||.'r|||||1||||u:|||||| TiiE

it T

Y
L!:.ih..u[,' lU |Luuu|L‘ |H

| F

Fault is Detected! |Ji LI

Weaker Intra-Bridging Fault
Intra Bridge Fault

1MQ Fault is not Undetected!
v O S o
100ns 200ns 100ns 200ns
End point Observation point
38

19

Example for an Inter-Bridging Fault

Average T . Average T, .
w o - v -
AO-
strategy
ov e ov e
2.49ns 2.88ns
AT = 0.39, Normalized AT drift = 39%
v)) . v
Consistent slower rise time
00-
strategy
ov Ei ov

2.66ns

3.20ns

AT = 0.54, Normalized AT drift = 93%

39
Example for an Inter-Bridging Fault

50 -
§ AO-strategy
c 40 -
g 30
)
3
S 20 -
o 10
Y
o
d 0 Tt W HHQ...HH TTTT T T T T T T T T I T T T T T T I T T T TTTTTTT @ TTTTTTT
4 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 95 90 95
L 50 - Normalized ATdrjff (%) _
g 40 4 0O-strategy 5KQ Inter Bridging Fault 1000um IW
5 Resistance at mid-point 1KQ Open Fault
=30 of 500um and 1000um IWs at micro bump
3 - :
S 20
o
us 10
O 0 i R N RN NN NN N RN NN NN RN NN RN E S AR RN Nu P R aR N o
4 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Normalized AT, (%)
40

20

Fault Type Classification

Outlier Outlier
‘normalized ATy ‘normalized ATy’

in AO-strategy in OO-strategy

Non-infinity ‘T

in NO-strategy

Check if there is any IW, l
two ‘normalized AT, in r?dn :““:;RIOI
AO- and OO-strategies Bridging fault in
YES are consistent outliers NO current RO

[

in the current IW fault affecting the

v
An open fault An inter-bridging
current W

41

Normalized AT g, for Outlier Analysis

For each IW w;, we have two versions of AT:

AT, (W) = Tsr sim (W) —Trer sim (W)
ATmeasure (Wi) = TST _ measure (Wi) - TREF _ measure (Wi)

AT y.«(w;) respresents the drifting amount of a measurement
version of AT away from its simulation version:

ATdrift (W|) = ATmeasure (W|) - ATsim (WI)

To take into account of the wire-length diversity, we further
normalize it:

— ATsim

sim

(Normalized _ AT4) = [ATmeazre] -100%

42

2]

Testing and Characterization Flow

Design Phase Testing Phase
< AchiE -
Measurement
& Data Analysisy,
- Derive AT___....for each IW
Pair-Up Interposer Wires in AO- & 0O-strategies
To form ROs 7
v Derive normalized AT,
Simulate IW-delay & AT, for each IW in AO- & OO-strategy
for each W v
¥ Derive T, for each IW
in NO-strat
Perform Regreszion on - ira il
{ w—lﬂ-‘! data Perform outlier analysis to
Identify faulty IW
Delay Prediction v
Formula -3 Perform delay prediction

*IW : Interposer Wire

43

No. of occurrences

No. of occurrences

50
40
30
20
10

0

T

0

Fault Detection
(Finding Outliers in Normalized AT y¢)

Population: 1000 interposer wires of various wire
lengths in [100 um, 1000 pm] ,
among which three are faulty.

¥-.0.05 0.1

V..

0.15 0.2

AT i (NS)

100um IW

1KQ Delay Fault
at micro bump

550um IW
1K 2 Delay Fault
at micro bump

1000um IW
1K Delay Fault
at micro bump

M“!h\l TTTTTTT T I T T T ITT !\1";'%‘1 TTTTTTITTTITTT !\1"!";“‘!\1 TTT !‘?1
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Normalized AT i (%0)

44

27

Fault Detection Capability
(For Resistive Open Faults)

MDRopen: Minimum Detectable Open Fault Resistance
This metric refers to the open fault resistance value beyond which
the proposed test method can detect the fault successfully based

on the outlier analysis using 3o rule.

Detectable Extra-RC: (MDR,,,.,) * (Counstream)

MDR,,.,
Driver /’ Receiver

r 'm
_‘-.D-.—
A Y wo
Tl Tl
Cdownstream
45
Resistive Open Fault Detection Capability
RS 2 SRR T R A X TR S X R 5 S R
A resistive open fault occurring at the micro-bump of the
driver side of a 1000um long interposer wire.
MDR
open
i conons (M. DRt Opan| g
P Fault Resistance)
#1 (FF & -10% RC) 245Q) 50.7 ps
#2 (FF) 76 QQ 17.5 ps
#3 (SS) 1130 26.0 ps
#4 (SS & +10% RC) 78Q 19.7 ps
Average 145 Q 31.4 ps
46

25

of occurrences

50
45
40
35
30
25
20
15
10

5

0

-40 -35 -30 -25 -20 -15 -10 5 0O 5 10 15 20 25 30 35 40

Process Drift from Simulation Model

*FF-corner

*SS-corner

® SS-corner &
+10% {Ryy & Cyut

- |9POIN UOITB|NWIS :eeeeee:

Normalized AT drift (%0)

47
Fault-Free IW-Delays vs. AT
for Various Pseudo Chip Conditions
R T R T T R T T R T i R A i S
Implication: Regression mode derived by TT corner
Is applicable under process variations.
0.5
Average Error: 7.9 ps
Maximum Error: 30.9 ps

04 -
g 0.3
3
3 0.2 X SS-corner & +10% {R, , C\}
= A SS-corner
= B TT-corner

01 @ FF-corner

: FF-corner & -10% {R,,,, C,/}
0
0.1 0.2 0.3 0.4
AT (ns)
48

24

Summary of VOT-Based Oscillation Test

The interposer needs to be tested alone and thoroughly.
And also, when a 2.5-D IC fails,
We know if the interposer should be responsible.

Test Time Layout of an RO //
11 ms for 1024 wires ~55%
scan test

Using 10MHz TCLK

49
Conclusion
R T R T T R T T R T i R S i S
Criterion PV-test VOT-based oscillation test
Basic Concept Check if pulse will vanish Measure AT
Fault Detection Test threshold based Outlier analysis
Scheme
Area overhead 55.5% over IEEE-1149.1 55.7% over IEEE-1149.1
Test time 0.82 ms for 1024 wires 4.7 ms for 1024 wires
26.21 ms for 32K wires 177 ms for 32K wires
No post-processing o
Other benefits On-the-spot diagnosis Delay characterl_zatlon
. . Process tracking
Easier self-repair

Outlier analysis: A measurement sample that significantly deviates away from
the entire population indicates a fault

50

25

EE-6250
AZ L AR TEBRZ
VLSI Testing

—l

Chapter 11
Logic Diagnosis

Outline

mmmp O Introduction
0 Combinational Logic Diagnosis
0 Scan Chain Diagnosis
o Logic BIST Diagnosis
o Conclusion

Ch11-2

What would you do when chips fail?

O Is it due to design bugs?
= If most chip fails with the same syndrome when
running an application
Q Is it due to parametric yield loss?
= Timing-related failure?
— Insufficient silicon speed?
= Noise-induced failure?
— supply noise, cross-talk, leakage, etc.?
= Lack of manufacturability?
— inappropriate layout?
QIs it due to random defects?
= Via misalignment, Via/Contact void, Mouse bite,
= Unintentional short/open wires, etc.

Ch11-3

Problem: Fault Diagnosis

This chapter focuses more on diagnosis of defects or faults, not design bugs

Circuit expected response
Under

Diagnosis
(CUD) :

test patterns
................ @—> not equal !
) o z]

faulty response

a chip with defects inside

Question: Where are the fault locations ?

Chll-4

Diagnosis For Yield Improvement

Golden
Reference

|

Model

Logic Diagnosis

'

A Set Of
Potential
Defect Locations

Physical Failure Analysis

Scanning Electronic Microscope (SEM)
Focused lon Beam (FOB)

Via void
Mouse bite, etc.

Defect Mechanisms

Tune the Manufacturing
Process or Design
for Yield Improvement

Ch1l-5

O

O

Quality Metrics of Diagnosis

Success rate

= The percentage of hitting at least one defect in the physical failure

analysis

= This is the ultimate goal of failure analysis

Diagnostic resolution

= Total number of fault candidates reported by a tool

= The perfect diagnostic resolution is 1
= Though perfect resolution does not necessarily imply high hit rate

First-hit index

= Used for atool that reports a ranked list of candidates
= Refers to the index of the first candidate in the ranked list that turns

out to be a true defect site

= Smaller first-hit index indicates higher accuracy

Top-10 hit

= Used when there are multiple defects in the failing chip
= The number of true defects in the top 10 candidates

Ch1l-6

Challenge

Do whatever you want,
but give me that damn
bug(s) in less than 5
candidates.

failure analysis people
* under time-to-market pressure

Chll-7

Supporting Circuitry

Supporting Circuitry:
Makes Logic’s inputs controllable and outputs observable

Test input

memory

Scan out

Ch11-8

Design For Diagnosis

r

Complexity Original
_ of) Design
Diagnosis

interface circuitry

Separated
Logic &
Memory

Scan-chain

Logic Design
With Full-Scan

More Supporting Circuitry

Ch11-9

Possible Assumptions Used in Diagnosis

0 Stuck-At Fault Model Assumption

» The defect behaves like a stuck-at fault
0 Single Fault Assumption

» Only one fault affecting any faulty output
0 Logical Fault Assumption

= A fault manifests itself as alogical error

a Full-Scan Assumption
= The chip under diagnosis has to be full-scanned

Note: A diagnosis approach less dependent on the fault assumptions
is more capable of dealing with practical situations.

Ch11-10

Examples of Faults

0 Node Fault a Short Fault (Bridging)

VDD

Most diagnosis algorithms performs
at the gate level, trying to identify the
troubling signals or cells

Ch11-11

Byzantine Open Fault

a Definition of Byzantine Fault:
= A fault that causes an ambiguous voltage level

‘1, ‘1’
\ Gé)o

&= 2'5\\/ pseudo ‘1’
(
_@) ‘)
open fault pSE}JdO 0
‘07
q—1G3

Ch11-12

A Byzantine Node Type

Truth Table
: driver to ‘1’ Alslcl|z]|zZ
oloflol1]1
| B o(0(1]0]|0
- ol1lol1]1
o(1(1]0]|0
- faulty =550 [1 [~o
C min-term
1/0|1|0(0O0
1|{1|]0|0{|O
L The faulty output 1|112|1(0]|O0
driver to ‘O’ could be ambiguous
GND
Ch11-13
Fault Classification
Fault in Logic IC
affects affects
functionality timing
Functional Fault Delay Fault
DIOE E (e Gate-Delay Path-Delay
e Fault Fault
Short Fault
Byzantine Fault

Chl1-14

Outline

Q Introduction

immmp 0 Combinational Logic Diagnosis
» Cause-Effect Analysis
» Effect-Cause Analysis
» Chip-Level Strategy
= Diagnostic Test Pattern Generation

0 Scan Chain Diagnosis
0 Logic BIST Diagnosis
a Conclusion

Ch11-15

Terminology

a Device Under Diagnosis (DUD): The Failing Chip
a Circuit Under Diagnosis (CUD): The Circuit Model
a Failing Input Vector: Causes Mismatches

Failing chip g I:III

1l @ |
input
vector —— X mismatched PO
v o, R —>L — O matched PO
7 e)_ — O matched PO
— O matched PO
—— X

mismatched PO

Gate-level CUD

Ch11-16

Cause-Effect Analysis

Q Fault dictionary (pre-analysis of all causes)

= Records test response of every fault under the applied
test set

= Built by intensive fault simulation process
QO A chip is diagnosed (effect matching)

= By matching up the failing syndromes observed at the
tester with the pre-stored fault dictionary

Ch11-17

Fault Dictionary Example

A diagnosis session:
Circuit under traverse from a path from root to a leaf
h —

¢ —| Diagnosis w
output=0 output=1

(a) Circuit under diagnosis

a —

l@

L Test vectors in terms of (a, b, c)
Circuits

A v, Vg v, Vg

fault-free 0 0 0 0 1
f, 0 1 1 1 1

f, 1 1 1 0 1

fy 1 0 0 1 1

f, 0 0 1 0 0

fg 0 1 1 0 1

(c) Diagnostic tree

(b) Full-response dictionary

Ch11-18

Fault Dictionary Reduction - P&R

(a) Full-response table

Fault

Output Response (z,, z,)

b

—

2

b 3
f, [T]0 10 1T} 10
f, 00 00 11 00
f, 00 00 ofo 00
f, 0|1 00 ofo 01
fo 0|1 00 of1 01
fq 0|1 00 of1 01
f, 1[0 00 1|0 00
fg 1]1 11 111 11

Fault Pass (0) or Falil (1)

t, t, ts t,
f, 1 1 0 1
f, 1 0 0 1
T 1 0 1 1
f, 1 0 1 0
fo 1 0 1 0
fo 1 0 1 0
f, 1 0 1 1
fy 0 1 0 1

(b) Pass-fail dictionary

5

’

(c) P&R compression dictionary

Pass-fail + Extra outputs
Fault
D | te o | 4
i1 1 [off] 1
f, [1]Jof] o [ofzf] 1
f, [1]Jof] o [1fof] 1
f, [1]Joff o [1]of] o
fo [1]of] o [1fzf] o
fo | 1Jof] o [11| o
£, [1]J2f] o [1fof] 1
fo |0 1 |o 1
Response of z; Response of z,
Ch11-19

Detection Fault Dictionary

(a) Full-response table

Output Response (z,, z,)

7

S

’

Fault
ID ty t, t3 t,
f 10 10 11 10
f, 00 00 11 00
f, 00 00 00 00
f, 01 00 00 01
fg 01 00 01 01
[01 00 01 01
f, 10 00 10 00
fq 11 11 11 11
Pass (1) or Fail (0)
Fault
ID t t; t3 ty
f, 1 1 0 1
f, 1 0 0 1
fy 1 0 1 1
f, 1 0 1 0
fg 1 0 1 0
fe 1 0 1 0
f; 1 0 1 1
f 0 1 0 1

=3

| failing output vectors

(c) Detection dictionary

ID

Fault Detection information

(Test ID : Output Vector)

f

1

t,:10 t,:10 t,:10;

2

t,:00 t,:00;

w

t,:00 t5:00 t,:00;

IN

t;:01 t5:00;

&

t;:01 t;:01,;

)

t;:01 t;:01,;

g

t;:10 t5:10 t,:00;

| =] =] =] =] = =

o

t,:10 t,:11;

(b) Pass-fail dictionary

Ch11-20

10

Outline

Q Introduction

0 Combinational Logic Diagnhosis
» Cause-Effect Analysis
immp = Effect-Cause Analysis
» Chip-Level Strategy
= Diagnostic Test Pattern Generation

0 Scan Chain Diagnosis
0 Logic BIST Diagnosis
a Conclusion

Ch11-21
Terminology: Mismatched Output
Effect-cause analysis does not build fault dictionary
It predicts fault locations by analyzing CUD from mismatch PO’s
failing chip
0 failing PO
e 0
0
0
o failing PO
input
vector L. 1 mismatched PO
Vv — — 0
/.
7 — — L . 0
—— O
CuD L. 1 mismatched PO
Ch11-22

11

Structural Pruning - Intersection or Union?

primary
inputs

IIIIIIIIIIIIIlIJJJJJIIIIIIIIIII
l
-.._I

Fault candidate set

(a) Cone intersection.

Zl
z
—) 2
3
Fault candidate set

IIIIIIIIIIIIIIllIlIJIIIIIIIIIII

primary
inputs
(b) Cone union when there are multiple faults.
Ch11-23
Backtrace Algorithm
a Trace back from each mismatched PO
= To find out suspicious faulty locations
a Functional Pruning
= During the traceback, some signals can be
disqualified from the fault candidate set based
on their signal values.
a Rules
= (1) At a controlling case (i.e., 0 for a NAND
gate): Its fanin signals with non-controlling
values (i.e., 1) are excluded from the candidate
set.
= (2) At anon-controlling case (i.e., 1 for a NAND
gate): Every fanin signal remains in the
candidate set.
Ch11-24

12

Backtrace Example

All suspicious fault locations are marked in red.
0| _Target
b Jo1— mismatched

1 output
B
1

Ch11-25

Terminology — Injection

An injection at a signal f flips its current value
which could create value-change events downstream.

O: correct output A mismatched output
X: failing output could be fixed by the injection!

Ch11-26

13

Terminology — Curable Output

0 Diagnosis Criterion
= A signal is more suspicious if it has more curable outputs

o X

O cured
O cured

O: correct output An injection at f fixes two mismatched outputs
X: failing output = Thus, f has two curable outputs !

Ch11-27

Terminology - Curable Vectors

v is a curable vector by f
= because an injection at f exists such that
it cures all mismatches without creating new one

Curable vector is a stronger diagnosis indicator than curable output !

cured

cured
cured

Ch11-28

14

Example of Curable Vector

(b) Circuit Under Diagnosis

Ch11-29

Why Curable Vector ?

a Information theory
= A less probable event contains more information
= Curable output is an easy-to-satisfy criterion, high aliasing
= Curable vector is a hard-to-satisfy criterion, low aliasing

0 Not all failing input vectors are equal !

0 Niche input vector
— Is an failing input vector that activates only one fault
— Likely to be a curable vector of certain signals
— Few, but tells more about the real fault locations

Ch11-30

15

Inject-and-Evaluate Paradigm

input vectors design failing chip
model response

Calculate the no. of “curable vectors” of each signal

Calculate the no. of “curable outputs” of each signal

!

Sorting Sort the signals by the no. of “correctable vectors”,
Criteria If tied, sort by the no. of “correctable outputs”

1

ranking of each signal’s possibility
of being a defect location

Ch11-31

Detailed Computation —
Inject-and-Evaluate Paradigm

failing ailing chip
test vectors syndromes

| Set initial candidate set by structural pruning |

|
for each failing input vector v {
Step 1: perform logic simulation;
Step 2: for each candidate signal f {
Step 2.1: flip the value at f; /* injection */
Step 2.2: run event-driven fault simulation; /*evaluation */
Step 2.3: calculate certain metrics /* ranking */

}

Sort the candidate signals by the calculated metrics;

!

Qst of ranked candidate signD

Ch11-32

16

Reward-and-Penalty Heuristic

Rank1: curable vector count
Rank2 = (curable output count — 0.5 * new mismatched output count)

o failing

1 passing

=i cured
new
O 129 "mismatch
(b) Circuit Under Diagnosis.
Ch11-33

Targeting Bridging Faults

Even in arealistic bridging fault, there is only one victim at any time.
This victim will expose his location by owning some curable vectors.

o .
bridging S

- =

L

—_—
—_—
—_—
—
—_—
—

o O
¥
|

Chl1-34

17

SLAT Paradigm

Ref: SLAT (Single Location At a Time) paradigm [Bartenstein 2001]
Note: A SLAT vector is a curable vector

failing failing chip
input vectors response

Phase 1: Finding SLAT (Single Location at A Time) vectors:
(1) Fault simulation, (2) Output matching

Phase 2: Finding valid fault multiplets
(1) Finding single-fix candidates
(2) Finding double-fix candidates
(3) Finding triple-fix candidates, etc.

Gnumber of valid fault multiplD

Ch11-35
Example: SLAT Paradigm
Failing Signals in the CUD
Input
Vectors fy f, fq fy fg fe f;
N 3
Vq * *
\/2 * * *
V3 * * *
V4 * *
Vg * *
Vg * *
V7 * *
Vg * *
V9 * *
Vio ——/ " *
Amark * means the corresponding vector is (faandf;)
a SLAT vector of the corresponding signal. s a valid fault multiplet
Ch11-36

18

Outline

a Introduction

0 Combinational Logic Diagnhosis
» Cause-Effect Analysis
» Effect-Cause Analysis

immp = Chip-Level Strategy
» Diagnostic Test Pattern Generation

0 Scan Chain Diagnosis
0 Logic BIST Diagnosis
a Conclusion

Ch11-37

Structurally Dependent and Independent
Faults

fault f; z, mismatched output

fault f, z, mismatched output

inputs

Z; mismatched output

Fault f, is an independent fault.
Faults f, and f, are dependent faults.

Ch11-38

19

O
9]
g
@
>
o
@
>
Q
<
)
=
Q
©
>

Direct divide-and-Conquer
does not work well !

22 dependency graph

one connected component

o fault

Z3

Two independent faults, f, and f,, lead to one diagnosis block.

Ch11-39

Main Strategy:
Detach-Divide-and-then-Conquer

0 Phase 1: Isolate Independent Faults
= Search for prime candidates
= Use word-level information
0 Phase 2: Locate Dependent Faults As Well
= Perform partitioning
= Aim at finding one fault in each block

Ch11-40

20

Prime Candidates

A signal f is a prime candidate if
(1) All failing input vectors are partially curable by f
(2) Curable-Output-Set(f) is not covered by any other’s

<

<

fl1&f2
are prime!

o<
<

syndrome

setl

syndrome

set 2

Ch11-41

Fake Prime Candidates

a Structurally Independent Faults
= are often prime candidates
O Fake Prime Candidates

= are prime candidates that are NOT really faults - aliasing

Example: Dependent Double Faults f1 & f2
May create fake prime candidates {f1, 2, f3}.

f1

f2

13

f4

5
<

T

Ch11-42

21

Word-Level Registers and Outputs

Signals in a design are often defined in words.

This property can be used to differentiate fake prime candidates from the real ones.

Word-Level Output: O1
Word-Level Registers: R1, R2, State

module design(01, ..)
output[31:0] O1;
reg[31:0] R1, R2;
reg[5:0] State

endmodule

Ch11-43

Word-Level Prime Candidates

Note: Z and R are two word-level output groups.

T

Original prime candidates: {f; f,}

Word-level prime candidates {f, f,} {f,, T} will be identified as fake

Assumed original prime candidates: {f; f, f}

= Final Word-level prime candidates {f;}

Chll-44

22

Efficiency of Using Word-Level Info.

o Without word-level Information

= 2.4 real faults out of 72.3 candidates
o With word-level Information

= 1.23 real faults out of 3.65 candidates

: . Filterin
of candidates Original A fte_r . g
Filtering Ratio
Prime
Candidates 2.375 1.23 48.2 %
Fake Prime
Candidates 69.96 242 96.5 %
Ch11-45
Overall Flow
failing design failing chip
input vectors model response
Phase 1:

(1) Find Word-Level Prime Candidates
Phase 2:

(1) Remove explained outputs and their fanin cones

(2) Partition the rest model into blocks

(3) Perform diagnosis for each block

Rank candidates produce
in phases 1 & 2
Ch11-46

23

Grouping Using Dependency Graph

An example with five faults
One of them is identified as the prime candidate

X X X X
© O0OT QD

X X X
S N

XXX X XX

xh.—-

Ch11-47
Removed Explained Faulty Outputs
X a
x b
x C
x d
—> ‘e
syndromes
atyand z
arefglly
explained « f
x g
x h
X |
x k
Ch11-48

24

Grouping Example

/

X X X X
OO

|
=
)

|
x
o> Q-

[Tl
X X
xh'—-

Two independent diagnosis blocks
Are successfully derived!

Ch11-49

Summary

O Strategy
= (1) Search For Word-Level Prime Candidates
= (2) Identify Independent Faults First
» (3) Locate Dependent Faults As Well
0 Effectiveness
» jdentify 2.98 faults in 5 signal inspections
» find 3.8 faults in 10 signal inspections

Ch11-50

25

Diagnostic Test Pattern Generation

DTPG helps to increase diagnostic resolution

Model for differentiating vector generation
d, stuck-at 1

fault-free circuit b -
C
z/0
>
Ch11-51
Outline
a Introduction
0 Combinational Logic Diagnhosis
immp O Scan Chain Diagnosis
= Preliminaries
= Hardware-Assisted Method
= Signal-Profiling Based Method
0 Logic BIST Diagnosis
0 Conclusion
Ch11-52

26

Scan Test and Diagnosis

Flush test of scan chains
(pumping random patterns and checking response)

!

Pass Fail
o) Find failing scan chain(s)
Test Combinational Logic Classify fault types

Scan Chain Diagnosis

Ch11-53

Commonly Used Fault Types in Scan Chains

Scan Chain Faults

~ ~

Functional Faults Timing Faults

AN

Setup-Time
Violation Fault

7N

Slow-To-Fall
Fault

Hold-Time
Violation Fault

Stuck-at
Bridging

Slow-To-Rise
Fault

Each fault could be permanent or intermittent.

Ch11-54

27

A Stuck-At Fault In the Chain

Effect: A killer of the scan-test sequence

scan-input |

(SI)

11010100 o

scan-enable
clock

Combinational Logic

output
pins

scan-output
(SO)

00000000

All-0 syndrome

Ch11-55
A Realistic Bridging Fault Model
— : bridging —
Scan Scan
iNpUt e b Q = ™ output
(S il E, tFs 2 F, (SO)
e R =g
(a) Bridging between a flip-flop and a logic cell.
O —
8 If(B==1) afaulty = g, > gfaulty
e else afuly = F,
2
(b) Our bridging fault model.
Ch11-56

28

Potential Hold-Time Fault?
(Negative Edge-Triggered Flip-Flop)
Y
D N Q
2 . Master | Slave
normal
/ CLK = low
Y
D
—y R > Q shut down
Master J| Slave too slowly
Y
D Q
. faulty —l mEEEEEE ------’
CLK = high Master | Slave
CLK =low
Ch11-57

Example: Faulty Syndrome of a Scan Chain

Ascan chain
Sl SO
(scan input pin) ’ | | ’ | | ’ Il ‘ | | ‘ | | ‘ I__' (scan output pin)
A faulty flip-flop
Fault Type Scan-In Pattern Observed Syndrome
Stuck-at-0 1100110011001100 0000000000000000
Stuck-at-1 1100110011001100 1111111111111111
Slow-to-Rise 1100110011001100 1000100010001000
Slow-to-Fall 110011001100110)9 110111011101110)9
/

The rightmost bit goes into the scan first
The rightmost bit gets out of the scan first

A underlined bit in the observed image is failing.

Ch11-58

Augmentation of a Flip-Flop for Easy

Diagnosis

(From logic) —

(from scan chain)

MUX

I

SC

Q
DFF

(a) A normal scan flip-flop.

(From logic) —] MUX
(from scan chain) ’D—
Invert SC

DFF

(b) A modified scan flip-flop for easy inversion.

Ch11-59

Fault Location via Inversion Operation

A scan chain

si —~LLITITITITITTITTTH— so

v
Stuck-at-0

Sl-to-fault Fault-to-SO

(1) Original bitstream pattern = (1111111111111111)

(2) After scan-in: snapshot image = (1111000000000000)
(3) After inversion: snapshot image = (0000011111111111)
(4) After scan-out: observed image = (0000011111111111)

/

The fault location is at the edge between 0's and 1's

Ch11-60

30

Scan Chain Diagnosis Flow

Diagnostic Diagnostic
—| Test Sequence |—* Test Sequences
Generator

i

Test Application
Fault-Free \
Observed Images

) _ Signal Profiling
Diagnosis Based

Diagnosis Program

Circuit
Under
Diagnosis

Observed Images
Of Failing Chip

Faulty FF's
location

Definition: Snapshot Image

Def: A snapshot image is the combination of flip-flop values
at certain time instance

.] Mission Logic _
input __| —_output
pins] — pins
Scan Scan
INPUL s ==T—output
(SI) (SO)
clock
Snapshot image: {(F,, F,, F5;, F,) | (0, 1,0, 1)}
Ch11-62

31

Definition: Observed Image

Def: An observed image is the scanned-out version of
a snapshot image.

input
pins

Scan
INPUT s

(SN

Mission Logic

output
pins

Scan

clock

output
(SO)

Snapshot image: {(F,, F,, F;, F,) | (0, 1,0, 1)}
Observed image: {(F,, F,, F5, F,) | (0, 0, 0, 1)}

Ch11-63

Modified Inject-and-Evaluate Paradigm

Step 1: Scan-in an ATPG pattern

00NN0N0NN00N00NN000

Step 2: Capture the response to FF’s

0000000000000000

core
logic

4

1011

l

x| xT x| x|

0000000000000000

core
logic

1000000000000000

=

4)
[TTofolo0]

vuuuvuuvouvvuuon

uguuuvvuuuuuuuuy

uuduvuuvuuuuuuuuvuuvu

0000000000000000

uuuuuuuvuuuuudvuuvuyu

A stuck-at-0 fault is assumed
at the output of the 2" FF from Sl

core
logic

uuuouuuuuuoe

o
o
s
o

1000000000000000

4)]
[OT1f1T0]

UUUl

uuduuuuuuvuuvuuvuvuuyu

Step 3: Scan-out and compare

Chll-64

32

Test Application: Run-and-Scan

Step 1: Apply atest sequence from PI's
=>» Setting up a snapshot image at FF's

00NNNNNNNNNNNN0NQ0N

Test E core =
Sequenceqé logic g nonnnonnnnononnnn
é (S-A-O) %% . core =
o1 11:TolE =~ & e =
U Less distorted image [g S-A-0) g
0000000000000 00 é I 0 I l)f 1 l 0 l %E{O
‘/g/ - SO

up-stream part
will be distorted

[URVAVRVRVAVRVAVRVRVAVRVRIRVRVRY)

Step 2: Scan-out an observed image

The fault location is embedded in the observed image

Ch11-65

Sig

nal Profiling

A profile is the distribution of certain statistics of the flip-flops.

0N00NNNN0NNNNNNN0NQ0N

§ Fall I(r;]o?eChm % faulty flip-flop
E logic = Scan l
E - E Shifting
Test g [0.41]0.51f0.61]0.41] =
Y perturbedimage F | | |
SequenCE [SAVRUNVAVRVRURURURURURURVRVRVRY) ! ! !

core :
logic different t tsimilar

. (= | |
|

[0.4]050.6]04} >
fault-free image

| |
04105[06]04]
Fault-free profile

Up-stream Down-stream

Comparing failing profile with the fault-free profile
= Could reveal the fault location

Ch11-66

33

Profile Analysis

Fault-free images
(say 100 of them)

Failing images

(say 100 of them) Collected from tester

Derive the fault-free profile

!
Derive the failing profile
| - -
B - - A difference image
Derive the dlerrence profile = fault-free image @ failing image
Perform filtering on the difference profile

| report

Perform edge detection to derive ranking profile a ranked list

of fault locations

Ch11-67

Example: Filtering & Edge Detection

Difference Profile

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155
DFF Index

Signal-1 Frequency (%)

l Filtering & Edge Detection

~—

0.4 I

0.2
(0] MWWML

[T B~ S -

Filtered Difference Profile iﬁ’é Ranking (or suspicion) Profile

-0.4
-0.6
-0.8

Scan Input € FFindex = Scan Output

34

Computation of Average-Sum Filtering

0 (Average-sum filtering) Assume that the difference
profile is given and denoted as D[i], where i is the index
of a flip-flop. We use the following formula to compute
a smoothed difference profile, SD[i]:

SDJi] = 0.2*(D[i-2]+ D[i-1]+ D[i]+ D[i+1]+ D[i+2])

Ch11-69

Computation of Edge Detection

O The true location of the faulty flip-flop is likely to be the left-
boundary of the transition region in the difference profile. To detect
this boundary, we can use a simply edge detection formula defined
below.

0 (Edge detection) On the smoothed difference profile SD[i], the

following formula can be used to compute the faulty frequency of
each flip-flop as a suspicious profile.

' |sD[i1- SD[i - 3]/ |
|SD[i]1- SD[i - 2]|
|SD[i]- SD[i -1]

suspicion [i]=[-1,-1,-1111]- SD[i] SD[i +1]

SDI[i]- SDIi + 2]
| SDI[i]-SD[i +3] |

Ch11-70

35

Summary of Scan Chain Diagnosis

0 Hardware Assisted
= Extralogic on the scan chain
= Good for stuck-at fault

0 Fault Simulation Based

= To find a faulty circuit matching the syndromes [Kundu 1993]
[Cheney 2000] [Stanley 2000]

= Tightening heuristic 2 upper & lower bound [Guo 2001][Y.
Huang 2005]

= Use single-excitation pattern for better resolution [Li 2005]
o Profiling-Based Method

= Locate the fault directly from the difference profiles obtained
by run-and-scan test

= Applicable to bridging faults
= Use signal processing techniques such as filtering and edge

detection
Ch11-71
Outline
a Introduction
0 Combinational Logic Diagnhosis
0 Scan Chain Diagnosis
immmp 0 Logic BIST Diagnosis
= Overview
» Interval-Based Method
» Masking-Based Method
0 Conclusion
Ch11-72

36

A Logic BIST Architecture

|—. PRPG (Pseudo-Random Pattern Generator)

MISR (Multiple-Input Signal Analyzer) — scan out
(as the signature)

All flip-flops are assumed to be observable
through scan chains.

Ch11-73

Diagnosis for BISTed Logic

0 Diagnosis in a BIST environment requires

= determining from compacted output responses
which test vectors have produced a faulty response
(time information)

= determining from compacted output responses
which scan cells have captured errors (space
information)

Q The true fault location inside the logic

= Can then be inferred from the above space and time
information using previously discussed
combinational logic diagnosis

Chll-74

37

Binary Search To Locate 15t Failing Vector

Time (or test vector index)

Space 3rd
(or scan cell 2nd BIST session length:
index) 1457254523
1st BIST session =>» First failing at vector #4

Ch11-75

Interval Unloading-Based Diagnosis

Time (or test vector index)

Space
(or scan cell
index)

A—lp A—l
failing failing
interval interval

Interval index 1 2 3 4 5 6 7

A ssignature is scanned out to the tester
for comparison at the end of each interval

Ch11-76

38

Deterministic Masking-Based Di

PRPG (Pseudo-Random Pattern Generator)

Core
Logic

= N W s~ 0o N

agnosis

Scan chain index (X)

123 45678

\ Scan slice index

Scan sli

Q

e

MISR (Multiple-Input Signal Analyzer) —

Cell partition:

X = {3,4} (chain set)
Y = 2 (lower bound)
Z =6 (upper bound)

(a) STUMP-based BIST architecture (b) Scan cell matrix

Ch11-77

Circuitry to Support Deterministic

Masking

PRPG (Pseudo-Random Pattern Generator)

POTICSTS

MISR (Multiple-Input Signal Analyzer)

Ch11-78

39

A Search for Scan Cells Capturing Errors

| PRPG (Pseudo-Random Pattern Generator) |
1 1 1

«or Scan cells
Capturing errors

¥
| MISR (Multiple-Input Signature Register) |

(a) Scan cells capturing errors in the fourth scan chain

< (D=7
W28 D (261 D
C2-e> 26D
. 2)=(4, D 9 BIST sessions

(b) The search tree
Ch11-79

Conclusions

a Logic diagnosis for combinational logic

= Has been mature

= Good for not just stuck-at faults, but also bridging faults
0 Scan chain diagnosis

= Making good progress ...

= Fault-simulation-based, or signal-profiling based
0 Diagnosis of scan-based logic BIST

= Hardware support is often required

= Interval-unloading, or masking-based
0O Future challenges

= Performance (speed) debug

= Diagnosis for logic with on-chip test compression and
decompression

= Diagnosis for parametric yield loss due to nanometer effects

Ch11-80

40

	Cover.pdf
	ch1.introduction
	ch2.fault_modeling
	ch3.fault_simulation
	ch4.ATPG
	ch5.DFT
	ch6.delay_test
	ch7.BIST
	ch8.test_compression
	ch9.boundary_scan
	ch10.interconnect
	ch11.diagnosis

