簡歷 - **Education** - ➤ 1988 BS from 台大電機系 - ▶ 1992 MS from 台大電機系 - > 1997 Ph.D. from ECE Dept., UC, Santa Barbara - > Title: Formal Verification and Design Debugging - > Oct. 1997 July 1998 National Semi, Santa Clara, USA - ➤ Aug. 1998 July 1999 世大積體電路 (後併入台積) - ➤ Aug. 1999 now, 清華電機系 - **♦** Start-up Experience - ▶ 兆心科技 (2007-2012) 3 #### Outline - ◆ 自我介紹 - → ◆ 研究經驗介紹 - > VLSI Design, Automation, and Testing - ◆ 未來的展望 | 曾經研究過的 IC Design 類的題目 | | | | | | | |-----------------------|----------------------|--|--|--|--|--| | 研究類別 | 研究題目 | 技術項目 | 與現有技術比較之優點 | | | | | 積體電路
設計 | | X-Calibration 的技術,
自動校正位元線上的漏電
流 | 將 SRAM 可容忍之漏電流
從 120uA 提昇至 300uA | | | | | | | PCTT: Per-Column Timing
Tracking 位元線時序追蹤
方法 | 增加 SRAM 的穩定性與良率 | | | | | | (1) 高良率奈米靜
態記憶體設計 | BATT: BIST-Assisted
Timing Tracking 位元線時
序追蹤方法 | 增加 SRAM 的穩定性與良率 | | | | | | SRAM compiler | Self-Vdd-Tuning 自動降壓
調降法 | 降低操作電壓節省功耗但
維持指定的速度間隙以維
持不受溫度變化之高可靠
度 | | | | | | | 低漏電之 285mV 10T 新
SRAM 細胞 | 90nm 製程下可操作在
285mV,1.5X的雜訊容忍
並減少80%漏電流 | | | | | | (2) 高精準度全數 位鎖相迴路 | (2) Ips 有华度的列举鋇正 | ps 降至 1ps,達成超準的
頻率鎖定。 | | | | | | חיייי דון אליידין | 方法
(3) 具有頻率內差功能 | 相位誤差從原本的 588ps
降低為 21 ps。 | | | | | | | 過的 EDA 類的題目
TinnoTek Tried to Market) | |--------------------|--|--| | | (3) 多核心系統晶
片之功率消耗評
估方法
(PowerMxier) | 從 Layout-Based 功耗建 用於工研院兩個 PACDSP
1-minute 簡介 Later 軟體功耗,誤差
解決方案 僅 1.43%,比邏輯階層快
2400 倍。 | | 積體電路設計自動化
(EDA) | (4) 全數位鎖相迴
路編譯器 | (1) 保證無雜訊之 cell-based 數位控制震盪 器 (DCO) (2) 可適應溫度變化之頻 | | 曾 | 經研究過 | 的 Testing 類 |
頁的題目 | |---|--------------------------------|-------------------------------------|---| | | | UMC-Scan Test: 將群體廣播式掃瞄鍊測試之速度推至幾乎極限 | | | | 6) 邏輯晶片診斷
技術之研發 | 類『針炙式』故障診斷演
算法 | 平均檢查 3.5 個訊號線
即可逮住故障點 | | | | 『符號式模擬法』故障診
斷法 | 可處理原本幾乎無法處理
的
『拜占庭式瑕疵』 | | | | 『訊號趨勢分析為基礎』
診斷法 | 可處理原本無法處理的『掃瞄鍊短路瑕疵』 | | | | (Diagnosis by Recovery) 診
斷法 | 可處理原本幾乎無法處理
的
『掃瞄鍊時有時無的延遲
故障』 | | | (7) 三維晶片裸晶
間連接線之参數
型瑕疵測試 | Known-Good-Die (KGD)
Testing | Input-Sensitivity Analysis 可以只用邏輯電路偵測到每
一個 Pre-Bond 的 TSV 瑕
疵所造成的等效電容變異 | | | | 漏電流瑕疵 | 率先對 TSV 達成了精確的
【漏電流分級】的能力 | | | | Post-Bond 後的連接線『阻抗性的斷路或短路瑕疵』 | 簡稱 VOT-Analysis 的方法,只要使用簡單的邏輯
電路,就可以量測出每一條 Post-Bond 後連接線的
大概速度 | | | | 出廠後的連接線 <u>隨時速度</u>
<u>監控</u> | 提早偵測到【異常早衰的瑕
疵】和【提早老化的瑕
疵】,以提早做因應 | ## Die-to-Die Interconnect Testing 相關著作 **IS:** Input-Sensitivity Analysis **VOT: Variable Output Threshold Based Analysis** | Methods | Basic Concepts | Publications | |-----------------------------------|---|---| | IS-Based Pre-Bond Test | Capacitance Characterization (to support one-sided testing) | ATS'10, ATS'13
TVLSI'13, TCAD'13 | | VOT-Based Post-Bond Test | Delay Characterization | DAC'12, ITC'12,
ITC'13, DATE'15,
TCAD'13
TCAD'14 | | Pulse-Vanishing Test
(PV-Test) | Use short-pulse as test stimulus
Pulse-vanishing implies a fault | IOLTS'13, ETS'14
TCAD'14 | | Leakage Binning | By PLL-based timing control | ATS'12, TCAD'13,
D&T'14 | | On-Line Delay Monitoring | By a non-intrusive transition-
time binning circuit | ATS'14 | ## Outline - ◆ 自我介紹 - ◆ 研究經驗介紹 - → ◆ 未來的展望 # Wafer-Level Processing using RDL (Lower-Cost Die-to-Die Integration) RDL (Re-Distribution Layer) between bare dies and solder balls RDL: used to route the signal path from the die's IOs to desired bump locations Concern: How good is the power delivery network? 19 #### 未來的展望 - **♦** Almost Cell-Based Timing Circuits and Their Compiler - **▶** Delay-Locked Loop Compiler - > Time-Digital Converter (TDC) Compiler - > Programmable Phase-Shifter Compiler - ◆ PVTA (匹夫塔效應) Monitoring Methodology - > Tracking the On-Chip Process, Temperature, Voltage Drop, and Aging Effects - **♦** Interconnect Testing, Repair, and Monitoring - ➤ To Identify Parametric Faults (resistive or leakage faults) - > To Repair them on-the-fly - > To Keep track of any over-aging phenomenon