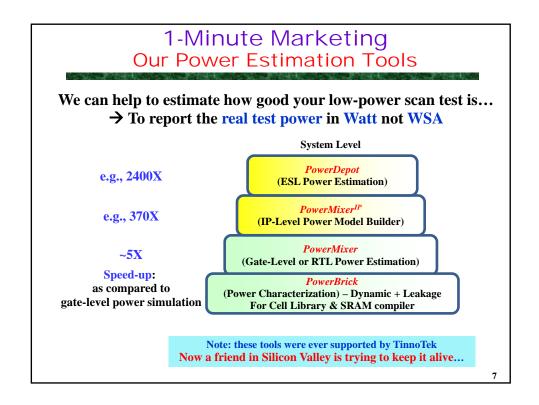
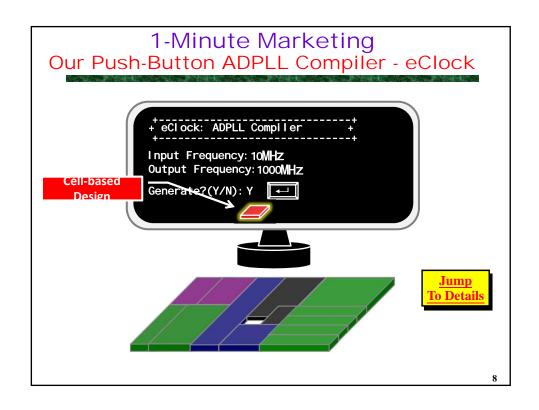


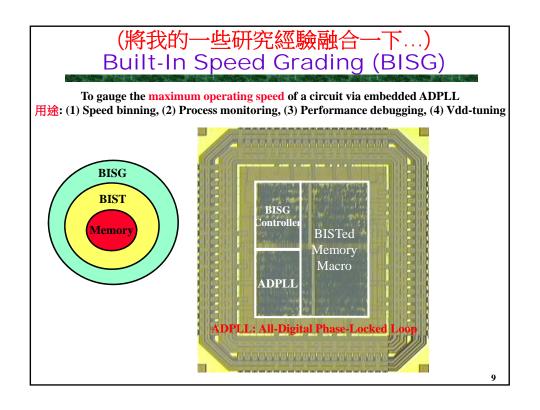
簡歷

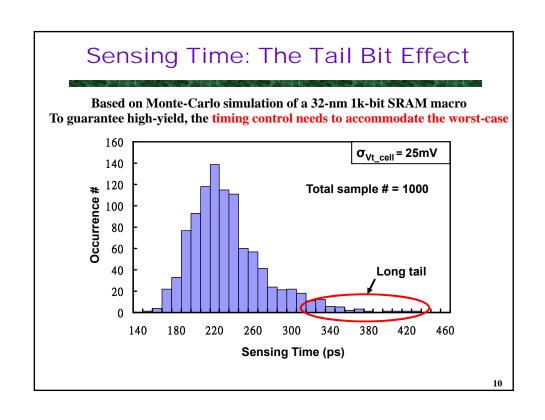
- **Education**
 - ➤ 1988 BS from 台大電機系
 - ▶ 1992 MS from 台大電機系
 - > 1997 Ph.D. from ECE Dept., UC, Santa Barbara
 - > Title: Formal Verification and Design Debugging

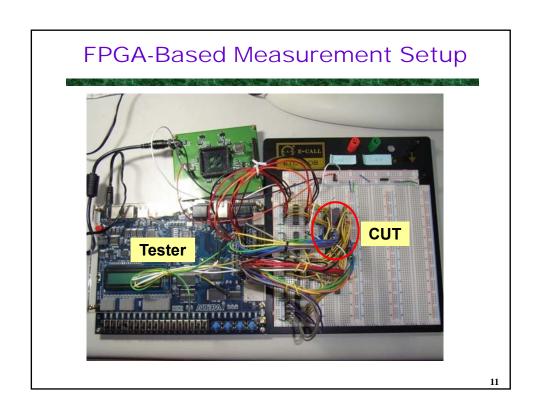
- > Oct. 1997 July 1998 National Semi, Santa Clara, USA
- ➤ Aug. 1998 July 1999 世大積體電路 (後併入台積)
- ➤ Aug. 1999 now, 清華電機系
- **♦** Start-up Experience
 - ▶ 兆心科技 (2007-2012)

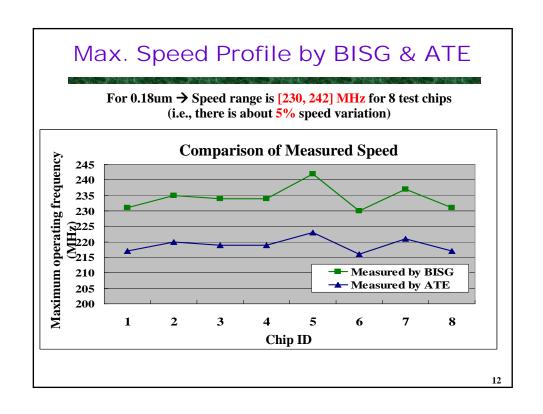

3

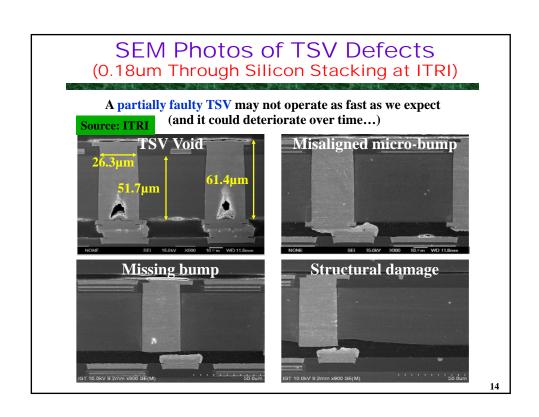

Outline

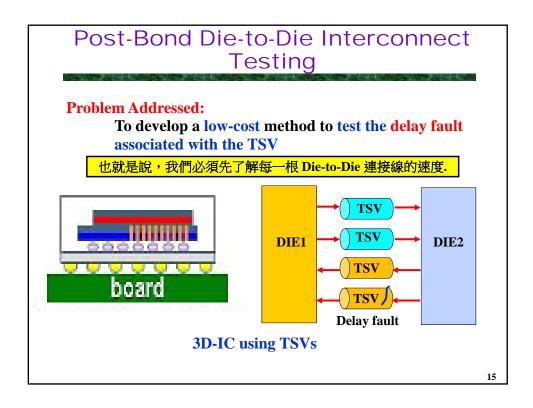

- ◆ 自我介紹
- → ◆ 研究經驗介紹
 - > VLSI Design, Automation, and Testing
 - ◆ 未來的展望


曾經研究過的 IC Design 類的題目						
研究類別	研究題目	技術項目	與現有技術比較之優點			
積體電路 設計		X-Calibration 的技術, 自動校正位元線上的漏電 流	將 SRAM 可容忍之漏電流 從 120uA 提昇至 300uA			
		PCTT: Per-Column Timing Tracking 位元線時序追蹤 方法	增加 SRAM 的穩定性與良率			
	(1) 高良率奈米靜 態記憶體設計	BATT: BIST-Assisted Timing Tracking 位元線時 序追蹤方法	增加 SRAM 的穩定性與良率			
	SRAM compiler	Self-Vdd-Tuning 自動降壓 調降法	降低操作電壓節省功耗但 維持指定的速度間隙以維 持不受溫度變化之高可靠 度			
		低漏電之 285mV 10T 新 SRAM 細胞	90nm 製程下可操作在 285mV,1.5X的雜訊容忍 並減少80%漏電流			
	(2) 高精準度全數 位鎖相迴路	(2) Ips 有华度的列举鋇正	ps 降至 1ps,達成超準的 頻率鎖定。			
	חיייי דון אליידין	方法 (3) 具有頻率內差功能	相位誤差從原本的 588ps 降低為 21 ps。			


		過的 EDA 類的題目 TinnoTek Tried to Market)
	(3) 多核心系統晶 片之功率消耗評 估方法 (PowerMxier)	從 Layout-Based 功耗建 用於工研院兩個 PACDSP 1-minute 簡介 Later 軟體功耗,誤差 解決方案 僅 1.43%,比邏輯階層快 2400 倍。
積體電路設計自動化 (EDA)	(4) 全數位鎖相迴 路編譯器	(1) 保證無雜訊之 cell-based 數位控制震盪 器 (DCO) (2) 可適應溫度變化之頻

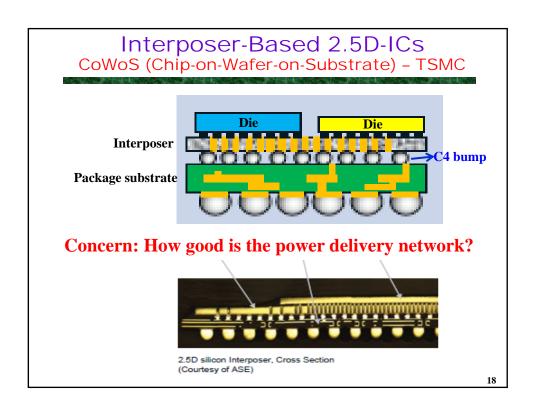






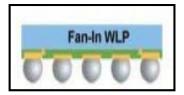
曾	經研究過	的 Testing 類	 頁的題目
		UMC-Scan Test: 將群體廣播式掃瞄鍊測試之速度推至幾乎極限	
	6) 邏輯晶片診斷 技術之研發	類『針炙式』故障診斷演 算法	平均檢查 3.5 個訊號線 即可逮住故障點
		『符號式模擬法』故障診 斷法	可處理原本幾乎無法處理 的 『拜占庭式瑕疵』
		『訊號趨勢分析為基礎』 診斷法	可處理原本無法處理的『掃瞄鍊短路瑕疵』
		(Diagnosis by Recovery) 診 斷法	可處理原本幾乎無法處理 的 『掃瞄鍊時有時無的延遲 故障』
	(7) 三維晶片裸晶 間連接線之参數 型瑕疵測試	Known-Good-Die (KGD) Testing	Input-Sensitivity Analysis 可以只用邏輯電路偵測到每 一個 Pre-Bond 的 TSV 瑕 疵所造成的等效電容變異
		漏電流瑕疵	率先對 TSV 達成了精確的 【漏電流分級】的能力
		Post-Bond 後的連接線『阻抗性的斷路或短路瑕疵』	簡稱 VOT-Analysis 的方法,只要使用簡單的邏輯 電路,就可以量測出每一條 Post-Bond 後連接線的 大概速度
		出廠後的連接線 <u>隨時速度</u> <u>監控</u>	提早偵測到【異常早衰的瑕 疵】和【提早老化的瑕 疵】,以提早做因應

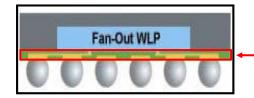
Die-to-Die Interconnect Testing 相關著作


IS: Input-Sensitivity Analysis

VOT: Variable Output Threshold Based Analysis

Methods	Basic Concepts	Publications
IS-Based Pre-Bond Test	Capacitance Characterization (to support one-sided testing)	ATS'10, ATS'13 TVLSI'13, TCAD'13
VOT-Based Post-Bond Test	Delay Characterization	DAC'12, ITC'12, ITC'13, DATE'15, TCAD'13 TCAD'14
Pulse-Vanishing Test (PV-Test)	Use short-pulse as test stimulus Pulse-vanishing implies a fault	IOLTS'13, ETS'14 TCAD'14
Leakage Binning	By PLL-based timing control	ATS'12, TCAD'13, D&T'14
On-Line Delay Monitoring	By a non-intrusive transition- time binning circuit	ATS'14


Outline


- ◆ 自我介紹
- ◆ 研究經驗介紹
- → ◆ 未來的展望

Wafer-Level Processing using RDL (Lower-Cost Die-to-Die Integration)

RDL (Re-Distribution Layer) between bare dies and solder balls

RDL: used to route the signal path from the die's IOs to desired bump locations

Concern: How good is the power delivery network?

19

未來的展望

- **♦** Almost Cell-Based Timing Circuits and Their Compiler
 - **▶** Delay-Locked Loop Compiler
 - > Time-Digital Converter (TDC) Compiler
 - > Programmable Phase-Shifter Compiler
- ◆ PVTA (匹夫塔效應) Monitoring Methodology
 - > Tracking the On-Chip Process, Temperature, Voltage Drop, and Aging Effects
- **♦** Interconnect Testing, Repair, and Monitoring
 - ➤ To Identify Parametric Faults (resistive or leakage faults)
 - > To Repair them on-the-fly
 - > To Keep track of any over-aging phenomenon

