
國立清華大學 電機工程學系
九十八學年度 第二學期

EE2410 Data Str ct reEE2410 Data Structure

Ch t 8 H hiChapter 8 Hashing

清華大學電機系 黃錫瑜

Outline

• The Symbol Table ADT

• Static Hashing

– Hash Table

– Hashing Function

– Overflow Handling

ch8-2

Symbol Table

• Symbol Table

– Can be viewed as a a set of name-attribute pairs

– A form of dictionary

– Applications include spelling checker, thesaurus,
loaders, compilers

• Common operations on a symbol table

– search a particular name in the table

ch8-3

– retrieve the attributes of that name

– modify the attributes of that name

– insert a new name and its attributes

– delete a name and its attributes

How To Implement Symbol Table?

• Binary Search Tree
– allows efficient search, insert, and delete operation in O(h),

where h is the height of the tree

– Worst case O(n), where n is the total number of identifiers

– Can be improved to O(log n) Chapter 10

• Hash Table
– A fixed-size linear array, ht

– For an identifier, x,

The address of x is determined by a hashing function h(x)

ch8-4

– The address of x is determined by a hashing function, h(x)

hashing
function

identifier: “data”

leave
the

school
without

data
structure

don’t ht[0]
ht[1]
ht[2]
ht[3]
ht[4]
ht[5]
ht[6]

5

Terminology

• Bucket and Slot

– There are 8 buckets and two slots per bucket in the hash table

shown below

• Identifier density

– is the ratio n/T, where

– n is the number of identifiers in the table

– T is the total number of possible identifiers

• Loading factor

D

GA

A

G

A2

A hash table

0
1
2
3
4
5
6
7

ch8-5

g

– is  = n/(sb), where

– b is the number of buckets, s is the number of slots per bucket

• Synonyms

– Two identifiers, I1 and I2 are synonyms if h(I1) = h(I2)

Collision and Overflow

• Collision

– When two nonidentical identifiers are hashed into

the same bucket

• Overflow

– when a new identifier is mapped or hashed by h into

a full bucket

A A20

ch8-6

D

GA

A

G

A2

A hash table

0
1
2
3
4
5
6
7

hashing function h(x) = 1st character of identifier x

Collision exists at location 0 and 7
Overflow will occur when AA is hashed into the table !

Efficiency of Hash Table

• Search or insertion time of a hash table

– (1) compute the hash function A A20() p

– (2) search a bucket

– The above times are independent of n

• Collision is inevitable

– Taking the first character is not a good hashing because

D

GA G

A hash table

1
2
3
4
5
6
7

ch8-7

of too much collision

• many variables in a program begins with the same character

– An overflow mechanism is necessary

Uniform Hash Function

• Basic desired properties of hash function

– Easy to compute

– The number of collisions is minimized

• A good hash function

– should also depend on every character of an input identifier

• Uniform hash function

– Let x be an identifier chosen at random

ch8-8

– Then, the probability that h(x) = i is 1/b for every bucket i

– That is, the hash function does not result in a biased use of the

hash table for random inputs

Hash Function (I): Division

hash function hD (x) = x % M
where % is the modulo operator

That is, the remainder is used as the hash address

• Hash address
– in the range from 0 through (M-1)  implies that table size is M

0 0 0 0 0 0 A 1 A 1 0 0 0 0 0 0

6 bits per character

right-justified zero-filled left-justified

6 bits per character

ch8-9

g g () p

• M should not be a power of 2
– otherwise, hD(x) may depend only on the least significant bits of x

– E.g., M=23, then A1encoded to 26(10) + 1  hD(A1) = 1

XY1 encoded to 212(33) + 26(34) + 1  hD(A1) = 1

– M is usually a prime number

Hash Function (II): Mid-Square

mid-square function hm (x) = use appropriate # bits from (x2)

八進位 進位八進位 八進位

ch8-10

The coding of identifier x is right-justified, zero-filled, and has six bits per character
Table size will be a power of 2

Hash Function(III): Folding

• Example: x = 12320324111220

Step1: Partition the identifier into se eral parts• Step1: Partition the identifier into several parts

– P1=123, P2=203, P3=241, P4=112, P5=20

• Step 2: Add up each part as a hash address

– (1) Shift folding

h(x) =  Pi = 123 + 203 + 241 + 112 + 20 = 699
5

ch8-11

h(x)  Pi 123 + 203 + 241 + 112 + 20 699

– (2) Folding at the boundaries

h(x) = 123 + 302 + 241 + 211 + 20 = 897

i=1

reversed

Hash Function (IV): Digit Analysis

• Application

– when all the identifiers are known in advance

• Procedure• Procedure

– Step 1: Each identifier is interpreted as a number using radix r

– Step 2: Analyze the distribution of each digit

– Step 3: Drop biased digits

• The digits with the most skewed distributions are deleted one by

one until the remaining digits is small enough to give an address

ch8-12

• Example

– Given three identifiers in radix-9 form: 891, 792, 793

– Digit distribution: 1st {8, 7, 7}, 2nd {9, 9, 9}, 3rd {1, 2, 3}

– The most skewed digits: the 2nd

Outline

• The Symbol Table ADT

• Static Hashing

– Hash Table

– Hashing Function

– Overflow Handling

ch8-13

Overflow handling

• Problem

– When a new identifier is hashed into a full bucketWhen a new identifier is hashed into a full bucket,

then we need to find another open bucket

• Methods

– linear probing (or linear open addressing)

• find the closest bucket that is not full

ch8-14

– chaining

• implement each bucket as a linked list

Symbol Table Class Definition

struct identifier {
char *id;
int n;

};};

// Assume that operators == and != are defined for identifier
int operator==(identifier&, identifier&);
int operator!=(identifier&, identifier&);

class SymbolTable {
public:

SymbolTable(int size = defaultsize) {

ch8-15

buckets = size;
ht = new identifier[buckets]; // linear array as the table

}
private:

int buckets;
identifier *ht;

};

Linear Open Addressing
• Procedure of searching an identifier x

– Step 1: compute h(x)

– Step 2: examine identifiers at positions ht[h(x)], ht[h(x)+1], ...,

ht[(h(x)+j] in this order until one of the following happens:

(a) ht[h(x)+j] = x; in this case x is found

(b) ht[h(x)+j] is null; x is not in the table

(c) We return to the starting position h(x); the table is full and x is

not in the table

fi t

ch8-16

A
B

B1
A2
B3
C

GA
G

B3

first
character

search sequence:
BB1A2B3 found !

int SymbolTable::LinearSearch(
const identifier& x, int (*hashfunc) (identifier))

// Search the hash table ht (each bucket has exactly one slot) for x using
// linear probing.
// Return j such that if x is already in the table, then ht[j] = x

Linear Search

j y , [j]
// If x is not in the table, return –1
// The hash function “hashfunc” is passed as an argument to LinearSearch
{

int i = hashfunc(x);
for (int j=i; ht[j].id && ht[j] !=x;) {

j = (j+1) % buckets; // treat the table as circular
if (j==i) return –1; // back to start point

}

ch8-17

if (ht[j] == x) return j;
else return –1;

}

A
B
B1
A2
B3
C

GA
G

B3

first
character

search sequence:
BB1A2B3 found !

Problem of Linear Open Addressing

• Identifiers tend to cluster together

– Increase the search time

– Could be worse than the search tree structure

• An analysis shows that

– It takes (2-)/(2-2) to look up an identifier

– Where  is the loading density

• Quadratic probing
search time

ch8-18

– improve the clustering problem

– check sequence:

(h(x)+i2)%b) and (h(x)-i2)%b)

i=1, 2, ...


search time

1
1.5

0.5 10

2.5

Chaining

0
0

[0]
[1]
[2]

A4 A3 A1 A2 A 0

0

0

0
0
0

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

D 0
E 0

G GA 0

Search time: ～ (1+
1.25 when 

ch8-19

0
0

[9]
[10]
[11]

[25]

L 0

ZA Z 0

1.5 when 
 Better than linear open addressing

Class Definitions For Chain Search

class ListNode {
friend SymbolTable;
private:

identifier ident;
0

[0]

[1]

[2]

A4 A3 0

identifier ident;
ListNode *link;

};

typedef ListNode* ListPtr;

class SymbolTable {
public:

SymbolTable (int size = defaultsize) {

0

0

0

0

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

D 0

E 0

G GA 0

ch8-20

buckets = size;
ht = new ListPtr[buckets];

};
private:

int buckets; // table size
ListPtr *ht; // hash table

};

0

0

[10]

[11]

[25]

L 0

ZA Z 0

Chain Search

identifier* SymbolTable::ChainSearch(const identifier& x, int (*hashfunc)
(identifier))

// Search the chained hash table ht for x. On termination, return a pointer
// to the identifier in the hashtable. If the identifier does not exist, return 0// to the identifier in the hashtable. If the identifier does not exist, return 0
{

int j = hashfunc(x); // compute headnode address
// search the chain starting at ht[j]
for (ListPtr node = ht[j]; node; node = nodelink)

if (nodeident == x) return &(nodeident);
return 0;

}

ch8-21

0

0

[0]

[1]

[2]
B4 B3 0j = hashfunc(“B3”) = 1

chained hash table

ht[1]

A Comparison

• Hash Function
– division is generally superior to the other types

• Collision handling• Collision handling
– Chaining outperforms linear opening addressing

ch8-22

What We Have Learned?

• Array, Stack, Queue, Linked List

• Tree, Graph, Sorting, Hash Table, p , g,

• 老鼠走迷宮…

• 尤拉的散步…

• 撲克牌的排序…

Programming is not just coding

ch8-23

Programming is not just coding.
It is all about problem solving !

Good luck on your Journey
As a problem solver !

