

Symbol Table

* Symbol Table
— Can be viewed as a a set of name-attribute pairs
— A form of dictionary
— Applications include spelling checker, thesaurus,
loaders, compilers
« Common operations on a symbol table
— search a particular name in the table
— retrieve the attributes of that name
— modify the attributes of that name
— insert a new name and its attributes

— delete 2a name and its attributes

ch8-3

How To Implement Symbol Table?

* Binary Search Tree

— allows efficient search, insert, and delete operation in O(h),
where h is the height of the tree

— Worst case O(n), where n is the total number of identifiers
— Can be improved to O(log n) - Chapter 10

¢ Hash Table

— A fixed-size linear array, ht
— For an identifier, x,
— The address of x is determined by a hashing function, h(x)

don’t | ht[0]

leave ﬁt{;}

the t

. Y S 9 hashing 5 school ht[3]

identifier: “data” ——| function \ without | ht[4]
data ht[5]

structure | ht[6]

chg-4

Terminology

e Bucket and Slot

— There are 8 buckets and two slots per bucket in the hash table
shown below

« Identifier density ‘1’ A A2
— is the ratio n/T, where %
— n is the number of identifiers in the table g D
— T is the total number of possible identifiers g GA G
* Loading factor A hash table

— is a = n/(sb), where

— b is the number of buckets, s is the number of slots per bucket
* Synonyms

— Two identifiers, I, and I, are synonyms if h(I,) = h(I,)

ch8-5

Collision and Overflow

e Collision

— When two nonidentical identifiers are hashed into
the same bucket

¢ Overflow

— when a new identifier is mapped or hashed by h into

a full bucket
0 A A2
hashing function h(x) = 1% character of identifier x | %
. . i D
Collision exists at location 0 and 7 5
Overflow will occur when AA is hashed into the table! ¢
7 GA G

A hash table

ch8-6

Efficiency of Hash Table

e Search or insertion time of a hash table

— (1) compute the hash function 0 A A2
— (2) search a bucket é b
. . 5
— The above times are independent of n ¢ ox -
* Collision is inevitable Ahash table

— Taking the first character is not a good hashing because
of too much collision

* many variables in a program begins with the same character

— An overflow mechanism is necessary

ch8-7

Uniform Hash Function

* Basic desired properties of hash function

— Easy to compute

— The number of collisions is minimized
* A good hash function

— should also depend on every character of an input identifier
* Uniform hash function

— Let x be an identifier chosen at random

— Then, the probability that h(x) =i is 1/b for every bucket i

— That is, the hash function does not result in a biased use of the
hash table for random inputs

ch8-8

Hash Function (I): Division

hash function h;, (x) =x % M
where % is the modulo operator
That is, the remainder is used as the hash address

6 bits per character 6 bits per character
01010|0|JO0O|O0OJA|T Alf1|{0f|O0fOf[Of[O]O
right-justified zero-filled left-justified

* Hash address
— in the range from 0 through (M-1) - implies that table size is M
* M should not be a power of 2
— otherwise, h;(x) may depend only on the least significant bits of x
— E.g., M=23, then A1->encoded to 2(10) + 1 2> hy(Al)=1
XY1 - encoded to 212(33) +26(34) + 1 > hp(Al)=1

— M is usually a prime number

ch8-9

Hash Function (I1): Mid-Square

mid-square function h (x) = use appropriate # bits from (x?)

Identifier Internal Representation

x | JUEfr x| JUEfL x?
| A 15 1

| A1 134 | 20420
A2 | 135 | 20711
A3 : 136 21204
A : 137 21501
A9 144 23420 |
B ; 2 4
C _ 3 11 |
G ; 74 6l I
DMAX ‘ 4150130 21526443617100 |
DMAX 1 415013034 5264473522151420
AMAX 1150130 135423617100

| AMAXIL 115013034 3454246522151420

The coding of identifier x is right-justified, zero-filled, and has six bits per character
Table size will be a power of 2

ch8-10

Hash Function(lll): Folding

* Example: x =12320324111220

« Stepl: Partition the identifier into several parts
— P,=123, P,=203, P,=241, P =112, P.=20
e Step 2: Add up each part as a hash address
— (1) Shift folding
h(x) = iél P, =123 + 203 + 241 + 112 + 20 = 699
— (2) Folding at the boundaries
h(x) =123 + 302 + 241 + 211 + 20 =897

reversed

ch8-11

Hash Function (IV): Digit Analysis

» Application
— when all the identifiers are known in advance
* Procedure
— Step 1: Each identifier is interpreted as a number using radix r
— Step 2: Analyze the distribution of each digit
— Step 3: Drop biased digits

* The digits with the most skewed distributions are deleted one by
one until the remaining digits is small enough to give an address

* Example
— Given three identifiers in radix-9 form: 891, 792, 793
— Digit distribution: 1%t {8, 7, 7}, 24 {9, 9, 9}, 3 {1, 2, 3}
— The most skewed digits: the 2"

ch8-12

Outline

* The Symbol Table ADT

» Static Hashing
— Hash Table
— Hashing Function
) -~ Overflow Handling

ch8-13

Overflow handling

 Problem

— When a new identifier is hashed into a full bucket,
then we need to find another open bucket

e Methods

— linear probing (or linear open addressing)
+ find the closest bucket that is not full

— chaining

+ implement each bucket as a linked list

ch8-14

Symbol Table Class Definition

struct identifier {
char *id;
int n;

}s

/I Assume that operators == and != are defined for identifier
int operator=—=(identifier&, identifier&);
int operator!=(identifier&, identifier&);

class SymbolTable {
public:
SymbolTable(int size = defaultsize) {
buckets = size;
ht = new identifier[buckets]; // linear array as the table
}
private:
int buckets;
identifier *ht;

}s

ch8-15

Linear Open Addressing

* Procedure of searching an identifier x

— Step 1: compute h(x)

— Step 2: examine identifiers at positions ht[h(x)], ht[h(x)+1], ...,
ht[(h(x)+j] in this order until one of the following happens:
(a) ht[h(x)+j] = x; in this case x is found
(b) ht[h(x)+j] is null; x is not in the table
(c) We return to the starting position h(x); the table is full and x is
not in the table

first A
B1
B3
search sequence: C
B>B1->A2->B3 found ! GA
G

TITO=T"

)

Linear Search

int SymbolTable::LinearSearch(
const identifier& x, int (*hashfunc) (identifier))
/I Search the hash table ht (each bucket has exactly one slot) for x using
// linear probing.
// Return j such that if x is already in the table, then ht[j] = x
// If x is not in the table, return —1
/I The hash function “hashfunc” is passed as an argument to LinearSearch
{
int i = hashfunc(x);
for (int j=i; ht[j].id && ht[j] !=x;) {
j=(j+1) % buckets; // treat the table as circular
if (j==i) return —1; // back to start point

}

if (ht[j] == x) return j; first A
else return —1; character B

} / Bl
B3 A2

B3

search sequence: C
B->B1>A2->B3 found ! GA

G

Problem of Linear Open Addressing

* Identifiers tend to cluster together

— Increase the search time

— Could be worse than the search tree structure
* An analysis shows that

— It takes (2-a)/(2-2a) to look up an identifier

— Where a is the loading density

* Quadratic probing

TITO=T7

— improve the clustering problem search time

— check sequence:
(h(x)+i2)%b) and (h(x)-i%)%b)
i=1,2, ... 1

Chaining

LS O S E S E SV E g EN D
[{ o
21 | 0
3] D |0
[4] E |0
51 [0
6| [~ —{cT3—[cal]
71 [0
[8] 0 Search time: ~ (1+a/2)
0 1.25 when a=0.5
191 1.5 when o=1
[10] 0 - Better than linear open addressing
] | —f—{L[o|
251 | ——f{zA] +—[z]0]

ch8-19

Class Definitions For Chain Search

class ListNode {
friend SymbolTable;
private:
identifier ident;
ListNode *link;
35

typedef ListNode* ListPtr;

class SymbolTable {
public:
SymbolTable (int size = defaultsize) {
buckets = size;
ht =new ListPtr[buckets];
35
private:
int buckets; // table size
ListPtr *ht; // hash table

}s

o -
[1] 0
21 [
3] =
4]
Is] E
6] |2
7 ——16| T(6A|
8 |0
o1 [0
[101 | o
[11] 0
=
e [3-[2[1]

ch8-20

Chain Search

{

(identifier))

int j = hashfunc(x); // compute headnode address

// search the chain starting at ht[j]

for (ListPtr node = ht[j]; node; node = node->link)
if (node>ident == x) return &(node->ident);

return 0;

identifier* SymbolTable::ChainSearch(const identifier& x, int (*hashfunc)

// Search the chained hash table ht for x. On termination, return a pointer
// to the identifier in the hashtable. If the identifier does not exist, return 0

j = hashfunc(“B3”) =1

or | o

ht[1]

— [1]

g0

21 | o

chained hash table

ch8-21

A Comparison

Hash Function

— division is generally superior to the other types

* Collision handling

— Chaining outperforms linear opening addressing

a=2 0.50 075 090 095

b A ‘
Hash Function | Chain Open | Chain Open | Chain Open | Chain Open
mid square 1.26 1.73 1.40 9.75 145 37.14 i.47 37.53
division 1.19 4.52 1.31 720 138 2242 141 25.79
shift fold 133 2175 | 148 6510 | 140 7701 | 151 11857
bound fold 1.39 2297 1.57 48.70 1.55 69.63 1.51 97.56
digit analysis 1.35 4.55 149 30.62 152 89.20 1.52 12559
theoretical 1.25 1.50 1.37 2.50 145 5.50 1.48 10.50

(Adapted from V. Lum, P. Yuen, and M. Dodd, CACM, 14:4, 1971)

thg-22

