

Shortest Path Problem

» Application
— Graph can be used to represent the highway structure
— Vertices represent cities
— Edges represent sections of highway

— Edge weight is the distance of an edge
* Questions

— (1) Is there a path from city A to city B?

— (2) If there is more than one path from A to B, which
is the shortest path?

ch6.2-3

Example: A Weighted Digraph

Chicago 1500
San Francisco Denver «
0

Boston

250

New York

300
900
1700
Los Angeles New Orleans 1000 e ST
Length-adjacency matrix 0 1 2 8 4 5 6 7
— ~
0 0
1 300 0
2 1000 800 O
3 1200 0
4 1500 0 250
5 1000 0 900 1400
6 0 1000
7 1700 0

== = ch6.2-4

Edsger Dijkstra’s Algorithm

void Graph::ShortestPath(const int n, const int v)

/I dist[j], 0=j<n, is set to the length of the shortest path from vertex v to vertex j

// in a graph G with n vertex and edge lengths given by length/[i][j]

{
for (int i=0; i<n; i++) { s[i] = FALSE; dist[i] = length[v][i]; } // initialize
s[v] = TRUE;
dist[v] = 0;

for (i=0; i<n-2; i++) {
int u = choose(n); // routine ‘choose’ returns a value u such that
// dist[u] = minimum dist[w], where s|[w] = FALSE
s[u] = TRUE;
for (int w=0; w<n; w++) {
if (! s[w])
if (dist[u] + length[u][w] < dist[w])
dist|w] = dist[u] + length[u][w];

} BEVEE TS , 42 0 (B n-1 {8

ch6.2-5

Boston Example

San Francisco Denver

800

Source is Boston

Los Angeles o Miami Distance

lteration | § Vertex | LA SF DEN CHI BOST NY MIA NO

en-routeset | selected | [0] fI] [2] [3] 4 B B M

Initial | - o 40 40 1500 0 250 4% 4o
1] {4) 5 g0 4o 4o 1250 0 250 1150 1650
2| (45} 6 4o 40 oo 250 0 250 1150 1650
I 3 4o 4 2450 1250 0 250 1150 1650
4 (4563 7 3350 4 2450 1250 0 250 1150 1650
5| (45637) 2 |3350 3250 2450 1250 0 25 1150 1650
6 | (456312) L] 3350 3250 2450 1250 0 250 1150 1650

(4563721}

Digraph With Negative Edges

* When negative edge lengths are permitted
— The digraph should have no cycle of negative length

— This is to ensure that the shortest path consists of a
finite number of edges

« Example

— The shortest path from vertex 0 to 2 is -oo
0,1,0,1,0,1,...,0,1,2)
— Because there is a cycle (1, 0, 1) of length -1
2

ch6.2-7

Possible Search Space
e Let dist¥[u]

— be the length of a shortest path from the source
vertex v to vertex u that contains at most k edges

* Then, dist!'[u] = length[v][u], 0 =<u<n
* Under the no-negative-cycle constraint

— We can limit our search to shortest paths with at
most n-1 edges

— Hence, dist™![u] is the length of an unrestricted
shortest path from v to u

ch6.2-8

Recurrence Relation

» Given dist™[u] for every 0 =u<n
« How to compute dist™*![u]?

 Recurrence Relation
dist™![u] = min{ dist™[u], min {dist™[i] + length[i][u]} }
i

source

Assume that S-path?[v][u] = (v, a, u)
What are the possible S-path?[v][u] = { (v,a,u), (v,a,b,u), (v,a,c,u)}

ch6.2-9

Example of Shortest Paths With
Negative Edge Lengths

Source vertex: 0

Each shortest path consists of at most 6 edges

dist*[7]
kij0 1 2 3 45 6
1[0 6 5 5 o o o
210 3 3 5 5 4 o
3101 3 5 2 4 7
410 1 3 50435
500 1 3 5 0 4 3
60 1 3 5 0 4 3
(a) A directed graph (b) dist*

ch6.2-10

Bellman and Ford Algorithm
For computing Shortest Paths

1 void Graph::BellmanFord(const int n, const int v)

2/ Single source all destination shortest paths with negative edge lengths

3

4 for (inti=0;i < nyi++) dist [i1= length [v][i]; / initialize dist

5 for(intk=2;k<=n-1;k++)

6 for (cach u such that u = v and u has at least one incoming edge)

7 for (gach <i, u> in the graph)

8 if (dist [u] > dist [i] + length [i J[u]) dist [u] = dist [i] + length [i 1[u];
9}

Complexity:
O(n®) when adjacency matrix is used
O(n - e) when adjacency lists are used

ch6.2-11

Outline

* Shortest Path and Transitive Closure
— Single Source / All Destinations
||- — All-Pairs Shortest Paths
— Transitive Closure
* Activity Network
— Activity on Vertex (AOV) Networks
— Activity on Edge (AOE) Networks

ch6.2-12

Basics of All-Pairs Shortest-Paths

* Assume that
— The digraph has n vertices with index of {0, ..., n-1}
+ Let AK[i]j]

— be the length of the shortest path from i to j going
through no intermediate vertex of index greater than k

« A™[][j]
— will be the length of the shortest i-to-j path in G

e The basic idea in all-pair algorithm

— is to successively generate the matrices A1, A, ..., A™!

ch6.2-13

Recurrence Relation

AX[i][j] = min{ A*[i] [j], A¥'[i][k] + A< [K][j] }, k=0
where A-[i][j] = length[i][j]

AT [K]

vertices with
index less than k

ch6.2-14

Example for All-Pairs Shortest-
Paths Problem

6

Al 01 2 A'101 2

0 (0411 0 0411

1 160 2 1 160 2
300 2 1370
Al A0

Al 01 2 A2|101 2
046 0104 6

1160 2 1 |50 2

2 1370 2 1370
Al A?

ch6.2-15

All-Pairs Shortest Paths

AM[i][j] = min{ AMT[i][j], A¥'[i][K] + AMT[K][j] }, k=0
where A1[i][j] = length[i][j]

1 void Graph::AllLengths(const int)
2 // length [n][n] is the adjacency matrix of a graph with n vertices.
3/l a[i][j]is the length of the shortest path between i and j
4{
5 for(inti=0;i<n;i++)
6 for(int j=0;j<n; j++)
7 alillj=length[ilj1; // copy lengthinto a
8 for (int k =03 k < ny k++) // for a path with highest vertex index k
9 for (i =0;i<ni++) // for all possible pairs of vertices
10 for (int j = 0 j < n3 j++)
11 if (a[i)[k]+alk]ljD<aliliDalillil=alilk]+alk]lil;
12}

Complexity:O(n?) |

ch6.2-16

Outline

* Shortest Path and Transitive Closure
— Single Source / All Destinations
— All-Pairs Shortest Paths
II~ — Transitive Closure
* Activity Network
— Activity on Vertex (AOV) Networks
— Activity on Edge (AOE) Networks

ch6.2-17

Transitive Closure

* Problem
— Given a digraph with unweighted edges

— We want to determine if there is a path from i to j for all
values of i and j

* Transitive closure matrix of graph G, denoted as A"
— A'[i][j] = 1 if there is a path of length>0 from i to j;
— Otherwise, A*[i][j] = 0;
« Reflexive transitive closure matrix, denoted as A”
— A’[i][j] = 1 if there is a path of length =0 from i to j;
— Otherwise, A*[i][j] = 0;

ch6.2-18

Example of Transitive Closure Matrix

oo <O
S OO =
I — R — R S
SO = oS W
S = oSS A

RN -=O

adjacency matrix

01234 01234
0 01111 0 11111
1 00111 1 01111
2 00111 2 00111
3 00111 3 00111
4 00111 4 00111

At A*
Ali][i]=1 when a cycle containing i exists Ali][i]=1 is always 1

ch6.2-19

Finding Transitive Closure

* For Directed Graph

— The transitive closure can be computed using the all-pairs
shortest-path algorithm

— But the recurrence relation is modified as follows:
ali][j] = a[il[j] || Ca[il[k] && a[K][j]);

— The final matrix obtained is A*
* For Undirected Graph

— Transitive closure can be found more easily through the
identification of connected components, O(n?)

— For a vertex pair (i, j), A*[i][j]=1 if vertices i and j are in the
same connected component

— A'[i][i] = 1 iff the component containing i has at least two
vertices

ch6.2-20

Outline

e Shortest Path and Transitive Closure

immp - Activity Network
— Activity on Vertex (AOV) Networks
— Activity on Edge (AOE) Networks

ch6.2-21

Activities-On-Vertex (AOV) Networks

* Activity
— A project can be subdivided into several subprojects
called activities

* Definition of AOV network
— Activity-on-vertex network is a directed graph G
— The vertices represent tasks or activities

— The edges represent precedence relations between
tasks

ch6.2-22

Activities For Completing a Degree

Course number Course name Prerequisites
Ci Programming I None
C2 Discrete Mathematics None
C3 Data Structures C1,C2
c4 Calculus I None
C5 Calculus I1 C4

C6 Linear Algebra C5

c7 Analysis of Algorithms C3,C6
C8 Assembly Language C3

Cc9 Operating Systems C7,C8
C10 Programming Languages C7
Cl11 Compiler Design C10
C12 Artificial Intelligence Cc7
Ci3 Computational Theory C7
Cl4 Parallel Algorithms C13
C15 Numerical Analysis Cs

(a) Courses needed for a computer science degree at a hypothetical university

cho.2-23

Example: AOV Network

Course number ~ Course name

Prerequisites

Cl
Q
(]
(4
0
06
a
a
0
(10
Cll
12
k!
Cl4
C15

{a) Courses needed for a computer scienie degree at a hypothetical university

Programming |
Discrete Mathematics
Data Structares
Calculus I

Calculus I

Linear Algebra
Analysis of Algorithms
Assembly Language
Operating Systems
Programming Languages
Compiler Design
Atificial Intelligence
Computational Theory
Parallel Algorithms
Numerical Anaysis

None
Nong
(L,C2
Nong
4

(3
(3,C6
(G
C7,C8
o]
C10
(1

a
13
Cs

9
(o
&

1)

S{)

o

(b) AOV network representing courses as vertices and prerequisites as edges

Y

U

08

ch6.2-24

Terminology

e Predecessor

— Vertexiis a predecessor of vertex j and j is a
successor of i iff there is a directed path from vertex
i to vertex j

— iis an immediate predecessor of j iff <i, j> is an edge
* Transitive relation
— A relation - is transitive iff it is the case that for all
triplesi, j,k,i - jandj - k=>i- Kk
* Partial order

— A precedence relation that is both transitive and
irreflexive is a partial order

ch6.2-25

Topological Order

* Topological order
— A topological order is a linear order of the vertices
— For any two vertices i and j, if i is a predecessor of j in the
network, then i precedes j in the linear ordering
Topological order: C1 C2 C4 C5 C3 C6 C8 C7 C10 C13 C12 C14 C15 C11 C9
C4C5C2C1C6C3C8C15C7C9YC10C11C12C13C14

(b) AOV network representing courses as vertices and prerequisites as edges

TN6.2-26

A Topological Sorting Algorithm

Input the AOV network. Let n be the number of vertices
for (int i=0; i<n; i++){ // output the vertices

{

if (every vertex has a predecessor) return; // network has a cycle

pick a vertex v that has no predecessors; -
cout << v; | Complexity: O(e+n)

delete v and all edges leading out of v from the network;

52 - 8 - &

initial after vertex 0 deleted after vertex 3 deleted
@ after vertex 5 deleted after vertex 1 deleted

after vertex 2 deleted ¢h6.2-27

Internal Representations Used By
Topological Sorting

public:
class Graph { Graph(const int vertices=0) : n (vertices) {
private: HeadNodes = new List<int>[n];
List<int> *HeadNodes; count = new int[n];
int *count; // keep in-degree Hg
int n; void TopologicalOrder();
¥
count first data link

o[o [T 2] F{37]0
m [| a0
@[1 | [5] 0]

[3] 1 — 5 4 0

4] 3 0 Two operations has to be done fast:
1. if a vertex has a predecessor?
2. delete a vertex with all its incident edges

[5] 2 0

ch6.2-28

Topological Sorting Algorithm

1 void Graph::TopologicalOrder ()

2 // The n vertices of a network are listed in topological order

3¢

4 inttop =-1;

5 for (inti =03 i < n; i++) // create a linked stack of vertices with

6 if (count [i] == 0) { count [i] = top; top = i3} // no predecessors

7 for (i=03i<n;i++)

8 if (top == —1) { cout << " network has a cycle" << endl; return;}
9 else {
10 int j = top; top = count [top 1; // unstack a vertex
11 cout << j << endl;
12 Listlterator<int> li (HeadNodes [j1);
13 if (! li. NotNull ()) continue;
14 int k = *li. First ();
15 while (1) { // decrease the count of the successor vertices of j
16 count [k]——;
17 if (count [k] == 0) { count [k] = top; top = k3} // add vertex k to stack
18 if (li. NextNotNull ()) k = *li.Next (); // k is a successor of j
19 else break;
20 } Complexity is: O(e+n) |
21 } /1 end of else
22 }

TIo.2-29

Outline

e Shortest Path and Transitive Closure

* Activity Network
— Activity on Vertex (AOV) Networks
Imm) - Activity on Edge (AOE) Networks

ch6.2-30

Activity-On-Edge (AOE) Network

* AOE Network
— Is a weighted directed graph in which

— The vertices represent events

— The edges represent activities or tasks

ch6.2-31

Terminology

Critical Path

— Is the longest path from start vertex to finish vertex

— determines the minimum amount of time to finish the project
Earliest Time of an activity a,, denoted as e(a,)

— is the length of the longest path from start to the source vertex of a;
Latest Time of an activity a,, denoted as 1(3,)

— indicates latest time an activity may start without increasing the
project duration

Critical activity

— is an activity for which e(a,) =1(a;)

ch6.2-32

* Purpose of critical path analysis

* Finding all critical paths

— is to identify the critical activities so that resources may
be concentrated on these activities in an attempt to
reduce project finish time

— That is, it is useful to identify project bottlenecks

— (1) compute every activity’s e(a;) and I(a,)
— (2) identify critical activities, i.e., a; for which e(a,)=I(a,)
— (3) remove all non-critical activities

— (4) Generate all paths from start to finish

Critical Path Analysis

ch6.2-33

[0]
(1]
2]
131
[4]
51
6]
(7]
[8]

Example: Data Representation

count first vyertex dur link

— (16| —{2]4] F—[3[5]0]

— | 4]1]0

——(4[1]0]

_’|5|2|0|

— L6 l9[+——[7[7]0]

_’|8|2|0|

_’|8|4|0|

NN | | ek DNk | | | D

Overall Procedure of Critical Path
Analysis

* Procedure

— Step 1: compute the earliest event time for each vertex
i, denoted as ee(i)

— Step 2: compute the latest event time for each vertex i,
denoted as le(i)

— Step 3: compute the earliest time for an activity g, , <x,
y>, using formula: e(3,) = ee(x)

— Step 4: compute the latest time for an activity g, <x,
y>, using formula 1(a;) = le(y) — duration of activity a,

ee(X) a ee(y)
/le(x) le(y)

ch6.2-35

Calculation of Earliest Activity Times

The earliest event time of each vertex

— can be computed by a forward stage

Step 1: Sort vertices in the topological order

Step 2: Evaluate earliest event time of each vertex by
ee(y) = max { ee(x;) + duration of <x;, y> }

x; €P(y) . X .
P(y) is the set of y’s immediate predecessors

Step 3: e(a;) = ee(source vertex of a,)

WL ee(y)

@

ch6.2-36

Calculation of Latest Activity Times

* The latest event time of each vertex

— can be computed by a backward stage
« Step 1: Sort vertices in reverse topological order
» Step 2: Evaluate latest event time of each vertex by

le(y) = mlsr(n i{ le(x;) - duration of <y, x> }
x; €S(y
S(y) is the set of y’s immediate successors

» Step 3: 1(a;) = le(destination vertex of a,) —
duration of activity g,

ch6.2-37

Example of Computing Earliest
Event Times

topological order: 0,1, 2,3,4,5,6,7, 8

e(q;) = ee(source vertex of a;)

finish

ch6.2-38

Example of Computing Latest
Event Times

reverse topological order: 8,7, 6,5,4,3,2,1,0

ch6.2-39

Example of Computing Latest
Activity Times

reverse topological order: 8,7, 6,5,4,3,2,1,0

1(a;) = le(destination vertex of 3,) — duration of activity g,

ch6.2-40

Graph of Critical Paths

slack =1(a;) — e(3;)

slack=0 -> critical activity 1 delete all non-critical activities

ch6.2-41

