
國立清華大學 電機工程學系
EE2410 Data Structure

Chapter 6p
Graph (Part II)

Outline

• Shortest Path and Transitive Closure

– Single Source / All Destinations

– All-Pairs Shortest Paths

– Transitive Closure

• Activity Network

Activity on Vertex (AOV) Networks

ch6.2-2

– Activity on Vertex (AOV) Networks

– Activity on Edge (AOE) Networks

Shortest Path Problem

• Application

– Graph can be used to represent the highway structurep p g y

– Vertices represent cities

– Edges represent sections of highway

– Edge weight is the distance of an edge

• Questions

(1) I th th f it A t it B?

ch6.2-3

– (1) Is there a path from city A to city B?

– (2) If there is more than one path from A to B, which
is the shortest path?

Example: A Weighted Digraph

San Francisco Denver
Chicago Boston

800
1200

1500

1000 250
1 2

3

4

Los Angeles New Orleans

New York

Miami

300 1000

1700

1200

1400

1000

900

1

0

2
5

6

7

00

0 1 2 3 4 5 6 7 Length-adjacency matrix

ch6.2-4

300 0
1000 800 0

1200 0
1500 0 250
1000 0 900 1400

0 1000
1700 0

1
2
3
4
5
6
7

Edsger Dijkstra’s Algorithm

void Graph::ShortestPath(const int n, const int v)
// dist[j], 0≦j<n, is set to the length of the shortest path from vertex v to vertex j
// in a graph G with n vertex and edge lengths given by length[i][j]
{{

for (int i=0; i<n; i++) { s[i] = FALSE; dist[i] = length[v][i]; } // initialize
s[v] = TRUE;
dist[v] = 0;

for (i=0; i<n-2; i++) {
int u = choose(n); // routine ‘choose’ returns a value u such that

// dist[u] = minimum dist[w], where s[w] = FALSE
s[u] = TRUE;

ch6.2-5

for (int w=0; w<n; w++) {
if (! s[w])

if (dist[u] + length[u][w] < dist[w])
dist[w] = dist[u] + length[u][w];

}
}

}

驛站區

u

wv

起點

驛站區由近而遠 , 從 0 個擴大成 n-1 個

Example
San Francisco

Los Angeles

Denver
Chicago

New Orleans

Boston

New York

Miami

300

800

1000

1700

1200

1500

1000

1400

1000

900

250

1

0

2

3

4

5

6

7

Source is Boston

en-route set

ch6.2-6

Digraph With Negative Edges

• When negative edge lengths are permitted

– The digraph should have no cycle of negative length

– This is to ensure that the shortest path consists of a
finite number of edges

• Example

– The shortest path from vertex 0 to 2 is -∞
(0, 1, 0, 1, 0, 1, ..., 0, 1, 2)

ch6.2-7

0 1 2

-2

1 1

– Because there is a cycle (1, 0, 1) of length -1

Possible Search Space

• Let distk[u]

– be the length of a shortest path from the source g p

vertex v to vertex u that contains at most k edges

• Then, dist1[u] = length[v][u], 0≦u<n

• Under the no-negative-cycle constraint

– We can limit our search to shortest paths with at

ch6.2-8

most n-1 edges

– Hence, distn-1[u] is the length of an unrestricted

shortest path from v to u

Recurrence Relation

• Given distm[u] for every 0≦u<n

• How to compute distm+1[u]?

• Recurrence Relation

distm+1[u] = min{ distm[u], min {distm[i] + length[i][u]} }

source

b

i

ch6.2-9

v a

c

u

Assume that S-path2[v][u] = (v, a, u)

What are the possible S-path3[v][u] = { (v,a,u), (v,a,b,u), (v,a,c,u)}

Example of Shortest Paths With
Negative Edge Lengths

Source vertex: 0

Each shortest path consists of at most 6 edges

ch6.2-10

Bellman and Ford Algorithm
For computing Shortest Paths

ch6.2-11

Complexity:
O(n3) when adjacency matrix is used
O(n · e) when adjacency lists are used

Outline

• Shortest Path and Transitive Closure

– Single Source / All Destinations

– All-Pairs Shortest Paths

– Transitive Closure

• Activity Network

Activity on Vertex (AOV) Networks

ch6.2-12

– Activity on Vertex (AOV) Networks

– Activity on Edge (AOE) Networks

Basics of All-Pairs Shortest-Paths

• Assume that

– The digraph has n vertices with index of {0, ..., n-1}

• Let Ak[i][j]

– be the length of the shortest path from i to j going

through no intermediate vertex of index greater than k

• An-1[i][j]

ch6.2-13

– will be the length of the shortest i-to-j path in G

• The basic idea in all-pair algorithm

– is to successively generate the matrices A-1, A0, ..., An-1

Recurrence Relation

Ak[i][j] = min{ Ak-1[i][j], Ak-1[i][k] + Ak-1[k][j] }, k≧0
where A-1[i][j] = length[i][j]

vertices with

k

i
Ak-1[k][j]

Ak-1[i][k]

ch6.2-14

index less than k j

Ak-1[i][j]

Example for All-Pairs Shortest-
Paths Problem

6

4
A-1 0 1 2

0 0 4 11

A0 0 1 2

0 0 4 110 1

11
2

3
2

0 0 4 11

1 6 0 2

2 3 

0 0 4 11

1 6 0 2

2 3  

A1 0 1 2 A2 0 1 2

A-1 A0

ch6.2-15

0 0 4 6

1 6 0 2

2 3  

0 0 4 6

1 5 0 2

2 3  

A1 A2

All-Pairs Shortest Paths

Ak[i][j] = min{ Ak-1[i][j], Ak-1[i][k] + Ak-1[k][j] }, k≧0
where A-1[i][j] = length[i][j]

Complexity:O(n3)

ch6.2-16

Outline

• Shortest Path and Transitive Closure

– Single Source / All Destinations

– All-Pairs Shortest Paths

– Transitive Closure

• Activity Network

Activity on Vertex (AOV) Networks

ch6.2-17

– Activity on Vertex (AOV) Networks

– Activity on Edge (AOE) Networks

Transitive Closure

• Problem

– Given a digraph with unweighted edges

– We want to determine if there is a path from i to j for all

values of i and j

• Transitive closure matrix of graph G, denoted as A+

– A+[i][j] = 1 if there is a path of length＞0 from i to j;

– Otherwise, A+[i][j] = 0;

ch6.2-18

Otherwise, A [i][j] 0;

• Reflexive transitive closure matrix, denoted as A*

– A*[i][j] = 1 if there is a path of length ≧0 from i to j;

– Otherwise, A*[i][j] = 0;

Example of Transitive Closure Matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0
1
2

0 1 2 3 4

0 1 2 43

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

2
3
4

adjacency matrix

0 1 1 1 10

0 1 2 3 4

1 1 1 1 10

0 1 2 3 4

ch6.2-19

0 1 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

0
1
2
3
4

A+

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

0
1
2
3
4

A*

A[i][i]=1 when a cycle containing i exists A[i][i]=1 is always 1

Finding Transitive Closure

• For Directed Graph
– The transitive closure can be computed using the all-pairs

shortest-path algorithmshortest-path algorithm

– But the recurrence relation is modified as follows:

a[i][j] = a[i][j] || (a[i][k] && a[k][j]);

– The final matrix obtained is A+

• For Undirected Graph
– Transitive closure can be found more easily through the

id ifi i f d O(2)

ch6.2-20

identification of connected components, O(n2)

– For a vertex pair (i, j), A+[i][j]=1 if vertices i and j are in the
same connected component

– A+[i][i] = 1 iff the component containing i has at least two
vertices

Outline

• Shortest Path and Transitive Closure

• Activity Network

– Activity on Vertex (AOV) Networks

– Activity on Edge (AOE) Networks

ch6.2-21

Activities-On-Vertex (AOV) Networks

• Activity

A j t b bdi id d i t l b j t– A project can be subdivided into several subprojects

called activities

• Definition of AOV network

– Activity-on-vertex network is a directed graph G

– The vertices represent tasks or activities

ch6.2-22

– The edges represent precedence relations between

tasks

Activities For Completing a Degree

ch6.2-23

Example: AOV Network

ch6.2-24

Terminology

• Predecessor

– Vertex i is a predecessor of vertex j and j is a
successor of i iff there is a directed path from vertexsuccessor of i iff there is a directed path from vertex
i to vertex j

– i is an immediate predecessor of j iff <i, j> is an edge

• Transitive relation

– A relation．is transitive iff it is the case that for all
triples i j k i．j and j．k i．k

ch6.2-25

triples i, j, k, i．j and j．k  i．k

• Partial order

– A precedence relation that is both transitive and
irreflexive is a partial order

Topological Order

• Topological order

– A topological order is a linear order of the vertices

– For any two vertices i and j, if i is a predecessor of j in the

network, then i precedes j in the linear ordering

Topological order: C1 C2 C4 C5 C3 C6 C8 C7 C10 C13 C12 C14 C15 C11 C9

C4 C5 C2 C1 C6 C3 C8 C15 C7 C9 C10 C11 C12 C13 C14

ch6.2-26

A Topological Sorting Algorithm
Input the AOV network. Let n be the number of vertices
for (int i=0; i<n; i++){ // output the vertices
{

if (every vertex has a predecessor) return; // network has a cycle
pick a vertex v that has no predecessors;

Complexity: O(e+n)cout << v;
delete v and all edges leading out of v from the network;

}

4

5

1

2

3

0

1

2

3

4

5

4

5

1

2

Complexity: O(e+n)

ch6.2-27

33

initial after vertex 0 deleted after vertex 3 deleted

4

5

1

after vertex 2 deleted

4
1

4

after vertex 5 deleted after vertex 1 deleted

Internal Representations Used By
Topological Sorting

class Graph {
private:

List<int> *HeadNodes;

public:
Graph(const int vertices=0) : n (vertices) {
HeadNodes = new List<int>[n];
count = new int[n];List int HeadNodes;

int *count; // keep in-degree
int n;

count new int[n];
};
void TopologicalOrder();

};

ch6.2-28

Two operations has to be done fast:
1. if a vertex has a predecessor?
2. delete a vertex with all its incident edges

Topological Sorting Algorithm

ch6.2-29

Complexity is: O(e+n)

Outline

• Shortest Path and Transitive Closure

• Activity Network

– Activity on Vertex (AOV) Networks

– Activity on Edge (AOE) Networks

ch6.2-30

Activity-On-Edge (AOE) Network

• AOE Network

– Is a weighted directed graph in which

– The vertices represent events

– The edges represent activities or tasks

1

0 4

6

84

a1=6 a4=1 a7=9 a10=2

start finish

ch6.2-31

2

3

4

5

7

8

a9=4

a5=1

a6=2

a3=5

a2=4 a8=7

a11=4

Terminology

• Critical Path

– Is the longest path from start vertex to finish vertex

d t i th i i t f ti t fi i h th j t– determines the minimum amount of time to finish the project

• Earliest Time of an activity ai, denoted as e(ai)

– is the length of the longest path from start to the source vertex of ai

• Latest Time of an activity ai, denoted as l(ai)

– indicates latest time an activity may start without increasing the

project duration

ch6.2-32

project duration

• Critical activity

– is an activity for which e(ai) = l(ai)

1

0

2

3

4

5

7

6

8

a1=6 a4=1

Critical Path Analysis

• Purpose of critical path analysis

– is to identify the critical activities so that resources may

be concentrated on these activities in an attempt to

reduce project finish time

– That is, it is useful to identify project bottlenecks

• Finding all critical paths

– (1) compute every activity’s e(ai) and l(ai)

ch6.2-33

(1) compute every activity s e(ai) and l(ai)

– (2) identify critical activities, i.e., ai for which e(ai)=l(ai)

– (3) remove all non-critical activities

– (4) Generate all paths from start to finish

Example: Data Representation

0

1

1 6 2 4 3 5 0

count first vertex dur link

4 1 0

[0]

[1] 1

1

1

2

1

1

4 1 0

4 1 0

5 2 0

6 9 7 7 0

7 4 0

8 2 0

[]

[2]

[3]

[4]

[5]

[6] 1 6a1=6 a4=1 a7=9 a =2

ch6.2-34

2

2 0

8 2 0

8 4 0

[]

[7]

[8]

0

2

3

4

5

7

8

a9=4

a5=1

a6=2

a3=5

a2=4

a1 6

a8=7

4 a7 9 a10=2

a11=4

Overall Procedure of Critical Path
Analysis

• Procedure

– Step 1: compute the earliest event time for each vertex
i denoted as ee(i)i, denoted as ee(i)

– Step 2: compute the latest event time for each vertex i,
denoted as le(i)

– Step 3: compute the earliest time for an activity ai , <x,
y>, using formula: e(ai) = ee(x)

– Step 4: compute the latest time for an activity ai , <x,

ch6.2-35

Step 4: compute the latest time for an activity ai , <x,
y>, using formula l(ai) = le(y) – duration of activity ai

x y
ai

ee(x)

le(x)

ee(y)

le(y)

Calculation of Earliest Activity Times

• The earliest event time of each vertex

– can be computed by a forward stage

• Step 1: Sort vertices in the topological order

• Step 2: Evaluate earliest event time of each vertex by

ee(y) = max { ee(xi) + duration of <xi, y> }
xi P(y)

P(y) is the set of y’s immediate predecessors

ch6.2-36

y

ee(y)x1

x2

w1

w2

• Step 3: e(ai) = ee(source vertex of ai)

Calculation of Latest Activity Times

• The latest event time of each vertex

– can be computed by a backward stage

• Step 1: Sort vertices in reverse topological order

• Step 2: Evaluate latest event time of each vertex by

le(y) = min { le(xi) - duration of <y, xi> }
xi S(y)

S(y) is the set of y’s immediate successors

ch6.2-37

• Step 3: l(ai) = le(destination vertex of ai) –

duration of activity ai

y

le(y) x1

x2

w1

w2
ai

Example of Computing Earliest
Event Times

topological order: 0, 1, 2, 3, 4, 5, 6, 7, 8

e(ai) = ee(source vertex of ai)

1

0 4

6

8a2=4

a1=6

a8=7

a4=1 a7=9 a10=2

start finish

0

6

4

7

16

18

ch6.2-38

2

3 5

7
a9=4

a5=1

a6=2

a3=5

a11=4
4

5

7 14

Example of Computing Latest
Event Times

reverse topological order: 8, 7, 6, 5, 4, 3, 2, 1, 0

6 16

1

0 4

6

a5=1

a2=4

a1=6

a8=7

a4=1 a7=9 a10=2

a11=4

start finish

0

6

6

7

16

18

8

ch6.2-39

2

3 5

7
a9=4

a5 1

a6=2

a3=5

a11 4

8

10 14

Example of Computing Latest
Activity Times

reverse topological order: 8, 7, 6, 5, 4, 3, 2, 1, 0

l(ai) = le(destination vertex of ai) – duration of activity ai

1

0 4

6

8
a2=4

a1=6

a8=7

a4=1 a7=9 a10=2

start finish

0

6

6

7

16

18

7 16

7
6

6

0

2

ch6.2-40

2

3 5

7
a9=4

a5=1

a6=2

a3=5

8

a11=4
6

8

10 14

14

10

8

3

Graph of Critical Paths

1

0 4

6

84

a1=6 a4=1 a7=9 a10=2

start finish

2

3 5

7
a9=4

a5=1

a6=2

a3=5

a2=4 a8=7
a11=4

delete all non-critical activities
slack = l(ai) – e(ai)

slack=0  critical activity

ch6.2-41

