
國立清華大學 電機工程學系
EE2410 Data Structure

Chapter 6Chapter 6
Graph (Part I)

Outline

• The Graph Abstract Data Type

– Introduction

– Definitions

– Graph Representations

• Elementary Graph Operations

• Minimum Cost Spanning Trees

ch6.1-2

• Minimum Cost Spanning Trees

River Pregel in Konigsberg
• Problem

– Is there a cyclic walk that traverses every bridge only once (1736)

• For an Euler’s path to exist

– The degree of each vertex is even

– The degree is the number of edges incident to a vertex

ch6.1-3

Definition and Notations of Graph

• Definition

A graph G consists of two sets V and E– A graph, G, consists of two sets, V and E

– V is a finite nonempty set of vertices  V(G)

– E is a set of pairs of vertices, called edges E(G)

• Terminology

– Undirected graph: edges are not directed

ch6.1-4

g p g

– Directed graph (Digraph): edges are directed

• directed pair <u, v>, u is the tail and v is the head

Sample Graphs

0

0

0

2

3 4 5 6

1

2

G1 G2 G3

V(G1) = { 0, 1, 2, 3 }; E(G1) = { (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3) }

1 2

3

1

ch6.1-5

V(G2) = { 0, 1, 2, 3, 4, 5, 6 }; E(G2) = { (0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6) }

V(G3) = { 0, 1, 2 }; E(G3) = { <0, 1>, <1, 0>, <1, 2> }

Question: What are the maximum number of edges in a graph with n nodes?

 n · (n-1)/2 for undirected graph and n · (n-1) for digraph

Restrictions on Graph

• No self loops

– A self loop (or self edge) is an edge from a vertex v
back to itselfback to itself

– That is, (v, v) and <v, v> are not legal

• No multiple occurrences of the same edge

0
0

ch6.1-6

0

1

2

Graph with self edge

1

2

Multigraph

Terminology

• Complete graph

– An n-vertex, undirected graph with exactly n(n-1)/2 edges is said to

be completebe complete

– An n-vertex, directed graph with exactly n(n-1) edges is said to be

complete

• Adjacent nodes

– If (u, v) is an edge in E(G), then u and v are adjacent, and edge (u,

v) is incident on vertices u and v

ch6.1-7

– If <u, v> is a directed edge, then u is adjacent to v, and v is

adjacent from u

• A subgraph of G

– is a graph G’ such that V(G’) V(G) and E(G’) E(G)

Path in A Graph

• A path from vertex u to vertex v

– is a sequence of vertices u, i1, i2, ..., ik, v such that (u, i1), (i1, i2), ...,

(i v) are all edges in E(G)(ik, v) are all edges in E(G)

– A path (0, 1), (1, 3), (3, 2) is also written as 0, 1, 3, 2

• A simple path

– is a path in which all vertices except possibly the first and last are

distinct

• The length of a path

ch6.1-8

The length of a path

– is the number of edges on a path

• A cycle

– is a simple path in which the first and last vertices are the same

Connected Component

• Connected vertices

– In a undirected graph, two vertices u and v are said to

be connected iff there is a path in G from u to v

• Connected graph

– An undirected graph is said to be connected iff for

every pair of distinct vertices u and v in V(G) there is a

path from u to v in G

ch6.1-9

p

• A connected component

– is a maximal connected subgraph

• A tree is a connected acyclic graph

Strongly Connected Component

• Strongly connected graph

– A digraph G is said to be strongly connected iff for every pair of

distinct vertices u and v in V(G) there is a directed path from u todistinct vertices u and v in V(G), there is a directed path from u to

v and also from v to u

• Strongly connected component (SCC)

– A SCC is a maximal subgraph that is strongly connected

0 4

0 0

ch6.1-10

0

3

12

4

7

65

A graph with two connected components

1

2

G3

1

2

Two SCC’s of G3

Abstract Data Type Graph
class Graph
{
// objects: A nonempty set of vertices and a set of undirected edges
// where each edge is a pair of vertices
public:

G h () // C hGraph (); // Create an empty graph

void InsertVertex(Vertex v); // Insert v into graph; v has no incident edges

void InsertEdge(Vertex u, Vertex v); // Insert edge (u, v) into graph

void DeleteVertex(Vertex v); // Delete v and all edges incident to it

void DeleteEdge(Vertex u Vertex v); // Delete edge (u v) from the graph

ch6.1-11

void DeleteEdge(Vertex u, Vertex v); // Delete edge (u, v) from the graph

Boolean IsEmpty ();
// if graph has no vertices return TRUE(1); else return FALSE(0);

List<Vertex> Adjacent(Vertex v);
// return a list of all vertices that are adjacent to v

}

Graph Representations

Adj t i• Adjacency matrices

• Adjacency lists

• Adjacency multi-lists

ch6.1-12

Adjacency Matrices

0

1

0

1 2

0

12

4

65

G1

1

2

G3
0 1 2 3

0 1 1 1

1 0 1 1

0

1

0 1 2

0 1 00

3
3 7

0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0

1

2

ch6.1-13

1 0 1 1

1 1 0 1

1 1 1 0

1

2

3

1 0 1

0 0 0

1

2

0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

3

4

5

6

7
Questions: How many edges? Is G connected ?

 requires O(n2)

Adjacency Lists

00

1

2

1 2

3

3 1 2 0[0]

HeadNodes data link

HeadNodes

G1 G3

ch6.1-14

2 3 0 0[1]

1 3 0 0[2]

0 1 2 0[3]

1 0[0]

2 0 0[1]

0[2]

Graph Using Adjacency Lists

class Graph
{
private:

List<int> *HeadNodes;
int n;

public:
Graph(const int vertices = 0) : n (vertices)
{ HeadNodes = new List<int>[n]; } ;

};

Complexities of simple operations:

ch6.1-15

Complexities of simple operations:

1. Determine the total number of edges of a graph: O(n+e)

2. Determine the out-degree of a node: O(out-degree of the node)

3. Determine the in-degree of a node: needs inverse adjacency lists

Inverse Adjacency Lists

0

1

2

G3

1 0[0]

HeadNodes

1 0[0]

HeadNodes

ch6.1-16

2 0 0[1]

0[2]

adjacency lists

0 0[1]

[2] 1 0

inverse adjacency lists

Orthogonal List Representation

tail head column link for head row link for tail

Node structure 0

tail head column link for head row link for tail

1 20

0 1 0 00

head nodes

(shown twice)

1

2

G3

ch6.1-17

1 2 0 01 0 01

2 0 Horizontal links: outgoing edges of a node

Vertical links: incoming edges of a node

Adjacency Multi-Lists

• Motivations

– An edge (u,v) in adjacency lists is represented by

t t i i li t f th th i li t ftwo entries, one in list for u, the other in list for v

– During graph traversal, we need to mark an edge as

visited need a better representation

• Adjacency Multi-Lists

– There is one node for each edge

ch6.1-18

– A node may be shared among several lists

m vertex 1

Node structure

vertex 2 list 1 list 2

mark bit indicating whether or not an edge has been examined

Example: Adjacency Multi-Lists

0

1 2

3 1 2 0[0]

HeadNodes data link

2 3 0 0[1] adjacency list1 2

3

0 2 N2 N3 edge (0, 2)

0 1 N1 N3 edge (0, 1)N0

N1
[0]

HeadNodes

2 3 0 0[1]

1 3 0 0[2]

0 1 2 0[3]

j y

ch6.1-19

0 3 0 N4 edge (0, 3)

1 2 N4 N5 edge (1, 2)

1 3 0 N5 edge (1, 3)

2 3 0 0 edge (2, 3)

N2

N3

N4

N5

[0]

[1]

[2]

[3]

adjacency multi-list

ADT of Adjacency Multi-Lists

enum Boolean { FALSE, TRUE }
class Graph;
class GraphEdge {

typedef GraphEdge *EdgePtr;
class Graph {
private:c ass G ap dge {

friend Graph;
private:

Boolean m;
int vertex1, vertex2;
GraphEdge *path1, *path2;

};

p vate:
EdgePtr *HeadNodes;
int n;

public:
Graph(const int);

};

ch6.1-20

Graph::Graph(int vertices=0) : n (vertices)
{
// Set up the array of head nodes

HeadNodes = new EdgePtr[n];
for(i=0; i<n; i++) HeadNodes[i] = 0;

}

Outline

• The Graph Abstract Data Type

• Elementary Graph Operations

– Depth First Search

– Breadth First Search

– Connected Components

Spanning Trees

ch6.1-21

– Spanning Trees

– Bi-connected Components

• Minimum Cost Spanning Trees

Depth First Search

0

1 2
Depth First Search (DFS) orders: (for example)

0, 1, 3, 7, 4, 5, 2, 6

3 4 5 6

7

0, 1, 4, 7, 3, 5, 2, 6

etc.

ch6.1-22

Depth First Search Algorithm

void Graph::DFS() // Driver
{

visited = new Boolean[n];
for (int i=0; i<n; i++) visited[i] = FALSE;

DFS(0); // start search at vertex 0

delete[] visited;
}

void Graph::DFS(const int v) // Workhorse
// visit all previously unvisited vertices that are reachable from vertex v

ch6.1-23

// visit all previously unvisited vertices that are reachable from vertex v
{

visited[v] = TRUE;
for (each vertex w adjacent to v)

if (! visited[w]) DFS(w);
}

}

Breadth First Search
void Graph::BFS(int v)
// A breadth first search of the graph is carried out beginning at vertex v
// visited[i] is set to TRUE when v is visited. The algorithm uses a queue
{

visited = new Boolean[n]; [];
for (int i=0; i<n; i++) visited[i] = FALSE;
visited[v] = TRUE;
Queue<int> q;
q.Insert(v); // add vertex v to the queue
while (! q.IsEmpty()) {

v = *q.Delete(v); // remove vertex v from the queue
for (all vertices w adjacent to v) {

if (! visited[w]) {
I ()

0

1 2

ch6.1-24

q.Insert(w);
visited[w] = TRUE;

}
}

} // end of while loop
delete [] visited;

}

3 4 5 6

7

BFS order: 0,1,2,3,4,5,6,7

Connected Components

• For an undirected graph

– The connected components can be computed by either DFS or

BFS search

– All nodes visited during a traversal along with their edges form

a connected components

void Graph::Components()
// Determine the connected components of the graph
{

visited = new Boolean[n];
for (int i=0; i<n; i++) visited[i] = FALSE;

ch6.1-25

for (i=0; i<n; i++) {
if (! visited[i]) { // pick one node that is not visited yet

DFS(i); // Find a component
OutputNewComponent();

}
delete [] visited;

}

Complexity = O(n+e)

for adjacency lists

Spanning Trees

• Definition

Any tree is a spanning tree of G if

(1) Th t i t l l f d i G(1) The tree consists solely of edges in G

(2) The tree includes all vertices in G

• For a connected graph G

– Depth-first or breadth-first search partitions the
edges into two sets, T and N

ch6.1-26

– T is the set of tree edges

– N is the set of non-tree edges

• The tree edges of a traversal

– and every vertex forms a spanning tree

Examples: Spanning Trees

0

1 2

3 4 5 6

70

1 2

3 4 5 6

0

1 2

3 4 5 6

ch6.1-27

7

Depth-first spanning tree

(starting from vertex 0)

7

Breadth-first spanning tree

(starting from vertex 0)

Creation of Circuit Equations

• In a spanning tree of a connected graph

Each non tree edge added to the tree forms a cycle– Each non-tree edge added to the tree forms a cycle

– Each cycle is unique

• Application to circuit analysis

– Represent a circuit as a graph

– Find a spanning tree

0

1 2

3 4 5 6

7

ch6.1-28

p g

– Each non-tree edge corresponds to a cycle

– Generate a current equation using Kirchhoff’s law

– A set of independent current equations are obtained

non-tree edge

Minimal Connected Subgraph

• Property

– A spanning tree is a minimal sub-graph G’ of G such that V(G’) =

V(G) and G’ is connectedV(G), and G’ is connected

• Reasons

– Any connected graph with n vertices must have n-1 edges

– All connected graphs with n-1 edges are trees

– Therefore, a spanning tree is a minimal sub-graph

• Application to communication

ch6.1-29

• Application to communication

– Vertices represent cities, while edges represents communication links

– The minimum number of links connecting n cities is n-1

– The cost of each link is different, represented as weight

– Finding minimum-cost spanning tree is desired !

Articulation Point

• Definition of Articulation Point

– A vertex v of G is an articulation point iff the deletion of v,

together with the deletion of all edges incident to v leavestogether with the deletion of all edges incident to v, leaves

behind a graph that has at least two connected components

• Definition of Bi-connected Graph

– A bi-connected graph is a connected graph that has no

articulation points

0 8 9

0 8 9

1

ch6.1-30

0

1

2 3

4

8

7

5

6

9

A connected graph

1

2 3

4

7

5

6

1

3 5

7 7

6 bi-connected components

Bi-Connected Components

• Definition

– A biconnected component of a connected graph G is a maximal

bi t d b h H f Gbiconnected subgraph H of G

– By maximal, it means that G contains no other subgraph that is

both biconnected and properly contains H

• Properties

– A biconnected graph has just one biconnected component – the

whole graph

ch6.1-31

g p

– Two biconnected components can have at most one vertex in

common

– No edge can be in two biconnected components

– Hence, biconnected components of G partition the edges of G

Back Edge and Cross Edge

• Depth first number (dfn)
– The order of a node visited during a depth first search

B k d• Back edge
– A nontree edge (u, v) is a back edge iff u is an ancestor of v or v is

an ancestor of u

• Cross edge
– A nontree edge that is not a back edge

0 910

2

1

64 5

b k d

3

ch6.1-32

0

1

2 3

4

8

7

5

6

95

4

3

2

1 6

7

8

910

dfn number

5

4

3 7

8

10 9

2

0 8 9

6
back edge

1 7

註: Depth-First Traversal

所產生的 nontree edges 都是 back edges

Where Are The Articulation Points ?
• Root is an articulation point

– iff it has at least two children

• Back path is a path starting from a vertex u

– reaches an ancestor of u through u’s descendants and single back edge

2

1

6
4 5

3
dfn number

g g g

• A Non-root vertex u is an articulation point iff

– (1) u has at least one child

– (2) u has NO such child w that there exist a back path starting from w

ch6.1-33

0

1

2 3

4

8

7

5

6

9

5

4

3 7

8

9 10

2

0 8 9

6
back edge

1 7

Computing Low-valuevoid Graph::DfnLow(const int x) // begin DFS at vertex x
{

num = 1;
dfn = new int[n];
low = new int[n];
for (int i=0; i<n; i++) { dfn[i] = low[i] = 0; }
DfnLow(x, -1); // start at vertex x
d l t [] df

low(u) is the lowest depth

first number reachable by

back path starting from udelete [] dfn;
delete [] low;

}
void Graph::DfnLow (const int u, const int v)
// Compute dfn and low while performing a depth first search beginning
// at vertex u. vertex v is the parent (if any) of u in the resulting spanning tree
{

dfn[u] = low[u] = num++;
for (each vertex w adjacent from u)

back path starting from u

v

ch6.1-34

for (each vertex w adjacent from u)
if (dfn[w]==0) { w is an unvisited vertex

DfnLow(w, u);
low[u] = min2(low[u], low[w]);

}
else if (w != v) low[u] = min2(low[u], dfn[w]); // back edge

}
}

u

w

Example: Values of dfn and low

0 8 9
2

1

6
4 5

back edge

3
dfn number

1

2 3

4

7

5

6
5

4

3 7

8

9 10

2

0 8 9

6
back edge

1 7

V t

ch6.1-35

Vertex
ID

0 1 2 3 4 5 6 7 8 9

dfn 5 4 3 1 2 6 7 8 9 10

low 5 1 1 1 1 6 6 6 9 10

Compute Biconnected Componentsvoid Graph::Biconnected()
{

num = 1; dfn = new int[n]; low = new int[n];
for (int i=0; i<n; i++) { dfn[i] = low[i] = 0; }
Biconnected(0, -1); // start at vertex 0
delete [] dfn; delete [] low;

}
void Graph::Biconnected (const int u, const int v)

4

3

2

1

6

7

8

4

2

5

6
back edge

3

1 7

dfn number

p (,)
{

dfn[u] = low[u] = num++;
for (each vertex w adjacent from u)

if ((w !=v) && (dfn[w] < dfn[u])) add (u, w) to stack S;
if (dfn[w] == 0) { // w is an unvisited vertex

Biconnected(w, u); low[u] = min2(low[u], low[w]);
if (low[w] >= dfn[u]) { // u an articulation point found

cout << “New biconnected components: “ << endl;

v

u

5
9 10

0 8 9

ch6.1-36

do {
delete an edge from the stack S;
let this edge be (x, y); cout << x << “,” << y << endl;

} while ((x,y) and (u,w) are not the same edge)
}

}
else if (w != v) low[u] = min2(low[u], dfn[w]) ; // back edge

}

w

Outline

• The Graph Abstract Data Type

• Elementary Graph Operations

• Minimum Cost Spanning Trees

– Kruskal’s Algorithm

– Prim’s Algorithm

S lli ’ Al ith

ch6.1-37

– Sollin’s Algorithm

Minimum-Cost Spanning Tree

• Cost of a spanning tree

– is the sum of the costs (weights) of the edges in the spanning tree

• A minimum cost spanning tree• A minimum-cost spanning tree

– is a spanning tree of least cost

• Greedy method

– The solution is constructed in stages

– At each stage, the best decision (using some criterion) is picked

– No decision once made can be reversed

ch6.1-38

No decision, once made, can be reversed

• Selection criterion in forming a min-cost spanning tree

(1) Use only edges within the graph

(2) Use exactly n-1 edges

(3) Should not use edges that produce a cycle

Example of Forming A Min-Cost
Spanning Tree – Kruskal’s Algorithm

0

5 2

1

6

28

1610
14

0

5 2

1

6

0

5 2

1

6

10

0

5

1

6

10

25 2

3

6

425
24

18
12

22

5 2

3

6

4

5 2

3

6

4

5 6

4

2

3

12

0

110
14

0

110
14 16

0

110
14 16

0

110
14 16

ch6.1-39

5 6

4

2

3

12

14
5 6

4

2

3

12

14 16

5 6

4

2

3

12

14 16

22

5 6

4

2

3

12

14 16

22

25

Total weight = 99

Kruskal’s Algorithm

T = 
while ((T contains less than n-1 edges) && (E is not empty)) {

choose an edge (v, w) from E of lowest cost;
d l () f E

T is the set of collected edges in the spanning tree

delete (v, w) from E;
if ((v, w) does not create a cycle in T) add (v, w) to T;
else discard (v, w);

}
if (T contains fewer than n-1 edges) {

cout << “No spanning tree” << endl;
}

O(e·log e) if min heap is used,

and set is used for cycle checking

ch6.1-40

It can be proved that: Kruskal’s algorithm is optimal

(1) If there is a spanning tree,  Kruskal will find it

(2) If there is a min-cost spanning tree U, then there exists a

cost-preserving transformation that maps U to the one Kruskal finds

Example of Prim’s Algorithm

0

110

0

110

0

110

0

1

28

1610
14

5 2

3

6

4

5 2

3

6

4
25

5 2

3

6

4
25

22

0

110

0

10

0

110

5 2

3

6

425
24

18
12

22

ch6.1-41

5 2

3

1

6

4

10

25

22
12

5 2

3

1

6

4

10

25

22
12

5 2

3

1

6

4

10

25

22
12

1614

Total weight = 99

Prim’s Algorithm

Notations:

(1) TV is the set of collected vertices in the spanning tree

(2) T is the set of collected edges in the spanning tree

// Assume that G has at least one vertex
TV = {0}; // Start with vertex 0 and no edges
for (T= T contains fewer than n-1 edges; add (u,v) to T)
{

Let (u,v) be a least-cost edge such that u  TV and vTV;
if (there is no such edge) break;
add v to TV;

ch6.1-42

;
}
if (T contains fewer than n-1 edges) {

cout << “No spanning tree” << endl;
}

Stages in Sollin’s Algorithm

5 6

0

2

1

28

1610
14

0

5 2

1

6
initial

0

110 1614

0

110

5 6 2

3

425
24

18
12

22

5 2

3

6

4

ch6.1-43

5 2

3

6

4
25

22

12

Total weight = 99

5 2

3

1

6

4

22
12

14

