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• Minimum Cost Spanning Trees



River Pregel in Konigsberg
• Problem

– Is there a cyclic walk that traverses every bridge only once (1736)

• For an Euler’s path to exist

– The degree of each vertex is even

– The degree is the number of edges incident to a vertex
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Definition and Notations of Graph

• Definition

A graph G consists of two sets V and E– A graph, G, consists of two sets, V and E

– V is a finite nonempty set of vertices  V(G)

– E is a set of pairs of vertices, called edges E(G)

• Terminology

– Undirected graph: edges are not directed
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g p g

– Directed graph (Digraph): edges are directed

• directed pair <u, v>, u is the tail and v is the head



Sample Graphs
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V(G1) = { 0, 1, 2, 3 };      E(G1) = { (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3) }
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V(G2) = { 0, 1, 2, 3, 4, 5, 6 };      E(G2) = { (0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6) }

V(G3) = { 0, 1, 2 };    E(G3) = { <0, 1>, <1, 0>, <1, 2> }

Question: What are the maximum number of edges in a graph with n nodes?

 n · (n-1)/2 for undirected graph and n · (n-1) for digraph

Restrictions on Graph

• No self loops

– A self loop (or self edge) is an edge from a vertex v 
back to itselfback to itself

– That is, (v, v) and <v, v> are not legal

• No multiple occurrences of the same edge

0
0
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Terminology

• Complete graph

– An n-vertex, undirected graph with exactly n(n-1)/2 edges is said to 

be completebe complete

– An n-vertex, directed graph with exactly n(n-1) edges is said to be 

complete

• Adjacent nodes

– If (u, v) is an edge in E(G), then u and v are adjacent, and edge (u, 

v) is incident on vertices u and v
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– If <u, v> is a directed edge, then u is adjacent to v, and v is 

adjacent from u

• A subgraph of G

– is a graph G’ such that V(G’) V(G) and E(G’) E(G)

Path in A Graph

• A path from vertex u to vertex v

– is a sequence of vertices u, i1, i2, ..., ik, v such that (u, i1), (i1, i2), ..., 

(i v) are all edges in E(G)(ik, v) are all edges in E(G)

– A path (0, 1), (1, 3), (3, 2) is also written as 0, 1, 3, 2

• A simple path

– is a path in which all vertices except possibly the first and last are 

distinct

• The length of a path
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The length of a path

– is the number of edges on a path

• A cycle

– is a simple path in which the first and last vertices are the same



Connected Component

• Connected vertices

– In a undirected graph, two vertices u and v are said to 

be connected iff there is a path in G from u to v

• Connected graph

– An undirected graph is said to be connected iff for 

every pair of distinct vertices u and v in V(G) there is a 

path from u to v in G
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• A connected component

– is a maximal connected subgraph

• A tree is a connected acyclic graph

Strongly Connected Component

• Strongly connected graph

– A digraph G is said to be strongly connected iff for every pair of 

distinct vertices u and v in V(G) there is a directed path from u todistinct vertices u and v in V(G), there is a directed path from u to 

v and also from v to u

• Strongly connected component (SCC)

– A SCC is a maximal subgraph that is strongly connected

0 4

0 0
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Abstract Data Type Graph
class  Graph
{
//  objects: A nonempty set of vertices and a set of undirected edges
//  where each edge is a pair of vertices
public:

G h () // C hGraph ();  // Create an empty graph

void   InsertVertex(Vertex  v);  //  Insert v into graph; v has no incident edges

void   InsertEdge(Vertex u, Vertex v);  // Insert edge (u, v) into graph

void   DeleteVertex(Vertex v);   //  Delete v and all edges incident to it

void DeleteEdge(Vertex u Vertex v); // Delete edge (u v) from the graph
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void   DeleteEdge(Vertex u, Vertex v);  //  Delete edge (u, v) from the graph

Boolean  IsEmpty ();  
//  if graph has no vertices return TRUE(1); else return FALSE(0);

List<Vertex>  Adjacent( Vertex v);
//  return a list of all vertices that are adjacent to v

}

Graph Representations

Adj t i• Adjacency matrices

• Adjacency lists

• Adjacency multi-lists
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Adjacency Matrices
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Questions: How many edges? Is G connected ?

 requires O(n2) 

Adjacency Lists
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3 1 2 0[0]

HeadNodes data  link

HeadNodes

G1 G3
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2 3 0 0[1]

1 3 0 0[2]

0 1 2 0[3]

1 0[0]

2 0 0[1]

0[2]



Graph Using Adjacency Lists

class  Graph
{
private:

List<int>  *HeadNodes;
int n;

public:
Graph( const  int  vertices = 0) : n ( vertices )
{  HeadNodes = new List<int>[n]; } ;

};

Complexities of simple operations:
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Complexities of simple operations:

1. Determine the total number of edges of a graph: O(n+e)

2. Determine the out-degree of a node: O(out-degree of the node)

3. Determine the in-degree of a node: needs inverse adjacency lists 

Inverse Adjacency Lists

0
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G3

1 0[0]

HeadNodes

1 0[0]

HeadNodes
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2 0 0[1]

0[2]

adjacency lists

0 0[1]

[2] 1 0

inverse adjacency lists



Orthogonal List Representation

tail head column link for head row link for tail

Node structure 0

tail head column link for head row link for tail

1 20

0 1 0 00

head nodes

(shown twice)

1

2

G3
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1 2 0 01 0 01

2 0 Horizontal links: outgoing edges of a node

Vertical links: incoming edges of a node

Adjacency Multi-Lists

• Motivations

– An edge (u,v) in adjacency lists is represented by 

t t i i li t f th th i li t ftwo entries, one in list for u, the other in list for v

– During graph traversal, we need to mark an edge as 

visited need a better representation

• Adjacency Multi-Lists

– There is one node for each edge
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– A node may be shared among several lists

m vertex 1

Node structure

vertex 2 list 1 list 2

mark bit indicating whether or not an edge has been examined



Example: Adjacency Multi-Lists

0

1 2

3 1 2 0[0]

HeadNodes data  link

2 3 0 0[1] adjacency list1 2

3

0 2 N2 N3 edge (0, 2)

0 1 N1 N3 edge (0, 1)N0

N1
[0]

HeadNodes

2 3 0 0[1]

1 3 0 0[2]

0 1 2 0[3]

j y
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0 3 0 N4 edge (0, 3)

1 2 N4 N5 edge (1, 2)

1 3 0 N5 edge (1, 3)

2 3 0 0 edge (2, 3)

N2

N3

N4

N5

[0]

[1]

[2]

[3]

adjacency multi-list

ADT of Adjacency Multi-Lists

enum  Boolean  { FALSE, TRUE }
class   Graph;
class  GraphEdge {

typedef  GraphEdge  *EdgePtr;
class Graph {
private:c ass G ap dge {

friend  Graph;
private: 

Boolean  m;
int   vertex1, vertex2;
GraphEdge  *path1, *path2;

};

p vate:
EdgePtr *HeadNodes;
int  n;

public:
Graph(const int);

};
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Graph::Graph(int vertices=0) : n (vertices)
{
//  Set up the array of head nodes

HeadNodes = new EdgePtr[n];
for(i=0; i<n; i++)  HeadNodes[i] = 0;

}



Outline

• The Graph Abstract Data Type

• Elementary Graph Operations

– Depth First Search

– Breadth First Search

– Connected Components

Spanning Trees
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– Spanning Trees

– Bi-connected Components

• Minimum Cost Spanning Trees

Depth First Search

0

1 2
Depth First Search (DFS) orders: (for example)

0, 1, 3, 7, 4, 5, 2, 6

3 4 5 6

7

0, 1, 4, 7, 3, 5, 2, 6

etc.
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Depth First Search Algorithm

void  Graph::DFS()   //  Driver
{

visited = new  Boolean[n];
for ( int  i=0; i<n; i++ )  visited[i] = FALSE;

DFS(0);  // start search at vertex 0

delete[ ]  visited;
}

void  Graph::DFS(const int v) // Workhorse
// visit all previously unvisited vertices that are reachable from vertex v
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// visit all previously unvisited vertices that are reachable from vertex v
{

visited[v] = TRUE;
for ( each vertex w adjacent to v )

if ( ! visited[w] )  DFS(w);
}

}

Breadth First Search
void  Graph::BFS( int  v )
// A breadth first search of the graph is carried out beginning at vertex v
// visited[i] is set to TRUE when v is visited. The algorithm uses a queue
{

visited = new Boolean[n]; [ ];
for ( int i=0; i<n; i++)  visited[i] = FALSE;
visited[v] = TRUE;
Queue<int>  q;
q.Insert(v);  //  add vertex v to the queue
while ( ! q.IsEmpty() )  {

v = *q.Delete(v);  //  remove vertex v from the queue
for ( all vertices w adjacent to v ) {

if ( ! visited[w] ) {
I ( )

0

1 2
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q.Insert(w);
visited[w] = TRUE;

}
}

} // end of while loop
delete [] visited;

}

3 4 5 6

7

BFS order: 0,1,2,3,4,5,6,7 



Connected Components

• For an undirected graph

– The connected components can be computed by either DFS or 

BFS search

– All nodes visited during a traversal along with their edges form 

a connected components

void  Graph::Components()
// Determine the connected components of the graph
{

visited = new Boolean[n];
for ( int  i=0; i<n; i++)  visited[i] = FALSE;
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for ( i=0; i<n; i++) {  
if ( ! visited[i] ) {    // pick one node that is not visited yet

DFS(i);  // Find a component
OutputNewComponent();

}
delete [] visited;

}

Complexity = O(n+e)

for adjacency lists

Spanning Trees

• Definition

Any tree is a spanning tree of G if

(1) Th t i t l l f d i G(1) The tree consists solely of edges in G

(2) The tree includes all vertices in G

• For a connected graph G

– Depth-first or breadth-first search partitions the 
edges into two sets, T and N
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– T is the set of tree edges

– N is the set of non-tree edges

• The tree edges of a traversal

– and every vertex forms a spanning tree



Examples: Spanning Trees
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7

Depth-first spanning tree

(starting from vertex 0)

7

Breadth-first spanning tree

(starting from vertex 0)

Creation of Circuit Equations

• In a spanning tree of a connected graph

Each non tree edge added to the tree forms a cycle– Each non-tree edge added to the tree forms a cycle

– Each cycle is unique

• Application to circuit analysis

– Represent a circuit as a graph

– Find a spanning tree

0

1 2

3 4 5 6

7

ch6.1-28

p g

– Each non-tree edge corresponds to a cycle

– Generate a current equation using Kirchhoff’s law

– A set of independent current equations are obtained

non-tree edge



Minimal Connected Subgraph

• Property

– A spanning tree is a minimal sub-graph G’ of G such that V(G’) = 

V(G) and G’ is connectedV(G), and G’ is connected

• Reasons

– Any connected graph with n vertices must have n-1 edges

– All connected graphs with n-1 edges are trees

– Therefore, a spanning tree is a minimal sub-graph

• Application to communication
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• Application to communication

– Vertices represent cities, while edges represents communication links

– The minimum number of links connecting n cities is n-1

– The cost of each link is different, represented as weight

– Finding minimum-cost spanning tree is desired !

Articulation Point

• Definition of Articulation Point

– A vertex v of G is an articulation point iff the deletion of v, 

together with the deletion of all edges incident to v leavestogether with the deletion of all edges incident to v, leaves 

behind a graph that has at least two connected components

• Definition of Bi-connected Graph

– A bi-connected graph is a connected graph that has no 

articulation points

0 8 9

0 8 9

1
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Bi-Connected Components

• Definition

– A biconnected component of a connected graph G is a maximal 

bi t d b h H f Gbiconnected subgraph H of G

– By maximal, it means that G contains no other subgraph that is 

both biconnected and properly contains H

• Properties

– A biconnected graph has just one biconnected component – the 

whole graph
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– Two biconnected components can have at most one vertex in 

common

– No edge can be in two biconnected components

– Hence, biconnected components of G partition the edges of G

Back Edge and Cross Edge

• Depth first number (dfn)
– The order of a node visited during a depth first search

B k d• Back edge
– A nontree edge (u, v) is a back edge iff u is an ancestor of v or v is 

an ancestor of u

• Cross edge
– A nontree edge that is not a back edge

0 910

2

1

64 5

b k d

3
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註: Depth-First Traversal

所產生的 nontree edges 都是 back edges



Where Are The Articulation Points ?
• Root is an articulation point

– iff it has at least two children

• Back path is a path starting from a vertex u

– reaches an ancestor of u through u’s descendants and single back edge

2

1

6
4 5

3
dfn number

g g g

• A Non-root vertex u is an articulation point iff

– (1) u has at least one child

– (2) u has NO such child w that there exist a back path starting from w
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Computing Low-valuevoid  Graph::DfnLow(const int x)  //  begin DFS at vertex x
{

num = 1;
dfn = new int[n];
low = new int[n];
for ( int i=0; i<n; i++) {  dfn[i] = low[i] = 0; }
DfnLow(x, -1);  // start at vertex x
d l t [ ] df

low(u) is the lowest depth

first number reachable by

back path starting from udelete [ ]  dfn;
delete [ ]  low;

}
void  Graph::DfnLow ( const int u, const int v)
//  Compute dfn and low while performing a depth first search beginning
//  at vertex u. vertex v is the parent (if any) of u in the resulting spanning tree
{

dfn[u] = low[u] = num++;
for ( each vertex w adjacent from u )

back path starting from u

v
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for ( each vertex w adjacent from u )  
if ( dfn[w]==0) {  w is an unvisited vertex

DfnLow(w, u);
low[u] = min2( low[u], low[w]);

}
else if ( w != v)  low[u] = min2( low[u], dfn[w] );  // back edge

}
}

u

w



Example: Values of dfn and low
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V t
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Vertex
ID

0 1 2 3 4 5 6 7 8 9

dfn 5 4 3 1 2 6 7 8 9 10

low 5 1 1 1 1 6 6 6 9 10

Compute Biconnected Componentsvoid  Graph::Biconnected()
{

num = 1;  dfn = new int[n];  low = new int[n];  
for ( int  i=0; i<n; i++) {  dfn[i] = low[i] = 0; }
Biconnected(0, -1);  // start at vertex 0
delete [] dfn;  delete [] low;

}
void  Graph::Biconnected ( const int u, const int v)
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back edge

3

1 7

dfn number

p ( , )
{

dfn[u] = low[u] = num++;
for ( each vertex w adjacent from u )

if ( (w !=v) && (dfn[w] < dfn[u]) ) add (u, w) to stack S;
if ( dfn[w] == 0) {  // w is an unvisited vertex

Biconnected(w, u); low[u] = min2( low[u], low[w] );
if ( low[w] >= dfn[u])  {  // u an articulation point found

cout << “New biconnected components: “ << endl;

v

u

5
9 10

0 8 9
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do {
delete an edge from the stack S;
let this edge be (x, y);   cout << x << “,” << y << endl;

} while ( (x,y) and (u,w) are not the same edge)
}

}
else if ( w != v)  low[u] = min2( low[u], dfn[w] ) ; // back edge

}  

w



Outline

• The Graph Abstract Data Type

• Elementary Graph Operations

• Minimum Cost Spanning Trees

– Kruskal’s Algorithm

– Prim’s Algorithm

S lli ’ Al ith
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– Sollin’s Algorithm

Minimum-Cost Spanning Tree

• Cost of a spanning tree

– is the sum of the costs ( weights) of the edges in the spanning tree

• A minimum cost spanning tree• A minimum-cost spanning tree

– is a spanning tree of least cost

• Greedy method

– The solution is constructed in stages

– At each stage, the best decision (using some criterion) is picked

– No decision once made can be reversed
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No decision, once made, can be reversed

• Selection criterion in forming a min-cost spanning tree

(1) Use only edges within the graph

(2) Use exactly n-1 edges

(3) Should not use edges that produce a cycle



Example of Forming A Min-Cost 
Spanning Tree – Kruskal’s Algorithm

0

5 2

1

6

28

1610
14

0

5 2

1

6

0

5 2

1

6

10

0

5

1

6

10

25 2

3

6

425
24

18
12

22

5 2

3

6

4

5 2

3

6

4

5 6

4

2

3

12

0

110
14

0

110
14 16

0

110
14 16

0

110
14 16

ch6.1-39

5 6

4

2

3

12

14
5 6

4

2

3

12

14 16

5 6

4

2

3

12

14 16

22

5 6

4

2

3

12

14 16

22

25

Total weight = 99

Kruskal’s Algorithm

T = 
while ( ( T contains less than n-1 edges )  && ( E is not empty )  ) {

choose an edge (v, w)  from E of lowest cost;
d l ( ) f E

T is the set of collected edges in the spanning tree

delete (v, w) from E;
if ( (v, w) does not create a cycle in T )  add (v, w) to T;
else  discard (v, w);

}
if ( T contains fewer than n-1 edges )  {

cout << “No spanning tree” << endl;
}  

O(e·log e) if min heap is used, 

and set is used for cycle checking
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It can be proved that: Kruskal’s algorithm is optimal

(1) If there is a spanning tree,  Kruskal will find it 

(2) If there is a min-cost spanning tree U, then there exists a 

cost-preserving transformation that maps U to the one Kruskal finds



Example of Prim’s Algorithm
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Prim’s Algorithm

Notations:

(1) TV is the set of collected vertices in the spanning tree

(2) T is the set of collected edges in the spanning tree

// Assume that G has at least one vertex
TV = {0};  // Start with vertex 0 and no edges
for ( T= T contains fewer than n-1 edges;  add (u,v) to T )
{

Let (u,v) be a least-cost edge such that u  TV and vTV;
if ( there is no such edge )  break;
add v to TV;
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;
}
if ( T contains fewer than n-1 edges)  {

cout << “No spanning tree” << endl;
}



Stages in Sollin’s Algorithm
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