


Binary Search Tree (BST)

¢ Definition

— A binary search tree is a binary tree
— The left & right sub-tress are also binary search tree
— If it is not empty, then it satisfies the following

* Every element has a unique key

* For every node N, Key(N) > Key( Left Subtree(N) )
* For every node N, Key(N) < Key( Right Subtree(N) )

@ NOT BST ! @ @ A BT
(15) () (s) (0 (70)
(2) (10) (22) @ ABST ! (65)
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Why Binary Search Tree ?

* Heap
— is well suited for priority queue
— but is bad when deleting an arbitrary element is
needed = O(n)
* Binary Search Tree

— has a better performance when the functions to be
performed are search, insert, and delete

— operations can be done by key or by rank
— Examples:

* find an element with key x

e delete an 5-th element of the tree
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Recursive Search Of a BST

template <class Type> // Driver

BstNode<Type>* BST<Type>::Search(const Element<Type>& x)

/I Search the binary search tree (*this) for an element with key x

/I If such an element is found, return a pointer to the node that contains it

{
}

return Search(root, x);

template <class Type>// Workhorse
BstNode<Type>* BST<Type>::Search(BstNode<Type>*b, Element<Type>& x) {
if (! b) return 0;
if (x.key == b—>data.key ) return b;
if (x.key < b—>data.key )

return Search(b—>LeftChild, x);
return Search(b—>RightChild, x); @

Each node has tree fields: LeftChild, data, RightChild
data is of class Element<Type> having a field ey @ @ @

}
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Iterative Search Of a BST

template <class Type>
BstNode<Type>* BST<Type>::IterSearch(const Element<Type>& x)
/I Search the binary search tree for an element with key x
{
BstNode<Type> *found, *t = root;
while (1) {
if (t==0) {found =0; break; } // the key being searched is not existent
else {
if (x.key == t>data.key ) {found =t; break; } Findi
else if ( x.key > t>data.key ) t=t->RightChild; Inding
else t = t->LeftChild; Element with tlhe
} } key of 16
return (found);
} | Complexity: O(h), where h is the height | @

iteration 1 2 3 @ @
t->data.key | root (20) 15 16 @ @ @

found - - 16
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Search A BST By Rank

template <class Type>
BstNode<Type>* BST<Type>::Search(int k)
/I Search the binary search tree for the k-th smallest element
{
BstNode<Type> *t = root; Each node has an additional field: LeftSize
while( t) - the number of elements in its left subtree + 1
{
if (k==t>LeftSize ) return t;
if (k < t>LeftSize ) t=t>LeftChild;
else {
k = k — t-> LeftSize;
t = t DRightChild; Finding
: 3rd element:
}
return 0; | Complexity: O(h), where h is the height @
3
iteration 1 2 3 @ @
t> LeftSize (20) 4 as)2 1e)1 @ @ @
k 3 3 1

ch5.2-7

Example: Insertion to a BST

@ To insert a node

with key 35

A search is first ful !
@ @ - el |||- unsuccessfu

last node
examined

The new node

||~ is inserted as a child
of the last node examined “‘ e @

If a node has a LeftSize field, then it has to be updated |
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Insertion to A BST

template <class Type>
BstNode<Type>* BST<Type>::Insert(const Element<Type>& x)
/[ Inserting x into the binary search tree

{

/I Search for x.key, q is parent of p
BstNode<Type> *p =root; BstNode<Type> *q =0;
while(p) {
q=p;
if (x.key == p>data.key ) return FALSE; // x.key is already in tree
if ( x.key < p>data.key ) p = p > LeftChild;
else p = p>RightChild;
}
// Perform insertion
p = new BstNode<Type>;
p~>LeftChild = p>RightChild = 0; p>data = x;
if (! root) root = p;
else if (x.key < q—>data.key) q—=>LeftChild = p;
else q>RightChild = p;
return TRUE; Complexity: O(h)
} where h is the height of BST
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Example: Deletion From a BST

@ Delete the @

root either 5 or 40 can

become new root
(s) («0) - (&) (40)

choose 40 @ @
i (5)

(oun)
@ (20) G)
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Joining and Splitting Binary Trees
* C.ThreeWaylJoin(A, x, B)

— Assume that

* each element in A has a smaller key than x
+ each element in B has a larger key than x
— The operation creates a binary search tree C

 consisting of every elements in A and B, and element x
« C.TwoWaylJoin(A, B)
— Assume that all keys of A are smaller than all keys of B
— The operation creates a binary search tree C A A
* consisting of all elements in A and B
*  A.Split(i, B, x, C)

— To split A into B and C
B: all elements with a key smaller than i

C: all elements with a key larger than i

— x: if an element has a key equal to i, then it is copied into x 1

Example: Joining BST’s

* Three-way join operation C.ThreeWayJoin(A, x, B)
— Time is O(1)
— The height of the new is max{ height(A), height(B) } + 1

* Two-way join operation C.TwoWayJoin(A, B)

Step 1: delete from A the record x with the largest key

Let the resulting tree as A’ @
Step 2: perform three-way join operation
: A B ()
C.ThreeWayJoin(A’, x, B)
_ Time is O( height(A)) (83)
G0

The height of the new tree is
max{ height(A’), height(B) } + 1

(80)




Example: Splitting a BST

‘()

original @ @ split the tree over x with key 10
-
/@ m @ o dowgezhaeuzree1eofri)Td?a?a?iei;[/s efichld
oJole
X C
. @ tar%et ngde @
is found !
—) @ @ —-—) B @

Left sub-tree to B

()
o 0 @ @ move target node’s ;2) @ @ @
ight sub-tree to C
OOE L ofe
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Splitting A BST

template <class Type>

Element<Type>* BST<Type>::Split(Type i, BST<Type>& B,
Element<Type>& x, BST<Type>& C)

// Split the binary search tree with respect to key i

{

if (! root) { B.root = C.root = 0; return 0; } / empty tree
/I ereate head nodes for B and C
BstNode<Type> *Y = new BstNode<Type>; BstNode<Type> *L=Y;
BstNode<Type> *Z = new BstNode<Type>; BstNode<Type> *R =Z;
BstNode<Type> *t =root;
while (t) {
if (i==t>data.key) { //splitat t
L - RightChild = t->LeftChild;
R > LeftChild = t->RightChild;
x = t>data;
B.root = Y->RightChild; delete Y;
C.root = Z> LeftChild; delete Z;
return &x;

}
TO BE CONTINUED ...

| L and R are the frontiers of B and C
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Splitting A BST

else if (i < t>data.key) {
R~> LeftChild = t;
R =t; t=t>LeftChild;
}
else { // i>t>data.key
L->RightChild = t;
L=t; t=t>RightChild;
}

}
// Set 0 pointers and delete head nodes

L->RightChild = R-> LeftChild = 0;
B.root = Y->RightChild; delete Y;
C.root = Z> LeftChild; delete Z;
return 0;
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Outline

Binary Search Trees

Selection Trees

i

Forests

Set Representation

Counting Binary Tree
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Problem of Multi-Way Merging

* Problem
— Merge k ordered sequences, called runs, into a single ordered
sequence
* Example
— R1={15, 16}, R2 = {20, 38}, and R3 = {1, 17}
— The merged output = {1, 15, 16, 17, 20, 38}
* A naive algorithm

— Find the smallest element by examining the first element of
each run

— Complexity is O(n - k), where n is the total number of
elements in the k runs

— But we can actually accomplish this in O(n - log k)
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Winner Tree

e Definition

— A winner tree is a complete binary tree in which
each node represents the smallest of its two children

* The construction of a winner tree

— Is like the playing of a tournament in which the
winner is the record with the smaller key

(&
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Winner Tree for k = 8

(&

15 20 20 15 15 1l 95 18
16 38 30 25 50 16 99 20
28
run 1 run2 run3 run 4 run 5 run6 run7 run 8
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Winner Tree After One Record Is
Output

After deleting the smallest:
The tournament is replayed only along the path from node 11 to the root

15 20 20 25 15 1 95 18
16 38 30 28 50 16 99 20

run 1 run2 run3 run 4 run 5 run6 run?7 run 8
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Loser Tree

A loser is recorded in the non-leaf node
Restructure of the tree is even faster
(No need to compare with siblings)

2
(winner,loser) pair @ 5
(10) (629
8 9 10
1O

overall winner

15 20 20 15 15 1 95 18
16 38 30 25 50 16 99 20
28
run 1 run2 run3 run 4 run 5 run6 run7 run 8
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Binary Search Trees

Selection Trees

Forests

i

Set Representation

Counting Binary Tree
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Forrest

e Definition

— A Forest is a set of n =0 disjoint trees

* Operations
— Transforming a forest into a binary tree

— Forest traversal

* Examples

5o b So
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Transforming A Forest Into a BT

e Definition

- IfT,, T,, ..., T, is a forest of trees, then the binary
tree corresponding to this forest, denoted by
B(T,,...,T,)

(1) is empty if n = 0;
(2) has root equal to root (T,);

* Left-subtree: B(T;ys...,T;,,), where Ty,,...,T;,, are the
sub-trees of root(T,)

* Right-subtree: B(T),,...,T,).

ch5.2-24




Binary Tree Representation

HETF-fEF Concept

5o & &b

1 forest to a binary tree

e @\\
Binary tree G E(i)nrzra;)e/érg)e/
Tiggﬁrggs Forest of
of root node A e TreesE, G
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Forest Traversal

¢ Forest Preorder Traversal
— If F is empty then return
— Visit the root of the first tree of F

— Traverse the sub-trees of the first tree in forest
preorder

— Traverse the remaining trees of F in forest preorder
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Outline

Binary Search Trees

Selection Trees

Forests

i

Set Representation

Counting Binary Tree
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Set Representation

RERTHI 5 ORI ol T ORERTT o S ORERTT C SRETI l T
« Use of trees to represent sets
* Elements: {0, 1, 2, 3, ..., n-1}

— indices into a symbol table where actual names are
stored

« Assume that the sets being represented are
mutually disjoint

— For example o e

. S1=10,6,7, 8}

s OOE O ©

. $3={2,3,5)
S1 S2 S3
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Set Operations

* Disjoint set union
— If S; and §; are two disjoint sets, then
S;US,; = {all elements x such that x is in S; or S;}
— For example S1US2=1{0,6,7,8, 1,4, 9}
* Find(i)
— Find the set containing i.

— For examples

* 3isinsetS;

* 8isinsetS; O e G&
OOG® O @

S1 S2 S3
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Union Operation

B dh ot

s @

S1US2 S1uS2
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Data Structure

* Symbol Table and Sets

— A table entry is (set name, pointer)

set
pointer

ST @

S2

53 O@OE O @

S1 S2 S3

* Array indicating a node’s parent

i [OF | [ | 121 | B3] | 41 | [S] | [6] | [7] | 8] | [9]

parent -1 4 -1 2 -1 22 0 0 0 4
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Class and Operations for Sets

class Sets {
public:
// Set operations follow
private:
int *parent;
int n; // number of set elements

35
Sets:Sets(int sz = HeapSize)
{
n = sz; parent = new int[sz];
for (int i=0; i<n; i++) parent[i] =-1;
}

void Sets::SimpleUnion(int i, int j)
/I replace the disjoint sets with roots i and j, i != j with their union

{

parentl[i] = j;

}
int Sets::SimpleFind(int i)
{
while( parent[i] >=0) i = parent][i]; return i;
}

ch5.
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Worst-Case Scenario

* Consider the following union-find operations

union(0, 1), union(1, 2), union(2, 3), union(3, 4), ..., union(n-2, n-1),

find(0), find(1), ..., find(n-1)
; find(0) = O(n)

find(1) = O(n-1)
find(2) = O(n-2)

2 find(n-1) = 1
o e o
[ -, otal = O(n
© O ©

* The results
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Weighted Rule for Union(i, j)

e Definition

— If the number of nodes in the tree with root i is less
than the number in the tree with root j, then make j
the parent of i; otherwise make i the parent of j.

* Data Structure

— A count field in the root node is used to indicate the
total number of elements in the tree
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Trees Obtained Using The
Weighted Rule

@ @) - © @...@ oJorye
() O @

initial union(0, 1) union(l, 2)

ojoRdc

¢60 - @62\@

union(2, 3) union(n-2, n-1)
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Union Algorithm With Weighting Rule

void Sets::WeightedUnion(int i, int j)
// Union sets with roots i and j, i #Zj, using the weighted rule
// parent[i] = - count[i] and parent[j] = -count[j]

{

int temp = parent[i] + parent[j];
if (parent[i] > parent|j]) { // i has fewer nodes
parent[i] = j;
parent[j] = temp;
3
else{ /' has fewer nodes or i and j have the same number
of nodes
parent[j] = i;
parent[i] = temp;

It is provable that:
The height of the tree created by a sequence of unions
over one-node trees is no greater than floor(log, n) + 1
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Trees Achieving Worst-Case Bound

2] 21 [[2] [

=10 019 =90 (=70 [=79 =70 (=19 1]

(0) (1) ()
00000600 :

(D G @

initial height-1 trees ) )
Height-2 trees after unions

0,1, 3),4)5), (6,7

[-4] [-4] (0)
(0) (4)
® v =
©)
& ©
@
Height-3 trees after unions . .
©, 2), (4, 6) Height-4 trees after unions (0, 4)
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Collapsing Rule for Union(i, j)

e Definition

— If j is a node on the path from i to its root and
parent|i] #root(i), then set parent[j] to root(i)

« Example

— processing eight find operations: @
find(7), find(7), ..., find(7)

— SimpleFind c e
= 3*8 = 24 moves

— CollapsingFind @{ @
-)ar_:;‘+1+1+1+1+1+1+1=13moves e
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15t find(7): including traversal & collapsing




Find Algorithm With Collapsing Rule

int Sets::CollapsingFind(int i)
// Find the root of the tree containing element i
// Use the collapsing rule to collapse all nodes from i to the root
{
for (int r =i; parent[r] >= 0; r = parent|r]); // find root
while (r!=i) {
int s = parent[i];
parent[i] =r;
i=s;
}
return r;
}
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Application To Equivalence Classes

N0 =000 =0-10-100-11 A A
"""""" /010161010
0006006000000 :%:

initial height-1 trees

Height-2 trees after processing
0=4, 3=1, 8=9, 6=10

@%E E&

Trees after processing Trees after processing
7=4, 6=8, 3=5, 2=11 11=0
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Inheritance Graph Among Trees

| Search Structure |

/

| MaxPQ | | Complete Binary Tree I BST

N
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Outline

Binary Search Trees

Selection Trees
* Forests
* Set Representation

II‘ * Counting Binary Tree
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Counting Binary Trees

* Problem 1

— What is the total possible number of distinct binary
trees having n nodes?

* Problem 2

— What is the number of permutations of the numbers
from 1 through n obtainable by a stack ?

* Problem 3

— What is the number of distinct ways of multiplying
n+1 matrices ?

= All the three problems have the same answer !

ch5.2-43

Example: Distinct Binary Trees

I

LN
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Distinct Binary Trees According To
A PreOrder / InOrder Sequence Pair

* Given
— the pre-order sequencec ABCDEFGHI
— the in-order sequence BCAEDGHFI

* Question

— Does the given information defines a unique tree ?

* Construction Process
O, O,
GO ; — -
(O
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Tree Construction Using Pre-order
and In-order Information

Pre-order ABCDEFGHI
In-order: BCAEDGHFI

() (A)
-y @) CoeronD> mmp @ (D
© © ©®© Cshid
(A)
S %
- Ndo -

@ G A unique tree exists !

Given information is valid !
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What Orders Are Valid ?

* Given
— the pre-order sequence A B C
— the in-order sequence C A B
* Question
— Is the given order corresponds to any tree ?

e Answer

— No, there is no binary tree according to this order pair

after processing the node A
using the construction rules

» (O (B) =—>

violate the preorder
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Example of Invalid Order Pair

* The following is not valid

— the pre-order sequence: 12345678910
— the in-order sequence: 18..2. .4 ..

When partitioning the tree based on node 2
- node 8 is in the left sub-tree,

- while node 4 in the right sub-tree

- will violate the preorder 8 < 4
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Stack Permutations

C?? ‘\K ABC

CAB

is not possible ! Possible ways of bi-partitioning:

Ais the Tt output > ABC) = T(0) - T(2)

(pass A + permutations of (BC))
A is the 2nd output &> (B)A(C) = T(1) - T(1)
(push A, pass B, pop A, pass C)
A is the 3rd output > (BC) A = T(2) - T(0)
B (push A + permutations of (BC))
A

stack

(ABC),(ACB),BAC),(BCA),(CBA)
= all valid permutations and valid in-order sequence

Total # of distinct trees = Total # of permutations through a stack

ch5.2-49

Possible Bi-Partitioning’s For n=4

* Preorder: ABCD ’, ()

* Possible bi-partitioning’s: 8D
— A(BCD) > b(0)b(3) =5
— (B)A(CD) > b(1)b(2) =2 (A) (A)
— (BC)A(D) > b(2)b(1) =2
— (BCD)A > b(3)b(0) =5
b(4) = b(0)b(3) + b(1)b(2) + b(2)b(1) + b(3)b(0) = 14

n-1
bn = Z bi
i=0

b,;; n=1, and b,=1
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Problem

— compute n matrices M;* M,* M;* - - - * M

Matrix multiplication is associative

Matrix Multiplication

For n=3, there are two ways

M;* (M,* My) and (M;* My)* M; b, = ):(.) b
i=

For n=4, there are five ways

Ml* ((MZ* MS)*M4)

(Ml* Mz)* (MS*M4)

((M;* Mp)* M3)*M,

n

Bi-partitioning:

n-1
- b

i Vn-i-1

n=1, and by=1

M;* (M,* (M3*M,))

(M *(My* My)*M,

Let B, represents ways of multiplying n+1 matrices
— Then, B=1,B,=1,

B, B,,, n=2| Matrix multiplication
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Distinct BT v.s. Matrix Multiplication

* The no. of ways of doing matrix multiplication

— can be characterized by recursive bi-partitioning

as seen earlier

 Similarly, the number of distinct binary trees

— can be characterized by recursive bi-partitioning, too

-1

! b;b,;; n=1, and by=1

Il
>

b, R (i+1) [EAEREATSEILEOA
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Solving Bi-Partitioning

* To obtain the number of distinct binary trees

— We have to solve the following recurrence relation
n-1
b, = ):(') b;b,;; n=1,and b,=1
1=

« Let B(x) =bytb,x!+b,x*+b,x3+ ...
« Then xB%*(x) = x [bytbx'+tb,x*+...][byth,x+b,x?*+...]
= B(x)-1 using the recurrence relation

* Solve the quadratic equation b, = O(4"/n!)
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The End of Trees Part Il

Next Topic:
Graph




