
國立清華大學 電機工程學系
EE2410 Data Structure

Chapter 5p
Trees (Part II)

Outline

• Binary Search Trees

• Selection Trees

• Forests

• Set Representation

• Counting Binary Tree

ch5.2-2

Binary Search Tree (BST)
• Definition

– A binary search tree is a binary tree

– The left & right sub-tress are also binary search treeg y

– If it is not empty, then it satisfies the following

• Every element has a unique key

• For every node N, Key(N) > Key(Left Subtree(N))

• For every node N, Key(N) < Key(Right Subtree(N))

ch5.2-3

20

12 10

15 25

22

30

2

405

60

65

70

80

NOT BST !

A BST !

A BST !

Why Binary Search Tree ?

• Heap

– is well suited for priority queue

– but is bad when deleting an arbitrary element is

needed O(n)

• Binary Search Tree

– has a better performance when the functions to be

performed are search, insert, and delete

ch5.2-4

performed are search, insert, and delete

– operations can be done by key or by rank

– Examples:

• find an element with key x

• delete an 5-th element of the tree

Recursive Search Of a BST
template <class Type> // Driver
BstNode<Type>* BST<Type>::Search(const Element<Type>& x)
// Search the binary search tree (*this) for an element with key x
// If such an element is found, return a pointer to the node that contains it
{{

return Search(root, x);
}

template <class Type> // Workhorse
BstNode<Type>* BST<Type>::Search(BstNode<Type>*b, Element<Type>& x) {

if (! b) return 0;
if (x.key == bdata.key) return b;
if (x.key < bdata.key)

t S h(bL ftChild)

ch5.2-5

return Search(bLeftChild, x);
return Search(bRightChild, x);

} 20

12 16

15 22

25
Each node has tree fields: LeftChild, data, RightChild

data is of class Element<Type> having a field key

Iterative Search Of a BST
template <class Type>
BstNode<Type>* BST<Type>::IterSearch(const Element<Type>& x)
// Search the binary search tree for an element with key x
{
BstNode<Type> *found, *t = root;

hil (1) {while (1) {
if (t == 0) { found = 0; break; } // the key being searched is not existent
else {

if (x.key == tdata.key) { found = t; break; }
else if (x.key > tdata.key) t = tRightChild;
else t = tLeftChild;

}
}
return (found);

Finding
Element with the

key of 16

ch5.2-6

return (found);
} 20

12 16

15 22

25

iteration 1 2 3

tdata.key root (20) 15 16

found - - 16

Complexity: O(h), where h is the height

Search A BST By Rank
template <class Type>
BstNode<Type>* BST<Type>::Search(int k)
// Search the binary search tree for the k-th smallest element
{

BstNode<Type> *t = root;
hil (t)

Each node has an additional field: LeftSize
 th b f l t i it l ft bt 1while(t)

{
if (k==tLeftSize) return t;
if (k < tLeftSize) t = tLeftChild;
else {

k = k – tLeftSize;
t = t RightChild;

}

Finding
3rd element:

 the number of elements in its left subtree + 1

ch5.2-7

}
}
return 0;

}
20

12 16

15 22

25

iteration 1 2 3

tLeftSize (20) 4 (15) 2 (16) 1

k 3 3 1

Complexity: O(h), where h is the height

Example: Insertion to a BST

30 To insert a node
with key 35

2

5 40

80

30

A search is first
carried out

unsuccessful !

The new node

last node
examined

ch5.2-8

2

5 40

8035

The new node
is inserted as a child

of the last node examined

If a node has a LeftSize field, then it has to be updated

Insertion to A BST
template <class Type>
BstNode<Type>* BST<Type>::Insert(const Element<Type>& x)
// Inserting x into the binary search tree
{

// Search for x.key, q is parent of py, q p p
BstNode<Type> *p = root; BstNode<Type> *q = 0;
while(p) {

q = p;
if (x.key == pdata.key) return FALSE; // x.key is already in tree
if (x.key < pdata.key) p = p LeftChild;
else p = pRightChild;

}
// Perform insertion

ch5.2-9

p = new BstNode<Type>;
pLeftChild = pRightChild = 0; pdata = x;
if (! root) root = p;
else if (x.key < qdata.key) qLeftChild = p;
else qRightChild = p;
return TRUE;

}

Complexity: O(h)
where h is the height of BST

Example: Deletion From a BST

30 Delete the
root either 5 or 40 can

null

2

5 40

80

40

become new root

2

5 40

80

40

ch5.2-10

40

2

5 80

2

5 null

80

choose 40

Joining and Splitting Binary Trees
• C.ThreeWayJoin(A, x, B)

– Assume that

• each element in A has a smaller key than x

• each element in B has a larger key than x

x

A Bg y

– The operation creates a binary search tree C

• consisting of every elements in A and B, and element x

• C.TwoWayJoin(A, B)
– Assume that all keys of A are smaller than all keys of B

– The operation creates a binary search tree C

• consisting of all elements in A and B

?

A B

ch5.2-11

• consisting of all elements in A and B

• A.Split(i, B, x, C)
– To split A into B and C

– B: all elements with a key smaller than i

– C: all elements with a key larger than i

– x: if an element has a key equal to i, then it is copied into x

Example: Joining BST’s

• Three-way join operation C.ThreeWayJoin(A, x, B)

– Time is O(1)

– The height of the new is max{ height(A), height(B) } + 1The height of the new is max{ height(A), height(B) } + 1

• Two-way join operation C.TwoWayJoin(A, B)

– Step 1: delete from A the record x with the largest key

Let the resulting tree as A’

– Step 2: perform three-way join operation

C.ThreeWayJoin(A’, x, B)

30

2

5

80A B

ch5.2-12

y (, ,)

– Time is O(height(A))

– The height of the new tree is

max{ height(A’), height(B) } + 1

83

302

5

80

83

C

Example: Splitting a BST

30

10 40 split the tree over x with key 10original

t

2 8035

30
t

11 move down the tree from 30 to its LeftChild
because 10 < t.data.key

target node

30

C

10

x

1531

ch5.2-13

2

10 40

8035

t

11

g
is found !

2

40

8035

11
B

15

15

31 31

move target node’s
Left sub-tree to B

Right sub-tree to C

Splitting A BST
template <class Type>
Element<Type>* BST<Type>::Split(Type i, BST<Type>& B,

Element<Type>& x, BST<Type>& C)
// Split the binary search tree with respect to key i
{

if (! root) { B root = C root = 0; return 0; } // empty treeif (! root) { B.root = C.root = 0; return 0; } // empty tree
// create head nodes for B and C
BstNode<Type> *Y = new BstNode<Type>; BstNode<Type> *L = Y;
BstNode<Type> *Z = new BstNode<Type>; BstNode<Type> *R = Z;
BstNode<Type> *t = root;
while (t) {

if (i == tdata.key) { // split at t
L RightChild = tLeftChild;
RLeftChild = tRightChild;

30

10 40
t

R

L=Y

i = 10 Z

ch5.2-14

R LeftChild tRightChild;
x = tdata;
B.root = YRightChild; delete Y;
C.root = ZLeftChild; delete Z;
return &x;

}
TO BE CONTINUED ...

L and R are the frontiers of B and C

2

10 40

803511

1531

Splitting A BST

else if (i < tdata.key) {
RLeftChild = t;
R = t; t = tLeftChild;

30

10 40

ti = 12
R=Z

}
else { // i > tdata.key

LRightChild = t;
L = t; t = tRightChild;

}
}
// Set 0 pointers and delete head nodes
LRightChild = RLeftChild = 0;
B t YRi htChild d l t Y

2 803511

1531

30

10 40
t

i = 12

L

ch5.2-15

B.root = YRightChild; delete Y;
C.root = ZLeftChild; delete Z;
return 0;

}
2

10 40

803511

1531

Outline

• Binary Search Trees

• Selection Trees

• Forests

• Set Representation

• Counting Binary Tree

ch5.2-16

Problem of Multi-Way Merging

• Problem
– Merge k ordered sequences, called runs, into a single ordered

sequence

• Example
– R1 = {15, 16}, R2 = {20, 38}, and R3 = {1, 17}

– The merged output = {1, 15, 16, 17, 20, 38}

• A naïve algorithm
– Find the smallest element by examining the first element of

ch5.2-17

y g
each run

– Complexity is O(n．k), where n is the total number of
elements in the k runs

– But we can actually accomplish this in O(n．log k)

Winner Tree

• Definition

– A winner tree is a complete binary tree in which
each node represents the smallest of its two childreneach node represents the smallest of its two children

• The construction of a winner tree

– Is like the playing of a tournament in which the
winner is the record with the smaller key

6
1

2 3

ch5.2-18

6

9

910

6

620

8

8

98

17

1790

2 3

4

8 9 10 11 12 13 14 15

5 6 7

Winner Tree for k = 8

6 8

6
1

2 3

1115 1120 1120 1115 1115 1111 1195 1118

9

910

6

620

8

98

17

1790

4

8 9 10 11 12 13 14 15

5 6 7

ch5.2-19

16

run 1

38

run 2

30

run 3

25

28

run 4

50

run 5

16

run 6

99

run 7

20

run 8

Winner Tree After One Record Is
Output

81

After deleting the smallest:
The tournament is replayed only along the path from node 11 to the root

910

9

1520 98

8

1790

17

8
2 3

4

8 9 10 11 12 13 14 15

5 6 7
15

9

ch5.2-20

1115

16

run 1

1120

38

run 2

1120

30

run 3

1125

28

run 4

1115

50

run 5

1111

16

run 6

1195

99

run 7

1118

20

run 8

Loser Tree

A loser is recorded in the non-leaf node
Restructure of the tree is even faster
(No need to compare with siblings)

6 81

60 overall winner

910

8,17

8,9

98

17,90

1790

6, 8
2 3

12 13 14 15

6, 9

9,10 6,20

620
8 9 10 11

5 6 7(winner,loser) pair

ch5.2-21

1115

16

run 1

1120

38

run 2

1120

30

run 3

1115

25

28

run 4

1115

50

run 5

1111

16

run 6

1195

99

run 7

1118

20

run 8

Outline

• Binary Search Trees

• Selection Trees

• Forests

• Set Representation

• Counting Binary Tree

ch5.2-22

Forrest

• Definition

– A Forest is a set of n ≧0 disjoint trees

• Operations

– Transforming a forest into a binary tree

– Forest traversal

• Examples

ch5.2-23

A

DB C

E

F

G

IH

Transforming A Forest Into a BT

• Definition

– If T T T is a forest of trees then the binary– If T1, T2, ... , Tn is a forest of trees, then the binary

tree corresponding to this forest, denoted by

B(T1,...,Tn)

(1) is empty if n = 0;

(2) has root equal to root (T1);

• Left-subtree: B(T11,...,T1m), where T11,...,T1m are the

ch5.2-24

11 1m 11 1m

sub-trees of root(T1)

• Right-subtree: B(T2,...,Tn).

Binary Tree Representation
嫡長子-庶子 Concept

E GA

B E

DB C

forest to a binary tree

A

F IH

ch5.2-25

B E

F G

D H

I

C
Binary tree
Formed by

The subtrees
of root node A

Binary tree
Formed by
Forest of
Trees E, G

Forest Traversal

• Forest Preorder Traversal

– If F is empty then return

– Visit the root of the first tree of F

– Traverse the sub-trees of the first tree in forest

preorder

– Traverse the remaining trees of F in forest preorder

ch5.2-26

Outline

• Binary Search Trees

• Selection Trees

• Forests

• Set Representation

• Counting Binary Tree

ch5.2-27

Set Representation

• Use of trees to represent sets

• Elements: {0, 1, 2, 3, ..., n-1}{ , , , , , }

– indices into a symbol table where actual names are

stored

• Assume that the sets being represented are

mutually disjoint

ch5.2-28

– For example

• S1 = {0, 6, 7, 8}

• S2 = {1, 4, 9}

• S3 = {2, 3, 5}

0

6 7 8

4

1 9

2

5

S1 S2 S3

3

Set Operations

• Disjoint set union

– If Si and Sj are two disjoint sets, then

Si∪Sj = {all elements x such that x is in Si or Sj}

– For example S1∪S2 = {0, 6, 7, 8, 1, 4, 9}

• Find(i)

– Find the set containing i.

– For examples

ch5.2-29

• 3 is in set S3

• 8 is in set S1 0

6 7 8

4

1 9

2

3 5

S1 S2 S3

Union Operation

0 24

6 7 8 3 5

S1

1 9

S2 S3

0 4

ch5.2-30

6 7 8 4

1 9

S1∪S2 S1∪S2

0

6 7 8

1 9

Data Structure

• Symbol Table and Sets

– A table entry is (set name, pointer)

0

6 7 8

2

3 5

S1

4

1 9

S2 S3

S1

S2

S3

set
name pointer

ch5.2-31

• Array indicating a node’s parent

i [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

parent -1 4 -1 2 -1 2 0 0 0 4

Class and Operations for Sets
class Sets {
public:

// Set operations follow
private:

int *parent;
i t // b f t l tint n; // number of set elements

};
Sets:Sets(int sz = HeapSize)
{

n = sz; parent = new int[sz];
for (int i=0; i<n; i++) parent[i] = -1;

}
void Sets::SimpleUnion(int i, int j)
// replace the disjoint sets with roots i and j, i != j with their union

ch5.2-32

// replace the disjoint sets with roots i and j, i ! j with their union
{

parent[i] = j;
}
int Sets::SimpleFind(int i)
{

while(parent[i] >=0) i = parent[i]; return i;
}

Worst-Case Scenario

• Consider the following union-find operations
union(0, 1), union(1, 2), union(2, 3), union(3, 4), ..., union(n-2, n-1),

fi d(0) fi d(1) fi d(1)find(0), find(1), ..., find(n-1)

• The results
n-1

find(0) = O(n)
find(1) = O(n-1)
find(2) = O(n-2)

ch5.2-33

0

1

0

1

2

0

1

2

...
find(n-1) = 1

total = O(n2)

Weighted Rule for Union(i, j)

• Definition

– If the number of nodes in the tree with root i is less

than the number in the tree with root j, then make j

the parent of i; otherwise make i the parent of j.

• Data Structure

– A count field in the root node is used to indicate the

total number of elements in the tree

ch5.2-34

total number of elements in the tree

Trees Obtained Using The
Weighted Rule

0 1 n-1 0 2 n-1 0 3 n-1

initial

1

union(0, 1)

1

union(1, 2)

2

ch5.2-35

0 4 n-1

1

union(2, 3)

2 3

0

1

union(n-2, n-1)

2 3 n-1

Union Algorithm With Weighting Rule
void Sets::WeightedUnion(int i, int j)
// Union sets with roots i and j, i ≠j, using the weighted rule
// parent[i] = - count[i] and parent[j] = -count[j]
{

int temp = parent[i] + parent[j];int temp = parent[i] + parent[j];
if (parent[i] > parent[j]) { // i has fewer nodes

parent[i] = j;
parent[j] = temp;

}
else{ // j has fewer nodes or i and j have the same number
of nodes

parent[j] = i;

ch5.2-36

parent[i] = temp;
}

}

It is provable that:
The height of the tree created by a sequence of unions
over one-node trees is no greater than floor(log2 n) + 1

Trees Achieving Worst-Case Bound

0 1 2 3 54 6 7

[-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1]
0

[-2]

2

[-2]

4

[-2]

6

[-2]

initial height-1 trees
1 3 5 7

Height-2 trees after unions
(0, 1), (2, 3), (4, 5), (6, 7)

0

[-4] [-4]

4

0

ch5.2-37

1 2

3

5 6

7

Height-3 trees after unions
(0, 2), (4, 6)

1 2

3

4

5 6

7
Height-4 trees after unions (0, 4)

Collapsing Rule for Union(i, j)

• Definition

– If j is a node on the path from i to its root and

parent[i] ≠root(i), then set parent[j] to root(i)

• Example

– processing eight find operations:

find(7), find(7), ..., find(7)

SimpleFind

0

1 42

ch5.2-38

– SimpleFind

 3*8 = 24 moves

– CollapsingFind

 3 + 3 + 1 + 1+ 1+ 1+ 1+ 1+ 1 = 13 moves

1

3

4

5

7

2

6

{

1st find(7): including traversal & collapsing

Find Algorithm With Collapsing Rule

int Sets::CollapsingFind(int i)
// Find the root of the tree containing element i
// Use the collapsing rule to collapse all nodes from i to the root
{{

for (int r = i; parent[r] >= 0; r = parent[r]); // find root
while (r != i) {

int s = parent[i];
parent[i] = r;
i = s;

}
return r;

r
0

1 2 4

ch5.2-39

;
}

i

3 5 6

7

s

Application To Equivalence Classes

[-1][-1][-1][-1][-1][-1][-1][-1][-1][-1][-1][-1]
0 3 68

0 1 2 3 54 6 7 98 10 11
52 7 11

[-2] [-2] [-2] [-2] [-1] [-1] [-1] [-1]

initial height-1 trees
4 1 109

Height-2 trees after processing
0≡4, 3≡1, 8≡9, 6≡10

6

[-4] [-3]

3

[-3]

0 2

[-2]

6

[-4] [-3]

3

[-5]

0

ch5.2-40

10 8

9

1 5

Trees after processing
7≡4, 6≡8, 3≡5, 2≡11

4 7 11 10 8

9

1 54 2

11

Trees after processing
11≡0

7

Inheritance Graph Among Trees

S h S
Binary Tree

Complete Binary Tree BST

Search Structure

MaxPQ

ch5.2-41

MaxHeap Winner Tree

Outline

• Binary Search Trees

• Selection Trees

• Forests

• Set Representation

• Counting Binary Tree

ch5.2-42

Counting Binary Trees

• Problem 1

– What is the total possible number of distinct binary

trees having n nodes?

• Problem 2

– What is the number of permutations of the numbers

from 1 through n obtainable by a stack ?

• Problem 3

ch5.2-43

• Problem 3

– What is the number of distinct ways of multiplying

n+1 matrices ?

 All the three problems have the same answer !

Example: Distinct Binary Trees

n = 2n = 1

ch5.2-44

n = 3

Distinct Binary Trees According To
A PreOrder / InOrder Sequence Pair

• Given

– the pre-order sequence A B C D E F G H I

– the in-order sequence B C A E D G H F I

• Question

– Does the given information defines a unique tree ?

• Construction Process

ch5.2-45

A

B,C D,E,F,G,H,I

A

B D,E,F,G,H,I

C

Tree Construction Using Pre-order
and In-order Information

A

Pre-order: A B C D E F G H I
In-order: B C A E D G H F I

AA

B D,E,F,G,H,I

C

A

A

B

F,G,H,IC

D

E

A

ch5.2-46

B D

EC F

G I

H

B

G,H

C

D

E F

E A unique tree exists !
Given information is valid !

What Orders Are Valid ?

• Given

– the pre-order sequence A B C

h i d C A B– the in-order sequence C A B

• Question

– Is the given order corresponds to any tree ?

• Answer

– No, there is no binary tree according to this order pair

ch5.2-47

, y g p

A

C B

after processing the node A
using the construction rules

violate the preorder

Example of Invalid Order Pair

• The following is not valid

– the pre-order sequence: 1 2 3 4 5 6 7 8 9 10

– the in-order sequence: 1 8 . . 2 . . 4 . .

2

1
When partitioning the tree based on node 2
 node 8 is in the left sub-tree,
 while node 4 in the right sub-tree
 will violate the preorder 8 < 4

ch5.2-48

2

8 4

 will violate the preorder 8 < 4

Stack Permutations

A B CC ? ?

C A B

B
A

C A B
is not possible ! Possible ways of bi-partitioning:

A is the 1st output A(BC) = T(0) · T(2)
(pass A + permutations of (BC))

A is the 2nd output (B)A(C) = T(1) · T(1)
(push A, pass B, pop A, pass C)

A is the 3rd output (BC) A = T(2) · T(0)
(push A + permutations of (BC))

ch5.2-49

stack

Total # of distinct trees = Total # of permutations through a stack

(A B C), (A C B), (B A C), (B C A), (C B A)
 all valid permutations and valid in-order sequence

Possible Bi-Partitioning’s For n=4

• Preorder: A B C D

• Possible bi partitioning’s:

A

BCD

A

BCD• Possible bi-partitioning’s:

– A(BCD) b(0)b(3) = 5

– (B)A(CD) b(1)b(2) = 2

– (BC)A(D) b(2)b(1) = 2

– (BCD)A b(3)b(0) = 5

BCD BCD

A

CDB

A

DBC

ch5.2-50

b(4) = b(0)b(3) + b(1)b(2) + b(2)b(1) + b(3)b(0) = 14

bn = Σ bi bn-i-1 n≧1, and b0=1
i=0

n-1

Matrix Multiplication

• Problem

– compute n matrices M1* M2* M3* · · · * Mn

• Matrix multiplication is associative
Bi-partitioning:

• For n=3, there are two ways

M1* (M2* M3) and (M1* M2)* M3

• For n=4, there are five ways

M1* ((M2* M3)*M4) M1* (M2* (M3*M4))

(M1* M2)* (M3*M4)

((M1* M2)* M3)*M4 (M1*(M2* M3))*M4

bn = Σ bi bn-i-1 n≧1, and b0=1
i=0

n-1

Bi partitioning:

ch5.2-51

((1 2) 3) 4 (1 (2 3)) 4

• Let Bn represents ways of multiplying n+1 matrices

– Then, B0=1, B1=1,

Bn = Σ Bi Bn-i-1 n≧2
i=0

n-1
Matrix multiplication

Distinct BT v.s. Matrix Multiplication

• The no. of ways of doing matrix multiplication

– can be characterized by recursive bi-partitioning

as seen earlier

• Similarly, the number of distinct binary trees

– can be characterized by recursive bi-partitioning, too

bn

ch5.2-52

bn

bi bn-1-i

bn = Σ bi bn-i-1 n≧1, and b0=1
i=0

n-1

bi 代表連乘 (i+1) 個矩陣的總共做法

Solving Bi-Partitioning

• To obtain the number of distinct binary trees

– We have to solve the following recurrence relationg

bn = Σ bi bn-i-1 n≧1, and b0=1
i=0

n-1

• Let B(x) = b0+b1x1+b2x2+b3x3 + ...

• Then xB2(x) = x [b0+b1x1+b2x2+...][b0+b1x1+b2x2+...]

() 1 i i

ch5.2-53

= B(x)–1 using the recurrence relation

• Solve the quadratic equation bn = O(4n/n1.5)

Th E d f T P t IIThe End of Trees Part II

Next Topic:
GraphGraph

