
國立清華大學 電機工程學系
EE2410 Data Structure

Chapter 1Chapter 1
Basic Concepts

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-2

• Algorithm Specification

• Performance Analysis and Measurement

Why We Need Data Structure?

• Elementary programming course
– Emphasizes syntax of a language

– Solves small problems

– Requires simple construct like array or while

• This course
– Provides techniques to solve large-scale problem

– Data abstraction, encapsulation, algorithm specification,

ch1-3

performance analysis, and measurement are important

– We discuss not just “data structure” but also “Algorithm”

– Problem solving techniques are applied to not just software

development, but also hardware or system-level design.

System Life Cycle

• There are five major phases
– Requirements

– Analysis

– Design

– Coding

V ifi i

ch1-4

– Verification

Requirements

• All Large Programming Projects
– Begin with a set of specifications

– Input

– Output

– Frequently the initial specifications are vague, need rigorous

description.

ch1-5

Question: 討論以下程式的可能輸入方式及方法 (e.g.,鍵盤、檔案、或網路 ?)
(1) 最大組合數計算: finding C(n, m)
(2) 子串搜尋 (e.g., 從網頁搜尋某個字串)
(3) 運算式 (e.g., e = 24 + 8 * 5) 之求值可能需要語意解析程式 (Parser)

Analysis

• The problem
I b k d i t bl i– Is broken down into manageable pieces

• Two are two major approaches
– Top-down partitioning

– Bottom-up integration

Divide and conquer (D&C)

ch1-6

Divide and conquer (D&C)
is an important algorithm design paradigm based on multi-branched recursion.
A divide and conquer algorithm works by recursively
breaking down a problem into two or more sub-problems of the same (or related) type,
until these become simple enough to be solved directly.
The solutions to the sub-problems are then combined
to give a solution to the original problem

Design

• The programmer designs
– Abstract data object

– Operations on those objects

• Example
– Problem: scheduling system of a university

– Typical data objects

• Students, courses, professors

T i l ti

ch1-7

– Typical operations

• Inserting, removing, searching

• So far, the programming
– Is language independent

Language Independent

• For example
– The student data object includes

– (1) Name

– (2) Social security number

– (3) permission number

– (4) major

(5) h b

ch1-8

– (5) phone number

– But we haven’t decided what is used to implement the list of

the students yet

Refinement and Coding

• First,
– Choose representations for data objects

– Important, since data object may determine the efficiency of

the program

• Then,
– Write algorithm for each operation

ch1-9

Verification

• This phase is to prove correctness
– (1) Testing the problem with a variety of input data

– (2) Debugging until no error exists

• Good test data example
– A program with a switch statement

– Test data should be chosen so each case branch is checked

• Debugging practices

ch1-10

Debugging practices
– Spaghetti code would be a nightmare when debugging

– Test each unit then whole system

– Documentation is useful

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-11

• Algorithm Specification

• Performance Analysis and Measurement

Object-Oriented Programming
(OOP)

• A fundamental change
– From the structured programming design method

Di id d C i till th i i l– Divide-and-Conquer is still the principle

– But how a project should be decomposed is different

• Traditional Programming
– Views software as process, decomposed into functional modules

• OOP
i f f fi bj

ch1-12

– Views software as a set of well-defined objects

– These objects interacts with each other to form a software system

(1) 程式 = 運算流程 (Control Flow or Subroutines) +資料結構
(2) 早期的結構化程式以運算流程之設計為主 , 資料結構設計不易重覆使用
(3) 物件導向式語言 :
希望寫程式像堆積木一般 , 而一塊塊的積木是一些容易重覆使用的物件 (Object)

物件 (Object) = 資料結構 (Data) + 一些運算副程式 (Operations)

Definitions of an Object

• An object
– Is an entity that performs computations and has a local state, a

combination of

– (1) data

– (2) procedural elements (or called operations)

• Object-oriented programming
– Is a method of implementation in which

– (1) objects are the main building blocks

Data

Operations

ch1-13

(1) objects are the main building blocks

– (2) each object is an instance of some type (or class)

– (3) Classes are related to each other by inheritance
relationships

資料 (Object) 與資料型態 (Class) 的差別
Example: int i, j, k;

OOP – Control Flow vs. Data Structure

Control flow
Data

Traditional

較難重覆使用

Data

Operations

(or subroutine) Data

Main
Control

Programming
(e.g., C)

Object-Oriented
Programming

(C)

較容易重覆使用

ch1-14

Data
flow(e.g., C++)

Ex: A class of “array” on which you can perform “insert”, “retrieve”, “delete”
and “sort”. The elements of the array could be integer, floating point, etc.
 “Sorting” is originally part of the control flow, now it is part of the data structure

Object-Oriented Language

• Three requirements
– (1) It supports objects

– (2) It requires objects to belong to a class

– (3) It supports inheritance

Comment: True OO programs use inheritance

ch1-15

Inheritance 的語法範例: class Stack: public Bag
“Bag” 是一個已經定義好的物件類別 , “Stack” 是一個衍生出來的物件類別 ,
 “Stack” 可以繼承 “Bag” 裡已經有定義的 operations and data

Higher-Level Languages

• First Generation
– FORTRAN noted as its ability to evaluate mathematical– FORTRAN, noted as its ability to evaluate mathematical

expressions

• Second Generation
– Pascal and C, emphasize on effectively expressing algorithms

• Third Generation

ch1-16

– Modula, introduces abstract data types

• Fourth Generation
– Object-Oriented Languages, e.g., Smalltalk, Object C, and

C++, emphasize inheritance

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-17

• Algorithm Specification

• Performance Analysis and Measurement

Data Abstraction & Encapsulation

• Consider a DVD Player
– (1) The manual tells what the player is supposed to do, instead of

how it does it, this is called data abstraction (資料抽象介面介面

運算的輸出入格式應與內部演算法無關 , 方便日後演算法的更新)

– (2) The internal representation is hidden from the users, this is

called encapsulation (資料包裹性存取不能隨意 , 必須透過介面

的 Operations)

ch1-18

Definitions

• Data Abstraction
– Is the separation between the specification of a data object and

its implementation

• Data Encapsulation
– Or information hiding is the concealing of the implementation

details of a data object from the outside world

ch1-19

Fundamental Data Types of C++

• Basic Types
– char, int, float, double

• Modification keywords
– short, long, signed, unsigned

• Grouping of Basic Types
– array, struct, and class

• User-Defined Type
使用者自訂複雜資料結構的兩大關鍵字:

struct , class
但是 所定義的結構不能有資料包裹性

ch1-20

User Defined Type
– typedef struct _int_pair {

int first_num;

int second_num;

} int_pair;

但是 struct 所定義的結構不能有資料包裹性
i.e., class 才能定義真正的 OOP資料結構

Example Data Type int

• Objects
– {0 +1 -1 +2 -2 MAXINT MININT}{0, +1, -1, +2, -2, …, MAXINT, MININT}

• Operations

– + - * /

• Abstract Data Type (ADT)
– A data type organized in a way that the specification is

ch1-21

separated from the implementation

Abstract Data Type NaturalNumber

ADT NaturalNumber is
objects: An ordered subrange of the integers starting at zero and

ending at the maximum integer (MAXINT) on the computer
functions:functions:

for all x, y NaturalNumber; TRUE, FALSE Boolean
and where +, -, <, ==, and = are the usual integer operations

Zero(): NaturalNumber := 0
IsZero(): Boolean := if(x==0) IsZero = true

else IsZero = false
Add(x, y): NaturalNumber := if(x+y<=MAXINT) Add = x+y

else Add = MAXINT

ch1-22

Equal(x, y): Boolean := if(x==y) Equal = true
else Equal = false

Successor(x): NaturalNumber := if(x==MAXINT) Successor = x
else Successor = x + 1

Subtract(x,y): NaturalNumber := if(x<y) Subtract = 0
else Subtract = x – y

end NaturalNumber

The Advantages of ADT (I)

• (1) Development Style

A, B, C are three abstract data types

A B

One piece of
program code

ch1-23

C

Glue

program code

Good Not so good !

The Advantages of ADT (II)

• Testing and Debugging
P i t l ith ADT i i t d b– Programming styles with ADT is easier to debug

– For example, if every ADT has been tested okay, then only the

glue is checked if bugs found during integration

• Reusability
– Data abstraction gives rise to reusability

E i dif

ch1-24

• Easier-to-modify
– Changes of a data type is localized, I.e., the rest of the program

needs not be changed accordingly.

Problem of Not Using Data
Encapsulation

• Consider a program
– That directly accesses internal implementation of the data type

• Suppose a change
– Is made to the data type (即直接性資料存取！)

• Modification is laborious
– Exhaustive search for instances that access the modified data

ch1-25

– Exhaustive search for instances that access the modified data

type and then made appropriate changes – A nightmare !

– (這是直接性資料存取的重大缺點)

Overhead of ADT

• Program is slower
Direct data access versus subroutine invocation– Direct data access versus subroutine invocation

– This is the main reason that C is still in widespread use

• Coding is more tedious (但這通常是值得的)
– A lot of simple data-access member functions need to be

created

ch1-26

Outline

• Overview
S t Lif C l– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

Al ith S ifi ti

ch1-27

• Algorithm Specification

• Performance Analysis and Measurement

Multiple File Program

• Development Cycle

– Each source C++ file is compiled individually, producing p y p g

an object file

• % g++ –c –I./include file.c –o file.o

– All object files are linked together, along with other binary

library, producing a binary executable file

• Assume that there is a library file called ./lib/libmylib.a

% 是作業系統的提示符號

ch1-28

• Linking % g++ file1.o file2.o –L./lib –lmylib –o prog

– Execute the program

• % prog <with command line arguments>

• Example: % prog –A –e 10

Pre-Processor Directive

• The Header Files (for 具有許多原始檔案的程式)
– Are mostly included at the beginning of each source file

– Inclusion of a header file for multiple times creates a compilation

errors

– The following pre-processor directives can be used to avoid the

above errors

#ifndef FILENAME_H

ch1-29

_
#define FILENAME_H
// insert contents of the header file here
.
.
.
#endif

Utility Make

• Purpose of Make
– To manage the compilation and linking of a large software

consisting of multiple files

– Avoid typing compilation commands repeatedly

• Procedure of Using Make
– Step1: create a file called “Makefile”

– Step2: type in “make” each time when any source file or

ch1-30

header file is modified. In response to this command, only the

files modified will be recompiled, while the others are left

intact.

Example of Makefile

#---------- define macro names ----------
CC=g++ –gCC g g
SOURCE = file1.c file2.c
HEADER = project.h
OBJ = $(SOURCE: .c=.o)

#---------- perform linking when any source file or object file is changed -----
linking: $(SOURCE) $(HEADER) $(OBJ)
<tab>$(CC) $(OBJ) –o ./prog

ch1-31

Scope of Variables

• A Variable is only visible within its scope

• Four Types of Scopes
– (1) Global Scope: Variables that are available throughout the

entire program

– (2) File Scope: declarations not in a function definition or in a

class definition

ch1-32

– (3) Local Scope: Labels used within the function definition

(4) Class Scope: Declarations associated with a class definition

Example C++ Program

#include <iostream.h>

char course_name[100] = “data structure”; A file-scope variable

main()
{
int a = 84;
printf(“Welcome to %s\n”, course_name);
printf(“n is %d, n+1 is %d\n”, a, add_one(a));

}

Int add one(int b) b is an input argument

a is a local variable

ch1-33

t add_o e(t b)
{

int c;
printf(“A subroutine for %s\n”, course_name);
c = b + 1;
return(c);

}

c is a local variable

p g

Global Variables

• Problem
– A global variable defined in file1.C, and to be also used in file2.C

 U t t d l th i bl i fil 2 C– Use extern to declare the variable in file2.C

#ifdef MAIN /* macro MAIN is defined in file1.C */
int global_variable;

#else
extern int global_variable /* declare extern in all other files */

#endif

ch1-34

Example C++ Program
– Global Variable

#include <iostream.h>

char course_name[100] = “data structure”;

main()
{
int a = 84;
printf(“Welcome to %s\n”, course_name);
printf(“n is %d, n+1 is %d\n”, a, add_one(a));

}

#include <iostream.h>

Source
File 1

ch1-35

extern char course_name[100] = “data structure”;

Int add_one(int b)
{

printf(“A subroutine for %s\n”, course_name);
return(b+1);

}

Source
File 2

C++ Statement and Operators

• Dynamic Memory Management
– “new” and “delete”

• Input/Output
– Uses shift left (<<) and shift right (>>) operators

• Operator Overloading
– An operator could have multiple functions depending on the

ch1-36

– An operator could have multiple functions, depending on the

types of operands that it is being applied to

Data Declaration in C++

• (1) Constant Value

• (2) Variables()

• (3) Constant Variable
– const int MAX = 500;

• (4) Enumeration types
– enum Boolean {FALSE, TRUE};

• (5) Pointers

ch1-37

()
– Hold memory addresses of objects

– int i = 25;

– int *np;

– np = &i;

np is a pointer to an integer, where * is like “taking content”

np points to the location of i, where & is like “taking address”

Object vs. Pointer

memory
allocation

Rectangle r, s;
Rectangle *t = &s;

symbol table

name type address

s Rectangle oxdddd

oxaaaa oxdddd

pointer
to object

Rectangle t &s;

ch1-38

s Rectangle oxdddd

t pointer oxaaaaRectangle
oxdddd

Data Declaration in C++ (con’t)

• (6) Reference types
– A unique feature of C++, (which is not available in C)

– Is a mechanism to provide an alternative name for an object

– Example

int i=5;

int& j=i;

i=7;

ch1-39

i 7;

printf(“i=%d, j=%d”, i, j); both i and j are 7;

Outputs in C++

#include <iostream.h>

main()
{
int n=50; float f=20.3;
cout << “n:” << n << endl;
cout << “f:” << f << endl;

}

(結果)
n: 50

ch1-40

n: 50
f: 20.3

Inputs in C++

#include <iostream.h>

main()
{
int a, b;
cin >> a >> b;

}

(結果)
input1:
5 10 <enter>

ch1-41

5 10 <enter>
 will set a=5; b=10;

File IO in C++

#include <iostream.h>
#include <fstream.h>

main()
{
ofstream outFile(“my.out”, ios::out);
if(!outFile) {
cerr << “cannot open my.out” << endl; // standard error device
return;

}
int n=50; float f=20.3;

tFil “ “ dl

ch1-42

outFile << “n: “ << n << endl;
outFile << “f: “ << f << endl;

}

Functions in C++

• Two kinds of functions
– (1) Regular functions (非附屬於物件內的副程式)

– (2) Member functions associated with a class

• A function consists of
– Name

– A list of arguments, also called input signature

– A return type (output)

ch1-43

– The body

int max(int a, int b)
{

if(a>b) return a;
else return b;

}

Parameter Passing in C++

• (1) Pass by value (傳值呼叫)
– Default mechanismDefault mechanism

– When an object is passed by value it is copied into the

function’s local storage

– could be slow when data to be passed is large !

• (2) Pass by reference (傳地址呼叫)
– Done by appending an & to its type specifier

ch1-44

Done by appending an & to its type specifier

– E.g., int max(int& a, int& b);

– When an object is passed by reference only the address of

its location is copied into the function’s local store

– faster but less secure !

Call By Pointer Example
main()
{

int i, j;
cout << "Input 2 numbers:" << endl;
cin >> i >>j;
if(i > j)

swap(&i, &j);
cout << "The smaller number is " << i << endl;
cout << "The larger is " << j << endl;

};

void swap(int *ptr x int *ptr y) // call by pointer

ch1-45

void swap(int ptr_x, int ptr_y) // call by pointer
{

int temp;
temp = *ptr_x;
*ptr_x = *ptr_y;
*ptr_y = temp;

}

Call By Reference Example

main()
{

int i, j;
cout << "Input 2 numbers:" << endl; p ;
cin >> i >>j;
if(i > j)

swap(i, j);
cout << "The smaller number is " << i << endl;
cout << "The larger is " << j << endl;

};

id (i t & i t &) // ll b f

ch1-46

void swap(int &x, int &y) // call by reference
{

int temp;
temp = x;
x = y;
y = temp;

}

Memory Allocation

heap

Normal profile

stack

free
space

area
for

dynamic
allocation

使用 “new” 動態要來的資料區域

Heap

ch1-47

program
code

static
variables

stack
area

Stack 全域型的資料區域

Local Variables 資料區域

Memory Allocation –
Subroutine Invocation

heap

initial
profile

new vars

normal
profile

stack

free
space

area
for

dynamic
allocation free

space
free

space

rsum()

After
function

call

After
function

return

free
space

ch1-48

program
code

static
variables

stack
area

program
code

static
variables

main

program
code

static
variables

main

rsum(…)

program
code

static
variables

main

Pass-by-Value vs. Pass-by-Reference

Initial profile Pass by Value Pass by Reference

main

sub1(…)

main

sub1(…)

main

sub1(…)
Object A

copy return
Copy

Address
Direct
Access

ch1-49

program
code

static
variables

Object A

program
code

static
variables

Object A

program
code

static
variables

Object A&A

Pass by Const References

• A Best Method
– pass by “const T& a” T is the type of the argument apass by const T& a , T is the type of the argument a

– Faster than pass-by-value if a large chunk of arguments to be

passed

– Better protection of the actual arguments to be passed

– Any attempt to modify a const argument in the function body

will result in a compile-time error

ch1-50

Improper manipulations of the input arguments
 could lead to nasty bugs

Illustration:
Pass by Const References

Pass by Constant Reference

main

sub1(…)

Copy
Address

Read only access, any write attempt will
cause a compile-time error

ch1-51

program
code

static
variables

Object A&A

One Exception

• Array
– Does not pass by value

– I.e., it is not copied to the function’s local store

– Only the pointer of the first element is passed

– Function is not aware of the size of the array

– Often the size of an array is also passed as another argument

例子: A subroutine that sorts an array of n integer elements

ch1-52

例子: A subroutine that sorts an array of n integer elements
Subroutine 結構如下:
float sorting(float *a, const int n) {

// where a is the array name
…..

}

Function Name Overloading

Function over-loading: there can be more than one functions with
the same name as long as they have different signatures

Int max(int, int);
Int max(int, int, int);
Int max(int*, int);
Int max(float, int);
Int max(int, float);

ch1-53

InLine Function

Inline int sum(int a, int b)
{{

return (a+b);
}

Inline function can eliminate the use of
certain preprocessor directives such as
#define, which is traditionally used for macro
substitution

ch1-54

 Excessive use of pre-processors make it
harder to use debugger or profiler

Dynamic Memory Allocation

• New
– This operator creates an object of the desired type and return

a pointer to the data type that follows it.

– It returns 0 if not being able to create it

• Delete
– Free the data allocated by “new” operator

ch1-55

int *ip = new int;
If(ip==0) cerr << “Memory not allocated” << endl
.
.
delete ip;

Creating An Array

int *jp=new int[10];
if(jp==0) cerr << “Memory not allocated” << endl
.
.
delete [] jp;

/* The operator [] is used to inform the compiler that
the object being created or deleted is an array

ch1-56

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-57

• Algorithm Specification

• Performance Analysis and Measurement

Definition

• Algorithm
Is a finite set of instructions that if followed accomplishes a– Is a finite set of instructions that, if followed, accomplishes a

particular task.

• Criteria
– Input

– Output

– Definite: each instruction is clear and unambiguous

ch1-58

– Definite: each instruction is clear and unambiguous

– Finiteness: for all cases, the algorithms terminate after a finite

number of steps

– Effectiveness: each instruction must be basic enough

Example: Selection Sort

• Problem
– To sort a collection of n ≧1 integers

• A Solution
– From those integers that are currently unsorted, find the

smallest and place it next in the sorted list

• Selection Sort Algorithm

sorted
next

ch1-59

for(int i=0; i<n; i++) {
// Fixing the i-th smallest element
examine a[i] to a[n-1] and suppose the smallest
integer is at a[j]; // a[j] is the i-th smallest element
interchange a[i] and a[j];

}

531 9 48

}sorted

i 0 1 2 3 4 5

Example of Selection Sort

184 9 35Original array

481 9 35

431 9 85

431 9 85

i=0

i=1

i=2

ch1-60

431 9 85

431 8 95

i=3

i=4

Selection Sort Algorithm

1. void sort (int *a, const int n)
2. // sort the n integers a[0] to a[n-1] into non-decreasing order
3. {{
4. for(int i=0; i<n; i++){
5. // find the smallest integer from a[i] to a[n-1];
6. int smallest_index = i;
7. for(int k=i+1; k<n; k++) {
8. if (a[k] < a[smallest_index]) smallest_index = k;
9. }
10. // interchange
11 i t t [i] [i] [ll t i d]

ch1-61

11. int temp=a[i]; a[i]=a[smallest_index];
12. a[smallest_index]=temp;
13. }
14. }

The upper limit index of the “for loop” in line 4 can be changed to n-1
without damaging the correctness of the algorithm

Binary Search

• Problem
– Assume that we have n≧1 distinct integers that are already

sorted in array a[0],…a[n-1]

– Determine if an integer x is present, if so, return its index

1. char compare(int x, int y)

A sub-routine compare

ch1-62

p (, y)
2. {
3. if (x>y) return ‘>’;
4. else if (x<y) return ‘<‘;
5. else return ‘=‘;
6. } // end of compare

Example of Binary Search

431 8 95Sorted list

To find 9

8 95After comparing with 4

9After comparing with 8

ch1-63

9Hit the target

C++ Code for Binary Search

1. binary_search (int *a, const int x, const int n)
2. // search for the sorted array a[0],…,a[n-1] for x
3. {{
4. for(int left=0, int right=n-1; left <= right;)
5. {
6. middle = (left+right) /2;
7. switch(compare(x, a[middle]){
8. case ‘>’: left = middle+1; break;
9. case ‘<’: right = middle-1; break;
10. case ‘=’: return middle;
11 } // d f it h

ch1-64

11. } // end of switch
12. } // end of for
13. return –1;
14. } // end of binary search

left rightmiddle

Recursive Algorithms

• Recursion
– Is similar to the method of induction which is often used to

pro e mathematical statementsprove mathematical statements

– (1) A basis is needed

– (2) A terminating condition is needed

• Applications
– Recursion is particularly suitable for problem recursively

defined

ch1-65

– E.g., Factorial n!

– E.g., Binomial coefficient C(n,m) = C(n-1,m) + C(n-1, m-1);

n elements m elements
select n !

(n-m)! m !

Recursive Binomial Coefficient

• C(n, m) = C(n-1, m) + C(n-1, m-1);

int binomial(int n, int m)
{

C(3 2) 2

3

{
if(n < m) exit(-1);
if(n==m) return(1); if(m==0) return(1);
return(binomial(n-1, m) + binomial(n-1, m-1)) ;

}

ch1-66

C(3,2)

C(2,2) C(2,1)

C(1,1) C(1,0)

1

11

2

Recursive Factorial

1. factorial (int n)
2. {
3. if(n==1) return (1);
4. else return(factorial(n-1) * n);
5. }

factorial (5)

factorial (4) * 4

main
program call * 5

return

ch1-67

factorial (4) * 4

factorial (3)

factorial (1)

* 3

factorial (2) * 2

1

Recursive Binary Search

1. Recursive_BS(int *a, const int x, const int left,
2. const int right)
3. // search for the sorted array a[left],…,a[right] for x
4. {
5. if(left <= right) {
6. int middle = (left+right) /2;
7. switch(compare(x, a[middle]){
8. case ‘>’:
9. return(Recursive_BS(a, x, middle+1, right));
10. case ‘<’:
11 return(Recursive BS(a x left middle-1));

ch1-68

11. return(Recursive_BS(a, x, left, middle-1));
12. case ‘=’: return middle;
13. }
14. }
15. return –1;
16. }

Permutation

• Example
A t f b l { b }– A set of symbols {a, b, c}

– All possible number of permutations is n!

– {(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)}

• Recursive Permutation of {a, b, c, d}
– {a, permutation of (b, c, d)}

{b t ti f (d)}

ch1-69

– {b, permutation of (a, c, d)}

– {c, permutation of (a, b, d)}

– {d, permutation of (a, b, c)}

Demo of Recursive Permutation

b ca

Original configuration

b ca a cb b ac

1

2

return

ch1-70

Maximum recursion depth = 2

c bab ca c aba cb a bcb ac

Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)
2. // generate all permutations of a[first],…,a[n-1]
3. // first - the first element in the undecided region
4. {
5. if(first==n-1) { // terminating condition
6. for(int i=0; i<n; i++) cout << a[i] << “ “;
7. cout << endl;
8. }
9. else {
10. for (i=first; i<n; i++) {
11 char temp=a[first]; a[first]=a[i]; a[i]=temp;

b ac

first

d

ch1-71

11. char temp=a[first]; a[first]=a[i]; a[i]=temp;
12. perm(a, first+1, n);
13. temp=a[first]; a[first]=a[i]; a[i]=temp;
14. // return to original configuration
15. }
16. }
17. }

Program 1.11

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-72

• Algorithm Specification

• Performance Analysis and Measurement

Criteria of Judging a Program

1. Is it functioning?

2. Speed (i.e., CPU time)

3. Space (i.e., memory requirement)

4. Documentation

5. Readability

ch1-73

Complexity

• Space Complexity
– The amount of memory a program needs to run to completey p g p

• Time Complexity
– The amount of computer time a program needs to run to

complete

• Performance Analysis
– To estimate a program’s run time

ch1-74

• Performance Measurement
– To actually measure a program’s run time

Space Requirement

• Fixed Part
Instruction space space for variables and constants– Instruction space, space for variables and constants

• Variable Part
– Depends on instance characteristics, and the recursion stack

space

– This part is more important

S i t f P

ch1-75

• Space requirement of a program P
– S(P) = c + SP (instance characteristics)

c is a constant and SP is a function of the problem size

可以簡單的把 instance characteristic 想成 problem size 即可

Example: Space Complexity

float abc(float a, float b, float c) {
return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

SP(instance characteristics) = 0;
That is, space is independent of the instance characteristics

float sum(float *a, const int n) {
float s=0;
for(int i=0; i<n; i++){

ch1-76

for(int i=0; i<n; i++){
s += a[i];

}
}

SP(instance characteristics) = n;

Recursive Summation

1. float rsum(float *a, const int n) {
2. if(n<=0) return 0;
3. else return(rsum(a, n-1) + a[n-1]);
4. }

rsum(a, 4)

rsum(a, 3) + a[2]

main
program call

+ a[3]
return

ch1-77

rsum(a, 2)

rsum(a, 0)

+ a[1]

rsum(a, 1) + a[0]

0

Example: Space Complexity

float rsum(float *a, const int n) {
if(n<=0) return 0;
else return(rsum(a n-1) + a[n-1]);else return(rsum(a, n-1) + a[n-1]);

}

(1) Instance characteristics = n
(2) Each call to rsum requires at least 4 words

space for a, n, the return value, and the return address
(3) The depth of rec rsion is +1

ch1-78

(3) The depth of recursion is n+1
(4) The recursion stack space is 4(n+1)
(5) For n = 1000 stack space is 4004

Time Complexity

• Total Time = Compile Time + Run Time

• Run Time is of more concern• Run Time is of more concern
– tP(instance characteristics)

• A program step
– syntactically or semantically meaningful segment of a program

• For example

ch1-79

– return(a+b+b*c+(a+b-c)/(a+b)+4.0;) can be regarded as a step

 because it is independent of (instance characteristics)

Step Counting (僅供參考)

• (1) Comments: 0

• (2) Declarative statements: 0

– int, long, short, char, float, double, const, enum, signed, unsigned,
t ti tstatic, extern

– class, struct, union, template

– private, public, protected, friend

– void, virtual

• (3) Expression and Assignments: 1

• (4) Iteration Statements (for, while, do): <iteration-count>

• (5) Switch statements:

ch1-80

• (5) Switch statements:

• (6) If-else statements:

• (7) Function invocation: 1

• (8) Memory management statements: 1

• (9) Jump statements (break, return): 1

for(<init-stmt>; <expr1>; <expr2>)
while <expr> do
do … while <expr>
switch <expr>{

case cond1: <statement1>
…

}

Example: Step-Counting

float sum(float *a, const int n)
{

float s=0;
count++; // count is global
for(int i=0; i<n; i++){

count++; // for for
s += a[i];
count++; // for assignment

}
count++; // for last time of for

void sum(float *a, const int n)
{

for(int i=0; i<n; i++){
count += 2;

}
count += 3;

}

ch1-81

count++; // for last time of for
count++; // for return
return s;

}

Example: Step Counting
For Recursive Program

float rsum(float *a, const int n)
{

recurrence relation for n>0

count++; // for if conditional
if(n <= 0){

count++; // for return
return 0;

}
else{

count++; // for return
return(rsum(a, n-1) + a[n-1]);

trsum(n) = 2 + trsum(n-1)
= 2 + 2 + trsum(n-2)
= 2 * 2 + trsum(n-2)
= …
= 2n + trsum(0)
= 2n + 2

ch1-82

solved by repeated substitution

return(rsum(a, n 1) + a[n 1]);
}

}

Example: Matrix Addition

matrix addition with counting
Simplified version

ch1-83

Tabular Method for Iterative SUM

1. float sum(float *a, const int n) {
2. float s=0;
3. for(int i=0; i<n; i++){(; ;){
4. s += a[i];
5. } return s;
6. }

ch1-84

s/e: steps per execution

Tabular Method for Recursive SUM

1. float rsum(float *a, const int n) {
2. if(n<=0) return 0;
3 l t ((1) + [1])3. else return(rsum(a, n-1) + a[n-1]);
4. }

ch1-85

Tabular Method for Matrix Addition

ch1-86

Step Counting of Fibonacci Numbers

F0=0 and F1=1
Fn = Fn-1 + Fn-2 for n≧2

fnm2 fnm1 fn

ch1-87

0 1 1 2 3 5 8 13 21 34 55 …

Program of Fibonacci Sequence Generator

Summary of CPU Time Estimation

• CPU Time
– Is a function of “instance characteristics”Is a function of instance characteristics

– Varies as the magnitudes of the inputs increase

• In BinarySearch
– The step count is dependent on the array and ‘x’ to be

searched

– Best case, average case, and the worst case are different.

ch1-88

Best case, average case, and the worst case are different.

所以我們應該要瞭解的是不同條件下的趨勢 , 而不只是一個值

Asymptotic & Big-O Notation

• Asymptotic Complexity
– Concerns about how space or time complexities grow as the size of the

problem’s inputs growsp p g

• Big-O Definition
– f(n) = O(g(n)) iff there exist positive constants c and n0 such that

f(n) ≦ cg(n) for all n, n ≧n0

– That is, g(n) is an upper bound of f(n)

• Examples
– O(1): constant time computing

g(n)

f(n)

ch1-89

– O(1): constant time computing

– O(n): linear

– O(n2): quadratic

– O(n3): cubic

– O(2n): exponential

– O(log n): logarithmic, O(n log n)

f(n)

nn0

Complexity of Polynomial

• Theorem 1.2
– If f(n) = amnm + … + a1n + a0 , then f(n) = O(nm)

• Examples
– 3n+2 = O(n) because 3n+2 ≦4n for n≧2

– 6‧2n + n2 = O(2n)

– 3n+2 ≠ O(1)

– 10n2+4n+2 ≠ O(n)

ch1-90

f(n) ≦nm Σ| ai | , for n≧1
0

m

c n0

Omega Definition

• Omega
– f(n) = Ω(g(n)) iff there exist positive constants c and n0 such

th t f() ≧ () f ll ≧that f(n) ≧cg(n) for all n, n≧n0

– That is, g(n) is a lower bound of f(n)

– There could be multiple lower bounds, but it is often that we
choose the tight one

• Theorem 1.3
– If f(n) = amnm + … + a1n + a0 , am>0, then f(n) = Ω(nm)

O(f(n))
upper bound

ch1-91

• Examples
– 3n+2 = Ω(n) because 3n+2 ≧3n for n≧2

– 6‧2n + n2 = Ω(n2)

– 10n2+4n+2 = Ω(n)

f(n)

Ω(f(n))
lower bound

Theta Definition

• Theta
– F(n) = Θ (g(n)) iff there exist positive constants c1 and c2 and n0

such that c1 g(n) ≦ f(n) ≦ c2 g(n) for all n, n≧n0

– That is, g(n) is both a lower bound and upper bound of f(n)

• Theorem 1.4
– If f(n) = amnm + … + a1n + a0 , am>0, then f(n) = Θ(nm)

• Examples

ch1-92

– 3n+2 = Θ(n)

– 6‧2n + n2 = Θ(2n)

– 3n+2 ≠ Θ(1)

– 10n2+4n+2 ≠ Θ(n)

Common Recurrence Relation (I)

Reducing problem size by 1
after a constant time

Reducing problem size by 1
after a linear time

T(n) = T(n-1) + 1

= T(n-2) + 1 + 1

= …

= T(1) + (n-1)

O()

T(n) = T(n-1) + n

= T(n-2) + n + (n-1)

= …

= T(1) + O(n2)

O(n2)

ch1-93

= O(n) = O(n2)

E.g., iterative summation E.g., selection sort algorithm

Common Recurrence Relation (I)

Reducing problem size by 1
after a constant time

Reducing problem size by 1
after a linear time

T(n) = T(n-1) + 1

= O(n)

T(n) = T(n-1) + n

= O(n2)

T(n)

T(n-1)

T(n)

T(n-1)

1

1

n

ch1-94

T(n-2)

T(0)

…

()

T(n-2)

T(0)

…

1

1
1

n-1

n-2
1

Σi = n·(n+1)/2 = O(n2)
1

n

Common Recurrence Relation (II)

Reducing problem size by half
after a constant time

Reducing problem size by half
after a linear time

T(n) = T(n/2) + 1

= T(n/4) + 1 + 1

= …

= T(1) + k

O(l)

T(n) = T(n/2) + n

= T(n/4) + n + (n/2)

= …

= T(1) + (2k+2k-1+2)

O(n)
Assume n = 2k

ch1-95

= O(log n) = O(n)

Σ2i = (2k+1-1)
1

k

E.g., Binary search

Common Recurrence Relation (II)

Reducing problem size by half
after a constant time

Reducing problem size by half
after a linear time

T(n) = T(n/2) + 1

= O(log n)

T(n) = T(n/2) + n

= O(n)

T(n)

T(n/2)
1

1

T(n)

T(n/2)
2k

k 1

Let n = 2k

ch1-96

T(n/4)

T(0)

…

1

1
1

(log n) levels
T(n/4)

T(0)

…

2k-1

2k-2

1

(log n) levels

Σ2i = (2k+1-1)
1

k

Common Recurrence Relation (III)

Split into two equal sub-problems
after a constant time

Split into two equal sub-problems
after a linear time

T(n) = 2T(n/2) + 1

= 4T(n/4) + (1 + 2)

= …

= nT(1) + (2+2k-1+2k)

O()

T(n) = 2T(n/2) + n

= 4T(n/4) + n + 2(n/2)

= …

= nT(1) + (n+n+…+n)

O(n log n)

k terms

ch1-97

= O(n) = O(n．log n)

Assume n = 2k

Common Recurrence Relation (III)

Split into two equal sub-problem
after a constant time

Split into two equal sub-problems
after a linear time

T(n) = 2T(n/2) + 1

= O(n)

T(n) = 2T(n/2) + n

= O(n．log n)

T(n)

T(n/2) T(n/2)

n
Total number of steps
= n · (#levels)

ch1-98

T(n/2) T(n/2)

T(0) T(0) T(0) T(0)…

… … … …log n

n

1 1

= n · (#levels)
= (n · log n)

Property of Binary Tree

k-th level: 2k nodes

(2k-1) nodes k levels

ch1-99

Total number of nodes in the sub-tree
= 1 + 2 + 22 + … + 2k-1

= (2k-1) / (2-1)
 has one node smaller than the last level

Comparison of Recurrence Relation

• T(n) = T(n-1) + 1 = O(n)

• T(n) = T(n-1) + n = O(n2) 這裡每一個公式代表了一種T(n) T(n 1) n O(n)

• T(n) = T(n/2) + 1 = O(log n)

• T(n) = T(n/2) + n = O(n)

• T(n) = 2T(n/2) + 1 = O(n)

• T(n) = 2T(n/2) + n = O(n · log n)

這裡每 個公式代表了 種
重要解決問題的思考模式!

ch1-100

Exercise: What is the complexity of a
recurrence relation T(n) = 2T(n-1) + 1 ?

Hanoi Towers

1 2 3

Tower 1 Tower 2 Tower 3

ch1-101

Goal: Move the three disks from Tower 1 to Tower 3
Rules:
(1) One disk can be moved at a time
(2) No disk can be placed on top of a disk with a smaller diameter
Complexity: T(n) = 2T(n-1) + 1 T(n) = O(2n)

Asymptotic Complexity Of
Permutation Generator

T(0, n) = (n)．T(1,n)

= (n)(n-1)．T(2,n)

k are fixed

 (n)(n 1) T(2,n)

= …

= (n)(n-1)2．T(n-1,n)

= (n)(n-1)2．O(n)

= O(n! · n)

n is the total number elements
k is the number of positions fixed

n-k undecided

b ca

ch1-102

b ca

c bab ca

a cb b ac

c aba cb a bcb ac

return

Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)
2. // generate all permutations of a[first],…,a[n-1]
3. // first - the first element in the undecided region
4. {
5. if(first==n-1) { // terminating condition
6. for(int i=0; i<n; i++) cout << a[i] << “ “;
7. cout << endl;
8. }
9. else {
10. for (i=first; i<n; i++) {
11 char temp=a[first]; a[first]=a[i]; a[i]=temp;

b ac

first

d

ch1-103

11. char temp=a[first]; a[first]=a[i]; a[i]=temp;
12. perm(a, first+1, n);
13. temp=a[first]; a[first]=a[i]; a[i]=temp;
14. // return to original configuration
15. }
16. }
17. }

Program 1.11

Magic Square

• A magic square
– Is an n× n matrix of the integers 1 to n2 such that the sum of

every row, column, and diagonal is the sameevery row, column, and diagonal is the same

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

ch1-104

3 21 19 12 10

9 2 25 18 11

Time complexity of magic square = O(n2)

Practical Complexity

log n n n·log n n2 n3 2n

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

ch1-105

4 16 64 256 4096 65536

5 32 160 1024 32768 4294967296

Comparison of Different
Complexities

ch1-106

Performance Measurement

• Performance measurement
is concerned about the actual time and space requirements of– is concerned about the actual time and space requirements of
a program

– related to compiler and computer

• Asymptotic analysis
– only tells us the behavior for “sufficiently large” values of n

• Actual time

ch1-107

– may not lie exactly on the predicted curve because of the
effects of low-order terms that are discarded in the asymptotic
analysis

Precision of Measurement Clock

• Time() command
– has a clock precision of only 1/100 second

T ti h t t• To time a short event
– it is necessary to repeat it several times and divide the total

time by the number of repetitions

• Random data
– is also commonly used as inputs for average time measurement

• Measurement

ch1-108

• Measurement
– could be for (1) comparison, or for (2) prediction

– Least-square approximation could be used if the asymptotic
complexity is known, e.g., (a0+ a1n + a2 n logn) is used to
approximate a program with O(n logn) complexity

Approximation

f(n) = c1n + c0
is used for the approximationis used for the approximation

ch1-109

Ex1: Measure The CPU Time

type_define struct _time_buffer {
long utime; long stime; long cutime; long cstime;

} time_buffer;

main(){
time_buffer T;
float start, stop, cpu_time;

/*------ (1) record the start time -------*/
times(& T); start = (float) T.utime; /* a tick is 0.01 second */
/*------ (2) perform operations to be measured ------*/

ch1-110

() p p
target_function();
/*------ (3) record the stop time -----*/
times(&T); stop = (float) T.utime;
/*------ (4) measure the elapsed time ------*/
cpu_time = (stop – start)/100.0;

}

Ex2: Measure The CPU Time
#include <stdlib.h>
#include <iostream.h>
#include <time.h> //使用clock()函數 (測試程式目前執行時間)

//函數原型 clock_t clock(void)
int main(void)int main(void)
{

clock_t start,stop; int n;

cout<<endl<<"輸入一整數(10-20之間才不用等太久)"<<endl;
cin>>n;

start = clock(); //紀錄開始計算時間
for(int i=0;i<1000000*n*n;i++) { long s; s=s+i; }

ch1-111

(; ;) { g ; ; }
stop = clock(); //紀錄計算結束時間
double usetime;
usetime=((double)stop-(double)start)/CLK_TCK; //除以CLK_TCK=1000把單位
換成秒
cout << endl << "usetime=“ << usetime << "sec.“ << endl;
return 0;

}

Standard Template Library (STL)

The C++ STL (Standard Template Library) is a generic collection of

class templates and algorithms that allow programmers to easily

implement standard data structures like queues, lists and stacks.

(Informative web sites about programming in C++ using STL)

C++ reference 網頁: http://www.cppreference.com/wiki/start

STL 網頁: http://www.cppreference.com/wiki/stl/start

ch1-112

The End of
Chapter 1: Basic Concepts !

Next Topic: Arrays

