
國立清華大學 電機工程學系
EE2410 Data Structure

Chapter 1Chapter 1
Basic Concepts

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-2

• Algorithm Specification

• Performance Analysis and Measurement

Why We Need Data Structure?

• Elementary programming course
– Emphasizes syntax of a language

– Solves small problems

– Requires simple construct like array or while

• This course
– Provides techniques to solve large-scale problem

– Data abstraction, encapsulation, algorithm specification,

ch1-3

performance analysis, and measurement are important

– We discuss not just “data structure” but also “Algorithm”

– Problem solving techniques are applied to not just software

development, but also hardware or system-level design.

System Life Cycle

• There are five major phases
– Requirements

– Analysis

– Design

– Coding

V ifi i

ch1-4

– Verification

Requirements

• All Large Programming Projects
– Begin with a set of specifications

– Input

– Output

– Frequently the initial specifications are vague, need rigorous

description.

ch1-5

Question: 討論以下程式的可能輸入方式及方法 (e.g.,鍵盤、檔案、或網路 ?)
(1) 最大組合數計算: finding C(n, m)
(2) 子串搜尋 (e.g., 從網頁搜尋某個字串)
(3) 運算式 (e.g., e = 24 + 8 * 5) 之求值可能需要語意解析程式 (Parser)

Analysis

• The problem
I b k d i t bl i– Is broken down into manageable pieces

• Two are two major approaches
– Top-down partitioning

– Bottom-up integration

Divide and conquer (D&C)

ch1-6

Divide and conquer (D&C)
is an important algorithm design paradigm based on multi-branched recursion.
A divide and conquer algorithm works by recursively
breaking down a problem into two or more sub-problems of the same (or related) type,
until these become simple enough to be solved directly.
The solutions to the sub-problems are then combined
to give a solution to the original problem

Design

• The programmer designs
– Abstract data object

– Operations on those objects

• Example
– Problem: scheduling system of a university

– Typical data objects

• Students, courses, professors

T i l ti

ch1-7

– Typical operations

• Inserting, removing, searching

• So far, the programming
– Is language independent

Language Independent

• For example
– The student data object includes

– (1) Name

– (2) Social security number

– (3) permission number

– (4) major

(5) h b

ch1-8

– (5) phone number

– But we haven’t decided what is used to implement the list of

the students yet

Refinement and Coding

• First,
– Choose representations for data objects

– Important, since data object may determine the efficiency of

the program

• Then,
– Write algorithm for each operation

ch1-9

Verification

• This phase is to prove correctness
– (1) Testing the problem with a variety of input data

– (2) Debugging until no error exists

• Good test data example
– A program with a switch statement

– Test data should be chosen so each case branch is checked

• Debugging practices

ch1-10

Debugging practices
– Spaghetti code would be a nightmare when debugging

– Test each unit then whole system

– Documentation is useful

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-11

• Algorithm Specification

• Performance Analysis and Measurement

Object-Oriented Programming
(OOP)

• A fundamental change
– From the structured programming design method

Di id d C i till th i i l– Divide-and-Conquer is still the principle

– But how a project should be decomposed is different

• Traditional Programming
– Views software as process, decomposed into functional modules

• OOP
i f f fi bj

ch1-12

– Views software as a set of well-defined objects

– These objects interacts with each other to form a software system

(1) 程式 = 運算流程 (Control Flow or Subroutines) +資料結構
(2) 早期的結構化程式以運算流程之設計為主 , 資料結構設計不易重覆使用
(3) 物件導向式語言 :
希望寫程式像堆積木一般 , 而一塊塊的積木是一些容易重覆使用的物件 (Object)

物件 (Object) = 資料結構 (Data) + 一些運算副程式 (Operations)

Definitions of an Object

• An object
– Is an entity that performs computations and has a local state, a

combination of

– (1) data

– (2) procedural elements (or called operations)

• Object-oriented programming
– Is a method of implementation in which

– (1) objects are the main building blocks

Data

Operations

ch1-13

(1) objects are the main building blocks

– (2) each object is an instance of some type (or class)

– (3) Classes are related to each other by inheritance
relationships

資料 (Object) 與資料型態 (Class) 的差別
Example: int i, j, k;

OOP – Control Flow vs. Data Structure

Control flow
Data

Traditional

較難重覆使用

Data

Operations

(or subroutine) Data

Main
Control

Programming
(e.g., C)

Object-Oriented
Programming

(C)

較容易重覆使用

ch1-14

Data
flow(e.g., C++)

Ex: A class of “array” on which you can perform “insert”, “retrieve”, “delete”
and “sort”. The elements of the array could be integer, floating point, etc.
 “Sorting” is originally part of the control flow, now it is part of the data structure

Object-Oriented Language

• Three requirements
– (1) It supports objects

– (2) It requires objects to belong to a class

– (3) It supports inheritance

Comment: True OO programs  use inheritance

ch1-15

Inheritance 的語法範例: class Stack: public Bag
“Bag” 是一個已經定義好的物件類別 , “Stack” 是一個衍生出來的物件類別 ,
 “Stack” 可以繼承 “Bag” 裡已經有定義的 operations and data

Higher-Level Languages

• First Generation
– FORTRAN noted as its ability to evaluate mathematical– FORTRAN, noted as its ability to evaluate mathematical

expressions

• Second Generation
– Pascal and C, emphasize on effectively expressing algorithms

• Third Generation

ch1-16

– Modula, introduces abstract data types

• Fourth Generation
– Object-Oriented Languages, e.g., Smalltalk, Object C, and

C++, emphasize inheritance

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-17

• Algorithm Specification

• Performance Analysis and Measurement

Data Abstraction & Encapsulation

• Consider a DVD Player
– (1) The manual tells what the player is supposed to do, instead of

how it does it, this is called data abstraction (資料抽象介面介面

運算的輸出入格式應與內部演算法無關 , 方便日後演算法的更新)

– (2) The internal representation is hidden from the users, this is

called encapsulation (資料包裹性存取不能隨意 , 必須透過介面

的 Operations)

ch1-18

Definitions

• Data Abstraction
– Is the separation between the specification of a data object and

its implementation

• Data Encapsulation
– Or information hiding is the concealing of the implementation

details of a data object from the outside world

ch1-19

Fundamental Data Types of C++

• Basic Types
– char, int, float, double

• Modification keywords
– short, long, signed, unsigned

• Grouping of Basic Types
– array, struct, and class

• User-Defined Type
使用者自訂複雜資料結構的兩大關鍵字:

struct , class
但是 所定義的結構不能有資料包裹性

ch1-20

User Defined Type
– typedef struct _int_pair {

int first_num;

int second_num;

} int_pair;

但是 struct 所定義的結構不能有資料包裹性
i.e., class 才能定義真正的 OOP資料結構

Example Data Type int

• Objects
– {0 +1 -1 +2 -2 MAXINT MININT}{0, +1, -1, +2, -2, …, MAXINT, MININT}

• Operations

– + - * /

• Abstract Data Type (ADT)
– A data type organized in a way that the specification is

ch1-21

separated from the implementation

Abstract Data Type NaturalNumber

ADT NaturalNumber is
objects: An ordered subrange of the integers starting at zero and

ending at the maximum integer (MAXINT) on the computer
functions:functions:

for all x, y  NaturalNumber; TRUE, FALSE  Boolean
and where +, -, <, ==, and = are the usual integer operations

Zero(): NaturalNumber := 0
IsZero(): Boolean := if(x==0) IsZero = true

else IsZero = false
Add(x, y): NaturalNumber := if(x+y<=MAXINT) Add = x+y

else Add = MAXINT

ch1-22

Equal(x, y): Boolean := if(x==y) Equal = true
else Equal = false

Successor(x): NaturalNumber := if(x==MAXINT) Successor = x
else Successor = x + 1

Subtract(x,y): NaturalNumber := if(x<y) Subtract = 0
else Subtract = x – y

end NaturalNumber

The Advantages of ADT (I)

• (1) Development Style

A, B, C are three abstract data types

A B

One piece of
program code

ch1-23

C

Glue

program code

Good Not so good !

The Advantages of ADT (II)

• Testing and Debugging
P i t l ith ADT i i t d b– Programming styles with ADT is easier to debug

– For example, if every ADT has been tested okay, then only the

glue is checked if bugs found during integration

• Reusability
– Data abstraction gives rise to reusability

E i dif

ch1-24

• Easier-to-modify
– Changes of a data type is localized, I.e., the rest of the program

needs not be changed accordingly.

Problem of Not Using Data
Encapsulation

• Consider a program
– That directly accesses internal implementation of the data type

• Suppose a change
– Is made to the data type (即直接性資料存取！)

• Modification is laborious
– Exhaustive search for instances that access the modified data

ch1-25

– Exhaustive search for instances that access the modified data

type and then made appropriate changes – A nightmare !

– (這是直接性資料存取的重大缺點)

Overhead of ADT

• Program is slower
Direct data access versus subroutine invocation– Direct data access versus subroutine invocation

– This is the main reason that C is still in widespread use

• Coding is more tedious (但這通常是值得的)
– A lot of simple data-access member functions need to be

created

ch1-26

Outline

• Overview
S t Lif C l– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

Al ith S ifi ti

ch1-27

• Algorithm Specification

• Performance Analysis and Measurement

Multiple File Program

• Development Cycle

– Each source C++ file is compiled individually, producing p y p g

an object file

• % g++ –c –I./include file.c –o file.o

– All object files are linked together, along with other binary

library, producing a binary executable file

• Assume that there is a library file called ./lib/libmylib.a

% 是作業系統的提示符號

ch1-28

• Linking % g++ file1.o file2.o –L./lib –lmylib –o prog

– Execute the program

• % prog <with command line arguments>

• Example: % prog –A –e 10

Pre-Processor Directive

• The Header Files (for 具有許多原始檔案的程式)
– Are mostly included at the beginning of each source file

– Inclusion of a header file for multiple times creates a compilation

errors

– The following pre-processor directives can be used to avoid the

above errors

#ifndef FILENAME_H

ch1-29

_
#define FILENAME_H
// insert contents of the header file here
.
.
.
#endif

Utility Make

• Purpose of Make
– To manage the compilation and linking of a large software

consisting of multiple files

– Avoid typing compilation commands repeatedly

• Procedure of Using Make
– Step1: create a file called “Makefile”

– Step2: type in “make” each time when any source file or

ch1-30

header file is modified. In response to this command, only the

files modified will be recompiled, while the others are left

intact.

Example of Makefile

#---------- define macro names ----------
CC=g++ –gCC g g
SOURCE = file1.c file2.c
HEADER = project.h
OBJ = $(SOURCE: .c=.o)

#---------- perform linking when any source file or object file is changed -----
linking: $(SOURCE) $(HEADER) $(OBJ)
<tab>$(CC) $(OBJ) –o ./prog

ch1-31

Scope of Variables

• A Variable is only visible within its scope

• Four Types of Scopes
– (1) Global Scope: Variables that are available throughout the

entire program

– (2) File Scope: declarations not in a function definition or in a

class definition

ch1-32

– (3) Local Scope: Labels used within the function definition

(4) Class Scope: Declarations associated with a class definition

Example C++ Program

#include <iostream.h>

char course_name[100] = “data structure”; A file-scope variable

main()
{
int a = 84;
printf(“Welcome to %s\n”, course_name);
printf(“n is %d, n+1 is %d\n”, a, add_one(a));

}

Int add one(int b) b is an input argument

a is a local variable

ch1-33

t add_o e(t b)
{

int c;
printf(“A subroutine for %s\n”, course_name);
c = b + 1;
return(c);

}

c is a local variable

p g

Global Variables

• Problem
– A global variable defined in file1.C, and to be also used in file2.C

 U t t d l th i bl i fil 2 C–  Use extern to declare the variable in file2.C

#ifdef MAIN /* macro MAIN is defined in file1.C */
int global_variable;

#else
extern int global_variable /* declare extern in all other files */

#endif

ch1-34

Example C++ Program
– Global Variable

#include <iostream.h>

char course_name[100] = “data structure”;

main()
{
int a = 84;
printf(“Welcome to %s\n”, course_name);
printf(“n is %d, n+1 is %d\n”, a, add_one(a));

}

#include <iostream.h>

Source
File 1

ch1-35

extern char course_name[100] = “data structure”;

Int add_one(int b)
{

printf(“A subroutine for %s\n”, course_name);
return(b+1);

}

Source
File 2

C++ Statement and Operators

• Dynamic Memory Management
– “new” and “delete”

• Input/Output
– Uses shift left (<<) and shift right (>>) operators

• Operator Overloading
– An operator could have multiple functions depending on the

ch1-36

– An operator could have multiple functions, depending on the

types of operands that it is being applied to

Data Declaration in C++

• (1) Constant Value

• (2) Variables()

• (3) Constant Variable
– const int MAX = 500;

• (4) Enumeration types
– enum Boolean {FALSE, TRUE};

• (5) Pointers

ch1-37

()
– Hold memory addresses of objects

– int i = 25;

– int *np;

– np = &i;

np is a pointer to an integer, where * is like “taking content”

np points to the location of i, where & is like “taking address”

Object vs. Pointer

memory
allocation

Rectangle r, s;
Rectangle *t = &s;

symbol table

name type address

s Rectangle oxdddd

oxaaaa oxdddd

pointer
to object

Rectangle t &s;

ch1-38

s Rectangle oxdddd

t pointer oxaaaaRectangle
oxdddd

Data Declaration in C++ (con’t)

• (6) Reference types
– A unique feature of C++, (which is not available in C)

– Is a mechanism to provide an alternative name for an object

– Example

int i=5;

int& j=i;

i=7;

ch1-39

i 7;

printf(“i=%d, j=%d”, i, j);  both i and j are 7;

Outputs in C++

#include <iostream.h>

main()
{
int n=50; float f=20.3;
cout << “n:” << n << endl;
cout << “f:” << f << endl;

}

(結果)
n: 50

ch1-40

n: 50
f: 20.3

Inputs in C++

#include <iostream.h>

main()
{
int a, b;
cin >> a >> b;

}

(結果)
input1:
5 10 <enter>

ch1-41

5 10 <enter>
 will set a=5; b=10;

File IO in C++

#include <iostream.h>
#include <fstream.h>

main()
{
ofstream outFile(“my.out”, ios::out);
if(!outFile) {
cerr << “cannot open my.out” << endl; // standard error device
return;

}
int n=50; float f=20.3;

tFil “ “ dl

ch1-42

outFile << “n: “ << n << endl;
outFile << “f: “ << f << endl;

}

Functions in C++

• Two kinds of functions
– (1) Regular functions (非附屬於物件內的副程式)

– (2) Member functions associated with a class

• A function consists of
– Name

– A list of arguments, also called input signature

– A return type (output)

ch1-43

– The body

int max(int a, int b)
{

if(a>b) return a;
else return b;

}

Parameter Passing in C++

• (1) Pass by value (傳值呼叫)
– Default mechanismDefault mechanism

– When an object is passed by value  it is copied into the

function’s local storage

– could be slow when data to be passed is large !

• (2) Pass by reference (傳地址呼叫)
– Done by appending an & to its type specifier

ch1-44

Done by appending an & to its type specifier

– E.g., int max(int& a, int& b);

– When an object is passed by reference  only the address of

its location is copied into the function’s local store

– faster but less secure !

Call By Pointer Example
main()
{

int i, j;
cout << "Input 2 numbers:" << endl;
cin >> i >>j;
if(i > j)

swap(&i, &j);
cout << "The smaller number is " << i << endl;
cout << "The larger is " << j << endl;

};

void swap(int *ptr x int *ptr y) // call by pointer

ch1-45

void swap(int ptr_x, int ptr_y) // call by pointer
{

int temp;
temp = *ptr_x;
*ptr_x = *ptr_y;
*ptr_y = temp;

}

Call By Reference Example

main()
{

int i, j;
cout << "Input 2 numbers:" << endl; p ;
cin >> i >>j;
if(i > j)

swap(i, j);
cout << "The smaller number is " << i << endl;
cout << "The larger is " << j << endl;

};

id (i t & i t &) // ll b f

ch1-46

void swap(int &x, int &y) // call by reference
{

int temp;
temp = x;
x = y;
y = temp;

}

Memory Allocation

heap

Normal profile

stack

free
space

area
for

dynamic
allocation

使用 “new” 動態要來的資料區域

Heap

ch1-47

program
code

static
variables

stack
area

Stack 全域型的資料區域

Local Variables 資料區域

Memory Allocation –
Subroutine Invocation

heap

initial
profile

new vars

normal
profile

stack

free
space

area
for

dynamic
allocation free

space
free

space

rsum()

After
function

call

After
function

return

free
space

ch1-48

program
code

static
variables

stack
area

program
code

static
variables

main

program
code

static
variables

main

rsum(…)

program
code

static
variables

main

Pass-by-Value vs. Pass-by-Reference

Initial profile Pass by Value Pass by Reference

main

sub1(…)

main

sub1(…)

main

sub1(…)
Object A

copy return
Copy

Address
Direct
Access

ch1-49

program
code

static
variables

Object A

program
code

static
variables

Object A

program
code

static
variables

Object A&A

Pass by Const References

• A Best Method
– pass by “const T& a” T is the type of the argument apass by const T& a , T is the type of the argument a

– Faster than pass-by-value if a large chunk of arguments to be

passed

– Better protection of the actual arguments to be passed

– Any attempt to modify a const argument in the function body

will result in a compile-time error

ch1-50

Improper manipulations of the input arguments
 could lead to nasty bugs

Illustration:
Pass by Const References

Pass by Constant Reference

main

sub1(…)

Copy
Address

Read only access, any write attempt will
cause a compile-time error

ch1-51

program
code

static
variables

Object A&A

One Exception

• Array
– Does not pass by value

– I.e., it is not copied to the function’s local store

– Only the pointer of the first element is passed

– Function is not aware of the size of the array

– Often the size of an array is also passed as another argument

例子: A subroutine that sorts an array of n integer elements

ch1-52

例子: A subroutine that sorts an array of n integer elements
Subroutine 結構如下:
float sorting(float *a, const int n) {

// where a is the array name
…..

}

Function Name Overloading

Function over-loading: there can be more than one functions with
the same name as long as they have different signatures

Int max(int, int);
Int max(int, int, int);
Int max(int*, int);
Int max(float, int);
Int max(int, float);

ch1-53

InLine Function

Inline int sum(int a, int b)
{{

return (a+b);
}

Inline function can eliminate the use of
certain preprocessor directives such as
#define, which is traditionally used for macro
substitution

ch1-54

 Excessive use of pre-processors make it
harder to use debugger or profiler

Dynamic Memory Allocation

• New
– This operator creates an object of the desired type and return

a pointer to the data type that follows it.

– It returns 0 if not being able to create it

• Delete
– Free the data allocated by “new” operator

ch1-55

int *ip = new int;
If(ip==0) cerr << “Memory not allocated” << endl
.
.
delete ip;

Creating An Array

int *jp=new int[10];
if(jp==0) cerr << “Memory not allocated” << endl
.
.
delete [] jp;

/* The operator [] is used to inform the compiler that
the object being created or deleted is an array

ch1-56

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-57

• Algorithm Specification

• Performance Analysis and Measurement

Definition

• Algorithm
Is a finite set of instructions that if followed accomplishes a– Is a finite set of instructions that, if followed, accomplishes a

particular task.

• Criteria
– Input

– Output

– Definite: each instruction is clear and unambiguous

ch1-58

– Definite: each instruction is clear and unambiguous

– Finiteness: for all cases, the algorithms terminate after a finite

number of steps

– Effectiveness: each instruction must be basic enough

Example: Selection Sort

• Problem
– To sort a collection of n ≧1 integers

• A Solution
– From those integers that are currently unsorted, find the

smallest and place it next in the sorted list

• Selection Sort Algorithm

sorted
next

ch1-59

for(int i=0; i<n; i++) {
// Fixing the i-th smallest element
examine a[i] to a[n-1] and suppose the smallest
integer is at a[j]; // a[j] is the i-th smallest element
interchange a[i] and a[j];

}

531 9 48

}sorted

i 0 1 2 3 4 5

Example of Selection Sort

184 9 35Original array

481 9 35

431 9 85

431 9 85

i=0

i=1

i=2

ch1-60

431 9 85

431 8 95

i=3

i=4

Selection Sort Algorithm

1. void sort (int *a, const int n)
2. // sort the n integers a[0] to a[n-1] into non-decreasing order
3. {{
4. for(int i=0; i<n; i++){
5. // find the smallest integer from a[i] to a[n-1];
6. int smallest_index = i;
7. for(int k=i+1; k<n; k++) {
8. if (a[k] < a[smallest_index]) smallest_index = k;
9. }
10. // interchange
11 i t t [i] [i] [ll t i d]

ch1-61

11. int temp=a[i]; a[i]=a[smallest_index];
12. a[smallest_index]=temp;
13. }
14. }

The upper limit index of the “for loop” in line 4 can be changed to n-1
without damaging the correctness of the algorithm

Binary Search

• Problem
– Assume that we have n≧1 distinct integers that are already

sorted in array a[0],…a[n-1]

– Determine if an integer x is present, if so, return its index

1. char compare(int x, int y)

A sub-routine compare

ch1-62

p (, y)
2. {
3. if (x>y) return ‘>’;
4. else if (x<y) return ‘<‘;
5. else return ‘=‘;
6. } // end of compare

Example of Binary Search

431 8 95Sorted list

To find 9

8 95After comparing with 4

9After comparing with 8

ch1-63

9Hit the target

C++ Code for Binary Search

1. binary_search (int *a, const int x, const int n)
2. // search for the sorted array a[0],…,a[n-1] for x
3. {{
4. for(int left=0, int right=n-1; left <= right;)
5. {
6. middle = (left+right) /2;
7. switch(compare(x, a[middle]){
8. case ‘>’: left = middle+1; break;
9. case ‘<’: right = middle-1; break;
10. case ‘=’: return middle;
11 } // d f it h

ch1-64

11. } // end of switch
12. } // end of for
13. return –1;
14. } // end of binary search

left rightmiddle

Recursive Algorithms

• Recursion
– Is similar to the method of induction which is often used to

pro e mathematical statementsprove mathematical statements

– (1) A basis is needed

– (2) A terminating condition is needed

• Applications
– Recursion is particularly suitable for problem recursively

defined

ch1-65

– E.g., Factorial n!

– E.g., Binomial coefficient C(n,m) = C(n-1,m) + C(n-1, m-1);

n elements m elements
select n !

(n-m)! m !

Recursive Binomial Coefficient

• C(n, m) = C(n-1, m) + C(n-1, m-1);

int binomial(int n, int m)
{

C(3 2) 2

3

{
if(n < m) exit(-1);
if(n==m) return(1); if(m==0) return(1);
return(binomial(n-1, m) + binomial(n-1, m-1)) ;

}

ch1-66

C(3,2)

C(2,2) C(2,1)

C(1,1) C(1,0)

1

11

2

Recursive Factorial

1. factorial (int n)
2. {
3. if(n==1) return (1);
4. else return(factorial(n-1) * n);
5. }

factorial (5)

factorial (4) * 4

main
program call * 5

return

ch1-67

factorial (4) * 4

factorial (3)

factorial (1)

* 3

factorial (2) * 2

1

Recursive Binary Search

1. Recursive_BS(int *a, const int x, const int left,
2. const int right)
3. // search for the sorted array a[left],…,a[right] for x
4. {
5. if(left <= right) {
6. int middle = (left+right) /2;
7. switch(compare(x, a[middle]){
8. case ‘>’:
9. return(Recursive_BS(a, x, middle+1, right));
10. case ‘<’:
11 return(Recursive BS(a x left middle-1));

ch1-68

11. return(Recursive_BS(a, x, left, middle-1));
12. case ‘=’: return middle;
13. }
14. }
15. return –1;
16. }

Permutation

• Example
A t f b l { b }– A set of symbols {a, b, c}

– All possible number of permutations is n!

– {(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)}

• Recursive Permutation of {a, b, c, d}
– {a, permutation of (b, c, d)}

{b t ti f (d)}

ch1-69

– {b, permutation of (a, c, d)}

– {c, permutation of (a, b, d)}

– {d, permutation of (a, b, c)}

Demo of Recursive Permutation

b ca

Original configuration

b ca a cb b ac

1

2

return

ch1-70

Maximum recursion depth = 2

c bab ca c aba cb a bcb ac

Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)
2. // generate all permutations of a[first],…,a[n-1]
3. // first - the first element in the undecided region
4. {
5. if(first==n-1) { // terminating condition
6. for(int i=0; i<n; i++) cout << a[i] << “ “;
7. cout << endl;
8. }
9. else {
10. for (i=first; i<n; i++) {
11 char temp=a[first]; a[first]=a[i]; a[i]=temp;

b ac

first

d

ch1-71

11. char temp=a[first]; a[first]=a[i]; a[i]=temp;
12. perm(a, first+1, n);
13. temp=a[first]; a[first]=a[i]; a[i]=temp;
14. // return to original configuration
15. }
16. }
17. }

Program 1.11

Outline

• Overview
– System Life Cycle

• Object-Oriented Software Design

• Data Abstraction and Encapsulation

• Basics of C++

ch1-72

• Algorithm Specification

• Performance Analysis and Measurement

Criteria of Judging a Program

1. Is it functioning?

2. Speed (i.e., CPU time)

3. Space (i.e., memory requirement)

4. Documentation

5. Readability

ch1-73

Complexity

• Space Complexity
– The amount of memory a program needs to run to completey p g p

• Time Complexity
– The amount of computer time a program needs to run to

complete

• Performance Analysis
– To estimate a program’s run time

ch1-74

• Performance Measurement
– To actually measure a program’s run time

Space Requirement

• Fixed Part
Instruction space space for variables and constants– Instruction space, space for variables and constants

• Variable Part
– Depends on instance characteristics, and the recursion stack

space

– This part is more important

S i t f P

ch1-75

• Space requirement of a program P
– S(P) = c + SP (instance characteristics)

c is a constant and SP is a function of the problem size

可以簡單的把 instance characteristic 想成 problem size 即可

Example: Space Complexity

float abc(float a, float b, float c) {
return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

SP(instance characteristics) = 0;
That is, space is independent of the instance characteristics

float sum(float *a, const int n) {
float s=0;
for(int i=0; i<n; i++){

ch1-76

for(int i=0; i<n; i++){
s += a[i];

}
}

SP(instance characteristics) = n;

Recursive Summation

1. float rsum(float *a, const int n) {
2. if(n<=0) return 0;
3. else return(rsum(a, n-1) + a[n-1]);
4. }

rsum(a, 4)

rsum(a, 3) + a[2]

main
program call

+ a[3]
return

ch1-77

rsum(a, 2)

rsum(a, 0)

+ a[1]

rsum(a, 1) + a[0]

0

Example: Space Complexity

float rsum(float *a, const int n) {
if(n<=0) return 0;
else return(rsum(a n-1) + a[n-1]);else return(rsum(a, n-1) + a[n-1]);

}

(1) Instance characteristics = n
(2) Each call to rsum requires at least 4 words

space for a, n, the return value, and the return address
(3) The depth of rec rsion is +1

ch1-78

(3) The depth of recursion is n+1
(4) The recursion stack space is 4(n+1)
(5) For n = 1000  stack space is 4004

Time Complexity

• Total Time = Compile Time + Run Time

• Run Time is of more concern• Run Time is of more concern
– tP(instance characteristics)

• A program step
– syntactically or semantically meaningful segment of a program

• For example

ch1-79

– return(a+b+b*c+(a+b-c)/(a+b)+4.0;) can be regarded as a step

 because it is independent of (instance characteristics)

Step Counting (僅供參考)

• (1) Comments: 0

• (2) Declarative statements: 0

– int, long, short, char, float, double, const, enum, signed, unsigned,
t ti tstatic, extern

– class, struct, union, template

– private, public, protected, friend

– void, virtual

• (3) Expression and Assignments: 1

• (4) Iteration Statements (for, while, do): <iteration-count>

• (5) Switch statements:

ch1-80

• (5) Switch statements:

• (6) If-else statements:

• (7) Function invocation: 1

• (8) Memory management statements: 1

• (9) Jump statements (break, return): 1

for(<init-stmt>; <expr1>; <expr2>)
while <expr> do
do … while <expr>
switch <expr>{

case cond1: <statement1>
…

}

Example: Step-Counting

float sum(float *a, const int n)
{

float s=0;
count++; // count is global
for(int i=0; i<n; i++){

count++; // for for
s += a[i];
count++; // for assignment

}
count++; // for last time of for

void sum(float *a, const int n)
{

for(int i=0; i<n; i++){
count += 2;

}
count += 3;

}

ch1-81

count++; // for last time of for
count++; // for return
return s;

}

Example: Step Counting
For Recursive Program

float rsum(float *a, const int n)
{

recurrence relation for n>0

count++; // for if conditional
if(n <= 0){

count++; // for return
return 0;

}
else{

count++; // for return
return(rsum(a, n-1) + a[n-1]);

trsum(n) = 2 + trsum(n-1)
= 2 + 2 + trsum(n-2)
= 2 * 2 + trsum(n-2)
= …
= 2n + trsum(0)
= 2n + 2

ch1-82

solved by repeated substitution

return(rsum(a, n 1) + a[n 1]);
}

}

Example: Matrix Addition

matrix addition with counting
Simplified version

ch1-83

Tabular Method for Iterative SUM

1. float sum(float *a, const int n) {
2. float s=0;
3. for(int i=0; i<n; i++){(; ;){
4. s += a[i];
5. } return s;
6. }

ch1-84

s/e: steps per execution

Tabular Method for Recursive SUM

1. float rsum(float *a, const int n) {
2. if(n<=0) return 0;
3 l t ((1) + [1])3. else return(rsum(a, n-1) + a[n-1]);
4. }

ch1-85

Tabular Method for Matrix Addition

ch1-86

Step Counting of Fibonacci Numbers

F0=0 and F1=1
Fn = Fn-1 + Fn-2 for n≧2

fnm2 fnm1 fn

ch1-87

0 1 1 2 3 5 8 13 21 34 55 …

Program of Fibonacci Sequence Generator

Summary of CPU Time Estimation

• CPU Time
– Is a function of “instance characteristics”Is a function of instance characteristics

– Varies as the magnitudes of the inputs increase

• In BinarySearch
– The step count is dependent on the array and ‘x’ to be

searched

– Best case, average case, and the worst case are different.

ch1-88

Best case, average case, and the worst case are different.

所以我們應該要瞭解的是不同條件下的趨勢 , 而不只是一個值

Asymptotic & Big-O Notation

• Asymptotic Complexity
– Concerns about how space or time complexities grow as the size of the

problem’s inputs growsp p g

• Big-O Definition
– f(n) = O(g(n)) iff there exist positive constants c and n0 such that

f(n) ≦ cg(n) for all n, n ≧n0

– That is, g(n) is an upper bound of f(n)

• Examples
– O(1): constant time computing

g(n)

f(n)

ch1-89

– O(1): constant time computing

– O(n): linear

– O(n2): quadratic

– O(n3): cubic

– O(2n): exponential

– O(log n): logarithmic, O(n log n)

f(n)

nn0

Complexity of Polynomial

• Theorem 1.2
– If f(n) = amnm + … + a1n + a0 , then f(n) = O(nm)

• Examples
– 3n+2 = O(n)  because 3n+2 ≦4n for n≧2

– 6‧2n + n2 = O(2n)

– 3n+2 ≠ O(1)

– 10n2+4n+2 ≠ O(n)

ch1-90

f(n) ≦nm Σ| ai | , for n≧1
0

m

c n0

Omega Definition

• Omega
– f(n) = Ω(g(n)) iff there exist positive constants c and n0 such

th t f() ≧ () f ll ≧that f(n) ≧cg(n) for all n, n≧n0

– That is, g(n) is a lower bound of f(n)

– There could be multiple lower bounds, but it is often that we
choose the tight one

• Theorem 1.3
– If f(n) = amnm + … + a1n + a0 , am>0, then f(n) = Ω(nm)

O(f(n))
upper bound

ch1-91

• Examples
– 3n+2 = Ω(n)  because 3n+2 ≧3n for n≧2

– 6‧2n + n2 = Ω(n2)

– 10n2+4n+2 = Ω(n)

f(n)

Ω(f(n))
lower bound

Theta Definition

• Theta
– F(n) = Θ (g(n)) iff there exist positive constants c1 and c2 and n0

such that c1 g(n) ≦ f(n) ≦ c2 g(n) for all n, n≧n0

– That is, g(n) is both a lower bound and upper bound of f(n)

• Theorem 1.4
– If f(n) = amnm + … + a1n + a0 , am>0, then f(n) = Θ(nm)

• Examples

ch1-92

– 3n+2 = Θ(n)

– 6‧2n + n2 = Θ(2n)

– 3n+2 ≠ Θ(1)

– 10n2+4n+2 ≠ Θ(n)

Common Recurrence Relation (I)

Reducing problem size by 1
after a constant time

Reducing problem size by 1
after a linear time

T(n) = T(n-1) + 1

= T(n-2) + 1 + 1

= …

= T(1) + (n-1)

O()

T(n) = T(n-1) + n

= T(n-2) + n + (n-1)

= …

= T(1) + O(n2)

O(n2)

ch1-93

= O(n) = O(n2)

E.g., iterative summation E.g., selection sort algorithm

Common Recurrence Relation (I)

Reducing problem size by 1
after a constant time

Reducing problem size by 1
after a linear time

T(n) = T(n-1) + 1

= O(n)

T(n) = T(n-1) + n

= O(n2)

T(n)

T(n-1)

T(n)

T(n-1)

1

1

n

ch1-94

T(n-2)

T(0)

…

()

T(n-2)

T(0)

…

1

1
1

n-1

n-2
1

Σi = n·(n+1)/2 = O(n2)
1

n

Common Recurrence Relation (II)

Reducing problem size by half
after a constant time

Reducing problem size by half
after a linear time

T(n) = T(n/2) + 1

= T(n/4) + 1 + 1

= …

= T(1) + k

O(l)

T(n) = T(n/2) + n

= T(n/4) + n + (n/2)

= …

= T(1) + (2k+2k-1+2)

O(n)
Assume n = 2k

ch1-95

= O(log n) = O(n)

Σ2i = (2k+1-1)
1

k

E.g., Binary search

Common Recurrence Relation (II)

Reducing problem size by half
after a constant time

Reducing problem size by half
after a linear time

T(n) = T(n/2) + 1

= O(log n)

T(n) = T(n/2) + n

= O(n)

T(n)

T(n/2)
1

1

T(n)

T(n/2)
2k

k 1

Let n = 2k

ch1-96

T(n/4)

T(0)

…

1

1
1

(log n) levels
T(n/4)

T(0)

…

2k-1

2k-2

1

(log n) levels

Σ2i = (2k+1-1)
1

k

Common Recurrence Relation (III)

Split into two equal sub-problems
after a constant time

Split into two equal sub-problems
after a linear time

T(n) = 2T(n/2) + 1

= 4T(n/4) + (1 + 2)

= …

= nT(1) + (2+2k-1+2k)

O()

T(n) = 2T(n/2) + n

= 4T(n/4) + n + 2(n/2)

= …

= nT(1) + (n+n+…+n)

O(n log n)

k terms

ch1-97

= O(n) = O(n．log n)

Assume n = 2k

Common Recurrence Relation (III)

Split into two equal sub-problem
after a constant time

Split into two equal sub-problems
after a linear time

T(n) = 2T(n/2) + 1

= O(n)

T(n) = 2T(n/2) + n

= O(n．log n)

T(n)

T(n/2) T(n/2)

n
Total number of steps
= n · (#levels)

ch1-98

T(n/2) T(n/2)

T(0) T(0) T(0) T(0)…

… … … …log n

n

1 1

= n · (#levels)
= (n · log n)

Property of Binary Tree

k-th level: 2k nodes

(2k-1) nodes k levels

ch1-99

Total number of nodes in the sub-tree
= 1 + 2 + 22 + … + 2k-1

= (2k-1) / (2-1)
 has one node smaller than the last level

Comparison of Recurrence Relation

• T(n) = T(n-1) + 1 = O(n)

• T(n) = T(n-1) + n = O(n2) 這裡每一個公式代表了一種T(n) T(n 1) n O(n)

• T(n) = T(n/2) + 1 = O(log n)

• T(n) = T(n/2) + n = O(n)

• T(n) = 2T(n/2) + 1 = O(n)

• T(n) = 2T(n/2) + n = O(n · log n)

這裡每 個公式代表了 種
重要解決問題的思考模式!

ch1-100

Exercise: What is the complexity of a
recurrence relation T(n) = 2T(n-1) + 1 ?

Hanoi Towers

1 2 3

Tower 1 Tower 2 Tower 3

ch1-101

Goal: Move the three disks from Tower 1 to Tower 3
Rules:
(1) One disk can be moved at a time
(2) No disk can be placed on top of a disk with a smaller diameter
Complexity: T(n) = 2T(n-1) + 1  T(n) = O(2n)

Asymptotic Complexity Of
Permutation Generator

T(0, n) = (n)．T(1,n)

= (n)(n-1)．T(2,n)

k are fixed

 (n)(n 1) T(2,n)

= …

= (n)(n-1)2．T(n-1,n)

= (n)(n-1)2．O(n)

= O(n! · n)

n is the total number elements
k is the number of positions fixed

n-k undecided

b ca

ch1-102

b ca

c bab ca

a cb b ac

c aba cb a bcb ac

return

Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)
2. // generate all permutations of a[first],…,a[n-1]
3. // first - the first element in the undecided region
4. {
5. if(first==n-1) { // terminating condition
6. for(int i=0; i<n; i++) cout << a[i] << “ “;
7. cout << endl;
8. }
9. else {
10. for (i=first; i<n; i++) {
11 char temp=a[first]; a[first]=a[i]; a[i]=temp;

b ac

first

d

ch1-103

11. char temp=a[first]; a[first]=a[i]; a[i]=temp;
12. perm(a, first+1, n);
13. temp=a[first]; a[first]=a[i]; a[i]=temp;
14. // return to original configuration
15. }
16. }
17. }

Program 1.11

Magic Square

• A magic square
– Is an n× n matrix of the integers 1 to n2 such that the sum of

every row, column, and diagonal is the sameevery row, column, and diagonal is the same

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

ch1-104

3 21 19 12 10

9 2 25 18 11

Time complexity of magic square = O(n2)

Practical Complexity

log n n n·log n n2 n3 2n

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

ch1-105

4 16 64 256 4096 65536

5 32 160 1024 32768 4294967296

Comparison of Different
Complexities

ch1-106

Performance Measurement

• Performance measurement
is concerned about the actual time and space requirements of– is concerned about the actual time and space requirements of
a program

– related to compiler and computer

• Asymptotic analysis
– only tells us the behavior for “sufficiently large” values of n

• Actual time

ch1-107

– may not lie exactly on the predicted curve because of the
effects of low-order terms that are discarded in the asymptotic
analysis

Precision of Measurement Clock

• Time() command
– has a clock precision of only 1/100 second

T ti h t t• To time a short event
– it is necessary to repeat it several times and divide the total

time by the number of repetitions

• Random data
– is also commonly used as inputs for average time measurement

• Measurement

ch1-108

• Measurement
– could be for (1) comparison, or for (2) prediction

– Least-square approximation could be used if the asymptotic
complexity is known, e.g., (a0+ a1n + a2 n logn) is used to
approximate a program with O(n logn) complexity

Approximation

f(n) = c1n + c0
is used for the approximationis used for the approximation

ch1-109

Ex1: Measure The CPU Time

type_define struct _time_buffer {
long utime; long stime; long cutime; long cstime;

} time_buffer;

main(){
time_buffer T;
float start, stop, cpu_time;

/*------ (1) record the start time -------*/
times(& T); start = (float) T.utime; /* a tick is 0.01 second */
/*------ (2) perform operations to be measured ------*/

ch1-110

() p p
target_function();
/*------ (3) record the stop time -----*/
times(&T); stop = (float) T.utime;
/*------ (4) measure the elapsed time ------*/
cpu_time = (stop – start)/100.0;

}

Ex2: Measure The CPU Time
#include <stdlib.h>
#include <iostream.h>
#include <time.h> //使用clock()函數 (測試程式目前執行時間)

//函數原型 clock_t clock(void)
int main(void)int main(void)
{

clock_t start,stop; int n;

cout<<endl<<"輸入一整數(10-20之間才不用等太久)"<<endl;
cin>>n;

start = clock(); //紀錄開始計算時間
for(int i=0;i<1000000*n*n;i++) { long s; s=s+i; }

ch1-111

(; ;) { g ; ; }
stop = clock(); //紀錄計算結束時間
double usetime;
usetime=((double)stop-(double)start)/CLK_TCK; //除以CLK_TCK=1000把單位
換成秒
cout << endl << "usetime=“ << usetime << "sec.“ << endl;
return 0;

}

Standard Template Library (STL)

The C++ STL (Standard Template Library) is a generic collection of

class templates and algorithms that allow programmers to easily

implement standard data structures like queues, lists and stacks.

(Informative web sites about programming in C++ using STL)

C++ reference 網頁: http://www.cppreference.com/wiki/start

STL 網頁: http://www.cppreference.com/wiki/stl/start

ch1-112

The End of
Chapter 1: Basic Concepts !

Next Topic: Arrays

