

Why We Need Data Structure?

* Elementary programming course

— Emphasizes syntax of a language
— Solves small problems

— Requires simple construct like array or while

¢ This course

Provides techniques to solve large-scale problem

Data abstraction, encapsulation, algorithm specification,
performance analysis, and measurement are important

— We discuss not just “data structure” but also “Algorithm”

Problem solving techniques are applied to not just software

development, but also hardware or system-level design.

ch1-3

System Life Cycle

* There are five major phases
— Requirements
— Analysis
— Design
— Coding

— Verification

chl-4

Requirements

e All Large Programming Projects

Begin with a set of specifications

Input
Output

Frequently the initial specifications are vague, need rigorous
description.

Question: 55H A PENAFTRERI A TR TT0E (g 8888 ~ fE2E - BidEEL ?)
() ARMAEHETRE: finding C(n, m)

(2) FHEEZ (e.g., REEEFIEEFS)

3) HEHE (e.g., e =24+ 8 * 5) ZK{H > RIREFEEHEEETFEZ (Parser)

chl-5

Analysis

* The problem

— Is broken down into manageable pieces

* Two are two major approaches
— Top-down partitioning

— Bottom-up integration

Divide and conquer (D&C)

is an important algorithm design paradigm based on multi-branched recursion.

A divide and conquer algorithm works by recursively

breaking down a problem into two or more sub-problems of the same (or related) type,
until these become simple enough to be solved directly.

The solutions to the sub-problems are then combined

to give a solution to the original problem

ch1-6

Design

* The programmer designs
— Abstract data object
— Operations on those objects

* Example
— Problem: scheduling system of a university
— Typical data objects
* Students, courses, professors
— Typical operations
* Inserting, removing, searching
* So far, the programming

— Islanguage independent

chl-7

Language Independent

* For example

The student data object includes
(1) Name

(2) Social security number

(3) permission number

(4) major

(5) phone number

But we haven’t decided what is used to implement the list of
the students yet

ch1-8

Refinement and Coding

* First,
— Choose representations for data objects

— Important, since data object may determine the efficiency of
the program

* Then,

— Write algorithm for each operation

ch1-9

Verification

e This phase is to prove correctness

— (1) Testing the problem with a variety of input data

— (2) Debugging until no error exists
* Good test data example

— A program with a switch statement

— Test data should be chosen so each case branch is checked
* Debugging practices

— Spaghetti code would be a nightmare when debugging

— Test each unit then whole system

— Documentation is useful

chl-10

Outline

* Overview
— System Life Cycle

II‘ * Object-Oriented Software Design
* Data Abstraction and Encapsulation
* Basics of C++
* Algorithm Specification

* Performance Analysis and Measurement

chl-11

Object-Oriented Programming
OOP

* A fundamental change

— From the structured programming design method

— Divide-and-Conquer is still the principle

— But how a project should be decomposed is different
e Traditional Programming

— Views software as process, decomposed into functional modules

« OOP

— Views software as a set of well-defined objects
— These objects interacts with each other to form a software system

(1) 12, = HEJii#Z (Control Flow or Subroutines) +&R}45%

@) RHNER{LERULEREREZSGETRY , EREESET I HEEFER

Q) Vt-EERES :

HEREAGHEEAR—K, T —RRNERE— BB S EEERRYIE (Object)
Y4 (Object) = E4EHE (Data) + —EEBRIFES (Operations)

-12

Definitions of an Object

* An object

— Is an entity that performs computations and has a local state, a
combination of
- (1) data Operations

— (2) procedural elements (or called operations) Data

* Object-oriented programming

Is a method of implementation in which

(1) objects are the main building blocks

(2) each object is an instance of some type (or class)

(3) Classes are related to each other by inheritance
relationships

E (Object) EHERIAIRE (Class) HYZ=5!
Example: int i, j, k;

chl-13

OOP - Control Flow vs. Data Structure

BEEEEA

Tradition{:ﬂ Control flow Dat
Programming (or subroutine) ata
(e.g., C)
BESEEFER
Object-Oriented Main SReiation:
Programming Control
(e.g. C++) flow bata

Ex: A class of “array” on which you can perform “insert”, “retrieve”, “delete”
and “sort”. The elements of the array could be integer, floating point, etc.
=>» “Sorting” is originally part of the control flow, now it is part of the data structure

chl-14

Object-Oriented Language

e Three requirements
— (1) It supports objects
— (2) It requires objects to belong to a class

— (3) It supports inheritance

| Comment: True OO programs => use inheritance |

Inheritance FYEEEF: class Stack: public Bag
> “Bag” B— AL EBF LR, “Stack” B—(E{T4E MR,
=> “Stack” B DI4E K “Bag” {2475 EZHY operations and data

chl-15

Higher-Level Languages

¢ First Generation

— FORTRAN, noted as its ability to evaluate mathematical
expressions

e Second Generation

— Pascal and C, emphasize on effectively expressing algorithms

e Third Generation

— Modula, introduces abstract data types

e Fourth Generation

— Object-Oriented Languages, e.g., Smalltalk, Object C, and
C++, emphasize inheritance

chl-16

Outline

e Overview
— System Life Cycle

* Object-Oriented Software Design
||‘ e Data Abstraction and Encapsulation

e Basics of C++

e Algorithm Specification

* Performance Analysis and Measurement

chl-17

Data Abstraction & Encapsulation

* Consider a DVD Player
— (1) The manual tells what the player is supposed to do, instead of
how it does it, this is called data abstraction (ERHENE 2/ 1H
EE A AAS A B PN ETEEUASRR , 7 B REBERAER)
— (2) The internal representation is hidden from the users, this is
called encapsulation (EHIZEY: > FEUFAEME , WEBBNE
HY Operations)

chl-18

Definitions

e Data Abstraction

— Is the separation between the specification of a data object and
its implementation

e Data Encapsulation

— Or information hiding is the concealing of the implementation
details of a data object from the outside world

chl-19

Fundamental Data Types of C++

* Basic Types

— char, int, float, double

* Modification keywords

— short, long, signed, unsigned

* Grouping of Basic Types

— array, struct, and class f i g TR SR HEURTABRSE T

struct, class
* User-Defined Type | p o prasmesmrsmapons:
— typedef struct _int_pair { | i-e., class A BEXE ZEIEHY OOPERIESE

int first num;
int second_num;

} int_pair;

ch1-20

Example Data Type /nt

* Objects
- {0,+1,-1,+2, -2, ..., MAXINT, MININT}

e Operations
— %

e Abstract Data Type (ADT)

— A data type organized in a way that the specification is
separated from the implementation

chl-21

Abstract Data Type NaturalNumber

ADT NaturalNumber is
objects: An ordered subrange of the integers starting at zero and
ending at the maximum integer (MAXINT) on the computer
functions:
for all x, y e NaturalNumber; TRUE, FALSE e Boolean
and where +, -, <, ==, and = are the usual integer operations

0

if(x==0) IsZero = true

else IsZero = false
if(x+y<=MAXINT) Add = x+y
else Add = MAXINT

Zero(): NaturalNumber
IsZero(): Boolean

Add(x, y): NaturalNumber

Equal(x, y): Boolean = if(x==y) Equal =true
else Equal = false
Successor(x): NaturalNumber := if(x==MAXINT) Successor = x
else Successor =x +1
Subtract(x,y): NaturalNumber := if(x<y) Subtract =0

else Subtract =x -y
end NaturalNumber

chl-22

The Advantages of ADT (I)

e (1) Development Style

A, B, C are three abstract data types

A B
One piece of
program code
C
Glue
Good Not so good !

ch1-23

The Advantages of ADT (II)

* Testing and Debugging

— Programming styles with ADT is easier to debug

— For example, if every ADT has been tested okay, then only the
glue is checked if bugs found during integration

* Reusability
— Data abstraction gives rise to reusability
* Easier-to-modify

— Changes of a data type is localized, I.e., the rest of the program
needs not be changed accordingly.

chl-24

Problem of Not Using Data
EncaEsuIation

e Consider a program

— That directly accesses internal implementation of the data type
e Suppose a change

— Is made to the data type (I E#ZMHERERL)
* Modification is laborious

— Exhaustive search for instances that access the modified data
type and then made appropriate changes — A nightmare !

- CEREEMERFIHIERGRER)

ch1-25

Overhead of ADT

* Program is slower
— Direct data access versus subroutine invocation

— This is the main reason that C is still in widespread use

e Coding is more tedious ({H 32 H E &EEH)
— A lot of simple data-access member functions need to be
created

chl-26

Outline

* Overview
— System Life Cycle

* Object-Oriented Software Design

e Data Abstraction and Encapsulation
II‘ e Basics of C++

e Algorithm Specification

e Performance Analysis and Measurement

chl-27

Multiple File Program

* Development Cycle

— Each source C++ file is compiled individually, producing

an object file

* % g++ —c —I./include file.c —o file.o I % RAEE RGN, |

— All object files are linked together, along with other binary

library, producing a binary executable file
* Assume that there is a library file called ./lib/libmylib.a
e Linking 2> % g++ filel.o file2.0 —L./lib —lmylib —o prog
— Execute the program
* % prog <with command line arguments>

* Example: % prog —A —e 10

chl-28

Pre-Processor Directive

e The Header Files (for 5 5% [R5 ZAIFER)

— Are mostly included at the beginning of each source file

— Inclusion of a header file for multiple times creates a compilation
errors

— The following pre-processor directives can be used to avoid the
above errors

#ifndef FILENAME_H
#define FILENAME_H
/l insert contents of the header file here

#endif

ch1-29

Utility Make

* Purpose of Make

— To manage the compilation and linking of a large software
consisting of multiple files

— Avoid typing compilation commands repeatedly

* Procedure of Using Make
— Stepl: create a file called “Makefile”

— Step2: type in “make” each time when any source file or
header file is modified. In response to this command, only the
files modified will be recompiled, while the others are left
intact.

ch1-30

Example of Makefile

- define macro names -------—--
CC=g++-¢g

SOURCE = filel.c file2.c

HEADER = project.h

OBJ = $(SOURCE: .c=.0)

e perform linking when any source file or object file is changed -----
linking: $(SOURCE) $(HEADER) $(OBJ)
<tab>$(CC) $(OBJ) —o ./prog

ch1-31

Scope of Variables

* A Variable is only visible within its scope

* Four Types of Scopes

— (1) Global Scope: Variables that are available throughout the
entire program

— (2) File Scope: declarations not in a function definition or in a
class definition

— (3) Local Scope: Labels used within the function definition
(4) Class Scope: Declarations associated with a class definition

ch1-32

Example C++ Program

#include <iostream.h>

char course_name[100] = “data structure”; I A file-scope variable I

main()

{

}

inta=84: I a is a local variable |

printf(* Welcome to %s\n”, course_name);
printf(“nis %d, n+1 is %d\n”, a, add_one(a));

Int add_one(int b) | b is an input argument |

}

int ¢ I c is a local variable

printf(“ A subroutine for %s\n”, course_name);
c=b+1,;
return(c);

ch1-33

Global Variables

Problem

— A global variable defined in filel.C, and to be also used in file2.C
— > Use extern to declare the variable in file2.C

#ifdef MAIN /* macro MAIN is defined in filel.C */

int global variable;
#else

extern int global variable /* declare extern in all other files */
#endif

chl-34

Example C++ Program
— Global Variable

#include <iostream.h>

char course_name[100] = “data structure”;

Source main()

File 1 int a = 84;
printf(*Welcome to %s\n”, course_name);
printf(“nis %d, n+1 is %d\n”, a, add_one(a));

}

#include <iostream.h>

extern char course_name[100] = “data structure”;

Source Int add_one(int b)

File 2 {
printf(“ A subroutine for %s\n”, course_name);
return(b+1);

} ch1-35

C++ Statement and Operators

* Dynamic Memory Management

— “new” and “delete”

e Input/Output
— Uses shift left (<<) and shift right (>>) operators

* Operator Overloading

— An operator could have multiple functions, depending on the
types of operands that it is being applied to

chl-36

Data Declaration in C++

e (1) Constant Value
(2) Variables

(3) Constant Variable
— const int MAX = 500;

(4) Enumeration types
— enum Boolean {FALSE, TRUE};

(5) Pointers
— Hold memory addresses of objects
— inti=25;

— int *np; | np is a pointer to an integer, where * is like “taking content” |
np = &i; I np points to the location of i, where & is like “taking address”l

ch1-37

Object vs. Pointer

memory Rectangler, s;
allocation Rectangle *t = &s;
oxaaaa| oxdddd —|
symbol table
tgcgg}gt [dIE type | address

s Rectangle| oxdddd

oxdddd

Rectangle t pointer | oxaaaa

chl-38

Data Declaration in C++ (con’t)

* (6) Reference types

— A unique feature of C++, (which is not available in C)
— Is a mechanism to provide an alternative name for an object
— Example

int i=5;

int& j=i;

i=7;

printf(“i=%d, j=%d”, i, j); = both i and j are 7;

ch1-39

Outputs in C++

#include <iostream.h>

main()

{
int n=50; float f=20.3;
cout <<“n:” << n << endl;
cout << “f:” << f << endl;

}

&R
n: 50
f: 20.3

ch1-40

Inputs in C++

#include <iostream.h>

main()
{
int a, b;
cin >>a>>b;

}

&R

inputl:

510 <enter>

- will set a=5; b=10;

chl-41

File 10 in C++

#include <iostream.h>
#include <fstream.h>

main()
{
ofstream outFile(*my.out”, ios::out);
if(loutFile) {
cerr << “cannot open my.out” << endl; // standard error device
return;

int n=50; float f=20.3;
outFile <<“n: “ << n << endl;
outFile << “f: * << f << endl;

}

chl-42

Functions in C++

* Two kinds of functions
— (1) Regular functions GEKI BN HIEITER)

— (2) Member functions associated with a class

¢ A function consists of

— Name

A list of arguments, also called input signature

A return type (output)
The body

int max(int a, int b)

if(a>b) return a;
else return b;

}

ch1-43

Parameter Passing in C++

* (1) Pass by value ({S{g"Z00)

— Default mechanism

— When an object is passed by value = it is copied into the
function’s local storage

— could be slow when data to be passed is large !

* (2) Pass by reference ({EtH-IE0L)

Done by appending an & to its type specifier
E.g., int max(int& a, int& b);

When an object is passed by reference - only the address of
its location is copied into the function’s local store

faster but less secure !

chl-44

Call By Pointer Example

main()
{ . . .
inti, J;
cout << "Input 2 numbers:" << end|;
cin >>i>>j;
if(i>])
swap(&i, &j);
cout << "The smaller numberis " << i << endl;
cout << "The largeris " <<j << endl;

|

void swap(int *ptr_x, int *ptr_y) // call by pointer
{
int temp;
temp = *ptr_x;
*ptr_x = *ptr_y;
*ptr_y = temp;

Call By Reference Example

_ RERTeR L RO L R AT L R R SRR S
main()
{ . . .
inti, J;
cout << "Input 2 numbers:" << end|;
cin >>i>>j;
if(i>j)
swap(i, j);
cout << "The smaller numberis" << i << endl;
cout << "The largeris" << j << endl;

|3

void swap(int &x, int &y) // call by reference
{
int temp;
temp = x;
X=y;
y = temp;

llllll

Memory Allocation

Normal profile

Heap

Stack

heap
area
for
dynamic
allocation

free
space

stack
area

static
variables

program
code

M “new” BIREFRAVERIEE

Local Variables &l &5

SRR R

chl-47

Memory Allocation -
Subroutine Invocation

normal |nit|a|
profile profile
heap
area
for
dynamic f
allocation = After
free Space | function
space call
=)
stack
area -
main
static static
variables variables
program program
code code

free
space

rsum(...)

main

static
variables

program
code

After
function
return

—

new vars

free
space

main

static
variables

program
code

ch1-48

Pass-by-Value vs. Pass-by-Reference

Initial profile Pass by Value Pass by Reference \/
» ObjectA ™ ™™ = I :
subl(...) subl(...) subl(...)
Copy Direct
copy return - aAddress Access
main main main
Object A Object A |« @ Object A fe-~
static static static
variables variables variables
program program program
code code code

ch1-49

Pass by Const References

* A Best Method
— pass by “const T& a”, T is the type of the argument a

— Faster than pass-by-value if a large chunk of arguments to be
passed

— Better protection of the actual arguments to be passed

— Any attempt to modify a const argument in the function body
will result in a compile-time error

Improper manipulations of the input arguments
- could lead to nasty bugs

ch1-50

IHlustration:
Pass by Const References

Pass by Constant Reference

r subl(.) | |

Copy Read only access, any write attempt will
Address cause a compile-time error
main
@ Object A N
static
variables
program
code

chl-51

One Exception

* Array

Does not pass by value

Le., it is not copied to the function’s local store

Only the pointer of the first element is passed

Function is not aware of the size of the array

Often the size of an array is also passed as another argument

5 F: A subroutine that sorts an array of n integer elements
Subroutine &5 T :
float sorting(float *a, const int n) {

/I where a is the array name

ch1-52

Function Name Overloading

Function over-loading: there can be more than one functions with
the same name as long as they have different signatures

Int max(int, int);

Int max(int, int, int);
Int max(int*, int);
Int max(float, int);
Int max(int, float);

ch1-53

InLine Function

Inline int sum(int a, int b)

{
}

Inline function can eliminate the use of
certain preprocessor directives such as
#define, which is traditionally used for macro
substitution

return (at+b);

- Excessive use of pre-processors make it
harder to use debugger or profiler

chl-54

Dynamic Memory Allocation

e New

— This operator creates an object of the desired type and return
a pointer to the data type that follows it.

— It returns 0 if not being able to create it

e Delete

— Free the data allocated by “new” operator

int *ip = new int;
If(ip==0) cerr << “Memory not allocated” << end|

delete ip;

ch1-55

Creating An Array

int *jp=new int[10];
if(jp==0) cerr << “Memory not allocated” << endl
delete [] jp;

/* The operator [] is used to inform the compiler that
the object being created or deleted is an array

ch1-56

Outline

* Overview
— System Life Cycle

* Object-Oriented Software Design
e Data Abstraction and Encapsulation
* Basics of C++

II‘ * Algorithm Specification

* Performance Analysis and Measurement

chl-57

Definition

e Algorithm
— Is a finite set of instructions that, if followed, accomplishes a
particular task.
e Criteria
— Input
— Output
— Definite: each instruction is clear and unambiguous

— Finiteness: for all cases, the algorithms terminate after a finite
number of steps

— Effectiveness: each instruction must be basic enough

ch1-58

Example: Selection Sort

* Problem
— To sort a collection of n =1 integers

¢ A Solution

— From those integers that are currently unsorted, find the
smallest and place it next in the sorted list

e Selection Sort Algorithm

next

for(int i=0; i<n; i++) { sorted
/I Fixing the i-th smallest element '-h

examine afi] to a[n-1] and suppose the smallest
integer is at a[j]; / a|j] is the i-th smallest element

interchange a[i] and a[j]; .
i
) 0 1 2 3 4 5

ch1-59

Example of Selection Sort

Original array 4(8|1115]9]3

ch1-60

Selection Sort Algorithm

1. void sort (int *a, const int n)

2. /I sort the n integers a[0] to a[n-1] into non-decreasing order
3.4

4 for(int i=0; i<n; i++){

5. // find the smallest integer from a[i] to a[n-1];

6 int smallest_index = i;

7 for(int k=i+1; k<n; k++) {

8 if (a[k| < a[smallest_index]) smallest_index = k;

9

. H
10. // interchange
11. int temp=ali|; a[i]=a[smallest_index]|;
12. a[smallest_index |=temp;
13. }
14. }

The upper limit index of the “for loop” in line 4 can be changed to n-1
without damaging the correctness of the algorithm

chl-61

Binary Search

* Problem

— Assume that we have n=1 distinct integers that are already
sorted in array a[0],...a[n-1]

— Determine if an integer X is present, if so, return its index

A sub-routine compare

char compare(int x, int y)
{
if (x>y) return >’;
else if (x<y) return ‘<‘;
else return ‘=¢;
} // end of compare

SN GO g= 80 [=

chl-62

Example of Binary Search

Sorted list 1 3 4 5 8 9

To find 9
After comparing with 4 —_— 5| 8 o9
After comparing with 8 — 9
Hit the target —_— 9

ch1-63

C++ Code for Binary Search

1. binary_search (int *a, const int X, const int n)

2. /I search for the sorted array a[0],...,a[n-1] for X
3. {

4. for(int left=0, int right=n-1; left <= right;)

5. {

6. middle = (left+right) /2;

7. switch(compare(X, a[middle]){

8. case “>’: left = middle+1; break;

9. case ‘<’: right = middle-1; break;

10. case ‘=’: return middle;

11. } // end of switch

12. }// end of for | left middle right|
13. return-1;

14. } // end of binary search

chl-64

Recursive Algorithms

e Recursion

— Is similar to the method of induction which is often used to
prove mathematical statements

— (1) A basis is needed
— (2) A terminating condition is needed
e Applications

— Recursion is particularly suitable for problem recursively
defined

— E.g., Factorial n!
— E.g., Binomial coefficient C(n,m) = C(n-1,m) + C(n-1, m-1);

select @ nl
(n-m)! m!

ch1-65

Recursive Binomial Coefficient

e C(n, m) =C(n-1, m) + C(n-1, m-1);

int binomial(int n, int m)

{

if(n < m) exit(-1);
if(n==m) return(1); if(m==0) return(1);
return(binomial(n-1, m) + binomial(n-1, m-1)) ;

ch1-66

Recursive Factorial

1. factorial (int n)

2. {

3. if(n==1) return (1);

4 else return(factorial(n-1) * n);
5.}

- ~return N\
b factorial (5) | *5
program call @
| factorial (4) | * 4
[_factorial 53) [*3

[factorial 2) | *2

—
| factorial 1) | 1

chl-67

Recursive Binary Search

1. Recursive BS(int *a, const int X, const int left,

2. const int right)

3. // search for the sorted array alleft],...,a[right] for x
4. {

5. if(left <=right) {

6. int middle = (left+right) /2;

7. switch(compare(x, a[middle]){

8. case >’:

9. return(Recursive BS(a, X, middle+1, right));
10. case ‘<’:

11. return(Recursive_BS(a, X, left, middle-1));
12. case ‘=’: return middle;

13. }

14. }

15. return—1;

16. }

chl-68

Permutation

* Example

— A set of symbols {a, b, ¢}

— All possible number of permutations is n!

- {(@a, b, ¢), (a, ¢, b), (b, a, ¢), (b, ¢, a), (¢, a, b), (¢, b, 2)}
* Recursive Permutation of {a, b, c, d}

— {a, permutation of (b, ¢, d)}

{b, permutation of (a, ¢, d)}

{c, permutation of (a, b, d)}
— {d, permutation of (a, b, c¢)}

ch1-69

Demo of Recursive Permutation

Original configuration

alb|ec

@) c|b|a

Maximum recursion depth = 2

return

t)
=2
(]
=2
o
(]

chl-70

Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)

2. // generate all permutations of a[first],...,a[n-1]

3. //first - the first element in the undecided region

4. {

5. if(first==n-1) { // terminating condition

6. for(int i=0; i<n; i++) cout << a[i] << “

7. cout << endl; c|bfald
8. })

9. else{ first
10. for (i=first; i<n; i++) {

11. char temp=al[first]; a[first]=ali]; a[i]=temp;

12. perm(a, first+1, n);

13. temp=alfirst]; a[first]=ali]; a[i]=temp;

14. // return to original configuration

15. }

16. } Program 1.11
17. }

chl-71

Outline

* Overview
— System Life Cycle

* Object-Oriented Software Design

e Data Abstraction and Encapsulation
* Basics of C++

e Algorithm Specification

II‘ * Performance Analysis and Measurement

chl-72

Criteria of Judging a Program

. Is it functioning?

Speed (i.e., CPU time)

Space (i.e., memory requirement)
Documentation

Readability

Ul-hE»Nh—t

chl-73

Complexity

* Space Complexity
— The amount of memory a program needs to run to complete
e Time Complexity

— The amount of computer time a program needs to run to
complete

* Performance Analysis

— To estimate a program’s run time

e Performance Measurement

— To actually measure a program’s run time

chl-74

Space Requirement

¢ Fixed Part

— Instruction space, space for variables and constants

e Variable Part

— Depends on instance characteristics, and the recursion stack
space

— This part is more important

* Space requirement of a program P
— S(P) = ¢ + S; (instance characteristics)

c is a constant and S, is a function of the problem size

| o] DL BEAVHE instance characteristic £8j5 problem size E[iT] |

chl-75

Example: Space Complexity

float abc(float a, float b, float) {
return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

Sp(instance characteristics) = 0;
That is, space is independent of the instance characteristics

float sum(float *a, const int n) {

float s=0;

for(int i=0; i<n; i++){
s +=ali];

}

Sp(instance characteristics) = n;

chl-76

Recursive Summation

1. float rsum(float *a, const int n) {

2 if(N<=0) return 0;

3. else return(rsum(a, n-1) + a[n-1]);
4

main

program call

rsum(a,4) |+ a[3]

| rsum(a, 3) |+ a[2]
| rsum(a, 2) |+ a[1]

[rsum(a, 1) [+ a[o]

[rsum(a,0) |

chl-77

Example: Space Complexity

float rsum(float *a, const int n) {
if(n<=0) return 0;
else return(rsum(a, n-1) + a[n-1]);

(1) Instance characteristics = n
(2) Each call to rsum requires at least 4 words
space for a, n, the return value, and the return address
(3) The depth of recursion is n+1
(4) The recursion stack space is 4(n+1)
(5) For n = 1000 - stack space is 4004

chl-78

Time Complexity

* Total Time = Compile Time + Run Time

* Run Time is of more concern

— tp(instance characteristics)
e A program step

— syntactically or semantically meaningful segment of a program
* For example

— return(a+b+b*c+(a+b-c)/(a+b)+4.0;) can be regarded as a step

- because it is independent of (instance characteristics)

ch1-79
Step Counting (&%)
* (1) Comments: 0
* (2) Declarative statements: 0
— int, long, short, char, float, double, const, enum, signed, unsigned,
static, extern
— class, struct, union, template
— private, public, protected, friend
— void, virtual
* (3) Expression and Assignments: 1
e (4) Iteration Statements (for, while, do): <iteration-count>
* (5) Switch statements: for(<init-stmt>; <expr1>; <expr2>)

* (6) If-else statements: while <expr> do
do ... while <expr>

switch <expr>{
* (8) Memory management statements: 1 case condl: <statement1>

e (7) Function invocation: 1

* (9) Jump statements (break, return): 1

ch1-80

Example: Step-Counting

float sum(float *a, const int n)

{
float s=0;
count++; // count is global
for(int i=0; i<n; i++){
count++; // for for
s +=a[i];

}

count++; // for return
return s;

count++; // for assignment

count++; // for last time of for

void sum(float *a, const int n)

{
for(int i=0; i<n; i++){
count +=2;
}

count += 3;

}

ch1-81

Example: Step Counting

For Recursive Program

float rsum(float *a, const int n)

{

count++; // for if conditional
if(n <= 0){
count++; // for return
return 0;
}
else{
count++; // for return

return(rsum(a, n-1) + a[n-1]);

}
}

trsum(n) =2+ trsum(n'l)
=2+2+t.,n(n-2)
=2%2+tm(n-2)
=2n + t,o,m(0)
=2n+ 2

solved by repeated substitution

ch1-82

Example: Matrix Addition

matrix addition with counting

Simplified version

void add (matrix a, matrix b, matrix ¢, int m, int n)

{
for(inti=0;i<m;i+t)
{
count++; Il for for i
for (intj = 0; j < n; j++)
{
count++3 /| for for j
clillil=alillil+ b LG
count++; /I for assignment

}

count++; /f for last time of for j

}

count++; // for last time of for |

}

lt void add (matrix o, matrix b, matrix , int m, ink n)
I

2 for(inbi=0pi<mi+4)

3o

& for(intj=0;j<nyjte)
5 comts=d
6 comtt=;
7}

8

g

COUntH,

}

ch1-83

Tabular Method for Iterative SUM

1. float sum(float *a, const int n) {
2. float s=0;
3. for(int i=0; i<n; i++){
4. s += ali];
5. } return s;
6. }
line s/e frequency total steps
1 () 1 O
2 1 1 1
3 1 ri+1 r+1
4 1 n rn
5 1 1 1
(33 O 1 O
Total number of steps 2rn +3

s/e: steps per execution

chl-84

Tabular Method for Recursive SUM

1. float rsum(float *a, const int n) {
2 if(Nn<=0) return 0;
3. else return(rsum(a, n-1) + a[n-1]);
4. }
line sle frequency total steps
n=0 n>0 n=0 n>0
1 0 1 1 0 0
2(a) 1 1 1 1 1
2b) 1 1 10
3 l+t,5m(n-1) 0 1 0 1+t (n—1)
4 0 1 1 0 0
Total number of steps 2 2+t gmn-1)

ch1-85

Tabular Method for Matrix Addition

line void add (matrix a, matrix b, matrix c, int m, int n)
1 {
2 for (int i =05 i < m; i++)
3 for(intj=0;j<n;j++)

4 cliljl=aliljl+b1i s

5

}
line sle frequency total steps
1 0 1 0
2 1 m+1 m+1
3 1 mn+1) mn+m
4 1 mn mn
5 0 1 0

Total number of steps 2mn +2m +1

ch1-86

Step Counting of Fibonacci Numbers

1 void fibonacci (int n)
2 /I compute the Fibonacci number F,,
3¢
4 if(n<=1) cout<<n<<endl; /Fy=0and F, =1
5 else { // compute F,
6 int fn; int fam 2 = 0;int fam1=1;
7 for (int i =2; i <=n; i++) m q
8 { frm2 fAaml fn
9 fa=faml + fam?2 ;
10 fnmz:fnml; F0=0and F1=1
11 fam1= fos Fo=Fnq+F,, for n>2
12 }// end of for
13 cout << fn << endl;
15}/ end of fibonacci
Program of Fibonacci Sequence Generator
ch1-87
Summary of CPU Time Estimation
e CPU Time

— Is a function of “instance characteristics”

— Varies as the magnitudes of the inputs increase

e In BinarySearch

— The step count is dependent on the array and ‘X’ to be
searched

— Best case, average case, and the worst case are different.

ch1-88

Asymptotic & Big-O Notation

* Asymptotic Complexity
— Concerns about how space or time complexities grow as the size of the
problem’s inputs grows

* Big-O Definition

— f(n) = O(g(n)) iff there exist positive constants c and n, such that
f(n) = cg(n) for alln, n =n,

— That is, g(n) is an upper bound of f(n)
* Examples a(n)

— O(1): constant time computing f(n)

— O(n): linear

— O(n?: quadratic

— O(n%: cubic

— O(2"): exponential

— O(log n): logarithmic, O(n log n) n 0 n

ch1-89

Complexity of Polynomial

* Theorem 1.2

— Iffm)=a,n™+... +an+ a,, then f(n) = O(NM) —
* Examples

— 3n+2 = O(n) > because 3n+2 <4n for n=2

— 6+2"+n2=0(2"
An) gn, for ngo

~ 3n+2£0(1)
— 10n2+4n+2 # O(n)
No

C

ch1-90

Omega Definition

* Omega
— f(n) = Q(g(n)) iff there exist positive constants ¢ and n, such
that f(n) = cg(n) for all n, n=n,
— Thatis, g(n) is a lower bound of f(n)

— There could be multiple lower bounds, but it is often that we
choose the tight one

* Theorem 1.3 upper bound
- Iff(n)=a,n™+ ... +a;n+ a,, a, >0, then f(n) = Q(n™) S
* Examples o
— 3n+2 =Q(n) > because 3n+2 =3n for n=2 l
— 62+ n2=Qm?)
= el Iojlze(rﬂbnczzmd

ch1-91

Theta Definition

e Theta

— F(n) = O (g(n)) iff there exist positive constants ¢, and c, and n,
such that ¢, g(n) = f(n) = ¢, g(n) for all n, n=n,

— That is, g(n) is both a lower bound and upper bound of f(n)
* Theorem 1.4

— Iffm)=a,n™+... +an+a,, a >0, then f(n) = O(N™)

* Examples

3n+2 = O(n)

6 + 2"+ n? = O(2")
3n+2 £ O(1)
10n2+4n+2 # O(n)

ch1-92

Common Recurrence Relation (I)

Reducing problem size by 1
after a constant time

T(n) = T(n-1) + 1
=T(m-2)+1+1

=T(1) + (n-1)
= O(n)

E.g., iterative summation

Reducing problem size by 1
after a linear time

T(n)=T(n-1) + n
=T(m-2) + n + (n-1)

=T() + O(n?)
= 0(n?)

E.g., selection sort algorithm

ch1-93

Common Recurrence Relation (1)

Reducing problem size by 1
after a constant time

T(n) =T(n-1) + 1
= (n)

Reducing problem size by 1
after a linear time

T(n)=T(n-1) + n
= 0(?)

Z;i = n-(n+1)/2 = O(n?)

ch1-94

Common Recurrence Relation (I1)

Reducing problem size by half Reducing problem size by half
after a constant time after a linear time
T(n)=T(n/2) +1 T(n) =T(n/2) +n
=Tm/4)+1+1 =T(m/4) + n + (n/2)
=T(1) +k =T(1) + (2k+2%1+2)
Assume n = 2k
= O(log n) =O0(n)

k_.
E.g., Binary search 221 = (21-1)

ch1-95

Common Recurrence Relation (I1)

Reducing problem size by half Reducing problem size by half
after a constant time after a linear time
T(n) = T(n/2) + 1 T(n) =T(/2) +n
= O(log n) = O(n)
T | T(n) |
1
(log n) levels
see 1
1

»
T(0
| 2 e

ch1-96

Common Recurrence Relation (l11)

Split into two equal sub-problems Split into two equal sub-problems
after a constant time after a linear time
T(n) =2T(n/2) + 1 T(n) =2T(n/2) +n
=4T(n/4) + (1 +2) =4T(n/4) + n + 2(n/2)
- - k terms
=nT() + (2+2K1+2K) =nT(1) + (n+n+...+n)
=0(n) =0 - logn)

Assume n = 2k

ch1-97

Common Recurrence Relation (l11)

Split into two equal sub-problem Split into two equal sub-problems
after a constant time after a linear time
T(n)=2TM/2) +1 T(n) =2T(M/2) +n
=0(n) [=0 - logn)
T
! : ! Total number of steps
L T2 | [T0/2) | |=n- (#levels)
logn . [=(n-logn)
1 1

LTO | [T0 | - [T][T0) |

1
) 1

ch1-98

Property of Binary Tree

(2%-1) nodes k levels

/k—th level: 2k nodes \

Total number of nodes in the sub-tree
=1+2+22+ ... +2k1

=(2%1)/(2-1)

= has one node smaller than the last level

ch1-99

Comparison of Recurrence Relation

e T(n)=T(n-1)+1=0(n)
e T(n)=T([m/2) +1=0(og n)
e T(n)=T([m/2) +n=0(n)

e T(n)=2T(M/2)+1=0(n)
e T(n)=2T(@/2)+n=0O(n - log n)

Exercise: What is the complexity of a
recurrence relation T(n) = 2T(n-1) + 17?

ch1-100

Hanoi Towers

Tower 1 Tower 2 Tower 3

Goal: Move the three disks from Tower 1 to Tower 3

Rules:

(1) One disk can be moved at a time

(2) No disk can be placed on top of a disk with a smaller diameter
Complexity: T(n) = 2T(n-1) + 1 = T(n) = O(2")

ch1-101

Asymptotic Complexity Of
Permutation Generator

k are fixed
T(0, n) =(n) - T(1,n)
= (n)(n-1) - T(2,n) |
= | | n-k undecided
- (n)(n-1)2 : T(n-l,n) N is the total number elements
= (n)(n-1)2 - O(n) k is the number of positions fixed

=0(n! - n)

Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)

2. // generate all permutations of a[first],...,a[n-1]

3. //first - the first element in the undecided region

4. {

5. if(first==n-1) { // terminating condition

6. for(int i=0; i<n; i++) cout << a[i] << “

7. cout << endl; c|b
8} T
9. else{ first
10. for (i=first; i<n; i++) {

11. char temp=al[first]; a[first]=ali]; a[i]=temp;

12. perm(a, first+1, n);

13. temp=alfirst]; a[first]=ali]; a[i]=temp;

14. // return to original configuration

15. }

16. } Program 1.11
17. }

ch1-103

Magic Square

* A magic square

— Is an nxn matrix of the integers 1 to n* such that the sum of
every row, column, and diagonal is the same

AN

15 s, I 24 | 17
N
16| 14| 7| 5|23
L
¥ N

220 136 | 4
3 121019 12 10

\‘
9 M2 |25 18| 11

Time complexity of magic square = O(n?)

ch1-104

Practical Complexity

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

4 16 64 256 4096 65536

5 32 160 1024 | 32768 | 4294967296

ch1-105

Comparison of Different

ComEIexities

20

10

ch1-106

Performance Measurement

* Performance measurement
— is concerned about the actual time and space requirements of
a program
— related to compiler and computer
e Asymptotic analysis
— only tells us the behavior for “sufficiently large” values of n
e Actual time

— may not lie exactly on the predicted curve because of the
effects of low-order terms that are discarded in the asymptotic
analysis

ch1-107

Precision of Measurement Clock

* Time() command

— has a clock precision of only 1/100 second

e To time a short event

— itis necessary to repeat it several times and divide the total
time by the number of repetitions

e Random data

— is also commonly used as inputs for average time measurement

e Measurement

— could be for (1) comparison, or for (2) prediction

— Least-square approximation could be used if the asymptotic
complexity is known, e.g., (3,+ a,n + a, n logn) is used to
approximate a program with O(n logn) complexity

ch1-108

Approximation

011 ~

.010 |- f(n) = ¢;n + ¢
009 | | isused for the approximation

~

1 - 1 1 i 1 i A 1 i

)
0 10 20 30 40 SO 60 70 80 90 100
n

ch1-109

Ex1: Measure The CPU Time

type define struct _time buffer {
long utime; long stime; long cutime; long cstime;
} time_buffer;

main(){
time_buffer T;
float start, stop, cpu_time;
[¥mmmmem (1) record the start time ------- */
times(& T); start = (float) T.utime; /* a tick is 0.01 second */
[*ammmm (2) perform operations to be measured ----— */

target_function();

[¥mmmmem (3) record the stop time ----- =
times(&T); stop = (float) T.utime;

¥ (4) measure the elapsed time ------ =
cpu_time = (stop — start)/100.0;

ch1-110

Ex2: Measure The CPU Time

#include <stdlib.h>

#include <iostream.h>

#include <time.h> /i clock(K& CAIZER B ATAFTHF)

INRREEZEI clock _t clock(void)

int main(void)

{
clock t start,stop; int n;
cout<<endl<<"f A —Z&H(10-20 7 AR FHERX) " <<endl;
cin>>n;
start = clock(); /ACSRBRMRETEER
for(int i=0;i<1000000*n*n;i++) { long s; s=s+i; }
stop = clock(); &S E T LA R
double usetime;
usetime=((double)stop-(double)start)/ CLK_TCK; //EEEICLK _TCK=1000f2E i1
HARED
cout << endl << "usetime=* << usetime << "sec.“ << endl;
return 0;

}

Standard Template Library (STL)

The C++ STL (Standard Template Library) is a generic collection of
class templates and algorithms that allow programmers to easily
implement standard data structures like queues, lists and stacks.

(Informative web sites about programming in C++ using STL)
C++ reference 485 : http://www.cppreference.com/wiki/start
STL #4HE: http://www.cppreference.com/wiki/stl/start

chl-112

