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Why We Need Data Structure?

* Elementary programming course

— Emphasizes syntax of a language
— Solves small problems

— Requires simple construct like array or while

¢ This course

Provides techniques to solve large-scale problem

Data abstraction, encapsulation, algorithm specification,
performance analysis, and measurement are important

— We discuss not just “data structure” but also “Algorithm”

Problem solving techniques are applied to not just software

development, but also hardware or system-level design.
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System Life Cycle

* There are five major phases
— Requirements
— Analysis
— Design
— Coding

— Verification
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Requirements

e All Large Programming Projects

Begin with a set of specifications

Input
Output

Frequently the initial specifications are vague, need rigorous
description.

Question: 55H A PENAFTRERI A TR TT0E (g 8888 ~ fE2E - BidEEL ?)
() ARMAEHETRE: finding C(n, m)

(2) FHEEZ (e.g., REEEFIEEFS)

3) HEHE (e.g., e =24+ 8 * 5) ZK{H > RIREFEEHEEETFEZ (Parser)
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Analysis

* The problem

— Is broken down into manageable pieces

* Two are two major approaches
— Top-down partitioning

— Bottom-up integration

Divide and conquer (D&C)

is an important algorithm design paradigm based on multi-branched recursion.

A divide and conquer algorithm works by recursively

breaking down a problem into two or more sub-problems of the same (or related) type,
until these become simple enough to be solved directly.

The solutions to the sub-problems are then combined

to give a solution to the original problem
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Design

* The programmer designs
— Abstract data object
— Operations on those objects

* Example
— Problem: scheduling system of a university
— Typical data objects
* Students, courses, professors
— Typical operations
* Inserting, removing, searching
* So far, the programming

— Islanguage independent
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Language Independent

* For example

The student data object includes
(1) Name

(2) Social security number

(3) permission number

(4) major

(5) phone number

But we haven’t decided what is used to implement the list of
the students yet
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Refinement and Coding

* First,
— Choose representations for data objects

— Important, since data object may determine the efficiency of
the program

* Then,

— Write algorithm for each operation
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Verification

e This phase is to prove correctness

— (1) Testing the problem with a variety of input data

— (2) Debugging until no error exists
* Good test data example

— A program with a switch statement

— Test data should be chosen so each case branch is checked
* Debugging practices

— Spaghetti code would be a nightmare when debugging

— Test each unit then whole system

— Documentation is useful
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Outline

* Overview
— System Life Cycle

II‘ * Object-Oriented Software Design
* Data Abstraction and Encapsulation
* Basics of C++
* Algorithm Specification

* Performance Analysis and Measurement
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Object-Oriented Programming
OOP

* A fundamental change

— From the structured programming design method

— Divide-and-Conquer is still the principle

— But how a project should be decomposed is different
e Traditional Programming

— Views software as process, decomposed into functional modules

« OOP

— Views software as a set of well-defined objects
— These objects interacts with each other to form a software system

(1) 12, = HEJii#Z (Control Flow or Subroutines) +&R}45%

@) RHNER{LERULEREREZSGETRY , EREESET I HEEFER

Q) Vt-EERES :

HEREAGHEEAR—K, T —RRNERE— BB S EEERRYIE (Object)
Y4 (Object) = E4EHE (Data) + —EEBRIFES (Operations)
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Definitions of an Object

* An object

— Is an entity that performs computations and has a local state, a
combination of
- (1) data Operations

— (2) procedural elements (or called operations) Data

* Object-oriented programming

Is a method of implementation in which

(1) objects are the main building blocks

(2) each object is an instance of some type (or class)

(3) Classes are related to each other by inheritance
relationships

E (Object) EHERIAIRE (Class) HYZ=5!
Example: int i, j, k;
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OOP - Control Flow vs. Data Structure

BEEEEA

Tradition{:ﬂ Control flow Dat
Programming (or subroutine) ata
(e.g., C)
BESEEFER
Object-Oriented Main SReiation:
Programming Control
(e.g. C++) flow bata

Ex: A class of “array” on which you can perform “insert”, “retrieve”, “delete”
and “sort”. The elements of the array could be integer, floating point, etc.
=>» “Sorting” is originally part of the control flow, now it is part of the data structure
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Object-Oriented Language

e Three requirements
— (1) It supports objects
— (2) It requires objects to belong to a class

— (3) It supports inheritance

| Comment: True OO programs => use inheritance |

Inheritance FYEEEF: class Stack: public Bag
> “Bag” B— AL EBF LR, “Stack” B—(E{T4E MR,
=> “Stack” B DI4E K “Bag” {2475 EZHY operations and data
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Higher-Level Languages

¢ First Generation

— FORTRAN, noted as its ability to evaluate mathematical
expressions

e Second Generation

— Pascal and C, emphasize on effectively expressing algorithms

e Third Generation

— Modula, introduces abstract data types

e Fourth Generation

— Object-Oriented Languages, e.g., Smalltalk, Object C, and
C++, emphasize inheritance
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Outline

e Overview
— System Life Cycle

* Object-Oriented Software Design
||‘ e Data Abstraction and Encapsulation

e Basics of C++

e Algorithm Specification

* Performance Analysis and Measurement
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Data Abstraction & Encapsulation

* Consider a DVD Player
— (1) The manual tells what the player is supposed to do, instead of
how it does it, this is called data abstraction (ERHENE 2/ 1H
EE A AAS A B PN ETEEUASRR , 7 B REBERAER)
— (2) The internal representation is hidden from the users, this is
called encapsulation (EHIZEY: > FEUFAEME , WEBBNE
HY Operations)
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Definitions

e Data Abstraction

— Is the separation between the specification of a data object and
its implementation

e Data Encapsulation

— Or information hiding is the concealing of the implementation
details of a data object from the outside world
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Fundamental Data Types of C++

* Basic Types

— char, int, float, double

* Modification keywords

— short, long, signed, unsigned

* Grouping of Basic Types

— array, struct, and class f i g TR SR HEURTABRSE T

struct, class
* User-Defined Type | p o prasmesmrsmapons:
— typedef struct _int_pair { | i-e., class A BEXE ZEIEHY OOPERIESE

int first num;
int second_num;

} int_pair;

ch1-20




Example Data Type /nt

* Objects
- {0,+1,-1,+2, -2, ..., MAXINT, MININT}

e Operations
— %

e Abstract Data Type (ADT)

— A data type organized in a way that the specification is
separated from the implementation
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Abstract Data Type NaturalNumber

ADT NaturalNumber is
objects: An ordered subrange of the integers starting at zero and
ending at the maximum integer (MAXINT) on the computer
functions:
for all x, y e NaturalNumber; TRUE, FALSE e Boolean
and where +, -, <, ==, and = are the usual integer operations

0

if(x==0) IsZero = true

else IsZero = false
if(x+y<=MAXINT) Add = x+y
else Add = MAXINT

Zero(): NaturalNumber
IsZero(): Boolean

Add(x, y): NaturalNumber

Equal(x, y): Boolean = if(x==y) Equal =true
else Equal = false
Successor(x): NaturalNumber := if(x==MAXINT) Successor = x
else Successor =x +1
Subtract(x,y): NaturalNumber := if(x<y) Subtract =0

else Subtract =x -y
end NaturalNumber
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The Advantages of ADT (I)

e (1) Development Style

A, B, C are three abstract data types

A B
One piece of
program code
C
Glue
Good Not so good !
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The Advantages of ADT (II)

* Testing and Debugging

— Programming styles with ADT is easier to debug

— For example, if every ADT has been tested okay, then only the
glue is checked if bugs found during integration

* Reusability
— Data abstraction gives rise to reusability
* Easier-to-modify

— Changes of a data type is localized, I.e., the rest of the program
needs not be changed accordingly.
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Problem of Not Using Data
EncaEsuIation

e Consider a program

— That directly accesses internal implementation of the data type
e Suppose a change

— Is made to the data type (I E#ZMHERERL )
* Modification is laborious

— Exhaustive search for instances that access the modified data
type and then made appropriate changes — A nightmare !

- CEREEMERFIHIERGRER)
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Overhead of ADT

* Program is slower
— Direct data access versus subroutine invocation

— This is the main reason that C is still in widespread use

e Coding is more tedious ({H 32 H E &EEH)
— A lot of simple data-access member functions need to be
created
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Outline

* Overview
— System Life Cycle

* Object-Oriented Software Design

e Data Abstraction and Encapsulation
II‘ e Basics of C++

e Algorithm Specification

e Performance Analysis and Measurement
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Multiple File Program

* Development Cycle

— Each source C++ file is compiled individually, producing

an object file

* % g++ —c —I./include file.c —o file.o I % RAEE RGN, |

— All object files are linked together, along with other binary

library, producing a binary executable file
* Assume that there is a library file called ./lib/libmylib.a
e Linking 2> % g++ filel.o file2.0 —L./lib —lmylib —o prog
— Execute the program
* % prog <with command line arguments>

* Example: % prog —A —e 10
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Pre-Processor Directive

e The Header Files (for 5 5% [R5 ZAIFER)

— Are mostly included at the beginning of each source file

— Inclusion of a header file for multiple times creates a compilation
errors

— The following pre-processor directives can be used to avoid the
above errors

#ifndef FILENAME_H
#define FILENAME_H
/l insert contents of the header file here

#endif
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Utility Make

* Purpose of Make

— To manage the compilation and linking of a large software
consisting of multiple files

— Avoid typing compilation commands repeatedly

* Procedure of Using Make
— Stepl: create a file called “Makefile”

— Step2: type in “make” each time when any source file or
header file is modified. In response to this command, only the
files modified will be recompiled, while the others are left
intact.
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Example of Makefile

- define macro names -------—--
CC=g++-¢g

SOURCE = filel.c file2.c

HEADER = project.h

OBJ = $(SOURCE: .c=.0)

e perform linking when any source file or object file is changed -----
linking: $(SOURCE) $(HEADER) $(OBJ)
<tab>$(CC) $(OBJ) —o ./prog
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Scope of Variables

* A Variable is only visible within its scope

* Four Types of Scopes

— (1) Global Scope: Variables that are available throughout the
entire program

— (2) File Scope: declarations not in a function definition or in a
class definition

— (3) Local Scope: Labels used within the function definition
(4) Class Scope: Declarations associated with a class definition
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Example C++ Program

#include <iostream.h>

char course_name[100] = “data structure”; I A file-scope variable I

main()

{

}

inta=84: I a is a local variable |

printf(* Welcome to %s\n”, course_name);
printf(“nis %d, n+1 is %d\n”, a, add_one(a));

Int add_one(int b) | b is an input argument |

}

int ¢ I c is a local variable

printf(“ A subroutine for %s\n”, course_name);
c=b+1,;
return(c);
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Global Variables

Problem

— A global variable defined in filel.C, and to be also used in file2.C
— > Use extern to declare the variable in file2.C

#ifdef MAIN /* macro MAIN is defined in filel.C */

int global variable;
#else

extern int global variable /* declare extern in all other files */
#endif
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Example C++ Program
— Global Variable

#include <iostream.h>

char course_name[100] = “data structure”;

Source main()

File 1 int a = 84;
printf(*Welcome to %s\n”, course_name);
printf(“nis %d, n+1 is %d\n”, a, add_one(a));

}

#include <iostream.h>

extern char course_name[100] = “data structure”;

Source Int add_one(int b)

File 2 {
printf(“ A subroutine for %s\n”, course_name);
return(b+1);

} ch1-35

C++ Statement and Operators

* Dynamic Memory Management

— “new” and “delete”

e Input/Output
— Uses shift left (<<) and shift right (>>) operators

* Operator Overloading

— An operator could have multiple functions, depending on the
types of operands that it is being applied to
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Data Declaration in C++

e (1) Constant Value
(2) Variables

(3) Constant Variable
— const int MAX = 500;

(4) Enumeration types
— enum Boolean {FALSE, TRUE};

(5) Pointers
— Hold memory addresses of objects
— inti=25;

— int *np; | np is a pointer to an integer, where * is like “taking content” |
np = &i; I np points to the location of i, where & is like “taking address”l
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Object vs. Pointer

memory Rectangler, s;
allocation Rectangle *t = &s;
oxaaaa| oxdddd —|
symbol table
tgcgg}gt [dIE type | address

s Rectangle| oxdddd

oxdddd

Rectangle t pointer | oxaaaa
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Data Declaration in C++ (con’t)

* (6) Reference types

— A unique feature of C++, (which is not available in C)
— Is a mechanism to provide an alternative name for an object
— Example

int i=5;

int& j=i;

i=7;

printf(“i=%d, j=%d”, i, j); = both i and j are 7;
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Outputs in C++

#include <iostream.h>

main()

{
int n=50; float f=20.3;
cout <<“n:” << n << endl;
cout << “f:” << f << endl;

}

&R
n: 50
f: 20.3
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Inputs in C++

#include <iostream.h>

main()
{
int a, b;
cin >>a>>b;

}

&R

inputl:

510 <enter>

- will set a=5; b=10;
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File 10 in C++

#include <iostream.h>
#include <fstream.h>

main()
{
ofstream outFile(*my.out”, ios::out);
if(loutFile) {
cerr << “cannot open my.out” << endl; // standard error device
return;

int n=50; float f=20.3;
outFile <<“n: “ << n << endl;
outFile << “f: * << f << endl;

}
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Functions in C++

* Two kinds of functions
— (1) Regular functions GEKI BN HIEITER)

— (2) Member functions associated with a class

¢ A function consists of

— Name

A list of arguments, also called input signature

A return type (output)
The body

int max(int a, int b)

if(a>b) return a;
else return b;

}
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Parameter Passing in C++

* (1) Pass by value ({S{g"Z00)

— Default mechanism

— When an object is passed by value = it is copied into the
function’s local storage

— could be slow when data to be passed is large !

* (2) Pass by reference ({EtH-IE0L)

Done by appending an & to its type specifier
E.g., int max(int& a, int& b);

When an object is passed by reference - only the address of
its location is copied into the function’s local store

faster but less secure !
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Call By Pointer Example

main()
{ . . .
inti, J;
cout << "Input 2 numbers:" << end|;
cin >>i>>j;
if(i>])
swap(&i, &j);
cout << "The smaller numberis " << i << endl;
cout << "The largeris " <<j << endl;

|

void swap(int *ptr_x, int *ptr_y) // call by pointer
{
int temp;
temp = *ptr_x;
*ptr_x = *ptr_y;
*ptr_y = temp;

Call By Reference Example

_ RERTeR L RO L R AT L R R SRR S
main()
{ . . .
inti, J;
cout << "Input 2 numbers:" << end|;
cin >>i>>j;
if(i>j)
swap(i, j);
cout << "The smaller numberis" << i << endl;
cout << "The largeris" << j << endl;

|3

void swap(int &x, int &y) // call by reference
{
int temp;
temp = x;
X=y;
y = temp;

llllll




Memory Allocation

Normal profile

Heap

Stack

heap
area
for
dynamic
allocation

free
space

stack
area

static
variables

program
code

M “new” BIREFRAVERIEE

Local Variables &l &5

SRR R
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Memory Allocation -
Subroutine Invocation

normal |nit|a|
profile profile
heap
area
for
dynamic f
allocation = After
free Space | function
space call
=)
stack
area -
main
static static
variables variables
program program
code code

free
space

rsum(...)

main

static
variables

program
code

After
function
return

—

new vars

free
space

main

static
variables

program
code
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Pass-by-Value vs. Pass-by-Reference

Initial profile Pass by Value Pass by Reference \/
» ObjectA ™ ™™ = I :
subl(...) subl(...) subl(...)
Copy Direct
copy return - aAddress Access
main main main
Object A Object A |« @ Object A fe-~
static static static
variables variables variables
program program program
code code code
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Pass by Const References

* A Best Method
— pass by “const T& a”, T is the type of the argument a

— Faster than pass-by-value if a large chunk of arguments to be
passed

— Better protection of the actual arguments to be passed

— Any attempt to modify a const argument in the function body
will result in a compile-time error

Improper manipulations of the input arguments
- could lead to nasty bugs
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IHlustration:
Pass by Const References

Pass by Constant Reference

r subl(.) | |

Copy Read only access, any write attempt will
Address cause a compile-time error
main
@ Object A N
static
variables
program
code
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One Exception

* Array

Does not pass by value

Le., it is not copied to the function’s local store

Only the pointer of the first element is passed

Function is not aware of the size of the array

Often the size of an array is also passed as another argument

5 F: A subroutine that sorts an array of n integer elements
Subroutine &5 T :
float sorting(float *a, const int n) {

/I where a is the array name
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Function Name Overloading

Function over-loading: there can be more than one functions with
the same name as long as they have different signatures

Int max(int, int);

Int max(int, int, int);
Int max(int*, int);
Int max(float, int);
Int max(int, float);
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InLine Function

Inline int sum(int a, int b)

{
}

Inline function can eliminate the use of
certain preprocessor directives such as
#define, which is traditionally used for macro
substitution

return (at+b);

- Excessive use of pre-processors make it
harder to use debugger or profiler
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Dynamic Memory Allocation

e New

— This operator creates an object of the desired type and return
a pointer to the data type that follows it.

— It returns 0 if not being able to create it

e Delete

— Free the data allocated by “new” operator

int *ip = new int;
If(ip==0) cerr << “Memory not allocated” << end|

delete ip;
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Creating An Array

int *jp=new int[10];
if(jp==0) cerr << “Memory not allocated” << endl
delete [ ] jp;

/* The operator [ ] is used to inform the compiler that
the object being created or deleted is an array
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Outline

* Overview
— System Life Cycle

* Object-Oriented Software Design
e Data Abstraction and Encapsulation
* Basics of C++

II‘ * Algorithm Specification

* Performance Analysis and Measurement
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Definition

e Algorithm
— Is a finite set of instructions that, if followed, accomplishes a
particular task.
e Criteria
— Input
— Output
— Definite: each instruction is clear and unambiguous

— Finiteness: for all cases, the algorithms terminate after a finite
number of steps

— Effectiveness: each instruction must be basic enough
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Example: Selection Sort

* Problem
— To sort a collection of n =1 integers

¢ A Solution

— From those integers that are currently unsorted, find the
smallest and place it next in the sorted list

e Selection Sort Algorithm

next

for(int i=0; i<n; i++) { sorted
/I Fixing the i-th smallest element '-h

examine afi] to a[n-1] and suppose the smallest
integer is at a[j]; / a|j] is the i-th smallest element

interchange a[i] and a[j]; .
i
) 0 1 2 3 4 5
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Example of Selection Sort

Original array 4(8|1115]9]3
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Selection Sort Algorithm

1. void sort (int *a, const int n)

2. /I sort the n integers a[0] to a[n-1] into non-decreasing order
3.4

4 for(int i=0; i<n; i++){

5. // find the smallest integer from a[i] to a[n-1];

6 int smallest_index = i;

7 for(int k=i+1; k<n; k++) {

8 if (a[k| < a[smallest_index]) smallest_index = k;

9

. H
10. // interchange
11. int temp=ali|; a[i]=a[smallest_index]|;
12. a[smallest_index |=temp;
13. }
14. }

The upper limit index of the “for loop” in line 4 can be changed to n-1
without damaging the correctness of the algorithm
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Binary Search

* Problem

— Assume that we have n=1 distinct integers that are already
sorted in array a[0],...a[n-1]

— Determine if an integer X is present, if so, return its index

A sub-routine compare

char compare(int x, int y)
{
if (x>y) return >’;
else if (x<y) return ‘<‘;
else return ‘=¢;
} // end of compare

SN GO g= 80 [ =
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Example of Binary Search

Sorted list 1 3 4 5 8 9

To find 9
After comparing with 4 —_— 5| 8 o9
After comparing with 8 — 9
Hit the target —_— 9
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C++ Code for Binary Search

1. binary_search (int *a, const int X, const int n)

2. /I search for the sorted array a[0],...,a[n-1] for X
3. {

4. for(int left=0, int right=n-1; left <= right;)

5. {

6. middle = (left+right) /2;

7. switch(compare(X, a[middle]){

8. case “>’: left = middle+1; break;

9. case ‘<’: right = middle-1; break;

10. case ‘=’: return middle;

11. } // end of switch

12.  }// end of for | left  middle  right|
13. return-1;

14. } // end of binary search

chl-64




Recursive Algorithms

e Recursion

— Is similar to the method of induction which is often used to
prove mathematical statements

— (1) A basis is needed
— (2) A terminating condition is needed
e Applications

— Recursion is particularly suitable for problem recursively
defined

— E.g., Factorial n!
— E.g., Binomial coefficient C(n,m) = C(n-1,m) + C(n-1, m-1);

select @ nl
(n-m)! m!
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Recursive Binomial Coefficient

e C(n, m) =C(n-1, m) + C(n-1, m-1);

int binomial(int n, int m)

{

if(n < m) exit(-1);
if(n==m) return(1); if(m==0) return(1);
return( binomial(n-1, m) + binomial(n-1, m-1) ) ;
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Recursive Factorial

1. factorial (int n)

2. {

3. if(n==1) return (1);

4 else return( factorial(n-1) * n);
5.}

- ~return N\
b factorial (5) | *5
program call @
| factorial (4) | * 4
[_factorial 53) [ *3

[ factorial 2) | *2

—
| factorial 1) | 1
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Recursive Binary Search

1. Recursive BS(int *a, const int X, const int left,

2. const int right)

3. // search for the sorted array alleft],...,a[right] for x
4. {

5.  if(left <=right) {

6. int middle = (left+right) /2;

7. switch(compare(x, a[middle]){

8. case >’:

9. return(Recursive BS(a, X, middle+1, right));
10. case ‘<’:

11. return(Recursive_BS(a, X, left, middle-1));
12. case ‘=’: return middle;

13. }

14. }

15. return—1;

16. }
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Permutation

* Example

— A set of symbols {a, b, ¢}

— All possible number of permutations is n!

- {(@a, b, ¢), (a, ¢, b), (b, a, ¢), (b, ¢, a), (¢, a, b), (¢, b, 2)}
* Recursive Permutation of {a, b, c, d}

— {a, permutation of (b, ¢, d)}

{b, permutation of (a, ¢, d)}

{c, permutation of (a, b, d)}
— {d, permutation of (a, b, c¢)}
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Demo of Recursive Permutation

Original configuration

alb|ec

@ ) c|b|a

Maximum recursion depth = 2

return

t)
=2
(]
=2
o
(]
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Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)

2. // generate all permutations of a[first],...,a[n-1]

3. //first - the first element in the undecided region

4. {

5. if(first==n-1) { // terminating condition

6. for(int i=0; i<n; i++) cout << a[i] << “

7. cout << endl; c|bfald
8. } )

9. else{ first
10. for (i=first; i<n; i++) {

11. char temp=al[first]; a[first]=ali]; a[i]=temp;

12. perm(a, first+1, n);

13. temp=alfirst]; a[first]=ali]; a[i]=temp;

14. // return to original configuration

15. }

16. } Program 1.11
17. }
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Outline

* Overview
— System Life Cycle

* Object-Oriented Software Design

e Data Abstraction and Encapsulation
* Basics of C++

e Algorithm Specification

II‘ * Performance Analysis and Measurement
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Criteria of Judging a Program

. Is it functioning?

Speed (i.e., CPU time)

Space (i.e., memory requirement)
Documentation

Readability

Ul-hE»Nh—t
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Complexity

* Space Complexity
— The amount of memory a program needs to run to complete
e Time Complexity

— The amount of computer time a program needs to run to
complete

* Performance Analysis

— To estimate a program’s run time

e Performance Measurement

— To actually measure a program’s run time
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Space Requirement

¢ Fixed Part

— Instruction space, space for variables and constants

e Variable Part

— Depends on instance characteristics, and the recursion stack
space

— This part is more important

* Space requirement of a program P
— S(P) = ¢ + S; (instance characteristics)

c is a constant and S, is a function of the problem size

| o] DL BEAVHE instance characteristic £8j5 problem size E[iT] |
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Example: Space Complexity

float abc(float a, float b, float ) {
return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

Sp(instance characteristics) = 0;
That is, space is independent of the instance characteristics

float sum(float *a, const int n) {

float s=0;

for(int i=0; i<n; i++){
s +=ali];

}

Sp(instance characteristics) = n;
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Recursive Summation

1. float rsum(float *a, const int n) {

2 if(N<=0) return 0;

3. else return(rsum(a, n-1) + a[n-1]);
4

main

program call

rsum(a,4) |+ a[3]

| rsum(a, 3) |+ a[2]
| rsum(a, 2) |+ a[1]

[ rsum(a, 1) [+ a[o]

[ rsum(a,0) |
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Example: Space Complexity

float rsum(float *a, const int n) {
if(n<=0) return 0;
else return(rsum(a, n-1) + a[n-1]);

(1) Instance characteristics = n
(2) Each call to rsum requires at least 4 words
space for a, n, the return value, and the return address
(3) The depth of recursion is n+1
(4) The recursion stack space is 4(n+1)
(5) For n = 1000 - stack space is 4004
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Time Complexity

* Total Time = Compile Time + Run Time

* Run Time is of more concern

— tp(instance characteristics)
e A program step

— syntactically or semantically meaningful segment of a program
* For example

— return(a+b+b*c+(a+b-c)/(a+b)+4.0;) can be regarded as a step

- because it is independent of (instance characteristics)
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Step Counting (&%)
* (1) Comments: 0
* (2) Declarative statements: 0
— int, long, short, char, float, double, const, enum, signed, unsigned,
static, extern
— class, struct, union, template
— private, public, protected, friend
— void, virtual
* (3) Expression and Assignments: 1
e (4) Iteration Statements (for, while, do): <iteration-count>
* (5) Switch statements: for( <init-stmt>; <expr1>; <expr2>)

* (6) If-else statements: while <expr> do
do ... while <expr>

switch <expr>{
* (8) Memory management statements: 1 case condl: <statement1>

e (7) Function invocation: 1

*  (9) Jump statements (break, return): 1
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Example: Step-Counting

float sum(float *a, const int n)

{
float s=0;
count++; // count is global
for(int i=0; i<n; i++){
count++; // for for
s +=a[i];

}

count++; // for return
return s;

count++; // for assignment

count++; // for last time of for

void sum(float *a, const int n)

{
for(int i=0; i<n; i++){
count +=2;
}

count += 3;

}

ch1-81

Example: Step Counting

For Recursive Program

float rsum(float *a, const int n)

{

count++; // for if conditional
if(n <= 0){
count++; // for return
return 0;
}
else{
count++; // for return

return(rsum(a, n-1) + a[n-1]);

}
}

trsum(n) =2+ trsum(n'l)
=2+2+t.,n(n-2)
=2%2+tm(n-2)
=2n + t,o,m(0)
=2n+ 2

solved by repeated substitution
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Example: Matrix Addition

matrix addition with counting

Simplified version

void add (matrix a, matrix b, matrix ¢, int m, int n)

{
for(inti=0;i<m;i+t)
{
count++; Il for for i
for (intj = 0; j < n; j++)
{
count++3 /| for for j
clillil=alillil+ b LG
count++; /I for assignment

}

count++; /f for last time of for j

}

count++; // for last time of for |

}

lt void add (matrix o, matrix b, matrix , int m, ink n)
I

2 for(inbi=0pi<mi+4)

3o

& for(intj=0;j<nyjte)
5 comts=d
6 comtt=;
7}

8

g

COUntH,

}
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Tabular Method for Iterative SUM

1. float sum(float *a, const int n) {
2. float s=0;
3. for(int i=0; i<n; i++){
4. s += ali];
5. } return s;
6. }
line s/e frequency total steps
1 () 1 O
2 1 1 1
3 1 ri+1 r+1
4 1 n rn
5 1 1 1
(33 O 1 O
Total number of steps 2rn +3

s/e: steps per execution
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Tabular Method for Recursive SUM

1. float rsum(float *a, const int n) {
2 if(Nn<=0) return 0;
3. else return(rsum(a, n-1) + a[n-1]);
4. }
line sle frequency total steps
n=0 n>0 n=0 n>0
1 0 1 1 0 0
2(a) 1 1 1 1 1
2b) 1 1 10
3 l+t,5m(n-1) 0 1 0 1+t (n—1)
4 0 1 1 0 0
Total number of steps 2 2+t gmn-1)
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Tabular Method for Matrix Addition

line void add (matrix a, matrix b, matrix c, int m, int n)
1 {
2 for (int i =05 i < m; i++)
3 for(intj=0;j<n;j++)

4 cliljl=aliljl+b1i s

5

}
line sle frequency total steps
1 0 1 0
2 1 m+1 m+1
3 1 mn+1) mn+m
4 1 mn mn
5 0 1 0

Total number of steps 2mn +2m +1
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Step Counting of Fibonacci Numbers

1 void fibonacci (int n)
2 /I compute the Fibonacci number F,,
3¢
4 if(n<=1) cout<<n<<endl; /Fy=0and F, =1
5 else { // compute F,
6 int fn; int fam 2 = 0;int fam1=1;
7 for (int i =2; i <=n; i++) m q
8 { frm2 fAaml fn
9 fa=faml + fam?2 ;
10 fnmz:fnml; F0=0and F1=1
11 fam1= fos Fo=Fnq+F,, for n>2
12 }// end of for
13 cout << fn << endl;
15}/ end of fibonacci
Program of Fibonacci Sequence Generator
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Summary of CPU Time Estimation
e CPU Time

— Is a function of “instance characteristics”

— Varies as the magnitudes of the inputs increase

e In BinarySearch

— The step count is dependent on the array and ‘X’ to be
searched

— Best case, average case, and the worst case are different.
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Asymptotic & Big-O Notation

* Asymptotic Complexity
— Concerns about how space or time complexities grow as the size of the
problem’s inputs grows

* Big-O Definition

— f(n) = O(g(n)) iff there exist positive constants c and n, such that
f(n) = cg(n) for alln, n =n,

— That is, g(n) is an upper bound of f(n)
* Examples a(n)

— O(1): constant time computing f(n)

— O(n): linear

— O(n?: quadratic

— O(n%: cubic

— O(2"): exponential

— O(log n): logarithmic, O(n log n) n 0 n
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Complexity of Polynomial

* Theorem 1.2

— Iffm)=a,n™+... +an+ a,, then f(n) = O(NM) —
* Examples

— 3n+2 = O(n) > because 3n+2 <4n for n=2

— 6+2"+n2=0(2"
An) gn, for ngo

~ 3n+2£0(1)
— 10n2+4n+2 # O(n)
No

C
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Omega Definition

* Omega
— f(n) = Q(g(n)) iff there exist positive constants ¢ and n, such
that f(n) = cg(n) for all n, n=n,
— Thatis, g(n) is a lower bound of f(n)

— There could be multiple lower bounds, but it is often that we
choose the tight one

* Theorem 1.3 upper bound
- Iff(n)=a,n™+ ... +a;n+ a,, a, >0, then f(n) = Q(n™) S
* Examples o
— 3n+2 =Q(n) > because 3n+2 =3n for n=2 l
— 62+ n2=Qm?)
= el Iojlze(rﬂbnczzmd

ch1-91

Theta Definition

e Theta

— F(n) = O (g(n)) iff there exist positive constants ¢, and c, and n,
such that ¢, g(n) = f(n) = ¢, g(n) for all n, n=n,

— That is, g(n) is both a lower bound and upper bound of f(n)
* Theorem 1.4

— Iffm)=a,n™+... +an+a,, a >0, then f(n) = O(N™)

* Examples

3n+2 = O(n)

6 + 2"+ n? = O(2")
3n+2 £ O(1)
10n2+4n+2 # O(n)
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Common Recurrence Relation (I)

Reducing problem size by 1
after a constant time

T(n) = T(n-1) + 1
=T(m-2)+1+1

=T(1) + (n-1)
= O(n)

E.g., iterative summation

Reducing problem size by 1
after a linear time

T(n)=T(n-1) + n
=T(m-2) + n + (n-1)

=T() + O(n?)
= 0(n?)

E.g., selection sort algorithm
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Common Recurrence Relation (1)

Reducing problem size by 1
after a constant time

T(n) =T(n-1) + 1
= (n)

Reducing problem size by 1
after a linear time

T(n)=T(n-1) + n
= 0(?)

Z;i = n-(n+1)/2 = O(n?)
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Common Recurrence Relation (I1)

Reducing problem size by half Reducing problem size by half
after a constant time after a linear time
T(n)=T(n/2) +1 T(n) =T(n/2) +n
=Tm/4)+1+1 =T(m/4) + n + (n/2)
=T(1) +k =T(1) + (2k+2%1+2)
Assume n = 2k
= O(log n) =O0(n)

k_.
E.g., Binary search 221 = (21-1)
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Common Recurrence Relation (I1)

Reducing problem size by half Reducing problem size by half
after a constant time after a linear time
T(n) = T(n/2) + 1 T(n) =T(/2) +n
= O(log n) = O(n)
T | T(n) |
1
(log n) levels
see 1
1

»
T(0
| 2 e
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Common Recurrence Relation (l11)

Split into two equal sub-problems Split into two equal sub-problems
after a constant time after a linear time
T(n) =2T(n/2) + 1 T(n) =2T(n/2) +n
=4T(n/4) + (1 +2) =4T(n/4) + n + 2(n/2)
- - k terms
=nT() + (2+2K1+2K) =nT(1) + (n+n+...+n)
=0(n) =0 - logn)

Assume n = 2k
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Common Recurrence Relation (l11)

Split into two equal sub-problem Split into two equal sub-problems
after a constant time after a linear time
T(n)=2TM/2) +1 T(n) =2T(M/2) +n
=0(n) [ =0 - logn)
T
! : ! Total number of steps
L T2 | [ T0/2) | |=n- (#levels)
logn . [=(n-logn)
1 1

LTO | [ T0 | - [T ][ T0) |

1
) 1
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Property of Binary Tree

(2%-1) nodes k levels

/k—th level: 2k nodes \

Total number of nodes in the sub-tree
=1+2+22+ ... +2k1

=(2%1)/(2-1)

= has one node smaller than the last level

ch1-99

Comparison of Recurrence Relation

e T(n)=T(n-1)+1=0(n)
e T(n)=T([m/2) +1=0(og n)
e T(n)=T([m/2) +n=0(n)

e T(n)=2T(M/2)+1=0(n)
e T(n)=2T(@/2)+n=0O(n - log n)

Exercise: What is the complexity of a
recurrence relation T(n) = 2T(n-1) + 17?
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Hanoi Towers

Tower 1 Tower 2 Tower 3

Goal: Move the three disks from Tower 1 to Tower 3

Rules:

(1) One disk can be moved at a time

(2) No disk can be placed on top of a disk with a smaller diameter
Complexity: T(n) = 2T(n-1) + 1 = T(n) = O(2")
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Asymptotic Complexity Of
Permutation Generator

k are fixed
T(0, n) =(n) - T(1,n)
= (n)(n-1) - T(2,n) |
= | | n-k undecided
- (n)(n-1)2 : T(n-l,n) N is the total number elements
= (n)(n-1)2 - O(n) k is the number of positions fixed

=0(n! - n)




Recursive Permutation Generator

1. void perm (char *a, const int first, const int n)

2. // generate all permutations of a[first],...,a[n-1]

3. //first - the first element in the undecided region

4. {

5. if(first==n-1) { // terminating condition

6. for(int i=0; i<n; i++) cout << a[i] << “

7. cout << endl; c|b
8} T
9. else{ first
10. for (i=first; i<n; i++) {

11. char temp=al[first]; a[first]=ali]; a[i]=temp;

12. perm(a, first+1, n);

13. temp=alfirst]; a[first]=ali]; a[i]=temp;

14. // return to original configuration

15. }

16. } Program 1.11
17. }
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Magic Square

* A magic square

— Is an nxn matrix of the integers 1 to n* such that the sum of
every row, column, and diagonal is the same

AN

15 s, I 24 | 17
N
16| 14| 7| 5|23
L
¥ N

220 136 | 4
3 121019 12 10

\‘
9 M2 |25 18| 11

Time complexity of magic square = O(n?)
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Practical Complexity

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

4 16 64 256 4096 65536

5 32 160 1024 | 32768 | 4294967296

ch1-105

Comparison of Different

ComEIexities

20

10
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Performance Measurement

* Performance measurement
— is concerned about the actual time and space requirements of
a program
— related to compiler and computer
e Asymptotic analysis
— only tells us the behavior for “sufficiently large” values of n
e Actual time

— may not lie exactly on the predicted curve because of the
effects of low-order terms that are discarded in the asymptotic
analysis
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Precision of Measurement Clock

* Time() command

— has a clock precision of only 1/100 second

e To time a short event

— itis necessary to repeat it several times and divide the total
time by the number of repetitions

e Random data

— is also commonly used as inputs for average time measurement

e Measurement

— could be for (1) comparison, or for (2) prediction

— Least-square approximation could be used if the asymptotic
complexity is known, e.g., (3,+ a,n + a, n logn) is used to
approximate a program with O(n logn) complexity
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Approximation

011 ~

.010 |- f(n) = ¢;n + ¢
009 | | isused for the approximation

~

1 - 1 1 i 1 i A 1 i

)
0 10 20 30 40 SO 60 70 80 90 100
n
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Ex1: Measure The CPU Time

type define struct _time buffer {
long utime; long stime; long cutime; long cstime;
} time_buffer;

main(){
time_buffer T;
float start, stop, cpu_time;
[¥mmmmem (1) record the start time ------- */
times( & T ); start = (float) T.utime; /* a tick is 0.01 second */
[*ammmm (2) perform operations to be measured ----— */

target_function();

[¥mmmmem (3) record the stop time ----- =
times(&T); stop = (float) T.utime;

¥ (4) measure the elapsed time ------ =
cpu_time = (stop — start)/100.0;
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Ex2: Measure The CPU Time

#include <stdlib.h>

#include <iostream.h>

#include <time.h> /i clock( K& CAIZER B ATAFTHF )

INRREEZEI clock _t clock(void)

int main(void)

{
clock t start,stop; int n;
cout<<endl<<"f A —Z&H(10-20 7 AR FHERX) " <<endl;
cin>>n;
start = clock();  /ACSRBRMRETEER
for(int i=0;i<1000000*n*n;i++) { long s; s=s+i; }
stop = clock(); &S E T LA R
double usetime;
usetime=((double)stop-(double)start)/ CLK_TCK; //EEEICLK _TCK=1000f2E i1
HARED
cout << endl << "usetime=* << usetime << "sec.“ << endl;
return 0;

}

Standard Template Library (STL)

The C++ STL (Standard Template Library) is a generic collection of
class templates and algorithms that allow programmers to easily
implement standard data structures like queues, lists and stacks.

(Informative web sites about programming in C++ using STL)
C++ reference 485 : http://www.cppreference.com/wiki/start
STL #4HE: http://www.cppreference.com/wiki/stl/start
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A Class

e Four components of a class
— A class name
— Data members
— Member functions

— Levels of program access
e Public: data or functions can be accessed from anywhere

¢ Protected: accessed from within its class, from its sub-class,
or from a friend class

e Private: accessed from within its class or by a friend class

ch2-3

Definition of a Class for Rectangle

#ifndef RECTANGLE_H
#define RECTANGLE_H
// In the header file Rectangle.h
class Rectrangle {
publie: /I the following members are public
// The next four members are member functions
Rectangle(); // constructor
"Rectangle();  // destructor
int GetHeight(); // returns the height of the rectangle
int GetWidth(); // returns the width of the rectangle
private: // the following members are private
// the following members are data members
int x1, y1, h, w;
// (x1, y1) are the coordinates of the bottom left corner of the rectangle
!/ w is the width of the rectangle; 4 is the height of the rectangle
|5
#endif
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Special Class Operations

¢ Constructor

— Is a member function which initializes data members of an
object

— If provided, it is automatically executed when an object of that
class is created

— If not provided, data members are not properly initialized

¢ Destructor

— is member function which deletes data members immediately
before the object disappears

— Invoked automatically when a class object goes out of scope or
explicitly deleted
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Implementation of Operations on
Rectangle

/[ In the source file Rectangle.C
#include “Rectangle.h”

// The prefix “Rectangle::” identifies GetHeight() and GetWidth()
/I as member functions belonging to class Rectangle. It is required
// because the member functions are implemented outside their

/I class definition

int Rectangle::GetHeight() { return h; }
int Rectangle::GetWidth() { return w; }
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Example: Object Usage

main(} {
Rectangle r, s3

/! In a source file main.C
#include <iostream.h>
#include "Rectangle.h"

/l r and s are objects of class Rectangle
Rectangle *t = &s; /l t is a pointer to class object s

// use - to access members of class objects.

// use — to access members of class objects through pointers.

if (r.GetHeight () * r.GetWidth () > t >GetHeight () * t >GetWidth ()
cout<<"r";

else cout << "s";

cout << "has the greater area" << endl;

}
ch2-7
Object vs. Pointer
’I‘I‘emgry Rectangler, s;
aflocation Rectangle *t = &s;
- LedEE | symbol table
pointer
to object name type address
I s Rectangle | Oxdddd
Oxdddd -
Rectangle t pointer Oxaaaa
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Example: Constructor

1. Rectangle::Rectangle(int X, int y, int height, int width)
2. {

3 x1=x; yl=y;

4. h = height; w = width;

5.}

6

- a constructor must be public, and has no return type

Example: initializes Rectangle objects:
Rectangle r(1, 3, 6, 6);
Rectangle *s = new Rectangle(0, 0, 3, 4)

Example:Illegal declaration
Once a constructor is defined, proper input arguments for
initialization must be provided
- otherwise, it is a compile-time error
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Efficient Yet Sophisticated
Constructor

1. Rectangle::Rectangle(int x=0, int y=0, int height=0, int
width=0): x1(x), y1 (y), h (height), w (width)
2. §

The data members are initialized by using a member
initialization list

(i.e., colon followed by a list of data members and the
arguments to

which they are to be initialized in parentheses)

- Directly initializes the data members in a single step
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Operator Overloading

* Overload operators for user-defined data types

— Is allowed in C++

— Takes the form of a class member function or an ordinary
function

SRS o

int Rectangle::operator==(const Rectangle& s)

{

if(this == &s) return(1); // check if two objects are the same
if((x1 == s.x1) && (y1 ==s.y1) && (h ==s.h) (w ==s.w) {
return(1);

}

else return(0); “this” is the pointer to the

} data object upon which

the operator is performed

ch2-11
Example: Overload Operator==

1. #include <iostream.h>

2. class complex{

3. public:

4. complex(int re, int im){ real = re; imaginary = im; }

S. int get_real(){ return(real); }

6. int get_imaginary(){ return(imaginary); }

7o int operator == (complex x){

8. if(real == x.get_real() && imaginary == x.get_imaginary())

9. return(1);

10. else return(0);

11. }

12. private:

13. int real; int imaginary;

14. };

15.

16. main(){

17. int i;

18. complex a(1,2), b(3, 4);

19. cout << (a ==bh);

20. }
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Example: Overload Operator<<

1. ostream& operator<<(ostream& os, Rectangle& r)
2. ¢

3 0s << “Position is: “ << r.X1 <<« “;

4. 0s << r.yl <<endl;

5. 0s << “Height is: “ << r.h << endl;

6 0s << “Width is: “ << r.w << endl;

7 return os;

8

}

Operator< < accesses private data members of class Rectangle

- therefore, it must be made a friend of Rectangle.

Note that: friend is an exception of data encapsulation, should be avoided
in most cases. But sometimes it is necessary as in this case.

Example: cout << r;
- Positionis: 1 3

- Heightis: 6
> Widthiis: 6
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Example: Overload Operator<<
1. #include "iostream.h"
2. class complex{
3. public:
4. complex(int re, int im){ real = re; imaginary = im; }
5. int get_real(){ return(real); }
6. int get_imaginary(){ return(imaginary); }
7. friend ostream& operator<<(ostream&, complex);
8. private: |
9. int real; int imaginary; declare operator< <
10. }; as a friend operator
11. ostream& operator<<(ostreamé& os, complex x){
12. os << x.get_real() << endl;
13. os << x.get_imaginary() <<endl ;
14. return(os);
15. }
16. main(){
17. int i;
18. complex a(l, 2), b(3, 4);
19. < b; // will be illegal if the return type of <<is not ostream&
20. }
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Miscellaneous Topics

e Struct

— Isidentical to a class, except that the default level of access is
public.

— In a class, the default is private
e Union

— A struct that reserves storage for the largest of its data
members

— Useful for applications where only one of many possible data
items need to be stored at any time

e Static class data member

— May be thought of as a global variable for its class

— A definition of the data member outside the class definition is
required
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Example of Union

1. structpair {

2. int nl;/f32bits A pairrequires 2x32 bits = 64 bits
3. float n2; // 32 bits

4. }

1. struct exclusive_pair {

2 union {

3. int nl; // 32 bits

4. float n2; // 32 bits

5 ¥5

6. } \

An exclusive_pair contains only —
an integer or a floating point number
= requires only 32 bits
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Example of Using Union

1. #include <iostream.h>

2. typedef struct _exclusive pair {
3. union {

4. int nl;

5. int n2;

6. }

7. }ex_pair;

8. main()

9. {

10. ex_pairp;

11. p.nl=1; p.n2=10;

12. cout<<p.nl <<% “<<p.n2;
13. }

- (Result): 10 10
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C++ ADT for Natural Numbers

class NaturalNumber {
// An ordered subrange of the integers starting at zero and ending at
// the maximum integer (MAXINT) on the computer
public:
| NaturalNumber Zero( ); I
// returns O

| Boolean IsZero( ); |
// if *this is O, return TRUE; otherwise, return FALSE

I NaturalNumber Add(NaturalNumber y); I
// return the smaller of #this + y and MAXINT;

| Boolean Equal(NaruralNumber y); |
// return TRUE if *this == y; otherwise return FALSE

| NaturalNumber Successor( );
// it *this is MAXINT return MAXINT; otherwise return *this + 1

I NaturalNumber Subtract(NaturalNumber y); I
// if *this < y, return O; otherwise return *this — y

b
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Outline

Abstract Data Types and Class

i

The Array as an Abstract Data Type

The Polynomial

Sparse Matrices

The String
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Traditional Array

* Array

— Is often viewed as a consecutive set of memory
locations

— Is a set of ordered pair, i.e., <index, value>

— Provides two standard operations
* Store a value to a given index

* Retrieve a value corresponding to a given index

— Store and Retrieve are performed in constant time

* A more robust array is needed

— To avoid out-of-bound access
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ADT GeneralArray

class GeneralArray {
// objects: A set of pairs <index, value> where for each value of|index in IndexSet|there
/! is a value of type float . IndexSet is a finite ordered set of one or more

// dimensions, for example, {0, - - - , n—1} for one dimension,
11[{(0,0), 0, 1), (0,2), (1,0), (1, 1), (1, 2), 2, 0), (2, 1), 2, 2)}|for two dimensions, etc.
public:

|GeneralArray(int j, RangeList list float initValue = defaultValue); |

/l The constructor GeneralArray creates a j dimensional array of floats; the range
/1 of the kth dimension is given by the kth element of list. For each index i in the
/! index set, insert <i, initValue> into the array.

[ float Retrieve(index i); |
/1 if (i is in the index set of the array) return the float associated with i
/! in the array; else signal an error.

| void Store(index i, float x); |
// if (i is in the index set of the array) delete any pair of the form <i, y> present
// in the array and insert the new pair <i, x>; else signal an error.
}; // end of GeneralArray

Multi-dimensional Array

* An n-dimensional array
— Is usually implemented as a one-dimensional array
— A mapping mechanism is needed
— Assumption of A[u,|[u,]...[u,]
* First index range: [p; .. q;]

* Second index range: [p, .. q,]

* n-th index range: [p, .. q,]

— The total number of elements in this n-dimensional array is

n
ng-p;+1)
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Row Major

* Row Major Order

— Is also called lexicographic order

* Example
— A[4..5] [2..4] [1..2] [3..4]
— Total number of elements:2*3%2%2 = 24

— Element order
A[4][2][1113], A[41121[1][4], A[4]112]12113], A[4][2]112][4],
A[4][31[1113], A[41[31[1]1[41, A[4]13112113], A[41[3]112][4],
A[4][4]1[1113], A[41[41[1][4], A[4]114112113], A[4][4]112][4],

ch2-23

Demonstrations

RERTHI 5 ORI ol T ORERTT o S ORERTT C SRETI l T
Sequential representation of A[u;]

Array element: A[0] A[1] A[2] ... A[i] ... Afu;-1]
Address: o at+l oat2 oti-1 o+

Sequential representation of A[u;] [u,]

col0 coll col (u,-1)
row 0 X X ... X
X X ... X
1
ou X X .. X
row 2
row (u;-1) X X X
u, elements
A
rowO|rowl| ... |rowi| .. Jrowu;-1
[e— (ixuz) —
elements
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Address Mapping Formula

e Assume o is the address of A[0][0][0]

* Address for A[i][0][0] = o + (ixu, u;)

* Address for A[i][j][0] = a + (ixu, u;) + (jxu;)

* Address for AJi][j][k] = a + (ixu, u;) + (jxu;) + k

n
o+ j§1 i a
pp— ; Mapped to n
AlA] [/2].' weur [ ‘ where a; = k=JH+1uk 1<j=<n
(Row major order)
a,=1
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ADT of Polynomial

class Polynomial {

//objects: p (x) = agx®® + - -+ + a,x°"; a set of ordered pairs of <e;, a,>,
// where a; € Coefficient and e; € Exponent

// We assume that Exponent consists of integers 2 0

public:

//return the polynomial p (x) =0

€0

Iint operator!(); |
//if #this is the zero polynomial, return 1; else return O;

| Coefficient Coef(Exponent €); |
/freturn the coefficient of e in *this

| Exponent LeadExp(); |
//return the largest exponent in *this

| Polynomial Add(Polynomial poly); |
// return the sum of the polynomials *this and poly

| Polynomial Mult(Polynomial poly){
// return the product of the polynomials *this and poly

| loat Evai(float 1) ; |
// Evaluate the polynomial *this at fand return the result.
}s // end of Polynomial

-27

Polynomial Representation (1)

* Fixed-size array representation

private:
int degree; // degree =<MaxDegree
float coef[MaxDegree+1];

* Example

— Assume that a is a polynomial class object and n = MaxDegree
- Eg,ax"+...+ax! +a,
— Then, a.degree = n and a.coefli]=a,_, 0 =i =n

n-i’

* Disadvantage of using static array

— Wasteful in its use of computer memory
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Polynomial Representation (2)

* Array with dynamic size

private:
int degree;
float *coef;

¢ Constructor

Polynomial::Polynomial(int d)
{
degree = d;
coef = new float [degree + 1]

}
* Advantage

— The size of array can be dynamically decided,
leading to a more efficient memory usage
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Polynomial Representation (3)
RERTHI 5 ORI ol T ORERTT o S ORERTT C SRETI l T
* For sparse polynomial
— E.g., X1 + 1 2 as <coef, exp> list 2> {<1, 100>, <1, 0>}

* Shared single array is used

— All polynomials, (if there are many in the program), will be put
together as a shared single array

// private data members of Polynomial
class Polynomial; // forward declaration
private:
class term { static term termArray[MaxTerms];
friend Polynomial; static int free;
private: int Start, Finish;
float coef; // coefficient
int exp; // exponent // static data outside class declaration
33 term Polynomial::termArray[MaxTerms];

int Polynomial::free = 0;
// next free location in termArray

TZ=50




Example: Array for Two Polynomials

o A(X)=2x19+1

— A.Start =0, A.Finish =1

e B(X)=x*+10x3+3x%2+1

— B.Start = 2, B.Finish =5

28 }// end of Add

A.Start A.Finish B.Start B.Finish  free
coef 2 1 1 10 3 1
exp 100 0 4 3 2 0
index 0 1 2 3 4 5 6
A zero polynomial Z1x)=0 > ZFinish = Z Start-1
ch2-31
Polynomial Addition
1 Polynomial Polynomial::Add(Polynomial B)
2 // return the sum of A (x) (in *this) and B (x)
34
4 Polvnomial C 3 int a = Start 3 int b = B.Start 3 C.Stt_zrt = free ; float c ;
5 while ((a <= Finish) && (b <= B.Finish))
6 switch (compare (termArray [a l.exp, termArray [b).exp)) {
7 case *=":
8 c = termArray {a ].coef + termArray [b].coefs
i 9 if (¢) NewTerm (c, termArray [a ].exp);
10 a++3 b++;
11 break;
12 case <’
13 NewTerm (termArray [b ]l.coef, termArray (b l.exp);
14 b++3
; 15 break;
16 case “>7: )
17 NéwTerm (termArray [a)).coef, termArray [al.exp);
18 a++3;
19 } // end of switch and while
20 //add in remaining terms of A (x)
21 for (3 a <= Finish ; a++)
22 NewTerm (termArray [a l.coef, termArray [al.exp);
23 //add in remaining terms of B (x)
24 for (3 b <= B.Finish; b++)
25 NewTerm (termArray [b ).coef, termArray [b l.exp);
26 C.Finish = free — 13
27 return C;

Time Complexity = O(n+m)
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Adding A New Polynomial Term

void Polynomial::NewTerm(float c, int ¢)
//Add a new term to C (x).
{
if (free >= MaxTerms) { :
cerr << "Too many terms in polynomials" << endl;
exit(1);
}
termArray [free).coef = ¢}
termArray [freel.exp = e;
Jree++
} // end of NewTerm

ch2-33

Disadvantages of Representing
Polynomials by Arrays

* What could happen when the array is used up?
— Recycle certain polynomials no longer needed

— A sophisticated compaction routine is required,
involving a lot of data movement

* Another Choice
— Use a single array of terms for each polynomial
— Each array is created by using “new”

— This will requires us to know the size of the
polynomial prior to its creation

* A potential trouble to run the addition algorithm twice
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Outline

Abstract Data Types and Class

The Array as an Abstract Data Type

The Polynomial
II‘ * Sparse Matrices
The String
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How To Store Matrix ?

* Two dimensional array
— int A[m][n]
— may require huge memory space, e.g., A[S000][5000]
* Sparse matrix
— Is a matrix in which most elements are zero
* Use two-dimensional array for sparse matrix is
a big waste of memory space
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Example of Sparse Matrix

SparseMatrix | Col0 [Col1l| Col2 | Col3 | Col4 | Col 5
Row 0 0 0 0
Row 1 0 0 0 0
Row 2 0 0 0 0 0
Row 3 0 0 0 0 0 0
Row 4 0 0 0 0 0
Row 5 0 0 0 0 0
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Sparse Matrix Representation

SEANES

7.
8.
9.
10.
11.
12.

class SparseMatrix; // forward declaration

class MatrixTerm {
friend class SparseMatrix;
private:

int row, col, value;

¥s

class SparseMatrix {
public: / member functions ...
private:
int Rows, Cols, Terms;
MatrixTerm smArray[MaxTerms];

}

SparseMatrix

S bR ey |
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Example of Sparse Matrix and Its

Transpose

Original Row Col | value Transposed Row Col | value
smArray|[0] 0 0 15 smArray|[0] 0 0 15
[1] 0 3 22 [1] 0 4 91
[2] 0 5 15 [2] 1 1 11
[3] 1 1 11 [3] 2 1 3
[4] 1 2 3 [4] 2 5 28
[5] 2 3 -6 [5] 3 0 22
[6] 4 0 91 [6] 3 2 -6
[7] 5 2 28 [7] 5 0 15

Transposing A Matrix

O o

SparseMatrix SparseMatrix::Transpose()

{

-}

SparseMatrix b;

b.Rows = Cols;

// return the transpose of a (*this)

if(Terms > 0) { // nonzero matrix

int CurrentB = 0;
for(int c=0; ¢ < Cols; c++){

b.Cols = Rows; b.Terms = Terms;

for(int i=0; i<Terms; i++){ // find elements in column ¢
if(smArray|i].col == ¢) {

}
}
}

return(b);

b.smArray[CurrentB].row = c;
b.smArray[CurrentB].col = smArray[i].row;

b.smArray[CurrentB].value = smArrayl[i].value;
CurrentB++; }
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Demo of Transposing a Matrix (1)

| Step 1: Scan Matrix A to construct the RowSize array of AT |
(GLsg ATE—3IEZ/) “FEETER")

Matrix A RowsSize array of AT
(row,col,value) 0 1 2 3
001 |——| 10| 0] O
Rowo| 022 [ —— | 1 0 1 0
033 —— ] 1]0]1]1
121 |———| 1 0 2 1
Row 1
132 | — [ 0 P 2
Row2| 221 | —— | 1 0 3 2
Row3| 414 1 (1] 3] 2 || Final result
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Demo of Transposing a Matrix (2)

| Step 2: Scan RowSize array to construct the RowStart array of AT |

RowSize of AT
0 1 2 3

[1]2]3]2]

¥ .

RowsStart[0] = O; o| row0

RowsStart[i] = RowStart[i-1] + RowSize[i-1] 1 rowl
RowsStart of AT 2

o 1 2 3 i ok

(AT F—FHNE—E “JEBTER" Zfirkh)
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Demo of Transposing a Matrix (3)

Step 3: Move each element of Matrix A to Matrix AT

RowsStart of AT
) o 1 2 3
Matrix A AT [0]1]2]5]
(row,col,value) (row,col,value) -IJ
001 ———[ 001 Jo@ [II1JENS5]
Row 0 g§§ 144 (17 [L11]3 6N
[ 1
a7 202 2 |1|1F6|
Row 1 211 |3
132
2 221 (a9 O]z
Row2| 221 303 5@ |1|1-7|
414
Row 3 312 |6 |1-15|7|
index fill-in order
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Transposing A Matrix Faster
1. SparseMatrix SparseMatrix::FastTranspose()
X §
3. int *RowSize = new int[Cols];
4. int *RowStart = new int[Cols];
5. SparseMatrix b;
6. b.Rows = Cols; b.Cols = Rows; b.Terms = Terms;
7. if(Terms > 0) { // nonzero matrix
8.
9. // compute no. of elements in each row of B
10. for(int i=0; i<Cols; i++){ RowSize[i]=0; }
11. for(i=0; i<Terms; i++){ RowSize[smArray]i].col]++; }
12.
13. /I compute the starting position of each row of B

14. RowStart[0]=0;

15. for(i=1; i<Cols; i++){

16. RowsStart[i] = RowStart[i-1]+RowSize[i-1];
17. }

18. TO BE CONTINUED ...
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Transposing A Matrix Faster (con’t)

SparseMatrix SparseMatrix::FastTranspose()
{

1
2
3 if (Terms > 0) {

4. ... (in previous page)

5. for(i=0; i<Terms; i++){ / move from a to b
6 int j = RowStart[smArray(i].col];

7 b.smArray[j].row = smArray][i].col;

8 b.smArrayl[j].col = smArrayl[i].row;

9. b.smArray[j].value = smArray[i].value;
10. RowStart[smArrayJi].col]++;

11. }

12. }

13. delete [ | RowSize; delete [ | RowStart; return(b);
14. }

| Time Complexity = O(Terms + Columns) ~ O(Terms) |
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Principles In Fast Transpose

* Look Before You Leap
* A Stitch Beforehand Saves Nine

* Quick pre-computation of certain information
pays back often
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Matrix Multiplication

Matrix A Matrix B Matrix BXpose
(row,col,value) (row,col,value) (row,col,value)
001 011
Row 0 021 B.col 0
Row0| 02 2 022 . 101
033 ranspose
Row 1 1 g % 134 B.col1
121 =)
Rowl| 7 35 202
Row2| 201 211 B.col 2
Row2| 221 Row3| 314 312 | B.col3
Row3| 414
| Trick: Take the transpose of B before multiplication |
ch2-47
Computing Cg,,
Matrix A Matrix BXpose
(row,col,value) (row,col,value)
001 [~—p1
gmos P21 021 B.col 0
Row0| 0 22 A
033 1023 |x[o] =2 B.col 1
; 0
L ARIEEOST 1 B.col 2
Row 2 0 B.col 3
Row 3
JACTEEEEERE for computing one ¢ --------- */
result=0

switch( compare(A[p1l].col, Bxpose[p2].col) ){
case ‘<*: pl++; break;
case ‘=¢: result += A[p1].value * Bxpose[p2].value;
pl++; p2++; break;
case ‘>’ p2++; break;

}
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Big-O of Matrix Multiplication

Notation
AnXIl x BIan
— A;: the no. of non-zero elements in i-th row of A
— B;: the no. of non-zero elements in j-th column of B

Upper Bound Complex1ty
=0( ZZ(A+B)) = O(Zén A, + Terms_of B))

= O(n - Terms_of A + n - Terms_of B)

= O(n - max(Terms_of A, Terms_of B)
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Outline

Abstract Data Types and Class

The Array as an Abstract Data Type

The Polynomial

* Sparse Matrices

immp * The String
— String Pattern Matching
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Abstract Data Type String

class String

{ string “abc” as an array
// objects: A finite ordered set of zero or more characters.

prsb;l:-;;g(char *init, int m);l EE“

/TConstructor that initializes *this to string init of length m

| int operator==(String t);l
//1f (the string represented by *this equals r) return 1 (TRUE)
// else return 0 (FALSE);

| int operator!(); |

/1 if *this is empty then return 1 (TRUE); else return 0 (FALSE);
| int Length(); |

// return the number of characters in *this

|String Concat(String 1); | concatenation
// return a string whose elements are those of *this followed by those of z.

| String Substr(int i, int j); |
// return a string containing j characters of *this at positions i, i +1, ..., i +j—1
// if these are valid positions of *this; otherwise, return the empty string.

lint Find(String paty; |
// return an index i such that par matches the substring of *this that begins at position i.
// Return —1 if pat is either empty or not a substring of *this

b

String Pattern Matching

* Problem

— Finding if a pattern is contained in another string
* Example

— Pattern: “data structure”

— String: “The course identifier of data structure is
EE2410” 26

— Result =26

— If Pattern does not exist in the string, return —1
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Simple String Pattern Matching

Pattern: data structure (14 characters)
String: data encapsulation is an important concept in data structure
%—l

A sliding widow

« Comparing the sub-string within the window with the pattern
- A mismatch at the sixth character

« Slide the window forward by one step

Pattern: data structure (14 characters)
String: data encapsulation is an important concept in data structure
%—J

¢ A mismatch again !
 Continue to slide the window forward ...
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Simple String Matching - con’t

Pattern: data structure (14 characters) 41’7
String: data encapsulation is an important concept in data structure
| S —
A sliding widow

(1) Amatch!
(2) Return the starting index of the sliding window = 47

(Time Complexity)

The worst-case complexity of this algorithm = O(m - n)
where m is the length of the pattern

and n is the length of the string

(The reason)
Window matching is performed for n times and each of

them may take m steps to complete in the worst case
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Algorithm - Simple Matching

int String::Find(String par)

//'iis set to -1 if pat does not occur in s (*this);
1/ otherwise i is set to point to the first position in *this, where pat begins.
char *p = pat.str, *s = str;

inti=03; //iis starting point
if (xp && *s)
while (i <= Length() - pat.Length())
if (*p++ == *s++) { /icharacters match, get next char in pat and s
if (!*p) return i ; // match found | end of “pattern” reached |

}

else { // no match
[++3s=str+i;p=patstr; | move window forward by 1 |

i is the starting index of
the window being compared

}

return -1 ; //pat is empty or does not occur in s
}// end of Find
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Optimal Pattern Matching
Knuth-Morris-Pratt Algorithm

* The problem of the simple algorithm
— The sliding window moves forward one step at a time
* Idea

— Can we move the window several steps forward when a partial

match occurs in a window matching ?

Pattern: data structure (14 characters)
String: data encapsulation is an important concept in data structure

Failed at 6th characters, a partial match

1 Can the window leap forward by 6 ?

Pattern: data structure (14 characters)
String: data encapsulation is an important concept in data structure

ch
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What Happens When Window
Matching Fails Partially ?

string: data encapsulation is ...
A\ J
Y
Pattern: data ?tructure

Failing point

The following information if pre-computed may enable the leap:

[d[a]t|[a] | Sub-pattern
dlat|a] | ——mismatch
d a — mismatch
d at E:I ——mismatch

datal ] ——mismatch
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Failure Function

f(j) & partial match % pattern By ELEEL
i.e., string SR , pattern & Aj) EENMNE

e Definition

— If p=pyPp;..-P,.; is a pattern, then its failure function, f, is defined as
fG) =
(1) largest k<j such that (p;,p;.i1---P;-)=(PoP;---Py.y) if such a k=0 exists
(2) otherwise f(j) = 0; | k% max. self-matching length FyE &
 Example:

Length-2 prefix matches
length-2 subpattern p[0:1]

A
Target pattern [a |b[c|a|[b|c|a|c|a|b]

faili .
aling j  [o]xl2[3T4ls[6[7[8]9]

Aj) [ofolofof1]2[3]4f0]1]
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Usage of Failure Function

Failure function decides the leap size after a partial matching

Rule of pattern matching:

If a partial match is found such that

(Sij -+« Si-1) = (PoPy - Pj-1) @and s;#p;

then matching may be resumed by comparing
(1) s;,; and p, if j=0;
(2) s;and py; if j#0

S; | s; does not go backward after a partial mismatch

String: data encapsulation is an important concept in data

structure
Pattern: p; data structure (14 characters)

! f(5) = 0 & next character in pattern checked is p,
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Example of Using Failure Function

s next window
AL

I v Y
Sting |a|b|c|a|bl|c|alb|y|[alc|a]|b]

Target pattern [a |b|c|a[b[y|a|c]|a]b]
i

newp  Ps
i [o]1f2]3]4f5]6[7]8]9]

Aj) [ofoJofof1]2fof1]0]1]

Next step: comparing ss with p,
Now, the window of String being compared starts from s,
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FastFind Algorithm

1. int FastFind(String s, String pattern) pos_s

2. {

3.  // Determine if “pattern” is a substring of s abcabcabyacab
4. int pos_p =0; pos_s=0; abcabyacab

5. int length_p = pattern.Length(); 1

6. int length_s = s.Length(); pos_p

7.  while (pos_p <length_p) && pos_s <length_s) {

8. if(pattern.str[pos_p] == s.str[pos_s]) { / matched a character

9. pos_p++; pos_s++;

10. }

11. else { // no match String & —{H class
12. if(pos_p == 0) pos_s++; (1) str() QY H=z=
13. else pos_p = pattern.failure[pos_p]; (2) Length() ExEERE
14. }

15. }

16. if(pos_p <length_p) return(-1);

17. else return(pos_s — length_p);
18. } Hsliding window 25

|Time = O(length_s) |

matching point
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Computing the Failure Function

If the failure function can be computed in O(Length_of_Pattern)
>Then the FastFind has an optimal complexity of

O(Length_of_pattern + Length_of_String)

Targetpattern |a|b|cla|blalb|c|alb]|c/|c|

j [o]1]2]3|4]|5]|6]7]|8]9]10/11]
f) [ofoTJofol12T1]2[3T4l5El

f(0)=f(1) =0
f(j) = fm(j-1)+1, where m is the least positive integer for

which pattern(fm(j-1)) = pattern(j-1)
where fm(j) = f(fm-1(j))

f(j) = 0if no such m exists above
Example: 3k f(11) > f(10)=5, {22 pattern(5) #pattern(10) F7LA%EL

= & F—{H# self-match length k = f2(10) = ff(10) = f(5) = 2
= f(5)=2 and pattern(2)=pattern(10)
Therefore, f(11) =2+ 1=3
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Algorithm - Failure Function

§2 5 & B> B 2 =

ke \O
) L) [

14.
15.
16.
17.

void String::compute_failure_function() | Note: &2 —{& Class String
{ #J member function
failure[0] = 0; failure[1] = 0;
for(int j=1; j<Length(); j++){ // find failure function for each element
int k = failure[j-1];
while(1) {
if (str[k] == str[j-1]) { // found a match !
failure[j] = k+1;
break;

}
else if(k !=0) { // apply the rule recursively here

k = failure[k];
}
else{ failure[j] = 0; break; }
}
}
}
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Using Vector in STL

C++ reference 495 : http://www.cppreference.com/wiki/start

STL 44 H: http://www.cppreference.com/wiki/stl/start

STL Vector 48K http://www.cppreference.com/wiki/stl/vector/start

Example: create an array of string

vector<string> words; // words is an array of string
string str; // Str is a string

while( cin >> str ) words.push_back(str);
vector<string>::iterator iter;

for(iter = words.begin(); iter != words.end(); iter++) {

cout << *iter << endl;
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RiFEF TP1aF 4
EE2410 Data Structure

o —

Chapter 3
Stacks and Queues

Outline

immp + Templates in C++

The Stack Abstract Data Type

The Queue Abstract Data Type
SubTyping and Inheritance in C++

A Mazing Problem

Evaluation of Expressions
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Example of Selection Sort

Original array 41811593

1845|093 k=0

11314(5]9] 8 k=1

11314(5]9] 8 k=2

113|14(5]9] 8 k=3
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Selection Sort Using Template

ONOGORWDNE

15.
16.
17.
18.
19.
20.
21.

template <class KeyType>
void sort (KeyType *a, int n)
[/ sort the n KeyType a[0] to a[n-1] into nondecreasing order
{
for(int k=0; k < n; k++){
int smallest = k;
/I find the smallest KeyType in a[k] to a[n-1]
for (int j = k+1; j < n; j++){
if(a[j] < a[smallest]) smallest = j;
}

KeyType temp = a[k]; a[K] = a[smallest]; a[smallest] = temp;
}
}
main(){
float real_array[100];
int int_array[250];
... Il assume that the arrays have been initialized
sort(real_array, 100);
sort(int_array, 250);




Concept of Template

* A Template
— also called parameterized types

— It may be viewed as a variable which can be
instantiated to any data type when a function or
class is used

* Copy Constructor

— is a special constructor which is invoked when an
object is initialized with another object

- e.g., KeyType temp=a[K];
— might be overloaded if the parameterized type is not
a pre-defined data type in C++

ch3-5

Container Class

1. class Bag

2. |

3. public:

4. Bag (int MaxSize = DefaultSize); // constructor

5. ~Bag(); /I destructor

6 void Add(int); /I insert an integer into Bag

7 void Delete(int &); // delete an integer from Bag

8 Boolean IsFull();  // return TRUE if the bag is full; FALSE otherwise

9. Boolean IsEmpty(); // return TRUE if the Bag is empty; FALSE otherwise
10. private:

11.  void Full();  // action when bag is full

12.  void Empty(); // action when the bag is empty

13.

14. int *array;

15. int MaxSize; // size of array

16. int top; Il highest position in array that contains an element

7.}

ch3-6




Implementation of Bag

1. Bag::Bag(int MaxBagSize): MaxSize (MaxBagSize) { top
2. array = new int[MaxSize]; top = -1;
3.} ) (delete ] : I ltop/2] |
4. Bag::~Bag elete [] array;
5. inline Boolean Bag::IsFull(){ removedRNhen Delete()
6. if(top == MaxSize — 1) return TRUE; else return FALSE;
7. }
8. inline Boolean Bag::ISEmpty(){
9. if(top == -1) return TRUE; else return FALSE;
10.
11. inline void Bag::Full(){ cout << “Bag is full” << endl; }
12. inline void Bag::Empty(){ cout << “Bag is empty” << endl; }
13. void Bag::Add(int x) { if(IsFull()) Full; else array[++top] = x; }
14. int *Bag::Delete(int &x){
15. if( IsEmpty()) { Empty(); return(0); }
16. int deletePos = top/2; x = array[deletePos];
17. for(int k=deletePos; k<top; k++){
18. array[k] = array[k+1]; // compact upper half of array
19. top--; return(&x);
20. }
ch3-7
Parameterized Container Class
1. template <class Type>
2. classBag
3. {
4. public:
5. Bag (int MaxSize = DefaultSize); // constructor
6. ~Bag(); /I destructor
7. void Add(const Type&); //insert an element into Bag
8. Type *Delete(Type&); /I delete middle element from Bag
9. Boolean IsFull();  // return TRUE if the bag is full; FALSE otherwise
10. Boolean IsEmpty(); // return TRUE if the Bag is empty; FALSE otherwise
11. private:
12.  void Full();  // action when bag is full
13.  void Empty(); // action when the bag is empty
14,
15.  Type *array;
16. int MaxSize; // size of array
17. int top; I/ highest position in array that contains an element
18. }
19. main(){
20. Bag<int>a; Bag<Rectangle>r;
21. }
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Stack
RERTHI 5 ORI ol T ORERTT o S ORERTT C SRETI l T
e Ordered List
— Suppose A = a,, a,,..., &, , Where n=0

— g; is called an atom, or an element
 Stack: Last-In First-Out (LIFO)

— is a special case of ordered list

— the additions and deletions are made at one end
called the top

- E.g,, Given astack S = (a,, &;,..., 8,.1)
— 8, Is the bottom element
— &, Is the top element

ch3-10




Example: Stack Operation

push push push push push
A B C D E E pop
D D
) =) =) c - |||
B B B B B
A A A A A A
top
function call
‘ routine()
local variables
- top
previous frame [— previous frame
pointer ; pointer
return address | ™20 L | return address | MainQ
ch3-11

ADT of Stack

ONTORWDNE

= = ©
= o

12.
13.
14.
15.
16.
17.
18.
19.

template <class KeyType>

class Stack

{

I objects: A finite ordered list of zero or more elements

public:

Stack (int MaxStackSize = DefaultSize);

Boolean IsFull();

Boolean IsEmpty(); // return TRUE if Stack is empty; FALSE otherwise
void Add(const KeyType&);
II'if IsFull(), return 0;
/I else insert an element to the top of the Stack
KeyType *Delete(KeyType&);
II'if IsEmpty(),
/I else remove and return a pointer to the top element

private:

b

int top;
KeyType *stack;
int MaxSize;

/I return TRUE if Stack is full; FALSE otherwise

then return 0;
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Member Functions of Stack

1. template <class KeyType>

2. Stack<KeyType>::Stack (int MaxStackSize) : MaxSize (MaxStackSize)
3 {

4. stack = new KeyType[MaxSize];

5. top =-1;

6. }

7.

8. template <class KeyType>

9. inline Boolean Stack<KeyType>::1sFull()

10. { if(top == MaxSize — 1) return TRUE; else return FALSE; }

11.

12. template <class KeyType>

13. inline Boolean Stack<KeyType>::IsEmpty()

14. { if (top == -1) return TRUE; else return FALSE; }

15.

ch3-13
Push & Pop of Stack

1. template <class KeyType>
2. void Stack<KeyType>::Add(const KeyType& x) // the push operation
3.
4. if( IsFull() ) StackFull(); X
5. else { ?«top
6. stack[++top] = X; D
7. } C
8 1} B
9. A
10. template <class KeyType> -
11. KeyType* Stack<KeyType>::Delete(KeyType& x) // the pop operation
12. ]
13. if (IsSEmpty() ) StackEmpty(); —
14. else { E RSl
15. x = stack[top--]; // assigned the item being deleted to x D
16. return( &x); C
17. } B
18. } (A
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Railroad Switching System

R T SRR T 1 R T 1 R e, 5 T TR e 5 S
e Switching Rule
— Initial: train 1, 2, ..., n in the top right track segment
— Movement:
(1) from top-right to the vertical segment one at a time
(2) from the vertical to the top-left segment one at a time
(3) The vertical segment operates like a stack

* Question: What output permutations are not possible?

312 ...
possible? ** LLL [ | [ || [ [\gSA2BABL ] -

&2 —(EF7s stack permutation §IfIE

ch3-15
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Queue

* A Queue
— isan ordered list in which all insertions take place at
one end and all deletions take place at the opposite
end

— is also called First-In First-Out (FIFO)
» Example
— Given a queue Q = (ay, aj,..., &,.1)
— &, Is the front element, a,,, is the rear element
— a;is behind a;; for 1=<i=n

ch3-17

Data and Operations of Queue

1. template <class KeyType>

2. class Queue {

3. public: ...

4. private:

5. int front; / front: index of the first element to be retrieved
6. int rear; /l rear: index of the last element

7. KeyType *queue; // KeyType array

8. int MaxSize;

9. X

f=r=-linitially |

A agd AB agd ABC agd ABCD de}:te BCD
[l L[ ]l T ]




Member Functions of Queue

1. template <class KeyType>

2. Queue<KeyType>::Queue (int MaxQueueSize) : MaxSize (MaxQueueSize)
3. {

4. queue = new KeyType[MaxSize];

5 front = rear = -1;

6. }

7.

8. template <class KeyType>

9. inline Boolean Queue<KeyType>::1sFull()

10. {

11.  if( rear == MaxSize -1 ) return TRUE; add

12. else return FALSE;

13. }

14, -

15. template <class KeyType>

16. inline Boolean Queue<KeyType>::ISEmpty()

18. if( front == rear ) return TRUE;
19. else return FALSE;
20. }

ch3-19

Add and Delete for Queue

template <class KeyType>
void Queue<KeyType>::Add (const KeyType& x)
/l add x to the queue

if( IsFull() ) QueueFull();
else queue[++rear] = X;

}

Eo = e @ i @9 [ =

add
9. template <class KeyType>

10. KeyType *Queue<KeyType>::Delete(KeyType& X)

11. // remove front element from the queue

{
13. if( ISEmpty() ) { QueueEmpty(); return(); }
14.  x=queue[++front];
15.  returnx;
16. }
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» In Operating System

Example: Job Scheduling

— jobs are processed in the order they enter the system
if no priority is set on jobs

front | rear | Q[0] | Q[1] | Q[2] | Q[3] | Q4] | QI5] comments
-1 -1 queue is empty
1 0 Jl Job 1 joins Q
1 1 J1 J2 Job 2 joins Q
1 2 Jl J2 J3 Job 3 joins Q
0 2 J2 J3 Job 1 leaves Q
0 3 J2 J3 J4 Job 4 joins Q
1 3 J3 J4 Job 2 leaves Q
ch3-21
Worst-Case Scenario
front | rear | Q[0] | Q[1] | Q[2] Q[n-1] Next Operation
-1 n-1 J1 J2 J3 J, initial state
0 n-1 J2 J3 J, delete J1
-1 n-1 J2 J3 J4 Jon add J,,
(J2 to Jn are moved)
0 n-1 J3 J4 Jon delete J2
-1 n-1 J3 J4 J5 Josa add J,,,,

In the above job scheduling,
it takes n-1 steps to add a new job
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Circular Queue

Queue size: n
Jobs: J1, J2, )3, )4

next to retrieve

next to add

(0] [n—1]

front = 0; rear = 4 front = n — 4; rear = 0

ch3-23

Add An Element to Circular Q

template <class KeyType>

void Queue<KeyType>::Add (const KeyType& X)

{
int new_rear=(rear+1)% MaxSize;
if( front == new_rear) QueueFull();
else queue[rear == new_rear] = x;

(0] [n— 1]

front = 0; rear = 4 front = n — 4; rear = 0
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Delete An Element From Circular Q

template <class KeyType>

KeyType *Queue<KeyType>::Delete (KeyType& x)

I/l remove front element from queue

{
if (front == rear ) { QueueEmpty(); return(0); }
front = (front + 1) % MaxSize;
x = queue[front]; return (&x);

(0] [ — 1] (0] [n— 1]
front = 0; rear = 4 front = n — 4; rear = 0
ch3-25
DeQue
e Definition

— A double-ended queue (Deque) is a linear list in
which additions and deletions may be made at either
end

» Exercises

— Design a data representation that maps a deque into
a one-dimensional array

— Write algorithms to add and delete elements from
either end of the queue
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SubType and Inheritance

* IS-A Relation
— Chair IS-A furniture, Lion IS-A Mammal
— Rectangle I1S-A Polygon
— Stack IS-A Bag
* Inheritance
— Is used to express IS-A relationship between ADTS.
— derived class IS-A base class

— C++ provides a mechanism called public inheritance
» Ex: class Stack: public Bag

— The inherited members have the same level of access
in the derived class as in the base class
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Bag and Stack

class Bag

{
public:

~Bag(); // destructor

virtual void Add(int);

virtual int *Delete(int&);

virtual Boolean IsFull();

virtual Boolean ISEmpty();
protected:

virtual void Full();

virtual void Empty();

}

Bag (int MaxSize = DefaultSize); // constructor

(1) Interface of Bag will be
reused in Stack

(2) The implementation of
virtual functions may be re-
defined in the derived class

int *array; int MaxSize; inttop; // data members

class Stack : public Bag

{
public:

Stack (int MaxSize = DefaultSize);
~Stack();

constructor, destructor
cannot be reused

K

int *Delete(int&); /7 delete the element from stack

Tr3-29

Example of Derived Class

Stack::~Stack(): ~Bag() { }
/I This ensures that array is deleted

int *Stack::Delete(int& x)
{

x = array|[ top-- ];
return(&x);

}

if (IsSEmpty() ) { Empty(); return(0); }

Stack::Stack(int MaxStackSize) : Bag(MaxStackSize) { }
/I Constructor for Stack calls constructor for Bag

/I Destructor for Bag is automatically called when Stack is destroyed.

Example: Stack s(3), int x
s.Add(1); s.Add(2); s.Add(3);

// Stack::Add is not defined, so use Bag::Add instead

s.Delete(x)

// uses Stack::Delete, which calls Bag::IsEmpty and Bag::Empty
because these have not been redefined in Stack
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An Example Maze

entrance - 0 100011111
1 011100111
0 011110011
1 101101100
0 101111111
0 110100101
0 110100101
1 a1 1 1 11111
! § 1 1 1 1 1 0 1

1 1 p—6—6—0—4
6—o" 1 1 1 1
1 111 - exit
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Data Structure

 Maze
Is represented as a two-dimensional array maze[i][j]

maze[i][j]=0: location that can be passed through

maze[i][j]=1: blocked location

— Entrance: maze[0][0]
array
- Exit: maze[m][p]
» To model border condition To model the bgundary

— The array is declared as maze[m+2][p+2]

— l.e., the original maze array is surrounded by a
border of ones

ch3-33

Strategy of Searching

» As a rat walks through the maze
— (1) He picks a valid move from the current position
e E.g., starting from north and looking clockwise
— (2) Put the selected move into a stack
 So that he can return from a dead path
— (3) He learns not to make the same mistake twice
e Avoid getting into a cell visited before

e A 2-dimensional array, mark[m+2][p+2] is used
e The mark array records the cells visited before
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Allowable Moves

E

I—» J NW N NE
v [i-1][j-1] li-11[j] li-1][j+1]
|
N |
W [il[j-1] X [i[j+1]
[i1[j]
|
[i+1][j-1] li+1][j] li+1][j+1]
SW S SE
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Coordinates of the Next Move

the following data structure

The coordinates of the next move is computed by

l—vy

X
struct offsets q move[qg].x | move[q].y
{ . N -1 0

int x,y;
= NE -l 1
enum directions { c . .
N, NE, E, SE, S, SW, W, NW
) SE 1 1
offsets move[8];
S 1 0
> The SW of (i, j) will be (g, h) SW 1 -1
where
g =i + move[SW].x; ol 0 -1
h =j + move[SW].y NW -1 -1

ch3-36




First Pass at Finding A Path
Through a Maze

initialize stack to the maze entrance coordinates and direction east;
while (stack is not empty) .
{
(i,j,dir) = coordinates and direction deleted from topiof stack ;
while (there are more moves)
{
(g.h) = coordinates of next move ;
if((g==m)&& (h==p)) success 3
if ( (\maze [g 1[h]) //legal move
& & (Imark [g 1[h]) // haven't been here before

}

cout << "no path found" << endl 3

{
mark[g]lh]=13;
dir = next direction to try ; An item of the stack:
add (i, j,dir) to top of stack; struct items {
i =g; j=h; dir = north; int x; y, dir;
} }
}

ch3-37

Example: A Mazing Problem

Row 0 Current Next Stack
Position Legal Move operation
Row 1
Row 2 1,1) (1,2,E) Push (1, 1, E)
Row 3 1,2 (1,3,E) Push (1, 2, E)
Row 4 1, 3) No legal move | Pop to backtrack
COCl1C2C3cC4
1,2 (2,1, SW) Push (1, 2, SW)
stack (2,1) (3,2, SE) Push (2, 1, SE)
3,2) (3,3,E) Pop out the
top—{ (3,2 ) success! entire stack
(2,1, SE)
(1,2, SW) Complete path:
LLE (3,3) € (3,2,E) € (2,1,SE) € (1,2,SW) € (1,1, E)

stack right before success
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void parh(int m, int p)

// Output a path (if any) in the maze; mazelOl1Li]l = rmaze [»2 + 1111 =
M maze(jIIO]l = maze FH{p+1]1=1,0=i=<p+1,0=<j;j=<m+l.

{

// start at (1,1)

mark[11[1]1 =1 3

Srack<iterms> stack(m+p) 3

iterms termp 3

termp.x =1 3 temp.y = 1 3 temp.dir =E 3
stack.Add(temp) 3

while (!stack.IsEmpry()) // stack not empty

{

temp = *srack.Delete (ternp) 3 // unstack

int i = remp.x ; int j = temp.v 3 int d = temp.dir 3

while (d < 8) // move forward
{
int g = i + rmovel[d}.a ;s int 2z = j + moveldl.b 3
If (g == rix) & (== pD { {{ reached oxit
// outrput path
cout <<t stack 3

if (Qrmazelglihl) && (Ymark(g])R2]1)Y) { // new position
markigllhr]l =1 3
temp.x =i rtemp.y = j 3 temp.dir = d+1 ;
stack. Add(temyp) 3 // stack it
i=gs3sj=hs3d=N3// move to (g./)

}

else d++ 3 // try next direction

}

cout << i << ' " << j << endl 3 // last two squares on the path
cout << m << " " << p << endl ;
returns;

}
cout << "no path in maze " << endl 3

H

Backward Search

Row O

Row 1 3|13[4

Row 2 2 o0 -

Row 3 o110 {Backward_search_algor|thm

Row 4 Step 1:

CoClC2C3C4 compute the distance to the destination
after stepl of each node by wave-front propagation

Step 2:

Row 0 find a shortest path from the source to

Row 1 3|34 the desti_nation node by_ picking up the

nodes with a shortest distance

Row 2 Z 00 | © }

Row 3 o |110

Row 4

COC1C2C3¢C4
after step2
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Types of Expression

e Arithmetic Expression
— Forexample: X=A/B-(C+D*E-A*C)
— The evaluation of this expression is critical in enabling high-
level programming
— An expression consists of
(1) Operands: A,B,C,D, E
(2) Operator: plus, minus, times, and divide
(3) Delimiter: like parenthesis “(*, “)”
* Boolean Expression
— The result in TRUE or FALSE

— Use relational and logical operators
° <5 E= 2,55 &&, | !
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Priority of Operator

* Priority

— The order of operations to be carried out in an
expression

— Different order leads to different results

X = A/B - C + D*E — A*C X =A/B-C + D*E-A*C
= ((4/2) -2) + (3*3) - (4*2) # =(4/(2-2+3)*(3-4)*2)
=0+9-8 = (4/3) * (-1) * 2
=1 = -2.6666
Times and divide Plus and Minus
have higher priorities have higher priorities
> Default > Not default
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Priority of Operations in C++

Evaluation of operators of the same priority will proceed from left to right
E.g., A/B*C = (A/B) *C

priority operator

1 Unary minus, !
*1,%

2
8
4 < <= > >=
5
6
7
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Postfix Notation

» Compiler

— Translates an expression into a sequence of machine codes

— It first re-writes the expression into a form called postfix

notation

* Infix notation

— The operators come in-between operands

Postfix notation

— The operators appear after its operands

» Example

— Infix: A/IB-C+D*E-A*C
— Postfix: AB/C-DE*+AC*-
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Evaluation of Postfix Notation

« Scanning the notation from left to right

 Store temporary resultin T;, i=1

Original expression: AB/C-DE*+AC*-
Operation Postfix
T,=A/B T,C-DE*+AC*-
T,=T,-C T,DE*+AC*-
T,=D*E T,T+AC*-
T, =T+, T,AC*-
T,=A*C T,Ts
Te=T,Ts i
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The Virtues of Postfix Notation

o Evaluation is easier on postfix notation
— The need for parenthesis is eliminated
— The priority of operations is no longer relevant

— Evaluation of each operator
* (1) Pop correct number of operands from the stack
e (2) Perform the operation
e (3) Push the results onto the stack

ch3-47

Evaluation Algorithm

void evaluation(expression €)
[/l Evaluate the postfix expression e. It is assumed that the last
// token ('a token is either an operator, operand, or ‘#’) in e is ‘#’
/I A function NextToken is used to get the next token from e.
{
Stack<token> stack; // initialize the stack
for( token x = NextToken(e); x I= “#’; x = NextToken(e) }{
if( x is an operand ) stack.Add(x) // add to stack
else { // operator
pop-up correct number of operands for operator x;
perform the operation x and store the result onto
the stack;
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Conceptual Infix to Postfix

e Algorithm
(1) Fully parenthesize the expression

(2) Move all operators so that they replace their
corresponding right parentheses

(3) Delete all parentheses

Example: A/B-C+D*E-A*C
>  ((((A/B)-C)+(D*E))-(A*Q))

>AB/C-DE*+AC*-
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Ex1: From Infix to Postfix

* Translate A+B*C to ABC*+

Next token Stack Output

None Empty None
A Empty A
+ + A
B + AB
* +* AB

The operator * has a higher priority than +, so it is placed on top of +

C T & ABC

(1) All operands go directly to the output
(2) When the input tokens are exhausted
- All operators in the stack will be taken off
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Ex2: From Infix to Postfix

» Translate A*(B+C)/D to ABC+*D/

Next token Stack Output
None Empty None
A Empty A
S & A
( *( A
B *( AB
+ *(+ AB
C *(+ ABC
) * ABC+
/ / ABC+*
D / ABC+*D
‘#’ (ending character) Empty ABC+*D/
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Priority-Based Stack Operation

o Left Parenthesis
— Behaves as an operator with high priority when it is not in the
stack = incoming priority (icp) =0
— Behaves as one with low priority when it is in the stack
- in-stack priority (isp) = 8
— Only the matching right parenthesis can get an in-stack left
parenthesis unstacked
e Summary

— Operators are taken out of the stack as long as their in-stack
priority is numerically smaller than or equal to the in-coming
priority of the new operator

— Assuming that the icp(‘#’) = 8 (lowest)
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Algorithm of Infix to Postfix

void postfix (expression e)
// Output the postfix form of the infix expression e. NextToken
/I and stack are as in function eval (Program 3.18). It is assumed that
// the last token in e is ‘#.” Also, ‘#’ is used at the bottom of the stack
{
Stack<token> stack; // initialize stack
token y 3
stack.Add(C#’);
for (token x = NextToken(e) ; x !="# 3 x = NextToken(e)) hig her value
{ means
if (x is an operand) cout << x ; lower priority
else if (x ==")’) // unstack until ’(’
for (y = *stack.Delete (y); y '="(; y = *stackDelete (y)) cout << y ;
else { // x is an operator
for (y = *stack.Delete (y); isp (y)(<=)icp (x); y = *stack.Delete (y)) cout <<y 3
stack.Add(y); /I restack the last y that was unstacked
stack.Add(x);
}
}
// end of expression; empty stack
while (!stack.IsEmpty()) cout << *stack.Delete(y) 3
} // end of postfix
vo=d3

Using Stack in STL

C++ reference 48 H: http://www.cppreference.com/wiki/start

STL 48 H: http://www.cppreference.com/wiki/stl/start
STL Stack #gH: http://www.cppreference.com/wiki/stl/stack/start

Example: the following code uses empty() as the stopping condition on
a while loop to clear a stack and display its contents in reverse
order:

stack<int>s;
for(inti=0;i<5;i++) {s.push(i);}
while( Is.empty() ) { cout <<s.top() <<endl;s.pop(); }
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Why Linked List?

(Initial Linked List)

first —{ BAT CAT EAT GAT

HAT

(Quick Insertion of a new node)

first —| BAT CAT EAT GAT WAT
new_node —| FAT
inserted !
ch4.1-3
Deletion of A Node
(Initial Linked List)
first —| BAT CAT EAT GAT HAT
(Quick deletion of a new node)
deleted !
first —| BAT CAT EAT | | GAT WAT
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Ex: Access The Data Of a Node

class ThreeLetterNode {
private:
char data[3];
ThreeLetterNode *link;

main(f

ThreeLetterNode *first; /* The data references are shown below

*first

+——— first>data —m8™—

B A T

first
first>data[0] first>data[l] first>data[2] first=>link

‘ Illegal access because data[] and link are private data !
ch4.1-5

Dilemma of Node Data

» Declaring the node data as public
— will allow one to access the data through pointer
— but the data encapsulation principle is violated

» Declaring the node data as private

— will requires another member functions to access
the data

- E.g., Get_link(), Set_link(), Get_data(), Set_data()
— The access is less efficient
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Composite Class

* Has-A Relationship

— We say that a data object of Type A HAS-A data object of
Type B if A conceptually contains B or B is part of A

class ThreeletterList; // forward declaration
class ThreeLetterNode{
friend class ThreeLetterList;

private:
char data[3];
ThreeLetterNode *link;

b
class ThreeLetterList {
public:
/I List Manipulation operations
|.o.|.'ivate:
ThreeLetterNode *first;
b
ch4.1-7
Relationship of List and Node
ThreelLetterList (Conceptual relationship)
ThreeLetterNode
first BAT CAT EAT | =— ... —— HAT |0
ThreeLetterList (Actual relationship)
ThreeLetterNode
|firstI BAT CAT EAT | — ... —— HAT |0
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Nested Class

ThreeLetterNode is defined as an inner class of ThreeLetterList

The data of ThreeLetterNode are declared as public

class ThreeLetterList {
public:
/I List Manipulation operations

private:
class ThreeLetterNode {
public:
char data[3];
ThreeLetterNode *link;
k
ThreeLetterNode *first;
b

ch4.1-9

Example: Linked List Creation

class ListNode {

] c List
Prvete: o ListNode
ListNode *link; |first |——> 10 |+ 20 |O
}
void List::Create2()
{

first = new ListNode(10); // create and initialize first node
/I create and initialize second node and place its address in first>link
first>link = new ListNode(20);

}

ListNode::ListNode(int element=0) // 0 is the default argument in constructor

{

data = element;
link = 0; // null pointer constant

}
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Example: Linked List Insertion

void List::Insert50(ListNode *x)
{
ListNode *t = new ListNode (50); // create and initialize new node
if( ! first) // insert into empty list
{
first = t;
return; // exit List::Insert50
}
I/l insert after x
t = link = x = link;
x = link = t;

: |
ffst fst—] [+ — [d=] [ ]

ch4.1-11

Outline

Singly Linked Lists

A Reusable Linked List Class
Circular Lists

Linked Stacks and Queues
Polynomials

i
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Template Definition of Linked List

template <class Type> class List; // forward declaration

template <class Type>

class ListNode { ATinked Tist of integers declared as:
friend class List<Type>; List<int> intlist:
private:
Type data;
ListNode *link;
k
template <class Type>
class List{
public:
List() { first = 0; }; // constructor initializing first to 0
/I list manipulation operations
private:
ListNode<Type> *first;
k
ch4.1-13
Direct Traversal of a List
1 /l initialize a container C | pseudo-code
2 int x =-MAXINT;
3. for each item in Container C
4 |
5 current = current item of C;
6 X = max(current, x); // body
7.}
8 return (x); // post-processing step
| Direct Traversal |
(Revision of statements 3 to 7 for integer container)
for ( ListNode<int> *ptr = first; ptr!=0; ptr=ptr 2 link)
{
current = ptr - data;
X = max(current, X);
} |in a member of List<Type>
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Drawbacks of Direct Traversal
of a Container Class

* In atemplate class like List<Type>

— Operations should be independent of the type, while direct traversal
depends on the type of elements

— For example, it does not make sense to compute the sum of a
Rectangle container
* A new function requires traversal

— of a container class needs the support of a new class member
function

— This is difficult because the class provider and class users might be
different in a programming team

e Even if class user is allowed to add a new member function

— He or she would need to know how the container is implemented

ch4.1-15

Linked List Iterator

* An lterator

— isanobject that is used to traverse all the elements of a
container class C

— useful in operations like
(1) print all integers in C
(2) Obtain the maximum, minimum, mean, or median of all
integersin C
(3) Obtain the sum, product, or sum of squares of all integers in C

(4) Obtain all integers in C that satisfy some property P (e.g.,
integers that are positive, or the square of an integer, etc.)

(5) Obtain the integer x from C such that, for some function f, f(x)
is the maximum
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Linked List With Iterator (I)

enum Boolean { FALSE, TRUE };
template <class Type> class List;
template <class Type> class Listlterator;

template <class Type> class ListNode{
friend class List<Type>;
friend class Listlterator<Type>; [ELS
private:

Type data;

ListNode *link;
k

template <class Type> class List {

friend class Listlterator<Type>; _
public:

List() { first = 0; }; // constructor initializing first to 0
/I list manipulation operations ...

private:
ListNode<Type> *first;

3

TO BE CONTINUED

ch4.1-17

Linked List With Iterator (II)

template <class Type> class Listlterator {
public:

Boolean NotNull();
Boolean NextNotNull();
Type *First();
Type *Next();
private:
const List<Type>& list;  // refers to an existing list
ListNode <Type>* current; // points to a node in list

Listlterator( const List<Type>& I): list(l), current (l.first) {};

b
LE ListIteratorI
| first |——> 10 |+ 20 |O | list A |current|
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List Iterator Functions

template <class Type> // check that the current element in List is non-null
Boolean Listlterator<Type>::NotNull() {

if (current) return TRUE; else return FALSE;
}

template <class Type> // check that the next element in List is non-null
Boolean Listlterator<Type>::NextNotNull() {

if (current && current = link) return TRUE; else return FALSE;
}

template <class Type> // return a pointer to the first element of List
Type *Listlterator<Type>::First() {

if (list.first) return (&list.first>data); else return 0;
}

template <class Type> // return a pointer to the next element of List
Type *Listlterator<Type>::Next()
if (current) {
current = current = link;
if (current) return (&current->data);
}

else return 0;

}

ch4.1-19

Example: Usage of Iterator

int sum( const List<int>& input_list)

{
Listlterator<int> | (input_list); // | is associated with list input_list
if( ! .NotNull()) return O; // return 0 if the list is empty

int ret_value = *L.First();  // get the first element’s pointer

while (I.NextNotNull() ) {  // iteratively sum up every element’s value
ret_value += *|.Next(); // get it, add it to the current total

}

return (ret_value);

List A

|first|——> 10 |+ 20 |+ 30 |O
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A Stylish Foreach Macro

» Assume List, ListNode, and Listlterator
— have been defined as above
» Variables
— list: an object of List
— data_ptr: an object of ListNode’s data pointer
— gen: an object of Listlterator for list

#define List_foreach(gen, node) \ sum = 0;
for (node = gen.First(); \ ListIterator gen(list);
gen.NotNull(); \ List_foreach(gen, node){
node = gen.Next(); \ sum += *node;
) }
Macro Definition Usage of List_foreach

ch4.1-21

Inverting a Linked List ( or Chain)

template <class Type> void List<Type>::Invert()
/I A chain x is inverted so that if x = (al, a2, ..., a,)
/I then after execution, x = (a,, a,.4, ..., ;)
{
ListNode<Type> *p = first; *q =0; // g trails p
while(p) {
ListNode<Type> *r=q; q=p;//rtrailsq
p =p = link; // remember the next node of the node being inverted g
g =2 link =r; //'link q to the preceding node r
}
first=q;
}

* Inverting
— can be done “in place” in linear time O(n)

st [he] | Wedimered o] [

current:

r q p
next: T TT—gq ——p
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Process of Inverting a List

initial condition

firsto—-l S ExEE = EE o EE - O
q:
l move p, q, r forward
fist—] 14— [+ [4—{ [4—] 0]
r=0 q p
reverse the link of g:
g2link=r=0;
fist—] 0] [ [4—{ [5—{ [4—] 0]
r=0 q P
ch4.1-23
Process of Inverting a List
fist— 0] [ [4—{ [5—{ [4—] 0]
r=0 q P
l move p, q, r forward
fist—| 0] [ |4+ [4— [4—{ o]
r q P
reverse the link of q
g=>link =r
lo]

first—{ _ fof [ ['[ | : o B E

q
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Process of Inverting a List

N N N\
fist—q 0] | R RIE! | o]

N N NN
fst— _ Jof | '} | 1" [ [ [ []

r q p=0
1 first = q
first
N N N /_\l
L fof [0 [P [ [
r q p=0
| Final reversed linked list |
ch4.1-25
Concatenating Two Chains
* The complexity is also linear
template <class Type>
void List<Type>::Concatenate ( List<Type> b)
/[ this=(al, a2, ...,a,)and b = (b1, b2, ..., b, ) m,n = 0
Il produces the new chain z = (a1, a2, ..., a,, b1, b2, ..., b,) in this
if (! first) { first=b.first; return;}
if (b.first) { // finding the last node of *this
for (ListNode<Type> *p = first; p=>link; p=p = link); // no body
p = link = b.first;
} !
} | false when p is the last in *this |
List *this List b
last
|first |——> 10 | +— 20 |fir5t |__. 30 |+ 40 |o
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Basics of Circular List

* Major Features

— The link field of the last element points to the first
element

— Check if last element:

(current - link == first) instead of (current - link = 0)

first BAT CAT EAT GAT HAT

ch4.1-28




Insertion-To-Rear Function

template <class Type>

void CircularList::Insert_to_Rear( ListNode<Type> *x)
/I insert the node pointed at by x at the rear of the circular
[ list *this, where last points to the last node in the list

if (!last) { // empty list
last = x; x 2 link = x;

}
else {
x => link = last = link; last
last 2 link = x;
last = x; 1
} X
}
l *Iast
first —| BAT CAT EAT —| GAT N last

\\+/
X ch4.1-29

Dummy Head Node

* In some applications

— using simple circular list structure cause problems
as the empty list has to be handled as a special case

» To avoid such as special cases
— adummy head node is introduced

- empty list

— CAT EAT GAT HAT
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i
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Linked Stack and Queue

data link

«— top

first rear

l data link l

- -— 1 — 0
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Stack Class Definition

class Stack; // forward declaration

class StackNode {
friend class Stack;
private:
int data;
StackNode *link;
StackNode (intd = 0, StackNode *I = 0) : data (d), link (I) {} ; // constructor

|5

class Stack {

public:
Stack() { top = 0; } ; // constructor
void Add(const int);
int* Delete (int&);

private:

StackNode *top;

void StackEmpty();

I
ch4.1-33
Stack Add and Delete
void Stack::Add ( const inty) { data link
top = new StackNode (y, top); —top
} L oldtop J

int *Stack::Delete (int& retvalue)
/I Delete top node from stack and return a pointer to its data

{

if (top == 0) { StackEmpty(); return 0; }

I return null pointer constant

StackNode *delnode = top;

retvalue = top - data; // get data field of top node

top = top=>link; /I update the top pointer
delete delnode; /I free the node
return &retvalue; // return pointer to data l
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Queue Add and Delete

void Queue::Add (const inty)

if (front==0) front = rear = new QueueNode(y, 0); // empty queue
else rear = rear = link = new QueueNode(y, 0);
/[ attach node and update rear

}

int *Queue::Delete (int& retvalue)
/Il Delete the first node in queue and return a pointer to its data
{
if (front == 0) { QueueEmpty(); return 0; } // return null pointer constant
QueueNode *x = front;
retvalue = front = data; // get data
front = x = link; /I update front node
delete Xx; /I free the node
return &retvalue; // return pointer to data

old front front old rear rear
data link

| | 1 |
MG IENE o BENE L RN o T
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Is-Implemented-By Relationship

» Definition
— A data object of Type A IS-IMPLEMENTED-IN-
TERMS-OF a data object of Type B if the Type B
object is central to the implementation of Type A
object.

— This relationship is usually expressed by declaring
the Type B object as a data member of the Type A
object

* Next: Polynomial implemented by linked list

ch4.1-37

Polynomial Class

struct Term
/l all members of Term are public by default

int coef; // coefficient

int exp; // exponent

void Init(intc,inte){ coef=c; exp=e;};
b
class Polynomial
{
friend Polynomial operator+( const Polynomial&, const Polynomial&);
private:

List<Term> poly;

b

la=3x4+2,8+1]| afist—s| 3|14 2|8 1{ofo

|b = 8,14 - 3,10 + 10x6| b.first—s| 8 14 -3]10 10| 6 |0
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1 Polynomial operator+(const Polynomial& a , const Polynomial& b) {

2 // Polynomials g and b are added and the sum returned

3 Term *p, *q, temp 3

4 Listlterator <Element > Aiter (a.poly) ; Listlterator <Element > Biter (b.poly) ;
5 Polynomial c 3

6 p = Aiter. First () 3 g = Biter. First () 3 // get first node in a and b

7 while (Aiter . NotNull Q) && Biter . NotNull Q) { // current node is not null

8
9

switch (compare(p —exp.q —exp)) {

case ’=":
10 int x = p —5coef + g —coef 3 temp . Init (x,q —>exp) ;
11 if (x) ¢ . poly . Attach (temp) ;|
12 p = Aiter.Next () 3 g = Biter.Next () 3 // advance to next term
13 break;
14 case '<’:
15 temp.Init(q —coef, g —>exp) ;l c.poly.Attach (temp) 3 |
16 g = Biter.Next () 3 // next term of b
17 break;
18 case '>":
19 temp . Init(p —>coef, p —exp) ;|c.poly.Attach (temp) ; |
20 p = Aiter . Next () 3 // next term of a
21 }
22 }
23 while (Aiter.NotNull Q) { // copy rest of a
24 temp. Init(p —coef, p —exp) ; c.poly.Attach (temp) 3
25 p = Aiter.Next () ;
26 }
27 while (Biter.NotNull Q) { // copy rest of b
28 temp.Init(q —coef, g —>exp) ; c.poly.Attach (temp) ;
o =Biter.Next () 3 o
§0 } a=te 03 adding
31 return c ; two polynomials
32}

Generating The First Three Terms

P

afirst—{ 3 [14] +—~{2[8 ] 4—{1]0]0]

b irst — 8 [14] 3—{3[10] F—{10[6 o]
9

cfirst—{11|14]0]

p

afirst—{ 3 [14] +—{ 28] 4—{1]0]0]

b-first—s| 8 [14] +—{-3]10] +—{10] 6 [0] I
q

c.first

-3]10]0]

p
afirst —[ 3 [14] 32 [ [ {1 0]0]
b first —{ 8 [14] 3—{-3[10] F—{10[ 6 0]
q




Analysis of Operator+

» Computing Time
— (1) coefficient additions
— (2) exponent comparisons
— (3) addition/deletions to available space
— (4) creation of new nodes
» Assume that
— polynomial a has m terms, while b has n terms
o Coefficient additions: [0, min{m, n} ] times
— Lower-bound: when none of the exponents are equal

— Upper-bound: when the exponents of one polynomial are a subset
of the exponents of the other polynomial

* Overall Complexity: O(m+n)

ch4.1-41

Example: Polynomial Computation

o d(x) =a(x) * b(x) + c(x)

void func()

{

Polynomial a, b, c, d, t;

cin >> a; // read and create polynomial
cin >> b;

cin >>c;

t=a*b;

d=t+c;

cout << d;

Problem:

When the function terminates, the memory occupied by the

polynomials a, b, ¢, d, t may not be freed automatically

- because ListNode<Term> objects are not physically
contained in List<Term> objects.
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Polynomial Object Before And
After It Goes Out Of Scope

Before
List<Term>
poly ListNode<Term>
—— —_— —] O
After
ListNode<Term>
B — - e 0
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Erase A Polynomial

template <class Type>
List<Type>::~List()
/I Free all nodes in the chain
{
ListNode<Type> *next;
for (; first; first = next) {
next = first 2 link
delete first;
}
3

List<Term> .
poly ListNode <Term>

|firstl -+  — 0
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Space Management Of ListNodes

* By incorporating Circular List

— Freeing all the nodes in a list is more efficient

* Reuse strategy

— Deletion: nodes that have been “deleted” are actually
maintained in a pool = available (av) space

— Request for a new node:
(1) If available space is not empty, recycle one of them
(2) If available space is empty 2 by “new” command

ch4.1-45

Getting and Returning A Node

template <class Type>

ListNode<Type>* CircularList::GetNode()

/I Provide a node for use

{
ListNode<Type>* x;
if (av) x=new ListNode<Type>; // request for a new one
else { x=av; av=av = link;} /I recycle one from AV-pool
return x;

}

template <class Type>
void CircularList<Type>::RetNode(ListNode<Type>* x)
/I Free the node pointed by x

X = link = av;
av = X;

}
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Erasing A Circular List

template <class Type>
void CircularList<Type>::~CircularList()
[l Erase the entire circular list pointed by first

if (first) {
ListNode* second = first = link; // second node
first > link = av; // first node linked to av
av = second; // second node of list becomes front of av list
first = 0;
} A Circular List can be erased in a fixed amount of time
} = Independent of the number of nodes in the list

first

'

new av

second ch4.1-47

{

}

Polynomial operator+ (const Polynomial& a, const Polynomial& b)

Term *p, *q, temp;
CircularListlterator<Term> Aiter (a.poly);

CircularListlterator<Term> Biter (b.poly);

Polynomial c; // assume the constructor creates a head node with exp = -1

p = Aiter.first(); q = Biter.first();

while(1) {
switch ( compare (p>exp, g>exp)) { Adding circularly
case ‘=": represented polynomials
if (p > exp ==-1) return c;
else {
int sum = p - coef + q 2 coef;
if (sum) { temp.Init (sum, q - exp); c.poly.Attach (temp); }
p = Aiter.Next(); q = Biter.Next();
}
break;
case ‘<‘:
temp.Init(g->coef, g>exp); c.poly.Attach(temp); g=Biter.Next(); break;
case >’:

temp. Init(p=>coef, p>exp); c.poly.Attach(temp); p=Aiter.Next(); break;
} /I end of switch and while

}




Using List Iterator in STL

C++ reference 48 H: http://www.cppreference.com/wiki/start

STL 48 H: http://www.cppreference.com/wiki/stl/start
STL List 48H: http://www.cppreference.com/wiki/stl/list/start
/I Create a list of characters

list<char> my_list;
for(inti=0;i<10;i++){
my_list.push_front(i + 'a");
}
/I Display the list
list<char>::iterator it;
for(it = my_list.begin(); it '= my_list.end(); ++it) {

cout << *it;
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The End of Part |
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Equivalence Relation

* A relation is a set of pair (X, Y)
— where X and y are elements in a set, say S
* Three properties of an equivalence relation
— Reflexive: X =X
— Symmetric: If x=y, theny =X
— Transitive: If x=yandy =z then X=z
* Definition

— A relation over a set S, is said to be an equivalence relation over
S iff it is symmetric, reflexive, and transitive over S.

— E.g., “equal to” (=) relationship is an equivalence relation

ch4.2-3

Finding Equivalence Classes

e Input

0=4, 3=1, 6=10, 8=9, 7=4, 6=8, 3=5, 2=11, 11=0
* Output

— Three equivalence classes by applying the three

properties:
{0,2,4,7,11}; { 1,3,5}; { 6,8,9,10 }

* Basic Algorithm

— (phase 1): equivalence pairs (i, j) are read in and stored

— (phase 2): find each equivalence class by transitive rule
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Relation Graph

* Input
0=4, 3=1, 6=10, 8=9, 7=4, 6=8, 3=5, 2=11, 11=0

connected

connected connected

component 1 component 2 component 3
& ) \@ ® ©
D

A Graph consists of vertices and edges

ch4.2-5

Data Structure For Storing the

Equivalence Pairs
RESTHI 5l T RO 5D T SRR T T TR e SRR T

Equivalence pairs:
0=4, 3=1, 6=10, 8=9, 7=4, 6=8, 3=5, 2=11, 11=0

seq [0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10] [11]

T T T T T T T T]

11
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Finding Equivalence Class
Containing Node O

Processing order: [0] > [11] > [4] & [2] > [7]
equivalence class containing 0: {11, 4, 2, 7}

seq [0] [1] [2] [3] [4] [S] [6] [7] [8] [9][10] [11]

out
11 3H5 7 38H6 865

ch4.2-7

Overall Equivalence Class
Computation

void equivalence()
{
read n; // read in number of objects
initialize seq to 0 and out to FASLE;
while (more pairs) / input pairs
{
read the next pair (i, j);
put j on the seq][i] list;
put i on the seq[j] list;
}
/*------- print out equivalence classes -----*/
for (i=0; i<n; i++){
for( out[i] == FALSE ) {
out[i] = TRUE;
output the equivalence class that contains object i;
}
}
b5
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Data Structure in C++

enum Boolean { FALSE, TRUE };

class ListNode {
friend void equivalence ();
private:
int data;
ListNode *link;
ListNode(int); // private constructor

}s

typedef ListNode *ListNodePtr;
// so we can create an array of pointers using new

ListNode::ListNode(int d) // constructor
{
data = d;
link = 0;
}

ch4.2-9

void equivalence ()
// Input the equivalence pairs and output the equivalence classes
{
ifstream inFile(“equiv.in”, ios::in); / “equiv.in” is the input file
if (! inFile) {
cerr << “Cannot open input file” << endl;
return; j k
}
int i, j, n;
inFile >> n; // read number of objects
// initialize seq and out X y
ListNodePtr *seq = new ListNodePtr[n]; k j
Boolean *out = new Boolean|n];
for (k=0; k<n; k++){

seq[k] = 0; O —
out[k] = FALSE;
) - -
// Phase 1: input equivalence classes 0 0

inFile >> j>>k

while (inFile.good() ) { // check end of file
ListNode *x = new ListNode(k); x=>link = seq[j]; seq[j] = x; // add k to seq[j];
ListNode *y = new ListNode(j); y=2>link = seq[k]; seq[k] =y; // add j to seq[K];
inFile >> j >> k;




void equivalence () / Phase 2: output equivalence classes
.... (previous page)
for (k=0; k<n; k++){
if (out[k] == FALSE) { // needs to be output
cout << endl << “A new class: “ <<k; out[k] = TRUE;
ListNode *Xx = seq[k]; ListNode *top = 0; // init stack
while (1) { // find rest of class
while (X) { // process the list

11

e

-

j =Xx>data;

if (out[j] == FALSE ) { x[11]
cout << “,“<<j;  out[j] = TRUE; n (0] |0]
ListNode *y= x->link;
x2link = top; top=X; X=Y; vy

} else X =X->link; //skip current node X 0 |

if (! top ) break;
else { X = seq[top—>data]; top = top>link; // unstack }

} // end of while(1) : B
} // end of if (out[k] == FALSE) m equivalence pairs
) n nodes .
for ( k=0; k<n; ki-+) > O(m+n) algorithm
while(seq[K]) { ListNode *delnode = seq[k]; seq[k] = delnode->link; delete delnode; }
delete [] seq; delete [] out;
}

Outline

Equivalence Class
Sparse Matrices

Doubly Linked Lists

i

Generalized Lists

Virtual Functions and Dynamic Binding
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Sparse Matrix As A Two-
Dimensional Linked List

j—

p—
COOOCO=
—

OCOOONO
—

COOOLO

COOROW

==) 7/ nonzero terms

boohoo
[=l=Jelejolel
COOOOC

down|head|right Howrjhead| row | co

right — | fli]lj]| T
next value r a;

]

head node typical node setup for a;
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Example: Sparse Matrix

headnodey HO H1 H2 H3 H4 H5 O

[6]7] = | - 1 | —+ 1 - | 1
7 - AN
PY\ \‘ A ) X [ - \\

]

[

HO

H1

H2

H3

H4

H5

1 e

§ {1

l ‘\ -Illlfl'J

; i
y ] 1

[ BEEk

) -8

|

| q Example sparse matrix

' 0 0110013 0

LIQ 12 0 000 0 14

) 04 000-8 O

Iy 0 0 000 0 O
I 0 0 000 0 O

i 0-9 000 0 O
to H6




enum Boolean { FALSE, TRUE };
struct Triple { int value, row, col 3 }3

class Matrix 3 // forward declaration | Class Definition of Sparse Matrix |

class MatrixNode

{

friend class Matrix ;
friend istream& operator>>(istream&, Matrix&) 3 // for reading in a matrix
private:

MatrixNode *down , *right ; - A
Boolean head 3 Bhe 3 d0wn| head | right downl headl row | col |r|ght
union { // anonymous union

MatrixNode *next 3 next value

Triple triple 3 -
¥ head node typical node

MatrixNode(l-?oolean, Triple *) 3 // constructor

b

MazrrixNode ::MatrixNode (Boolean b, Triple * t) // constructor
{
head = b ;
if (b) { right = next = down = this;} // row/column head node
else triple = *t 3 // head node for list of headnodes OR element node

}

typedef MarrixNode + MatrixNodePtr 3 // to allow subsequent creation of array of pointers

class Matrix
{
friend istream& operator>>(istream&, Matrix&) 3
public:

~“Matrix() 3 // destructor
private:

MatrixNode *headnode ;3

1

Reading In A Sparse Matrix (I)

1 istream& operator>>(istream& is, Matrix& matrix)
2 // Read in a matrix and set up its linked representation.
3/ An auxiliary array head is used.
4{
5 Triple s;intp;
6 is >> s.row >> s.col >> s.value ; // matrix dimensions
7 if (s.row > s.col) p = s.row ; else p=s.col ; s holds matrix dimension
8 /I set up headnode for list of head nodes. S LBl e
9 [matrix.headnode = new MatrixNode(FALSE, &s) ;|
10 if (p == 0) { matrix.headnode —right = matrix.headnode ; return is ;}
11 /I at least one row or column
12 |MatrixNodePir *head = new MatrixNodePtr[p1; // initialize head nodes|
13 for (inti=0;i<p;i+t)
14 |head[i] = new MatrixNode(TRUE, 0) ;|
15 int CurrentRow =0 ; MatrixNode *last = head [0] ; // last node in current row

ThZ.2-16




Reading In A Sparse Matrix (I1)

16 for (i =0 ;i < s.value ; i++) // input triples

17 {

18 Triplet; Trick: head[i]=>next is used

19  is>>t.row>>t.col >> t.value 3 initially to keep track of the

20  if (r.row > CurrentRow) { // close current row| last node in column . But

21 last —>right = head [CurrentRow | ; eventually, the head nodes are
22 CurrentRow = t.row linked together through next
23 last = head [CurrentRow ] (in line 30).

24 }//endof if
25  last = last —right = new MatrixNode(FALSE, &) ; // link new node into row list

26  head[t.coll—next = head [t.col]—next — down = last 3 // link into column list

27 }// end of for

28 last —right = head [CurrentRow ] 3 // close last row

29 for (i =0;i<s.col; i++) head [i]>next —down = head [i] ; // close all column lists
30| // link the head nodes together

31|for (i=03i<p—1;i++) head[i|—next = head [i +1] §
32| head [p —1]—next = matrix.headnode ;

33| matrix.headnode —right = head [0] ;

34 delete [ ] head;

35 returnis;

36}

Erasing a Sparse Matrix

Matrix:"Matrix ()
// Return all nodes to the av list. This list is a chain linked via the right
I/ field. av is a global variable of type MatrixNode * and points to its first node.
{

if (\headnode) return; // no nodes to dispose

MatrixNode *x = headnode —right , *y ;

| headnode —right = av ; av = headnode ; // return headnode |

while (x != headnode) { // erase by rows
y=x-right ;
x—right=av;

row0 rowl row2

av=y; / / /
X = x—>mnext ; // next row /
) (CERgnaufnaulrou
headnode =0 7 hext}—~ hexty—{hext]
!
} headnode (510 coll  col2

o 2=




Erasing A Circular List

template <class Type>
void CircularList<Type>::~CircularList()
// Erase the entire circular list pointed by first
{
if (first) {
ListNode* second = first = link; // second node
first = link = av; // first node linked to av
av = second; // second node of list becomes front of av list

first = 0;
} A Circular List can be erased in a fixed amount of time
} - Independent of the number of nodes in the list
new av
first l
second chd.2-19
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Doubly Linked List

left right Head
jink 92ta Ak _Node
head/
1 2 3

Empty doubly linked circular list with head node

! !

first —

ch4.2-21

Class of a Doubly Linked List

class DbList;
class DbListNode {
friend class DbList;
private:
int data;
DbListNode *llink, *rlink;

}s

class DbList {
public:
/I List manipulation operations
private:
DbListNode *first; // points to head node

}s

ch4.2-22
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Deletion From a Doubly Linked List

void DbList::Delete ( DbListNode *X)
{
if (x == first) cerr << “Deletion of head node not permitted” << endl;
else {
X21link>rlink = Xx->rlink;
X2rlink>1link = x> 1link;
delete Xx;
}
}
for
; 1
first — =
———
VAN A
first — — | .-x-)-(--- ........ ;'X';'(" _____ N

ch4.2-23

Insertion To a Doubly Linked List

void DbList::Insert ( DbListNode *p, DbListNode *x)
/[ Insert node p to the right of node X
{

p~2llink = X; p2>rlink = X>rlink;

x=2>rlink>1link = p; x=>rlink = p;

}
; ]
first—| | |— Bl
I [
x p y |
first— o

ch4.2-24
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i

Virtual Functions and Dynamic Binding

ch4.2-25

Generalized Lists

e Definition

— A generalized list, A, is a finite sequence of n=0
elements, (o, ..., a, ;) where o, is either an atom or a list.

e Head
— @, is called the head of A
e Tail
— (04, ..., Q) is called the tail of A
e This is a recursive definition
- E.g., C=(a, O)=(a, (a, (a, ...))), A=(a, (b, ¢)), B=(A, A, ()

— A compact way of describing a large and varied structure

ch4.2-26
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Polynomial With Multiple Variables

* Example
P(x, y, z) = x'%y372 + 2x8y372 + 3x8y222 + x4y*z + 6x3y*z + 2yz
* Sequential Representation

— Use a structure with four fields to represent a single
array element

* Coef, Exp_x, Exp_y, Exp z

Coef | Exp_x | Exp_y

Exp_z link

A polynomial term

ch4.2-27

Factored Form of Polynomial
RESTHI 5l T RO 5D T SRR T T TR e SRR T
* Variable order

- { Z,Y X }
— z is the main variable, y is the second, x is the third

e Factored Expression
- ((x"9+2x8) y3 +3x3y2) 22 + (x* + 6x3) y* + 2y) z

(@ @| |l@

Cly.x) D(y.x)

P(x, y, z) = x1%322 + 2x8y322 + 3x8y222 + x4y‘z + 6x3y*z + 2yz

ch4.2-28
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Variable Independent PolyNode

enum Triple { var, ptr, no };

class PolyNode trio exp link
{
PolyNode *link; vble | dlink | coef
int exp;
Triple trio;
union { Case 1: trio==var = head node
char vble; Case 2: trio==ptr >
PolyNode *dlink; coef is a sub-list pointed by dlink
int coef; Case 3: trio==no
35 coef is an integer
I |
trio vble exp link trio dlink exp link
var[ y | 0 | ——|ptr 1|0 /3X2
Head node — -
trio coef exp
. = 2
28l = 20 var| x | 0 no|3|2]o
y is the main var.

ch4.2-29

Ex: Polynomial in General List

* Factored Expression

var[ z | O ptr| C ptr|D|1]0
Head node
var| y ptr| E |3 ptrl F[2]0
4
trio coef exp trio coef exp
var 0 no| 1|10 nol2|8|0
Cy.x) E(x)

\a

15




General List Class

enum Boolean { FALSE, TRUE};
class GenlList; // forward declaration
class GenListNode {
friend class GenList;
private:
GenListNode *link;
Boolean tag; // for indication of an atom or a list
union {
char data;
GenListNode *dlink;

35
35
class GenList {
public:
/I List manipulation operations
private:
GenListNode *first;
35
tag = FALSE/TRUE data / dlink link
ch4.2-31
Example: General Lists
| D = 0 empty list |
A— f| a t 0
A=, (bc) |
flb 0
B — t \ t N t
B=(AA() |
C— f|a t 0
| C=@ 0 |
ch4.2-32
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Recursive Algorithms

* For recursively defined data object

— It is often easy to describe algorithms that work on
these objects recursively

* Two components in a recursive operation
— (1) workhorse: the recursive function itself
* Often declared as a private function
— (2) driver: the function that invokes the recursive
function at the top level

* Declared as a public function

ch4.2-33

Copying A General List

// Driver
void GenList::Copy(const GenList& 1)
{

}

first = Copy(l.first);

// Workhorse
GenListNode *GenList::Copy(GenListNode *p)
/I Copy the recursive list with no shared sublists pointed at by p
{
GenListNode *q = 0;
if(p) {
q = new GenListNode; // q is the copied node
q>tag = p>tag;
if (! p>tag) q>data=p->data; //p is an atom node
else q—>dlink = Copy ( p~>dlink ); // p is a list pointer
q~>link = Copy( p~2 link);

} Proof: by induction
return q; Complexity: O(m), or 3m steps
} Recursion depth: m

ch4.2-34
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Example: General List Copy

A
b St ,]0]
t
s [Flal +—fIblo] 1.1 +—[FflelO]
"I 3—[fId]0]

level of continuing continuing
recursion value of p level level

b

—_— N W AW N
TV em O e~
UL WN
E X O £ = =

—_ 0 W N WA LD W

TN O E <€ OoO< i

&z

List Equality

// Driver — assumed to be a friend of GenList

int operator==(const GenList& 1, const GenList& m)

//'1 and m are non-recursive lists

// The function returns 1 if the two lists are identical and 0, otherwise

{

}
// Workhorse — assumed to be a friend of GenListNode

Int equal ( GenListNode *s, GenListNode *t)
{

return ( equal (1.first, m.first));

int x;
if (!s && !t) return 1; // both lists are null
if (s && t && (sDtag == t->tag))
{
if (! (s>tag)) // atom node
if (s>data == t>data) x=1; else x=0;
else x=equal (s=>dlink, t>dlink); // recursive call when list node
if(x) return ( equal ( s=>link, t->1ink) ); else return 0;
}

return 0; // only one list is null

18




Example: Depth of General List

A
b [t], [

LIt ,]0]

t
s [Flal +—fIblo] 1.1 +—[FflelO]

"FIcI 3—[fId]0]

A has two sub-lists: b=>dlink and r>dlink
Depth of list pointed by b->dlink: 1

Depth of list pointed by r>dlink: 2

- Depth(A) = max( Depth(b), Depth(r)) + 1 =3

ch4.2-37

List Depth

Computation

// Driver
int GenList::depth()

/I Compute the depth of a non-recursive list

{

}
// Workhorse

int GenList::depth(GenListNode *s)
{

return (depth (first) );

if (!s) return 0;
GenListNode *p =s; int m=0;
while (p) {
if (p>tag) { // sublist node
int n = depth (p>dlink);
if(m<n) m=n;
}
p = p~>link; // move forward
}

return m+1;

depth(s) =

1 if sis an atom
1+max { depth (x;), ..., depth (x,) }
if s is the list (xy, ..., X,)), n=1

ch4.2-38
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General Lists With Sharing

tag data/dlink link data/dlink of head node

~N | - means reference count

........... Y|  useful in deciding when a node
D= fI1[0] e can be returned to the storage pool
A—l f[3] | f|a t| [o] [A=@®o) |
fl1 flb flc|O
B—{ f|1 t t t|,[o] [ B=aA0 |
fli(o

{
¢ {2 LT[ F{[ o]

ch4.2-39

Polynomials With Sharing

t=(3x4+ 53+ 7x)y3
u = (3x*+ 5x3 + 7x) y® + (6x)y

ch4.2-40

20




Erasing A List Recursively

// Driver
int GenList::~GenList()
// Each head node has a reference count. We assume first #0

{

}
// Workhorse

int GenList::Delete ( GenListNode *x)
{

Delete ( first); first=0;

x = ref--; // decrement the reference count of head node
if (! x > ref)
{
GenListNode *y =x; //y traverses top-level of x
while (y = link ) {
y=y = link;
if (y > tag==1) Delete (y > dlink); }
y = link = av; // attach top-level nodes to av list
av=ys

Indirect Recursion Case

e For recursive list such as C = (a, C)
— The reference count will never be 1

— So, they cannot be recycled

e Indirect recursive lists cannot be recycled either

A first—| f |2 —| t t 0

A
B

B.first —| f | 3 t

= (A)

ch4.2-42
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i

ch4.2-43

Dynamic Binding

* Public Inheritance
— Rectangle IS-A Polygon
— Rectangle has all attributes of Polygon
— Pointer to a derived class is implicitly converted to a pointer to
its bass class
* For example
— Rectangle r; // instance of derived class

— Polygon *s = &r; // assign rectangle to polygon

* Member function types
— Virtual functions
— Non-virtual functions
— Pure virtual functions

e The responsibility of the implementation is passed on to the

derived class
ch4.2-44
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Example: Inheritance

class Polygon

/I Getld() and id are inherited from Polygon

/I They, respectively, become public and protected members of Rectangle
private:

/I additional data members required to specialize Rectangle

int x1, y1, h, w;
35

{
public:
int Getld(); // non-virtual member function
virtual Boolean Concave();
virtual int Perimeter() = 0; // pure virtual function
protected:
int id;
b
class Rectangle : public Polygon // Rectangle publicly inherits from Polygon
{
public:
Boolean Concave(); // redefined in Rectangle
int Perimeter(); // defined in Rectangle

Example: Inheritance (con’t)

/I Getld() must never be redefined in a derived class
int Polygon::Getld(){ return id; }

/I Default implementation of Concave() in Polygon. A polygon is concave
/I if it is possible to construct a line joining two points in the polygon

// that does not entirely lie within the polygon

Boolean Polygon::Concave() { return TRUE; }

/I Rectangle must define Perimeter() because it is a pure virtual function
int Rectangle::Perimeter() { return 2*(h+w); }

// The default implementation of Concave() does not apply to rectangles
// So, it has to be redefined
Boolean Rectangle::Concave(){ return FALSE; }

ch4.2-46
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Genealogical Charts

Dusty | no inbreeding is allowed
T L 1
Honey Bear Brandy
Brun'hilde Teln'y Co;lote Nuéget
Gill Tansey Tweed Zoe Crocus Primrose Nous Belle
(a) Pedigree
Proto Indo-European
r ! 1
Italic Hellenic Germanic
T 1
Osco-Umbrian Latin Greek North West
T ! 1 [ L 1 T l U
Oscan  Umbrian Spanish French Italian Icelandic Norwegian Swedish ~ Low High Yiddish
(b) Lineal
TIOTT 3
A Simple Tree
Every Node

- can have many children nodes
- but can only have one parent node

Degree - The maximum no. of children nodes LEVEL

1

a subtree

ch5.1-4




Direct Representation of a Tree

a subtree

Possible node structure for a tree of degree k

Data

Child1

Child2

Child k

Wasteful !

ch5.1-5

List Representation of A Tree

» Representing a Tree as a List

- (A(B(E(K,L),F),C(G), DHM), 1 J)))

This type of node indicates a sub-tree

ch5.1-6




Lemma 5.1

e Lemma

— If Tisak-ary tree (l.e., a tree of degree k) with n
nodes, each having a fixed size as shown in previous
slide, then n(k-1) + 1 of the nk child fields are 0,
n=1

* Proof:

— The number of non-0 child fields in an n-node tree is
exactly n-1

— The total number of child fields in a k-ary tree with
n nodes is nk

— Hence, the number of 0 fields is nk-(n-1) = n(k-1)+1

ch5.1-7

Left Child-Right Sibling #§&+-&ET+
Representation

Data
left child | right sibling

¢Co




Degree-Two Tree

e 6 e°:
@@@@@"
O=0 ¢ ONO

ch5.1-9

Binary Tree

 Definition
— A binary tree is a finite set of nodes that either is

empty or consists of a root and two disjoint binary
trees called left subtree and right subtree

e Skewed Tree

o Complete Tree

ch5.1-10




ADT of BinaryTree

template <class KeyType>
class BinaryTree
{
I objects: A finite set of nodes either empty or consisting of a root node,
/I left BinaryTree and right BinaryTree
public:

BinaryTree(); // creates an empty binary tree

Boolean IsEmpty();

/l'if the binary tree is empty, return TRUE (1); else return FALSE (0)
BinaryTree( BinaryTree btl, Element<KeyType> item, BinaryTree bt2);
/I creates a binary tree whose left subtree is bt1, whose right subtree is bt2
/I and whose root node contains item

BinaryTree Lchild();

I if ISEmpty(), return error; else return the left subtree of *this
Element<KeyType> Data();

/I if ISEmpty(), return error; else return the data in the root node of *this
BinaryTree Rchild();

/I'if IsSEmpty(), return error; else return the right subtree of *this

’

ch5.1-11

Maximum Number of Nodes

e Lemmab.2

— (1) The maximum no. of nodes on level i of a binary tree is 211,
i=1

— (2) The maximum number of nodes in a binary tree of depth k
is 2%-1, k=1

e Proof by induction

— Induction base: root is the only node on level i=0

— Induction hypothesis: max. no. of nodes on level i-1 is 2i-2

— Induction step: max. no. of nodes on level i is 211

k-1

k
.Zl(maximum no.of nodesonleveli) =¥ 2 =2k1
i=

ch5.1-12




Leaf Nodes vs. Degree-2 Nodes

e Lemmab5.3

— For any nonempty binary tree, T, if n, is the number of leaf
nodes and n, the number of nodes of degree 2

> thenny=n,+1
* Proof

— Let n be the total number of nodes

Let n, be the number of nodes of degree 1

We have n=n, +n, +n,

If B is the number of branches,n=B +1and B = n, + 2n,

Hence we obtainn=B+1=n,+2n,+1

Finally, we can reach ny=n,+ 1

ch5.1-13

Full Binary Tree With Sequential
Node Number

Let n be the number of nodes
The depth will be ceiling(log,(n+1))

Lemma 5.4
If a complete binary tree with n nodes is represented sequentially,
then for any node with index i, 1<i<n, we have

(1) parent(i)is at i/2] ifi#1

(2) LeftChild(i) is at 2i if 2i =n. If 2i>n, then i has no left child.

(3) RightChild(i) is at 2i+1 if 2i+1<n. If 2i+1>n, then i has no right child

ch5.1-14




Array Representation of A Tree

Array

—|TIA|mM|m|O|0[w|>|!

ch5.1-15

Linked Representation

class Tree; // forward declaration
class TreeNode {
friend class Tree;
private:
TreeNode *LeftChild;
char data;
TreeNode *RightChild;

K

class Tree {
public:
/] Tree operations

private:
TreeNode *root;

b

LeftChild |

data  |RightChild

LeftChild

RightChild

ch5.1-16




List Representation of A Tree

(A)
(&)
D) ®® ©

B @

/(8]
,ol\] [o[e]o] [o]F[o]
/ \
lo[H[o] [of1]o]

ch5.1-17

Outline

* Introduction
* Binary Trees
||‘  Binary Tree Traversal
» Additional Binary Tree Operations
» Threaded Binary Trees
» Heaps
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Binary Tree With Arithmetic
Expression

0 Inorder Traversal
(Y O ————
‘ @ Postorder Traversal
AB/C*D*E +
0 @ Preorder Traversal
+**/ABCDE

ch5.1-19

Inorder Traversal of a Binary Tree

void Tree::inorder()
/I Driver calls workhorse for traversal of entire tree. The driver is declared
/ as a public member function of Tree

{
}

inorder(root);

void Tree::inorder(TreeNode *CurrentNode)

// workhorse traverses the subtree rooted at CurrentNode (which is a pointer to
/l a node in a binary tree). The workhorse is declared as a private member

/I function of Tree

{
if (CurrentNode) {
inorder( CurrentNode = LeftChild);
cout << CurrentNode - data);
inorder ( CurrentNode = RightChild);
}
}

ch5.1-20




Trace of Inorder Traversal

Call of Value in [ Call of Value in
inorder  CurrentNode Action inorder  CurrentNode Action
Driver + (1) 10 G
1 # 11 0
2 # 10 (& cout << 'C”
3 / 12 0
4 A | Frwdi # cout << ’¥’
) 0 13 D
4 A cout << 'A’ || 14 0
6 0 13 D cout << 'D’
3 / cout <</’ 15 0
7 B Driver - cout << '+’
8 0 e 16 E
7 B cout << 'B’ 17 0
9 0 =6 E cout << 'E’
2 # cout << #’ 18 0
e

Preorder Traversal of a Binary Tree

void Tree::preorder()
/I Driver calls workhorse for traversal of entire tree. The driver is declared
/ as a public member function of Tree

{
}

preorder(root);

void Tree::preorder(TreeNode *CurrentNode)

/I workhorse traverses the subtree rooted at CurrentNode (which is a pointer to
/l a node in a binary tree). The workhorse is declared as a private member

/I function of Tree

{
if (CurrentNode) {
cout << CurrentNode - data);
preorder( CurrentNode > LeftChild);
preorder ( CurrentNode = RightChild);
}
}

ch5.1-22




Postorder Traversal of a B-Tree

void Tree::postorder()
/I Driver calls workhorse for traversal of entire tree. The driver is declared
/ as a public member function of Tree

postorder(root);

void Tree::postorder(TreeNode *CurrentNode)

/I workhorse traverses the subtree rooted at CurrentNode (which is a pointer to
/l a node in a binary tree). The workhorse is declared as a private member

/I function of Tree

if (CurrentNode) {
postorder( CurrentNode = LeftChild);
postorder ( CurrentNode = RightChild);
cout << CurrentNode - data);

ch5.1-23

Iterative Inorder Traversal

+

void Tree::NonReclnorder()
/I non-recursive inorder traversal using a stack ( ©
{ (1) ©
Stack<TreeNode*> s; // declare and initialize stack () @
TreeNode *CurrentNode = root;
while(1) { ®» ®
while (CurrentNode) { /I move down the LeftChild fields all the way
s.Add(CurrentNode); // add to stack
CurrentNode = CurrentNode=> LeftChild;

}
if (!s.IsEmpty() ) { //stack is not empty
CurrentNode = *s.Delete ( CurrentNode ); // pop from stack
cout << CurrentNode->data << endl;
CurrentNode = CurrentNode = RightChild; // to explore Right SubTree

else break;

}
}

ch5.1-24




class Inorderlterator { | Inorder Traversal Using Iterator |
public:
char *Next();
Inorderlterator(Tree tree): t (tree) { CurrentNode = t.root; }
private:
const Tree& t;
Stack<TreeNode*> s; I New data member (not needed in a list iterator) I
TreeNode *CurrentNode;

}.

char *Inorderlterator::Next()

while (CurrentNode) {

s.Add(CurrentNode);

CurrentNode = CurrentNode - LeftChild;
}

if (!s.IsEmpty()) {
CurrentNode = *s.Delete( CurrentNode );

char& temp = CurrentNode—>data;
CurrentNode = CurrentNode->RightChild; // update CurrentNode
return &temp;

else return(0); // tree has been traversed, no more elements

}

ch5.1-25

Level-Order Traversal

void Tree::LevelOrder()
/I Traverse the binary tree in level order
{
Queue<TreeNode*> q; // A queue is needed here
TreeNode *CurrentNode = root;
while ( CurrentNode ) {
cout << CurrentNode - data << endl;
if (CurrentNode 2 LeftChild ) g.Add(CurrentNode-> LeftChild);
if (CurrentNode->RightChild) g.Add(CurrentNode->RightChild);
CurrentNode = *q.Delete(CurrentNode);

Level-order traversal:
(2 © ) +*E*D/CAB
(1) ©
ONO.

Breadth-First Traversal (BFS)

ch5.1-26




Three Ways of Tree Traversal
Without Stacks

* Add a parent field to each node
— Doubly linked tree
* Use LeftChild and RightChild
— To maintain the paths back to the root
— shown in the next slide
* Threaded Binary Tree
— To be introduced later

ch5.1-27

Traversal Without A Stack

void Tree::NoStacklnorder()
/I Inorder traversal of binary tree using a fixed amount of additional storage

{

if (! root) return; // empty binary tree
TreeNode *top =0, *LastRight =0, *p, *q, *r, *rl;
p = q = root;
while (1) {
while (1) {
if ((! p2>LeftChild) && (! p>RightChild ) ) { // leaf node
cout << p = data; break;

}

if ((! p>LeftChid) { // visit p and move to p>RightChild
cout << p 2>data;
r = p = RightChild; p 2>RightChild = g;
q=p; p=r;

}
else { // move to p>LeftChild
r = p > LeftChild; p—>LeftChild = q; p_.
q=p;: p=r;
}
} /' end of inner while
TO BE CONTINUED ... o)
==




while (1) { ... previous page
/[ p is a leaf node, move upward to a node whose right subtree not explored yet
TreeNode *av = p;
while (1) {
if (p==root) return;
if (! g=>LeftChild) { // q is linked via RightChild
r = g2>RightChild; g>RightChild=p; p=q; q=r;}
else if (! g=>RightChild ) { // q is linked via LeftChild
r = g>LeftChild; g>LeftChild=p; p=q; g=r; cout << p>data;
else { // check if p is a RightChild of q
it (g == LastRight ) {
r = top; LastRight = r>LeftChild; top = r>RightChild; // unstack
r>LeftChild = r>RightChild = 0;
r = g=>RightChild; g>RightChild=p; p=q; gq=r;

else { //p s LeftChild of q

cout << g—>data; // visit q

av->LeftChild = LastRight; av>RightChild = top;

top = av; LastRight=q;

r = g=>LeftChild; g->LeftChild = p; // restore link to p

rl = g2 RightChild; g2>RightChild=r; p=rl; break; }

Outline

* Introduction
* Binary Trees
* Binary Tree Traversal
mmp - Additional Binary Tree Operations
» Threaded Binary Trees
» Heaps
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Copying Binary Trees

/I Copy constructor
Tree::Tree( const Tree& s) // driver

{

root = copy(s.root);

TreeNode *Tree::copy(TreeNode *orignode) // Workhorse
/I The function returns a pointer to an exact copy of the binary tree rooted
/[ at orginode

if (originode ) {
ThreeNode *temp = new TreeNode;
temp->data = orignode > data;
temp-> LeftChild = copy(orignode=> LeftChild);
temp-=>RightChild = copy(orignode->RightChild);
return temp;

}

else return O;

}

Propositional Calculus

Boolean Formula

— isoften constructed by

e asetof variables { x;, X5, X3, ...}

e operators such as * (AND) + (OR), and ~ (NOT)
— holds the value of true or false

Construction Rules of Propositional Calculus
(1) A variable is an expression

(2) ifxandy are expressions, then x*y, x+y, and ~x are
expressions

(3) Parentheses can be used to alter the normal order of
evaluation

Example: P = x1 + (x2 * ~ x3)
Evaluation

— when x1=false, x2=true, x3=false, then P = true
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Satisfiability Problem

« Satisfiability Problem

— for formulas of propositional calculus asks if there is an
assignment of values to the variables that causes the value of

the expression to be true
* Example

- P=x1*~x2+~x1*x3+~x3

@0
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First Version of Satisfiability
Problem

enum Boolean { FALSE, TRUE };
enum TypesOfData { NOT, AND, OR,
TRUE, FALSE }
class SatTree; // forward declaration
class SatNode {
friend class SatTree;
private:
SatNode *LeftChild;
TypesOfData data;
Boolean value;
SatNode *RightChild;

}

class SatTree {
public:
void PostOrderEval();
void rootvalue() {
cout << root->value;
b
private:
SatNode *root;
void PostOrderEval ( SatNode *);

I

for all 2" possible value combinations for the n variables

{

generate the next combination;
replace the variable by their values;

evaluate the formula by traversing the tree by PostOrderEval();
if (formula.rootvalue()) { cout << combination; return; }

}

cout << “no satisfiable combination” ;
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Evaluating A Formula

void SatTree::PostOrderEval() // Driver
{
PostOrderEval ( root);
}
void SatTree::PostOrderEval(SatNode *s) // Workhorse
{
if () {
PostOrderEval ( s> LeftChild );
PostOrderEval ( s> RightChild );
switch ( s>data) {
case NOT: s>value =! s2>RightChild>value; break;
case AND: s>value = s> LeftChild>value && s>RightChild>value;
break;
case OR: s—>value =s>LeftChild>value || s>RightChild->value;
break;
case TRUE: s>value = TRUE; break;
case FALSE: s>value = FALSE; break;
}
}
}
vl 1-35

Outline

* Introduction

* Binary Trees

* Binary Tree Traversal

» Additional Binary Tree Operations
immp + Threaded Binary Trees

» Heaps
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Threaded Tree

LeftTread LeftChild data RightChild RightThread

TRUE : FALSE
T f
6
To utilize 0-links: A
left thread: inorder predecessor 4 % 8
right thread: inorder successor P s
B C :
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class ThreadedNode {
friend class ThreadedTree;
friend class ThreadedlInorderlterator;
private:
Boolean LeftThread;
ThreadedNode *LeftChild;
char data;
ThreadedNode *RightChild;
Boolean RightThread;

Class for Threaded Binary Tree

b
class ThreadedTree {
friend class ThreadedlInorderlterator;
public: /I Tree manipulation operations follow
private:

ThreadedNode *root;
b
class ThreadedInorderlterator {
public:

char *next();

ThreadedInorderlterator(ThreadedTree tree): t (tree) { CurrentNode = t.root; };
private:

ThreadedTree t;

ThreadedNode *CurrentNode;

}




Memory Representation of
Threaded Tree
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Finding the Inorder Successor

char *ThreadedlInorderlterator::Next()
/I Find the inorder successor of CurrentNode in a threaded binary tree
{
ThreadedNode *temp = CurrentNode->RightChild; // rightchild or successor
if (! CurrentNode->RightThread )
while (! temp—>LeftThread) temp = temp->LeftChild;
CurrentNode = temp;
if ( CurrentNode ==t.root) return 0; //last node has been reached
else return (&CurrentNode->data);

}

void ThreadedInorderlterator::Inorder()

for (char *ch = Next(); ch; ch = Next() ) {
cout << *ch << endl; A
} :

}
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Inserting A Node In Threaded Tree

insertr

Inserting Operation

void ThreadedTree::InsertRight( ThreadedNode *s, ThreadedNode *r)
/l'Insert r as the right child of s

{

r->RightChild = s>RightChild;
r>RightThread = s>RightThread;
r=>LeftChild =s;
r>LeftThread = TRUE; // LeftChild is a thread
s>RightChild =r; // Attach rto s
s>RightThread = FALSE;
if (! r>RightThread) {
ThreadedNode *temp = InorderSucc(r) ; // returns the inorder successor of r

temp->LeftChild = r;

}
I




Outline

* Introduction

* Binary Trees

* Binary Tree Traversal

» Additional Binary Tree Operations
» Threaded Binary Trees

immp + Heaps
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Priority Queue

* Priority Queue
— Elements deleted is the one with the highest priority
— An element with arbitrary priority may be inserted
— This is called max priority queue
— min priority queue is defined similarly

template<class Type>
class MaxPQ {
public:
virtual void insert(const Element<Type>&) = 0;
virtual Element<Type>* DeleteMax( Element<Type>&) = 0;

}
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Max Heap

* Heap
— is frequently used to implement a priority queue
 Definition

— A max(min) tree is a tree in which the key value in each node is
no smaller (larger) than the key values in its children (if any)

— A max heap is a complete binary tree that is also a max tree
— A min heap is a complete binary tree that is also a min tree
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Class Definition of Max Heap

template <class KeyType>
class MaxHeap : public MaxPQ<KeyType>
{
/I objects: A complete binary tree of n > 0 elements organized in a way that
// the value in each node is at least as large as those in its children
public:
MaxHeap( int sz = DefaultSize);
/I Create an empty heap that can hold a maximum of sz elements
Boolean IsFull();
/I'If the number of elements in the heap is equal to the maximum size of the
/I heap, return TRUE(1); otherwise, return FALSE(0)
void Insert(Element<KeyType> item);
/I'1f IsFull(), then error, else insert item into the heap
Boolean ISEmpty()
/I If number of elements in heap is 0, return TRUE(1); else return FALSE(0)
Element<KeyType>* Delete(KeyType& X);
private:
Element<Type> *heap;
int n; // current size of max heap
int MaxSize; // Maximum allowable size of heap

}
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Insertion To a Max Heap

after adding

OO ()
) still a

(1) () (O O =) snarye
binary tree

Final tree after inserting 5 Final tree after inserting 21
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Insertion To a Max Heap

template <class Type>

! original
void MaxHeap<Type>::Insert( const Element<Type>& X)
Il insert x into the max heap @
{
if (n==MaxSize) { HeapFull(); return;}
1s) (@

for(inti=n; 1;) {

if (i==1) break; //at root @ @ x.key

if (x.key <= heap[i/2].key) break;

/1 move from parent to i [xsmment  xkey BN
heap[i] = heap[i/2]; adding 5 adding 21
i=i/2;

} (20 (21)

heap[i] = x; // write in the data

} & & @ @
W W
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Deletion From a Max Heap

hafter delleting G

t t t

@ a e root elemen @ e
& of |

after moving @ after moving @

14 to the vacancy 10 to the vacancy

— () (D) ey @ &
o) (10

Final tree - still complete binary tree
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Deletion From a Max Heap

@ after @
deleting
@ @ the root @ @
element
(1) (0 — ()
after moving Q after moving Q
19 to the vacancy @ 10 to the vacancy
= ::b -
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Deletion From a Max Heap

template <class Type>
Element<Type>* MaxHeap<Type>::DeleteMax(Element<Type>& x)
/I Delete from the max heap
{
if (n==0) { HeapEmpty(); return 0; }
x = heap[1]; Element<Type> k = heap[n]; n--; . e
for (int i=1; j=2; j<=n;) I: vacant p95|t|on
{ j:larger child
if (j<n) if (heap[j].key < heap[j+1].key) j++;
/I j points to the larger child
if (k.key >= heap[j].key) break; -
heap[i] = heap[j]; // move child up height of a hgap = |-|°92 (n+1)
i=j; j*=2; //moveiand jdown complexity = O(log n)
}

heapli] = k; @
r:t"ijprr: &X; @
} (1) \@®
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Binary Search Tree (BST)

¢ Definition

— A binary search tree is a binary tree
— The left & right sub-tress are also binary search tree
— If it is not empty, then it satisfies the following

* Every element has a unique key

* For every node N, Key(N) > Key( Left Subtree(N) )
* For every node N, Key(N) < Key( Right Subtree(N) )

@ NOT BST ! @ @ A BT
(15) () (s) (0 (70)
(2) (10) (22) @ ABST ! (65)
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Why Binary Search Tree ?

* Heap
— is well suited for priority queue
— but is bad when deleting an arbitrary element is
needed = O(n)
* Binary Search Tree

— has a better performance when the functions to be
performed are search, insert, and delete

— operations can be done by key or by rank
— Examples:

* find an element with key x

e delete an 5-th element of the tree
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Recursive Search Of a BST

template <class Type> // Driver

BstNode<Type>* BST<Type>::Search(const Element<Type>& x)

/I Search the binary search tree (*this) for an element with key x

/I If such an element is found, return a pointer to the node that contains it

{
}

return Search(root, x);

template <class Type>// Workhorse
BstNode<Type>* BST<Type>::Search(BstNode<Type>*b, Element<Type>& x) {
if (! b) return 0;
if (x.key == b—>data.key ) return b;
if (x.key < b—>data.key )

return Search(b—>LeftChild, x);
return Search(b—>RightChild, x); @

Each node has tree fields: LeftChild, data, RightChild
data is of class Element<Type> having a field ey @ @ @

}

ch5.2-5

Iterative Search Of a BST

template <class Type>
BstNode<Type>* BST<Type>::IterSearch(const Element<Type>& x)
/I Search the binary search tree for an element with key x
{
BstNode<Type> *found, *t = root;
while (1) {
if (t==0) {found =0; break; } // the key being searched is not existent
else {
if (x.key == t>data.key ) {found =t; break; } Findi
else if ( x.key > t>data.key ) t=t->RightChild; Inding
else t = t->LeftChild; Element with tlhe
} } key of 16
return (found);
} | Complexity: O(h), where h is the height | @

iteration 1 2 3 @ @
t->data.key | root (20) 15 16 @ @ @

found - - 16
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Search A BST By Rank

template <class Type>
BstNode<Type>* BST<Type>::Search(int k)
/I Search the binary search tree for the k-th smallest element
{
BstNode<Type> *t = root; Each node has an additional field: LeftSize
while( t) - the number of elements in its left subtree + 1
{
if (k==t>LeftSize ) return t;
if (k < t>LeftSize ) t=t>LeftChild;
else {
k = k — t-> LeftSize;
t = t DRightChild; Finding
: 3rd element:
}
return 0; | Complexity: O(h), where h is the height @
3
iteration 1 2 3 @ @
t> LeftSize (20) 4 as)2 1e)1 @ @ @
k 3 3 1

ch5.2-7

Example: Insertion to a BST

@ To insert a node

with key 35

A search is first ful !
@ @ - el |||- unsuccessfu

last node
examined

The new node

||~ is inserted as a child
of the last node examined “‘ e @

If a node has a LeftSize field, then it has to be updated |
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Insertion to A BST

template <class Type>
BstNode<Type>* BST<Type>::Insert(const Element<Type>& x)
/[ Inserting x into the binary search tree

{

/I Search for x.key, q is parent of p
BstNode<Type> *p =root; BstNode<Type> *q =0;
while(p) {
q=p;
if (x.key == p>data.key ) return FALSE; // x.key is already in tree
if ( x.key < p>data.key ) p = p > LeftChild;
else p = p>RightChild;
}
// Perform insertion
p = new BstNode<Type>;
p~>LeftChild = p>RightChild = 0; p>data = x;
if (! root) root = p;
else if (x.key < q—>data.key) q—=>LeftChild = p;
else q>RightChild = p;
return TRUE; Complexity: O(h)
} where h is the height of BST

ch5.2-9

Example: Deletion From a BST

@ Delete the @

root either 5 or 40 can

become new root
(s) («0) - (&) (40)

choose 40 @ @
i (5)

(oun)
@ (20) G)
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Joining and Splitting Binary Trees
* C.ThreeWaylJoin(A, x, B)

— Assume that

* each element in A has a smaller key than x
+ each element in B has a larger key than x
— The operation creates a binary search tree C

 consisting of every elements in A and B, and element x
« C.TwoWaylJoin(A, B)
— Assume that all keys of A are smaller than all keys of B
— The operation creates a binary search tree C A A
* consisting of all elements in A and B
*  A.Split(i, B, x, C)

— To split A into B and C
B: all elements with a key smaller than i

C: all elements with a key larger than i

— x: if an element has a key equal to i, then it is copied into x 1

Example: Joining BST’s

* Three-way join operation C.ThreeWayJoin(A, x, B)
— Time is O(1)
— The height of the new is max{ height(A), height(B) } + 1

* Two-way join operation C.TwoWayJoin(A, B)

Step 1: delete from A the record x with the largest key

Let the resulting tree as A’ @
Step 2: perform three-way join operation
: A B ()
C.ThreeWayJoin(A’, x, B)
_ Time is O( height(A)) (83)
G0

The height of the new tree is
max{ height(A’), height(B) } + 1

(80)




Example: Splitting a BST

‘()

original @ @ split the tree over x with key 10
-
/@ m @ o dowgezhaeuzree1eofri)Td?a?a?iei;[/s efichld
oJole
X C
. @ tar%et ngde @
is found !
—) @ @ —-—) B @

Left sub-tree to B

()
o 0 @ @ move target node’s ;2) @ @ @
ight sub-tree to C
OOE L ofe
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Splitting A BST

template <class Type>

Element<Type>* BST<Type>::Split(Type i, BST<Type>& B,
Element<Type>& x, BST<Type>& C)

// Split the binary search tree with respect to key i

{

if (! root) { B.root = C.root = 0; return 0; } / empty tree
/I ereate head nodes for B and C
BstNode<Type> *Y = new BstNode<Type>; BstNode<Type> *L=Y;
BstNode<Type> *Z = new BstNode<Type>; BstNode<Type> *R =Z;
BstNode<Type> *t =root;
while (t) {
if (i==t>data.key) { //splitat t
L - RightChild = t->LeftChild;
R > LeftChild = t->RightChild;
x = t>data;
B.root = Y->RightChild; delete Y;
C.root = Z> LeftChild; delete Z;
return &x;

}
TO BE CONTINUED ...

| L and R are the frontiers of B and C
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Splitting A BST

else if (i < t>data.key) {
R~> LeftChild = t;
R =t; t=t>LeftChild;
}
else { // i>t>data.key
L->RightChild = t;
L=t; t=t>RightChild;
}

}
// Set 0 pointers and delete head nodes

L->RightChild = R-> LeftChild = 0;
B.root = Y->RightChild; delete Y;
C.root = Z> LeftChild; delete Z;
return 0;

ch5.2-15

Outline

Binary Search Trees

Selection Trees

i

Forests

Set Representation

Counting Binary Tree

ch5.2-16




Problem of Multi-Way Merging

* Problem
— Merge k ordered sequences, called runs, into a single ordered
sequence
* Example
— R1={15, 16}, R2 = {20, 38}, and R3 = {1, 17}
— The merged output = {1, 15, 16, 17, 20, 38}
* A naive algorithm

— Find the smallest element by examining the first element of
each run

— Complexity is O(n - k), where n is the total number of
elements in the k runs

— But we can actually accomplish this in O(n - log k)

ch5.2-17

Winner Tree

e Definition

— A winner tree is a complete binary tree in which
each node represents the smallest of its two children

* The construction of a winner tree

— Is like the playing of a tournament in which the
winner is the record with the smaller key

(&
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Winner Tree for k = 8

(&

15 20 20 15 15 1l 95 18
16 38 30 25 50 16 99 20
28
run 1 run2 run3 run 4 run 5 run6 run7 run 8
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Winner Tree After One Record Is
Output

After deleting the smallest:
The tournament is replayed only along the path from node 11 to the root

15 20 20 25 15 1 95 18
16 38 30 28 50 16 99 20

run 1 run2 run3 run 4 run 5 run6 run?7 run 8
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Loser Tree

A loser is recorded in the non-leaf node
Restructure of the tree is even faster
(No need to compare with siblings)

2
(winner,loser) pair @ 5
(10) (629
8 9 10
1O

overall winner

15 20 20 15 15 1 95 18
16 38 30 25 50 16 99 20
28
run 1 run2 run3 run 4 run 5 run6 run7 run 8
ch5.2-21
Outline

Binary Search Trees

Selection Trees

Forests

i

Set Representation

Counting Binary Tree
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Forrest

e Definition

— A Forest is a set of n =0 disjoint trees

* Operations
— Transforming a forest into a binary tree

— Forest traversal

* Examples

5o b So
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Transforming A Forest Into a BT

e Definition

- IfT,, T,, ..., T, is a forest of trees, then the binary
tree corresponding to this forest, denoted by
B(T,,...,T,)

(1) is empty if n = 0;
(2) has root equal to root (T,);

* Left-subtree: B(T;ys...,T;,,), where Ty,,...,T;,, are the
sub-trees of root(T,)

* Right-subtree: B(T),,...,T,).
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Binary Tree Representation

HETF-fEF Concept

5o & &b

1 forest to a binary tree

e @\\
Binary tree G E(i)nrzra;)e/érg)e/
Tiggﬁrggs Forest of
of root node A e TreesE, G
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Forest Traversal

¢ Forest Preorder Traversal
— If F is empty then return
— Visit the root of the first tree of F

— Traverse the sub-trees of the first tree in forest
preorder

— Traverse the remaining trees of F in forest preorder
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Outline

Binary Search Trees

Selection Trees

Forests

i

Set Representation

Counting Binary Tree
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Set Representation

RERTHI 5 ORI ol T ORERTT o S ORERTT C SRETI l T
« Use of trees to represent sets
* Elements: {0, 1, 2, 3, ..., n-1}

— indices into a symbol table where actual names are
stored

« Assume that the sets being represented are
mutually disjoint

— For example o e

. S1=10,6,7, 8}

s OOE O ©

. $3={2,3,5)
S1 S2 S3
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Set Operations

* Disjoint set union
— If S; and §; are two disjoint sets, then
S;US,; = {all elements x such that x is in S; or S;}
— For example S1US2=1{0,6,7,8, 1,4, 9}
* Find(i)
— Find the set containing i.

— For examples

* 3isinsetS;

* 8isinsetS; O e G&
OOG® O @

S1 S2 S3
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Union Operation

B dh ot

s @

S1US2 S1uS2
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Data Structure

* Symbol Table and Sets

— A table entry is (set name, pointer)

set
pointer

ST @

S2

53 O@OE O @

S1 S2 S3

* Array indicating a node’s parent

i [OF | [ | 121 | B3] | 41 | [S] | [6] | [7] | 8] | [9]

parent -1 4 -1 2 -1 22 0 0 0 4
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Class and Operations for Sets

class Sets {
public:
// Set operations follow
private:
int *parent;
int n; // number of set elements

35
Sets:Sets(int sz = HeapSize)
{
n = sz; parent = new int[sz];
for (int i=0; i<n; i++) parent[i] =-1;
}

void Sets::SimpleUnion(int i, int j)
/I replace the disjoint sets with roots i and j, i != j with their union

{

parentl[i] = j;

}
int Sets::SimpleFind(int i)
{
while( parent[i] >=0) i = parent][i]; return i;
}

ch5.
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Worst-Case Scenario

* Consider the following union-find operations

union(0, 1), union(1, 2), union(2, 3), union(3, 4), ..., union(n-2, n-1),

find(0), find(1), ..., find(n-1)
; find(0) = O(n)

find(1) = O(n-1)
find(2) = O(n-2)

2 find(n-1) = 1
o e o
[ -, otal = O(n
© O ©

* The results
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Weighted Rule for Union(i, j)

e Definition

— If the number of nodes in the tree with root i is less
than the number in the tree with root j, then make j
the parent of i; otherwise make i the parent of j.

* Data Structure

— A count field in the root node is used to indicate the
total number of elements in the tree
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Trees Obtained Using The
Weighted Rule

@ @) - © @...@ oJorye
() O @

initial union(0, 1) union(l, 2)

ojoRdc

¢60 - @62\@

union(2, 3) union(n-2, n-1)
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Union Algorithm With Weighting Rule

void Sets::WeightedUnion(int i, int j)
// Union sets with roots i and j, i #Zj, using the weighted rule
// parent[i] = - count[i] and parent[j] = -count[j]

{

int temp = parent[i] + parent[j];
if (parent[i] > parent|j]) { // i has fewer nodes
parent[i] = j;
parent[j] = temp;
3
else{ /' has fewer nodes or i and j have the same number
of nodes
parent[j] = i;
parent[i] = temp;

It is provable that:
The height of the tree created by a sequence of unions
over one-node trees is no greater than floor(log, n) + 1
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Trees Achieving Worst-Case Bound

2] 21 [[2] [

=10 019 =90 (=70 [=79 =70 (=19 1]

(0) (1) ()
00000600 :

(D G @

initial height-1 trees ) )
Height-2 trees after unions

0,1, 3),4)5), (6,7

[-4] [-4] (0)
(0) (4)
® v =
©)
& ©
@
Height-3 trees after unions . .
©, 2), (4, 6) Height-4 trees after unions (0, 4)
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Collapsing Rule for Union(i, j)

e Definition

— If j is a node on the path from i to its root and
parent|i] #root(i), then set parent[j] to root(i)

« Example

— processing eight find operations: @
find(7), find(7), ..., find(7)

— SimpleFind c e
= 3*8 = 24 moves

— CollapsingFind @{ @
-)ar_:;‘+1+1+1+1+1+1+1=13moves e
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15t find(7): including traversal & collapsing




Find Algorithm With Collapsing Rule

int Sets::CollapsingFind(int i)
// Find the root of the tree containing element i
// Use the collapsing rule to collapse all nodes from i to the root
{
for (int r =i; parent[r] >= 0; r = parent|r]); // find root
while (r!=i) {
int s = parent[i];
parent[i] =r;
i=s;
}
return r;
}
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Application To Equivalence Classes

N0 =000 =0-10-100-11 A A
"""""" /010161010
0006006000000 :%:

initial height-1 trees

Height-2 trees after processing
0=4, 3=1, 8=9, 6=10

@%E E&

Trees after processing Trees after processing
7=4, 6=8, 3=5, 2=11 11=0
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Inheritance Graph Among Trees

| Search Structure |

/

| MaxPQ | | Complete Binary Tree I BST

N

ch5.2-41

Outline

Binary Search Trees

Selection Trees
* Forests
* Set Representation

II‘ * Counting Binary Tree
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Counting Binary Trees

* Problem 1

— What is the total possible number of distinct binary
trees having n nodes?

* Problem 2

— What is the number of permutations of the numbers
from 1 through n obtainable by a stack ?

* Problem 3

— What is the number of distinct ways of multiplying
n+1 matrices ?

= All the three problems have the same answer !
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Example: Distinct Binary Trees

I

LN
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Distinct Binary Trees According To
A PreOrder / InOrder Sequence Pair

* Given
— the pre-order sequencec ABCDEFGHI
— the in-order sequence BCAEDGHFI

* Question

— Does the given information defines a unique tree ?

* Construction Process
O, O,
GO ; — -
(O
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Tree Construction Using Pre-order
and In-order Information

Pre-order ABCDEFGHI
In-order: BCAEDGHFI

() (A)
-y @) CoeronD> mmp @ (D
© © ©®© Cshid
(A)
S %
- Ndo -

@ G A unique tree exists !

Given information is valid !
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What Orders Are Valid ?

* Given
— the pre-order sequence A B C
— the in-order sequence C A B
* Question
— Is the given order corresponds to any tree ?

e Answer

— No, there is no binary tree according to this order pair

after processing the node A
using the construction rules

» (O (B) =—>

violate the preorder
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Example of Invalid Order Pair

* The following is not valid

— the pre-order sequence: 12345678910
— the in-order sequence: 18..2. .4 ..

When partitioning the tree based on node 2
- node 8 is in the left sub-tree,

- while node 4 in the right sub-tree

- will violate the preorder 8 < 4
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Stack Permutations

C?? ‘\K ABC

CAB

is not possible ! Possible ways of bi-partitioning:

Ais the Tt output > ABC) = T(0) - T(2)

(pass A + permutations of (BC))
A is the 2nd output &> (B)A(C) = T(1) - T(1)
(push A, pass B, pop A, pass C)
A is the 3rd output > (BC) A = T(2) - T(0)
B (push A + permutations of (BC))
A

stack

(ABC),(ACB),BAC),(BCA),(CBA)
= all valid permutations and valid in-order sequence

Total # of distinct trees = Total # of permutations through a stack
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Possible Bi-Partitioning’s For n=4

* Preorder: ABCD ’, ()

* Possible bi-partitioning’s: 8D
— A(BCD) > b(0)b(3) =5
— (B)A(CD) > b(1)b(2) =2 (A) (A)
— (BC)A(D) > b(2)b(1) =2
— (BCD)A > b(3)b(0) =5
b(4) = b(0)b(3) + b(1)b(2) + b(2)b(1) + b(3)b(0) = 14

n-1
bn = Z bi
i=0

b,;; n=1, and b,=1
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Problem

— compute n matrices M;* M,* M;* - - - * M

Matrix multiplication is associative

Matrix Multiplication

For n=3, there are two ways

M;* (M,* My) and (M;* My)* M; b, = ):(.) b
i=

For n=4, there are five ways

Ml* ((MZ* MS)*M4)

(Ml* Mz)* (MS*M4)

((M;* Mp)* M3)*M,

n

Bi-partitioning:

n-1
- b

i Vn-i-1

n=1, and by=1

M;* (M,* (M3*M,))

(M *(My* My)*M,

Let B, represents ways of multiplying n+1 matrices
— Then, B=1,B,=1,

B, B,,, n=2| Matrix multiplication
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Distinct BT v.s. Matrix Multiplication

* The no. of ways of doing matrix multiplication

— can be characterized by recursive bi-partitioning

as seen earlier

 Similarly, the number of distinct binary trees

— can be characterized by recursive bi-partitioning, too

-1

! b;b,;; n=1, and by=1

Il
>

b, R (i+1) [EAEREATSEILEOA
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Solving Bi-Partitioning

* To obtain the number of distinct binary trees

— We have to solve the following recurrence relation
n-1
b, = ):(') b;b,;; n=1,and b,=1
1=

« Let B(x) =bytb,x!+b,x*+b,x3+ ...
« Then xB%*(x) = x [bytbx'+tb,x*+...][byth,x+b,x?*+...]
= B(x)-1 using the recurrence relation

* Solve the quadratic equation b, = O(4"/n!)
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The End of Trees Part Il

Next Topic:
Graph







River Pregel in Konigsberg

* Problem

— Is there a cyclic walk that traverses every bridge only once (1736)
* For an Euler’s path to exist

— The degree of each vertex is even

— The degree is the number of edges incident to a vertex

g
=
=
—

O
Knelphof € llllllll"’.

=
f

\[TMI

h6.1-3

Definition and Notations of Graph

e Definition

— A graph, G, consists of two sets, V and E
— Vis a finite nonempty set of vertices = V(G)

— E is a set of pairs of vertices, called edges 2> E(G)
* Terminology

— Undirected graph: edges are not directed
— Directed graph (Digraph): edges are directed

¢ directed pair <u, v>, u is the tail and v is the head
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Sample Graphs

G1 G2 G3
vGn={0,1,2,3}; EG1)={(0,1),(0,2),(0,3),1d,2),d,3),2,3)}
vV(G2)={0,1,2,3,4,5,6}; E(G2)={(0,1),(0,2),1,3),d,4),(2,5),(2,6)}
V(G3)={0,1,2}; E(G3)={<0,1><1,0><1,2>}

Question: What are the maximum number of edges in a graph with n nodes?

- n - (n-1)/2 for undirected graph and n - (n-1) for digraph

ch6.1-5

Restrictions on Graph

* No self loops

— A self loop (or self edge) is an edge from a vertex v
back to itself

— That is, (v, v) and <v, v> are not legal

* No multiple occurrences of the same edge

Graph with self edge Multigraph
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Terminology

* Complete graph
— An n-vertex, undirected graph with exactly n(n-1)/2 edges is said to
be complete
— An n-vertex, directed graph with exactly n(n-1) edges is said to be
complete
* Adjacent nodes

— If (u, v) is an edge in E(G), then u and v are adjacent, and edge (u,
v) is incident on vertices u and v

— If<u, v>is a directed edge, then u is adjacent to v, and v is
adjacent from u

* A subgraph of G
— is a graph G’ such that V(G’) ¢ V(G) and E(G’) c E(G)

ch6.1-7

Path in A Graph

* A path from vertex u to vertex v
— is a sequence of vertices u, i, iy, .., iy, v such that (u, i,), (i, i), -.-
(i, v) are all edges in E(G)
— A path (0, 1), (1, 3), (3, 2) is also written as 0, 1, 3, 2
* A simple path
— is a path in which all vertices except possibly the first and last are
distinct

* The length of a path

— is the number of edges on a path
* A cycle

— is a simple path in which the first and last vertices are the same
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Connected Component

 Connected vertices

— In a undirected graph, two vertices u and v are said to
be connected iff there is a path in G fromu to v

¢ Connected graph

— An undirected graph is said to be connected iff for
every pair of distinct vertices u and v in V(G) there is a
path from u to vin G

* A connected component
— is a maximal connected subgraph

* A tree is a connected acyclic graph

ch6.1-9

Strongly Connected Component

» Strongly connected graph

— A digraph G is said to be strongly connected iff for every pair of
distinct vertices u and v in V(G), there is a directed path from u to
v and also from v to u

» Strongly connected component (SCC)

— A SCC is a maximal subgraph that is strongly connected

D) o
©)

) ==
©

A graph with two connected components G3 Two SCC’s of G3
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Abstract Data Type Graph

class Graph
{

/I objects: A nonempty set of vertices and a set of undirected edges
/I where each edge is a pair of vertices
public:
Graph (); // Create an empty graph
void InsertVertex(Vertex v); // Insert v into graph; v has no incident edges
void InsertEdge(Vertex u, Vertex v); // Insert edge (u, v) into graph
void DeleteVertex(Vertex v); // Delete v and all edges incident to it

void DeleteEdge(Vertex u, Vertex v); // Delete edge (u, v) from the graph

Boolean IsEmpty ();
/I if graph has no vertices return TRUE(1); else return FALSE(0);

List<Vertex> Adjacent( Vertex v);
/I return a list of all vertices that are adjacent to v

CNo.1-11

Graph Representations

* Adjacency matrices
* Adjacency lists

* Adjacency multi-lists
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Adjacency Matrices

01234567
— ~
01100000

G3 0

orEs Dt 1 (10010000

N R 01010 2 [00010000

o 11101 3 |o1100000

i 2 (000 4 [00000100

’ PO 5 00001010
Questions: How many edges? Is G connected ? 6 00000101
- requires O(n?) 7 (00000010 )
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Adjacency Lists

@ P
O

HeadNodes data link

o1 | 43| 4—{1] 4—{2]0] HeadNodes
NESBEsBEsOD o [ -T0]

o [ G0 w0
Bl | 4—{o| 4—{1| 4—{2]0] 21 | o
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Graph Using Adjacency Lists

class Graph
{
private:
List<int> *HeadNodes;
int n;
public:
Graph( const int vertices = 0) : n ( vertices )
{ HeadNodes = new List<int>[n]; } ;
33

Complexities of simple operations:
1. Determine the total number of edges of a graph: O(n+e)
2. Determine the out-degree of a node: O(out-degree of the node)

3. Determine the in-degree of a node: needs inverse adjacency lists
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Inverse Adjacency Lists

G3

HeadNodes HeadNodes

o [ F-T0] o [ J-[To]
| 2] g—lofo ]
21 |0 21 [ ——{1]0]

adjacency lists inverse adjacency lists

ch6.1-16




Orthogonal List Representation

Node structure 0

| tail - column link for head | row link for tail | “
O

head nodes 0
(Shuymmierice) ol f Lol 11 [f2f 0]

G3

iy
:

E

INEERD [ AEL]

Horizontal links: outgoing edges of a node

=
||
||
=]

Vertical links: incoming edges of a node
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Adjacency Multi-Lists

* Motivations
— An edge (u,v) in adjacency lists is represented by
two entries, one in list for u, the other in list for v

— During graph traversal, we need to mark an edge as
visited = need a better representation

* Adjacency Multi-Lists
— There is one node for each edge
— A node may be shared among several lists

Node structure

| m |vertex1 | vertex2| list 1 | list 2 |

mark bit indicating whether or not an edge has been examined
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Example: Adjacency Multi-Lists

HeadNodes data link

01| {31 1] 4—2]o]

| 2| 4—{3] 4—{0]o]| adiacency list

21| {1 3~{3] —{o]o]

31| (o] —{1] —{2]0]

No | [o] 1 [Ni|n3| edgeco, 1)
HeadNodes

. N1 [ o2 [N2|N3| edgeo,2)
1] // N2 | [o]3]0]|N4| edgeco,3)
2] :/ N3 [ | 1] 2 [N4|N5| edge(,2)
. Na [ [ 1]3]0]|Ns| edgeq,3)
adjacency multi-list . | | ; | B | 0 I : | edge (2. 3)
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ADT of Adjacency Multi-Lists

enum Boolean { FALSE, TRUE }
class Graph;
class GraphEdge {
friend Graph;
private:
Boolean m;
int vertexl, vertex2;
GraphEdge *pathl, *path2;
3

typedef GraphEdge *EdgePtr;
class Graph {
private:
EdgePtr *HeadNodes;
int n;
public:
Graph(const int);
¥

{

}

Graph::Graph(int vertices=0) : n (vertices)

/I Set up the array of head nodes
HeadNodes = new EdgePtr[n];
for(i=0; i<n; i++) HeadNodes][i] = 0;
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Outline

* The Graph Abstract Data Type

II- * Elementary Graph Operations
— Depth First Search
— Breadth First Search
— Connected Components
— Spanning Trees

— Bi-connected Components

* Minimum Cost Spanning Trees

ch6.1-21

Depth First Search

Depth First Search (DFS) orders: (for example)
0,1,3,7,4,5,2,6
0,1,4,7,3,5,2,6

etc.

[0 I R
ey =31 F <17

2| — 0] J~{5] F—={6]0]

31 [F—={7197]

a1 {710

51| — {2 37 ]0]

w | —F—{Z[ F—-[7]0]

1 (3 (3] =[5 F~{6710]
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Depth First Search Algorithm

void Graph::DFS() // Driver
{

visited = new Boolean|[n];
for (int i=0; i<n; i++ ) visited[i] = FALSE;

DFS(0); // start search at vertex 0

delete[ | visited;
}

void Graph::DFS(const int v) / Workhorse
// visit all previously unvisited vertices that are reachable from vertex v
{
visited[v] = TRUE;
for (each vertex w adjacent to v)
if (! visited[w] ) DFS(w);
}

}
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Breadth First Search

void Graph::BFS(int v)
/I A breadth first search of the graph is carried out beginning at vertex v
/I visited[i] is set to TRUE when v is visited. The algorithm uses a queue

{

visited = new Boolean|n];
for (int i=0; i<n; i++) visited[i] = FALSE;
visited[v] = TRUE;
Queue<int> q;
q.Insert(v); // add vertex v to the queue
while (! q.IsEmpty() ) {
v = *q.Delete(v); // remove vertex v from the queue
for (all vertices w adjacent to v ) {
if (! visited[w] ) {
q.Insert(w);
visited[w] = TRUE;

}

}
} // end of while loop

delete [] visited;
elete [] visited; BFS order: 0,1,2,3,4,5,6,7

ch6.1-24




Connected Components

* For an undirected graph

— The connected components can be computed by either DFS or
BFS search

— All nodes visited during a traversal along with their edges form
a connected components

void Graph::Components()
// Determine the connected components of the graph
{
visited = new Boolean|[n];
for (int i=0; i<n; i++) visited[i] = FALSE;
for (i=0; i<n; i++) {
if (! visited[i] ) { // pick one node that is not visited yet
DFS(i); // Find a component
OutputNewComponent();
}

delete [] visited;
1 for adjacency lists

Complexity = O(n+e)
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Spanning Trees

* Definition
Any tree is a spanning tree of G if
(1) The tree consists solely of edges in G
(2) The tree includes all vertices in G

* For a connected graph G

— Depth-first or breadth-first search partitions the
edges into two sets, T and N

— T is the set of tree edges
— N is the set of non-tree edges
* The tree edges of a traversal
— and every vertex forms a spanning tree
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Examples: Spanning Trees

Depth-first spanning tree Breadth-first spanning tree

(starting from vertex 0) (starting from vertex 0)
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Creation of Circuit Equations

* In a spanning tree of a connected graph
— Each non-tree edge added to the tree forms a cycle
— Each cycle is unique

* Application to circuit analysis

— Represent a circuit as a graph

— Find a spanning tree
-t d

— Each non-tree edge corresponds to a cycle fonTires e0ee

— Generate a current equation using Kirchhoff’s law

— A set of independent current equations are obtained
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Minimal Connected Subgraph

* Property
— A spanning tree is a minimal sub-graph G’ of G such that V(G’) =
V(G), and G’ is connected
* Reasons
— Any connected graph with n vertices must have n-1 edges
— All connected graphs with n-1 edges are trees

— Therefore, a spanning tree is a minimal sub-graph

« Application to communication
— Vertices represent cities, while edges represents communication links
— The minimum number of links connecting n cities is n-1
— The cost of each link is different, represented as weight

— Finding minimum-cost spanning tree is desired !
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Articulation Point

e Definition of Articulation Point

— A vertex v of G is an articulation point iff the deletion of v,
together with the deletion of all edges incident to v, leaves
behind a graph that has at least two connected components

* Definition of Bi-connected Graph

— A bi-connected graph is a connected graph that has no

® ©

articulation points

® ® ®

i o s

A connected graph 6 bi-connected components 161,50
Ccho.1-




Bi-Connected Components

e Definition

— A biconnected component of a connected graph G is a maximal
biconnected subgraph H of G

— By maximal, it means that G contains no other subgraph that is
both biconnected and properly contains H

* Properties

— A biconnected graph has just one biconnected component — the
whole graph

Two biconnected components can have at most one vertex in
common

No edge can be in two biconnected components

— Hence, biconnected components of G partition the edges of G
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Back Edge and Cross Edge

* Depth first number (dfn)
— The order of a node visited during a depth first search
* Back edge

— A nontree edge (u, v) is a back edge iff u is an ancestor of v or v is
an ancestor of u

* Cross edge

— A nontree edge that is not a back edge

(8) (9) E back edge

dfn number

#E: Depth-First Traversal
FREEA:RY nontree edges #BE back edges




Where Are The Articulation Points ?

* Root is an articulation point

— iff it has at least two children
* Back path is a path starting from a vertex u

— reaches an ancestor of u through u’s descendants and single back edge
* A Non-root vertex u is an articulation point iff

— (1) u has at least one child

— (2) u has NO such child w that there exist a back path starting from w

back edge

dfn number

for (int i=0; i<n; i++) { dfn[i] =low[i] = 0; }

DfnLow(x, -1); // start at vertex x
delete [ | dfn; back path starting from u

delete [ | low;

first number reachable by

}

void Graph::DfnLow ( const int u, const int v)
/I Compute dfn and low while performing a depth first search beginning
/I at vertex u. vertex v is the parent (if any) of u in the resulting spanning tree
{
dfn[u] = low[u] = num++;
for ( each vertex w adjacent from u )
if (dfn[w]==0) { w is an unvisited vertex
DfnLow(w, u);
low[u] = min2( low[u], low[w]);
}

else if (w !=v) low[u] = min2( low[u], dfn[w] ); // back edge

ch6.1-33
void Graph::DfnLow(const int x) // begin DFS at vertex x
{
num = 1;
dfn = new int[n];
low = new int[n]; low(u) is the lowest depth

.1-34
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Example: Values of dfn and /ow

back edge

dfn number

Vertex
D 0 1 2 3 4 5 6 7 8 9
dfn 5 4 3 1 2 6 7 8 9 10
low 5 1 1 1 1 6 6 6 9 10
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void Graph::Biconnected()

{
num = 1; dfn = new int[n]; low = new int[n];
for (int i=0; i<n; i++) { dfn[i] = low[i] =0; }
Biconnected(0, -1); // start at vertex 0
delete [| dfn; delete [] low;

back edge

}
void Graph::Biconnected ( const int u, const int v)
{
dfn[u] = low[u] = num++;
for (each vertex w adjacent from u )
if ((w !=v) && (dfn[w] <dfn[u]) ) add (u, w) to stack S;
if (dfn[w] == 0) { // w is an unvisited vertex
Biconnected(w, u); low|[u] = min2( low[u], low[w] );
| if (low[w] >= dfn[u]) { // U an articulation point found |
cout << “New biconnected components: “ << endl;
do {
delete an edge from the stack S;
let this edge be (X, y); cout <<x <<“,” <<y <<endl;
} while ( (x,y) and (u,w) are not the same edge)
}
}

else if (w !=v) low[u] = min2( low[u], dfn[w] ) ; // back edge

dfn number




Outline

* The Graph Abstract Data Type
* Elementary Graph Operations

II‘ * Minimum Cost Spanning Trees
— Kruskal’s Algorithm
— Prim’s Algorithm
— Sollin’s Algorithm
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Minimum-Cost Spanning Tree

* Cost of a spanning tree

— is the sum of the costs ( weights) of the edges in the spanning tree

* A minimum-cost spanning tree

— is a spanning tree of least cost

*  Greedy method
— The solution is constructed in stages
— At each stage, the best decision (using some criterion) is picked

— No decision, once made, can be reversed

* Selection criterion in forming a min-cost spanning tree
(1) Use only edges within the graph
(2) Use exactly n-1 edges
(3) Should not use edges that produce a cycle
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Example of Forming A Min-Cost
Spanning Tree — Kruskal’s Algorithm

O

f‘f(D
@ & ®
@

12
(0 O,
10 =Y 1D - 10
& ©® & ©® @ 5
@ /i @ /i

Total weight = 99
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Kruskal’s Algorithm

T = J; | T is the set of collected edges in the spanning tree |
while ( ( T contains less than n-1 edges ) && (E is not empty) ) {
choose an edge (v, w) from E of lowest cost;
delete (v, w) from E;
if ( (v, w) does not create a cycle in T ) add (v, w) to T;
else discard (v, w);

}

if (T contains fewer than n-1 edges) {
cout << “No spanning tree” << endl; | O(e‘log e) if min heap is used,
} and set is used for cycle checking

It can be proved that: Kruskal’s algorithm is optimal
(1) If there is a spanning tree, > Kruskal will find it
(2) If there is a min-cost spanning tree U, then there exists a

cost-preserving transformation that maps U to the one Kruskal finds
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Example of Prim’s Algorithm

Total weight =99
ch6.1-41

Prim’s Algorithm

Notations:
(1) TV is the set of collected vertices in the spanning tree
(2) T is the set of collected edges in the spanning tree

// Assume that G has at least one vertex

TV = {0}; // Start with vertex 0 and no edges

for (T= J; T contains fewer than n-1 edges; add (u,v) to T )

{
Let (u,v) be a least-cost edge such thatu € TV and vg¢TV;
if ( there is no such edge ) break;
addvto TV;

}

if (T contains fewer than n-1 edges) {

cout << “No spanning tree” << endl;

}
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Shortest Path Problem

» Application
— Graph can be used to represent the highway structure
— Vertices represent cities
— Edges represent sections of highway

— Edge weight is the distance of an edge
* Questions

— (1) Is there a path from city A to city B?

— (2) If there is more than one path from A to B, which
is the shortest path?
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Example: A Weighted Digraph

Chicago 1500
San Francisco Denver «
0

Boston

250

New York

300
900
1700
Los Angeles New Orleans 1000 e ST
Length-adjacency matrix 0 1 2 8 4 5 6 7
— ~
0 0
1 300 0
2 1000 800 O
3 1200 0
4 1500 0 250
5 1000 0 900 1400
6 0 1000
7 1700 0

== = ch6.2-4




Edsger Dijkstra’s Algorithm

void Graph::ShortestPath( const int n, const int v)

/I dist[j], 0=j<n, is set to the length of the shortest path from vertex v to vertex j

// in a graph G with n vertex and edge lengths given by length/[i][j]

{
for (int i=0; i<n; i++) { s[i] = FALSE; dist[i] = length[v][i]; } // initialize
s[v] = TRUE;
dist[v] = 0;

for (i=0; i<n-2; i++) {
int u = choose(n); // routine ‘choose’ returns a value u such that
// dist[u] = minimum dist[w], where s|[w] = FALSE
s[u] = TRUE;
for (int w=0; w<n; w++) {
if (! s[w])
if ( dist[u] + length[u][w] < dist[w] )
dist|w] = dist[u] + length[u][w];

} BEVEE TS , 42 0 (B n-1 {8
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Boston Example

San Francisco Denver

800

Source is Boston

Los Angeles o Miami Distance

lteration | § Vertex | LA SF DEN CHI BOST NY MIA NO

en-routeset | selected | [0] fI] [2] [3] 4 B B M

Initial | - o 40 40 1500 0 250 4% 4o
1] {4) 5 g0 4o 4o 1250 0 250 1150 1650
2| (45} 6 4o 40 oo 250 0 250 1150 1650
I 3 4o 4 2450 1250 0 250 1150 1650
4 (4563 7 3350 4 2450 1250 0 250 1150 1650
5| (45637) 2 |3350 3250 2450 1250 0 25 1150 1650
6 | (456312) L] 3350 3250 2450 1250 0 250 1150 1650

(4563721}




Digraph With Negative Edges

* When negative edge lengths are permitted
— The digraph should have no cycle of negative length

— This is to ensure that the shortest path consists of a
finite number of edges

« Example

— The shortest path from vertex 0 to 2 is -oo
0,1,0,1,0,1,...,0,1,2)
— Because there is a cycle (1, 0, 1) of length -1
2

ch6.2-7

Possible Search Space
e Let dist¥[u]

— be the length of a shortest path from the source
vertex v to vertex u that contains at most k edges

* Then, dist!'[u] = length[v][u], 0 =<u<n
* Under the no-negative-cycle constraint

— We can limit our search to shortest paths with at
most n-1 edges

— Hence, dist™![u] is the length of an unrestricted
shortest path from v to u
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Recurrence Relation

» Given dist™[u] for every 0 =u<n
« How to compute dist™*![u]?

 Recurrence Relation
dist™![u] = min{ dist™[u], min {dist™[i] + length[i][u]} }
i

source

Assume that S-path?[v][u] = (v, a, u)
What are the possible S-path?[v][u] = { (v,a,u), (v,a,b,u), (v,a,c,u)}

ch6.2-9

Example of Shortest Paths With
Negative Edge Lengths

Source vertex: 0

Each shortest path consists of at most 6 edges

dist*[7]
kij0 1 2 3 45 6
1[0 6 5 5 o o o
210 3 3 5 5 4 o
3101 3 5 2 4 7
410 1 3 50435
500 1 3 5 0 4 3
60 1 3 5 0 4 3
(a) A directed graph (b) dist*
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Bellman and Ford Algorithm
For computing Shortest Paths

1 void Graph::BellmanFord(const int n, const int v)

2/ Single source all destination shortest paths with negative edge lengths

3

4 for (inti=0;i < nyi++) dist [i1= length [v][i]; / initialize dist

5 for(intk=2;k<=n-1;k++)

6 for (cach u such that u = v and u has at least one incoming edge)

7 for (gach <i, u> in the graph)

8 if (dist [u] > dist [i ] + length [i J[u]) dist [u] = dist [i] + length [i 1[u];
9}

Complexity:
O(n®) when adjacency matrix is used
O(n - e) when adjacency lists are used

ch6.2-11

Outline

* Shortest Path and Transitive Closure
— Single Source / All Destinations
||- — All-Pairs Shortest Paths
— Transitive Closure
* Activity Network
— Activity on Vertex (AOV) Networks
— Activity on Edge (AOE) Networks
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Basics of All-Pairs Shortest-Paths

* Assume that
— The digraph has n vertices with index of {0, ..., n-1}
+ Let AK[i]j]

— be the length of the shortest path from i to j going
through no intermediate vertex of index greater than k

« A™[][j]
— will be the length of the shortest i-to-j path in G

e The basic idea in all-pair algorithm

— is to successively generate the matrices A1, A, ..., A™!

ch6.2-13

Recurrence Relation

AX[i][j] = min{ A*[i] [j], A¥'[i][k] + A< [K][j] }, k=0
where A-[i][j] = length[i][j]

AT [K]

vertices with
index less than k
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Example for All-Pairs Shortest-
Paths Problem

6

Al 01 2 A'101 2

0 (0411 0 0411

1 160 2 1 160 2
300 2 1370
Al A0

Al 01 2 A2|101 2
046 0104 6

1160 2 1 |50 2

2 1370 2 1370
Al A?
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All-Pairs Shortest Paths

AM[i][j] = min{ AMT[i][j], A¥'[i][K] + AMT[K][j] }, k=0
where A1[i][j] = length[i][j]

1 void Graph::AllLengths(const int )
2 // length [n][n] is the adjacency matrix of a graph with n vertices.
3/l a[i][j]is the length of the shortest path between i and j
4{
5 for(inti=0;i<n;i++)
6  for(int j=0;j<n; j++)
7 alillj=length[ilj1; // copy lengthinto a
8 for (int k =03 k < ny k++) // for a path with highest vertex index k
9  for (i =0;i<ni++) // for all possible pairs of vertices
10 for (int j = 0 j < n3 j++)
11 if (a[i)[k]+alk]ljD<aliliDalillil=alilk]+alk]lil;
12}

Complexity:O(n?) |
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Outline

* Shortest Path and Transitive Closure
— Single Source / All Destinations
— All-Pairs Shortest Paths
II~ — Transitive Closure
* Activity Network
— Activity on Vertex (AOV) Networks
— Activity on Edge (AOE) Networks

ch6.2-17

Transitive Closure

* Problem
— Given a digraph with unweighted edges

— We want to determine if there is a path from i to j for all
values of i and j

* Transitive closure matrix of graph G, denoted as A"
— A'[i][j] = 1 if there is a path of length>0 from i to j;
— Otherwise, A*[i][j] = 0;
« Reflexive transitive closure matrix, denoted as A”
— A’[i][j] = 1 if there is a path of length =0 from i to j;
— Otherwise, A*[i][j] = 0;
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Example of Transitive Closure Matrix

oo <O
S OO =
I — R — R S
SO = oS W
S = oSS A

RN -=O

adjacency matrix

01234 01234
0 01111 0 11111
1 00111 1 01111
2 00111 2 00111
3 00111 3 00111
4 00111 4 00111

At A*
Ali][i]=1 when a cycle containing i exists Ali][i]=1 is always 1

ch6.2-19

Finding Transitive Closure

* For Directed Graph

— The transitive closure can be computed using the all-pairs
shortest-path algorithm

— But the recurrence relation is modified as follows:
ali][j] = a[il[j] || Ca[il[k] && a[K][j] );

— The final matrix obtained is A*
* For Undirected Graph

— Transitive closure can be found more easily through the
identification of connected components, O(n?)

— For a vertex pair (i, j), A*[i][j]=1 if vertices i and j are in the
same connected component

— A'[i][i] = 1 iff the component containing i has at least two
vertices
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Outline

e Shortest Path and Transitive Closure

immp - Activity Network
— Activity on Vertex (AOV) Networks
— Activity on Edge (AOE) Networks
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Activities-On-Vertex (AOV) Networks

* Activity
— A project can be subdivided into several subprojects
called activities

* Definition of AOV network
— Activity-on-vertex network is a directed graph G
— The vertices represent tasks or activities

— The edges represent precedence relations between
tasks
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Activities For Completing a Degree

Course number  Course name Prerequisites
Ci Programming I None
C2 Discrete Mathematics None
C3 Data Structures C1,C2
c4 Calculus I None
C5 Calculus I1 C4

C6 Linear Algebra C5

c7 Analysis of Algorithms C3,C6
C8 Assembly Language C3

Cc9 Operating Systems C7,C8
C10 Programming Languages C7
Cl11 Compiler Design C10
C12 Artificial Intelligence Cc7
Ci3 Computational Theory C7
Cl4 Parallel Algorithms C13
C15 Numerical Analysis Cs

(a) Courses needed for a computer science degree at a hypothetical university

cho.2-23

Example: AOV Network

Course number ~ Course name

Prerequisites

Cl
Q
(]
(4
0
06
a
a
0
(10
Cll
12
k!
Cl4
C15

{a) Courses needed for a computer scienie degree at a hypothetical university

Programming |
Discrete Mathematics
Data Structares
Calculus I

Calculus I

Linear Algebra
Analysis of Algorithms
Assembly Language
Operating Systems
Programming Languages
Compiler Design
Atificial Intelligence
Computational Theory
Parallel Algorithms
Numerical Anaysis

None
Nong
(L,C2
Nong
4

(3
(3,C6
(G
C7,C8
o]
C10
(1

a
13
Cs

9
(o
&

1)

S{)

o

(b) AOV network representing courses as vertices and prerequisites as edges

Y

U

08
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Terminology

e Predecessor

— Vertexiis a predecessor of vertex j and j is a
successor of i iff there is a directed path from vertex
i to vertex j

— iis an immediate predecessor of j iff <i, j> is an edge
* Transitive relation
— A relation - is transitive iff it is the case that for all
triplesi, j,k,i - jandj - k=>i- Kk
* Partial order

— A precedence relation that is both transitive and
irreflexive is a partial order

ch6.2-25

Topological Order

* Topological order
— A topological order is a linear order of the vertices
— For any two vertices i and j, if i is a predecessor of j in the
network, then i precedes j in the linear ordering
Topological order: C1 C2 C4 C5 C3 C6 C8 C7 C10 C13 C12 C14 C15 C11 C9
C4C5C2C1C6C3C8C15C7C9YC10C11C12C13C14

(b) AOV network representing courses as vertices and prerequisites as edges
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A Topological Sorting Algorithm

Input the AOV network. Let n be the number of vertices
for (int i=0; i<n; i++){ // output the vertices

{

if (every vertex has a predecessor ) return; // network has a cycle

pick a vertex v that has no predecessors; -
cout << v; | Complexity: O(e+n)

delete v and all edges leading out of v from the network;

52 - 8 - &

initial after vertex 0 deleted after vertex 3 deleted
@ after vertex 5 deleted after vertex 1 deleted

after vertex 2 deleted ¢h6.2-27

Internal Representations Used By
Topological Sorting

public:
class Graph { Graph( const int vertices=0) : n (vertices) {
private: HeadNodes = new List<int>[n];
List<int> *HeadNodes; count = new int[n];
int *count; // keep in-degree Hg
int n; void TopologicalOrder();
¥
count  first data  link

o[ o [ T 2] F{37]0
m [ | a0
@[ 1 | [ 5] 0]

[3] 1 — 5 4 0

4] 3 0 Two operations has to be done fast:
1. if a vertex has a predecessor?
2. delete a vertex with all its incident edges

[5] 2 0
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Topological Sorting Algorithm

1 void Graph::TopologicalOrder ()

2 // The n vertices of a network are listed in topological order

3¢

4 inttop =-1;

5 for (inti =03 i < n; i++) // create a linked stack of vertices with

6 if (count [i ] == 0) { count [i ] = top; top = i3} // no predecessors

7 for (i=03i<n;i++)

8 if (top == —1) { cout << " network has a cycle" << endl; return;}
9 else {
10 int j = top; top = count [top 1; // unstack a vertex
11 cout << j << endl;
12 Listlterator<int> li (HeadNodes [j1);
13 if (! li. NotNull ()) continue;
14 int k = *li. First ();
15 while (1) { // decrease the count of the successor vertices of j
16 count [k]——;
17 if (count [k] == 0) { count [k ] = top; top = k3} // add vertex k to stack
18 if (li. NextNotNull ()) k = *li.Next (); // k is a successor of j
19 else break;
20 } Complexity is: O(e+n) |
21 } /1 end of else
22 }

TIo.2-29

Outline

e Shortest Path and Transitive Closure

* Activity Network
— Activity on Vertex (AOV) Networks
Imm) - Activity on Edge (AOE) Networks
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Activity-On-Edge (AOE) Network

* AOE Network
— Is a weighted directed graph in which

— The vertices represent events

— The edges represent activities or tasks

ch6.2-31

Terminology

Critical Path

— Is the longest path from start vertex to finish vertex

— determines the minimum amount of time to finish the project
Earliest Time of an activity a,, denoted as e(a,)

— is the length of the longest path from start to the source vertex of a;
Latest Time of an activity a,, denoted as 1(3,)

— indicates latest time an activity may start without increasing the
project duration

Critical activity

— is an activity for which e(a,) =1(a;)
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* Purpose of critical path analysis

* Finding all critical paths

— is to identify the critical activities so that resources may
be concentrated on these activities in an attempt to
reduce project finish time

— That is, it is useful to identify project bottlenecks

— (1) compute every activity’s e(a;) and I(a,)
— (2) identify critical activities, i.e., a; for which e(a,)=I(a,)
— (3) remove all non-critical activities

— (4) Generate all paths from start to finish

Critical Path Analysis
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[0]
(1]
2]
131
[4]
51
6]
(7]
[8]

Example: Data Representation

count first  vyertex dur link

— (16| —{2]4] F—[3[5]0]

— | 4]1]0

——(4[1]0]

_’|5|2|0|

— L6 l9[ +——[7[7]0]

_’|8|2|0|

_’|8|4|0|

NN | | ek DNk | | | D




Overall Procedure of Critical Path
Analysis

* Procedure

— Step 1: compute the earliest event time for each vertex
i, denoted as ee(i)

— Step 2: compute the latest event time for each vertex i,
denoted as le(i)

— Step 3: compute the earliest time for an activity g, , <x,
y>, using formula: e(3,) = ee(x)

— Step 4: compute the latest time for an activity g, <x,
y>, using formula 1(a;) = le(y) — duration of activity a,

ee(X) a ee(y)
/le(x) le(y)

ch6.2-35

Calculation of Earliest Activity Times

The earliest event time of each vertex

— can be computed by a forward stage

Step 1: Sort vertices in the topological order

Step 2: Evaluate earliest event time of each vertex by
ee(y) = max { ee(x;) + duration of <x;, y> }

x; €P(y) . X .
P(y) is the set of y’s immediate predecessors

Step 3: e(a;) = ee( source vertex of a, )

WL ee(y)

@
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Calculation of Latest Activity Times

* The latest event time of each vertex

— can be computed by a backward stage
« Step 1: Sort vertices in reverse topological order
» Step 2: Evaluate latest event time of each vertex by

le(y) = mlsr(n i{ le(x;) - duration of <y, x> }
x; €S(y
S(y) is the set of y’s immediate successors

» Step 3: 1(a;) = le( destination vertex of a, ) —
duration of activity g,

ch6.2-37

Example of Computing Earliest
Event Times

topological order: 0,1, 2,3,4,5,6,7, 8

e(q;) = ee( source vertex of a; )

finish
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Example of Computing Latest
Event Times

reverse topological order: 8,7, 6,5,4,3,2,1,0
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Example of Computing Latest
Activity Times

reverse topological order: 8,7, 6,5,4,3,2,1,0

1(a;) = le( destination vertex of 3, ) — duration of activity g,
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Graph of Critical Paths

slack =1(a;) — e(3;)

slack=0 -> critical activity 1 delete all non-critical activities

ch6.2-41







Basics

* Terminology

— List a collection of records having one or more fields
— Key -> the field used to distinguish among the records

* Example: telephone directory

— arecord has three fields: name, address, phone number

— key is usually a person’s name

— key could also be the phone number

class Element
{
public

int getKey() const { return key; }

void setKey(int k) { key =k; }
private:

int key; // other fields not shown here

}s

5L Dl
S B B RS ek
HHER AR

ch7-3

Sequential Search

{

}

int SeqSearch (Element *f, const int n, const int k)
/I Search a list f with key values f[1].key, ..., f[n].key
/I Return i such that f[i].key == k. If there is no such record, return 0

int i=n; // set pointer to the last element initially
f[0].setKey(Kk); // set the key of the 0t'-element to k
while ( f[i].getKey() !=k ) i--; // sequential search from n to 1

return i;

Time complexity is O(n)

Trick: introduce a dummy record 0 with f[0].key = k

-> simplifies the body in while loop
- End-of-list test is avoided

—> can achieve significant speedup when n is large
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Sorting Problem

BT T SRR T SRR T e T SRR T, e T I SRR T, e i S
* Given
— Alist of records (R, R,,..., R))
— Each record, R,, has key value K.

— We assume an ordering relation (<) on the keys
(1) for any two key values x and y, x=y, or x<y, or x>y

(2) the relation is transitive (i.e., x<y, y<z, then x<z)
* Definition of a stable sorting method

— The sorting problem is to find a permutation o,
such that K ;) < Koy 1<ix<n-1

— Ifi<j and K;==K; in the input list, then R; precedes
R, in the sorted list

ch7-5

Example: Internal Revenue Service

* Two lists of tax forms that come in at random
— One from the employee with m forms > F1
— One from the employers with n forms 2> F2
— Keys are the social security numbers
* Problems
— To make sure that the two lists are consistent
* Complexity comparison
— direct search: O(mn)
— sort each list and then compare: O(t,,(n) + t,,(m) + m+n)
where t,,(n) is the time to sort n records > O(n - log n)

Therefore, the total time is O(max{ n - log n, m - log m })
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Sorting Methods Classification

* Internal Sorting

— Methods to be used when the list to be sorted is
small enough so that the entire sorting can be
carried out in main memory

— inserting sort, quick sort, merge sort, heap sort, and
radix sort

« External Sorting

— Methods to be used on larger lists

ch7-7

Insertion Sort

RESTHI 5l T RO 5D T SRR T T TR e SRR T
Initial list of records: Ry R, ... R, (K;=K,=... =K)

int insert(const Element e, Element *list, int i)

// Insert element e with key e.key into the ordered sequence list

/1 list[0], ..., list[i], such that the resulting sequence is also ordered.

/I Assume that e.key =list[0].key

// The array list must have space allocated for at least i+2 elements

{
while (e.getKey( ) < list[i].getKey() ) {

list[i+1] = list[i]; i--;

} The R, is an artificial record
list[i+1] = e; with key K =MININT
} (i.e., all keys are =K)

int InsertionSort( Element *list, const int n)
// Sort list in nondecreasing order of key
{
list[0].setKey(MININT);
for (int j=2; j<=n; j++){
insert( list[j], list, j-1);
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Example of Inserting Sort

Example: i 1 121 31 41 18]
- 5 4 3 2 1

list after insertionof4 |2 4 S5 3 2 1

list after insertionof3 |3 3 4 5 2 1

list after insertionof2 |4 2 3 4 S5 1

list after insertionof1 |S 1 2 3 4 5§

* Complexity
— O(1+2+3+ -+ +n-1) = O(n?)
* Relative disorder in the input list

— Arecord R, is left out of order (LOO) iff R; < max {R;}
1<j<i

— Let k be the number of LOO records, the computing time is O(k-n)

ch7-9

Variations

* Binary Search Sort
— The number of comparisons made is reduced
— But the complexity remains unchanged, because the
number of records moved is not changed
* List Insertion Sort

— The elements of the list are represented as a linked
list rather than an array

— No record movement

— However, the search is still sequential
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Outline

 Insertion Sort

II‘ * Quick Sort
* How Fast Can We Sort ?
* Merge Sort
* Heap Sort
* Sorting On Several Keys
* List and Table Sort

ch7-11

Quick Sort

void QuickSort( Element *list, const int left, const int right)
// Sort records list[left], - - -, list[right] into nondecreasing order on field key
/I Key pivot = list[left].key

{

if (left < right ) {

pivot 6|5[1]|8]3]10[2]|7]9]
int i=left, ]‘

j=right + 1, left right
pivot = list[left].getKey(); i J
do {
do i++; while ( list[i].getKey() < pivot ); // forward search for larger records
do j--; while ( list[j].getKey() > pivot); // backward search for smaller records
if (i<j) InterChange(list, i, j );
} while (i<j);
InterChange(list, left, j);

QuickSort( list, left, j-1);
QuickSort( list, j+1, right);

smaller-than
pivot records

larger-than
pivot records
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Example Of Quick Sort

Bl e[s]1[8]310[2]7]9]
! swap R; and RjJ

¥

B 2]5]1[8]31o[6]7]9]
i j

advance pointers i and j

B 2]5]1[8]31o[6]7]9]
; :

J
swap R; and R;

¥

B 2]3]1[8]5][to[6]7]9]

! J

advance pointers i and j

4

M 2]3]1[s]5[0[6]7]9]
j i

J

Partitioning is done: because i > j
swap the pivot element with R;

2

[1]2]3 @ 8]5]to[6]7]9]
joi

End of bi-partitioning

13

Recursively call QuickSort on

two sub-lists

~.

[8[5]to[6[7]9]

ch7-13

How Fast is Quick Sort ?

Average case:
— T(n) =cn + 2T(n/2)
— T(n) =O(n - long n)
Worst case
— T(m)=cn + T(n-1)
— T(n) = O(?)

Variation

the only
smaller-than
pivot record

n-1
larger-than
pivot records

| worst-case of quick sort |

— A better pivot selection: pivot= median {K,, K,,,,, K.}

It has been observed that

— quick sort is the fastest sorting algorithm on average
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How Fast Can We Sort?

* The Sorting Algorithm
— The best possible time is O(n - log n)

— That is, the worst-case computing time Q(n - log n)

Q‘o [1.3.2]

[1.2.3] NG no
[1.3.2] [3.1.2] [2.3.] [3.2.1]

The height of this decision tree:
log,(n!) + 1 = log,( (n/2)®2) = )(n - log n)

ch7-15

Outline

 Insertion Sort

* Quick Sort

* How Fast Can We Sort ?
II‘ * Merge Sort

* Heap Sort

* Sorting On Several Keys

* List and Table Sorts
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Merging Of Two Sorted Lists

* Given two sorted lists
— List 1: (initList,, - - -, initList,)
— List 2: (initList_,, - - -, initList,)
* Output the merged list of the two lists
— merged list: (mergedList,, - - -, mergedList,)

1 m m+1 n
(2]3[7]8]9[10]

Time = O(n)
Space = O(n)
n is the total record number

linear merge

[1]2]3]4]5][6[7[8]9]10]

ch7-17

Algorithm of Merging Two Lists

void merge (Element *initList, Element *mergedList,
const int I, const int m, const int n)
{

for (intil =1, iResult =1, i2 = m+1; // il, i2, and iResult are positions
il <= m && i2 <=n; // both input lists not yet exhausted
iResult++) {
if (initList[il].getKey() <= initList[i2].getKey() ) {
mergedList[iResult] = initList[il];

) i+ 1 m m+l n
else { [1f4]5]6] [2[3]7]8[9]10]
mergedList[iResult] = initList[i2];
i2++;
) (1f2]3]4[5]6]|7[8]9]10]
}

if (i1 > m) for (t=i2; t<=n; t++) { mergedList[iResult+t-i2] = initList[t]; }
else for ( t=il; t<=m; t++) { mergedList[iResult+t-i1] = initList[t]; }
}
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Iterative Merge Tree

merge pass

aipleislelolzicls
! N/ \/ N/  \/ N/

5126 1177 11|61 15|59 19148
5 \ /
N7 N7
11512677 11115|59|61 19|48
3 AN
N\ e
1|5]|11|15]|26|59|61|77 19|48
) /
115(11|15/19(26(48|59]|61|77
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MergePass Algorithm

void MergePass(Element *initList, Element *resultList, const int n, const int 1)
/I One pass of merge sort. Adjacent pairs of sublists of length 1 are merged
// from list initList to list resultList. n is the number of records in initList
{
for (int i=1; //iis the first position in the first of the two sublists being merged
i <=n-2*1+ 1; // Are enough elements left to form two sublists of length 1?
i=i+2%1){
merge ( initList, resultList, i, i+1-1, i+2*1-1);
}
// merge remaining list of length < 2*1
if ( (i+l-1) <n) merge ( initList, resultList, i, i+l-1, n); // two sublists
else for (int t=i; t<=n; t++) resultList[t] = initList[t]; // one sublist

n=10, I=2

N fef= =

initList | [26]5 | [1]77] [11]61] [15]59] [19]4s]
N\ / N\ 4

N\ / AN /.
resultList | | 1[5[26]77 11[15[59]61]
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Merge Sort Algorithm

void MergeSort( Element *list, const int n)

/I Sort a list into nondecreasing order of the keys list[1].key, ..., list[n].key

{
Element *tempList = new Element[n+1];
/I 1is the length of the sublist currently being merged
for (int 1=1;1<n; 1=1%2)

{

MergePass ( list, tempList, n, 1);

1=1%2;

MergePass ( tempList, list, n, I); // interchange role of list and tempList
}
delete [] tempList;

list and tempList hold the partially sorted list alternatively
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Two Alternating Lists

clafaiafainils
\ / \ / \ / \ J/

26| 5 1|77 11|61 15|59
N Z N/
ot 1|5|26]|77 11155961
N\ e

1]5(11|15|26|59|61|77
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Recursive Merge Sort Algorithm

class Element
{
private:

int key; Field other; int link;
public: Element() { link = 0; }
¥

int rMergeSort ( Element *list, const int left, const int right )
/I List = ( list[left], ..., list[right] ) is to be sorted on the field key
/[ link is a field in each record that is initially 0
/I rMergeSort returns the index of the first element in the sorted chain
/[ list[0] is a record for intermediate results used only in ListMerge
{
if (left >= right) return left;
int mid = (left + right) /2;
return ListMerge( list,
rMergeSort(list, left, mid), // sort left half
rMergeSort(list, mid+1, right); // sort right half

-23

Execution of Recursive Merge Sort

TOP-DOWN Recursive call BOTTOM-UP Merge
26| 5177| 1 |61 1|5]|26|61)77
recursive \ merge /
calls / on return
26| 5|77 1|61 5126|77 1|61
recursive \ merge

L7 &

recursive \ merge

\ A\
calls / on return /
26| 5 5|2

calls on return

/
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List Merge Algorithm

int ListMerge(Element *list, const int start1, const int start2)

/I The sorted linked lists whose first elements are indexed by start1 and starr2,
// respectively, are merged to obtain the sorted linked list. The index of the first element of the

// sorted list is returned. Integer links are used.

{

int iResult = 0;

for (int i1 = startl, i2 = start2; i1 && i2;)

if (list [i1]. key <= list [i2]. key) {

list [iResult ). link = il;
iResult = il; il = list[il]. link;

}

else {

list [iResult ] . link = 123
iResult = i2; i2 = list [i2]. link;

}

// move remainder

list[0] is the header element

Array index:
1 2 3

26(3| [S|1] |77]0

61

4 L ¥

if (i1 == 0) list [iResult ]. link = i2; / A\
else list [iResult]. link=i1; key link startl = 2; start2 =5
return list [0]. link;
}
ch7-25
Outline

e Insertion Sort

* Quick Sort

* How Fast Can We Sort ?

* Merge Sort

II‘ * Heap Sort

* Sorting On Several Keys
* List and Table Sorts
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Basics of Heap Sort

* Procedure
— Step 1: build the given list as a max heap
— Step 2: extract one record at a time from the heap
* Time Complexity
— worst case: O(n - log n)
— average case: O(n - log n)
* Space Complexity
— only a fixed amount of additional storage is needed: O(1)

* Heap Sort is not stable
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Adjust Routine

void adjust ( Element *tree, const int root, const int n)

/I Adjust the binary tree with root to satisfy the heap property. The left and right
// subtrees of root already satisfy the heap property.

// No node has index greater than n

{

Element e = tree[root];
int k = e.getKey();
for (int j=2*root; j<=n; j*=2)
{ // first find max of left and right child
if (j<n)
if (tree[j].getKey() < tree[j+1].getKey() ) j++; // select larger child to j
/I compare max child with k. If k is max, then done
if (k >= tree[j].getKey() ) break;
tree[j/2] = tree[j]; // move jth record up the tree

}

} tree[j/2] = e; (26) @
(o) () G (26
@5 = @5
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Heap Sort

void HeapSort ( Element *list, const int n)
/I The list = (list[1], ..., list[n]) is sorted into nondecreasing order of the field key
{

for (int i=n/2 ; i>=1; i--) // convert list into a heap
adjust ( list, i, n);
for (i=n-1; i>=1; i--) // sort list
{
Element t = list[i+1]; // interchange list, and list;,,
list[i+1] = list[1];
list[1] = t;
adjust(list, 1, i); // recreate the heap
}

}

heap construction process for a given list: 3, 1, 19, 50, 61, 26

adjust adjust adjust
z (llst 3 n) % (llst 2, n) z (llst 1, n) z
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Step 2 of Heap Sorting

heap sorting process for a given list: 3, 1, 19, 50, 61, 26
é: ? fix list[6] } fix list[5] ?
& recreate & recreate
fix list[4] fix list[3] fix list[2]
& recreate : & recreate z & recreate 1
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Outline

 Insertion Sort
* Quick Sort
* How Fast Can We Sort ?
* Merge Sort
* Heap Sort

II‘ * Sorting On Several Keys
» List and Table Sorts
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Basics of Sorting On Several Keys

* Terminology
- Keys: K' K? ..., K"
— Kl is the most significant key
— K" is the least significant key
* Comparison of multiple key

— The r-tuple (x' x? ..., x") is less than or equal to the r-tuple (y'
y2 ..., ") iff either one of the following two conditions is
satisfied

@) xi=yi for 1<i=<r,

2) xi=yi for 1<i<q, and x*<y®for some 1 =a.=r
E.g.,(,2, ?) <(,2, ?) >a=3
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Most Significant Digit First Sorting

* Example
— Sorting a deck of cards
— The first key K': suit (spade, heart, diamond, club)
— The second key K2: face value (2, 3, ..., J, Q, K, A)

* Most Significant Digit (MSD) First Sorting
— Sort the cards into 4 piles using K, one for each suit
— Sort each of the 4 piles using K?

— Cascade the sorted 4 piles with the order of (spade,
heart, diamond, club)
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Least Significant Key Sorting

* Example
— Sorting a deck of cards
— The first key K': suit (spade, heart, diamond, club)
— The second key K2: face value (2, 3, ..., J, Q, K, A)

» Least Significant Digit (LSD) First Sorting

— Sort the cards into 13 piles using K?

— Then, cascade the 13 piles into a big pile with the
order of 2,3,4, ..., J,Q, K, A

— Finally, sort the big pile using a stable sorting
algorithm
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LSD Radix Sort

void RadixSort(Element *list, const int d, const int n)
// Records list = (list[1], - - -, list[n]) are sorted on the keys key [0], - - -, key [d—1].
// The range of each key is O < key [i] < radix. radix is a constant.
// Sorting within a key is done using a bin sort.
{
int ¢ [radix ], f [radix 1; {/ queue pointers
for (int i = 15 i <= n; i++) list [i]. link = i + 13 // link into a chain starting at current
list [n]. link = O3 int current = 13
for i=d—1;i>=0;i——)// sorton key key[i]
{

for (int j = 0; j < radix; j ++) f [j] = 0; // initialize bins to empty queues
for ( ; current; current = list [current . link) { // put records into queues
int k = list [current]. key[i];
if (f[k]==0) f[k]=current;
else list [e [k 1]. link = current;
elk] = current;
}
for (j = 0; £ [j]1 == 0; j ++); // find first nonempty queue
current = f [jls;int last=e[j];
for (int k = j + 15 k < radix; k ++) // concatenate remaining queues
FEDA{
list [last ). link = f [k ];
last =e[k];

} :
list [last ] . link = O3 Complexity = O(d - n)
}//endoffor (i=d - 15i>=0;i—-)

}

Radix Sort Example (I)

S— list[1] list[2] List[3] list[4] list[S] List[6] list[7] List[8] list[9] list[10]
[179}-208]-[306 - 93 |-[859}-[984}-[ 55 |-[ 9 -[271}{ 33 |

1 bin sort (or bucket sort)

e[0] e[1] e[2] e[3] e[4] e[S] e[6] e[7] e[8] e[9]

Queues after n
sorting

on the 3rd digit @

Z0 Do bl ] B

110] f[1] f12] f[3] f[4] f[5] f[6] fI71 18] 119]

| resulting chain |

[271}+ 93 ]+ 33 }+{984]+] 55 |-[306}-208}+[179][859]-] 9 |
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Radix Sort Example (I)

|271H 93 H 33 H984H 55 |-'|306|-'|208|-'|179|-'|859H 9 |
1 bin sort

e[0] e[l] e[2] e[3] e[4] e[S] e[6] e[7] e[8] e[9]

Queues after N
sorting
on the 2nd digit 208 859)
306 55 |

flo] f[1] f2] f[3] f[41 f[S] f[6] f[7] f[8] f[9]

| resulting chain |

[306}-[208]- 9 }-{33 |- 55 |[859}+{271}+[179]+[984]+] 93 |
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Radix Sort Example (l11)

|306H208H 9 H 33 H 55 |-'|859|-'|271|-'|179|-'|984H 93 |
1 bin sort

e[0] e[l] e[2] e[3] e[4] e[S] e[6] e[7] e[8] e[9]

Queues after S5
sorting
on the 1st digit 271

[9][179] [208] [306] 859] [984
T 1 1 1 ITI Ll_l

flo] f[1] f2] f[3] f[41 f[S] f[6] f[7] f[8] f[9]

| Final sorted chain |

[9 P33+ 55 [ 93 |-{179}+208}+{271}+[306][859]-{984]
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Performance Consideration

* Excessive Data Movement
— tends to slow down the sorting process
* Avoid data movement as much as possible

— Modifications can be made to insertion sort or
merge sort

[R5

* In-place post-sorting rearrangement

— may be needed to convert a sorted list to an array

sorted list hefd sorted array
g i R1 | R2 | R3 | R4 i Rl | R2 | R3 | R4
B | key | 26 5 77 1 key | 1 5 26 | 77
EBFIHELE | link | 3 1 0 2 link | 2 1 3 0
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Example: In-Place Rearrangement

BT S TR 5 SRR T SRR s SRR 5 S
rank 6 2 10 1 9 3 8 4 7 5

i R1 R2 R3 R4 RS R6 R7 RS R9 | R10

key 26 5 77 1 61 11 59 15 48 19

link 9 6 0 2 3 8 5 10 7 1
linkb [ 10 4 5 0 7 2 9 6 1 8
first i
@ @‘® l fix the position of R4  to be changed

rank 6 2 10 1 9 3 8 4 7 5

i R1 R2 R3 R4 RS R6 R7 RS R9 | R10
key 1 5 77 26 61 11 59 15 48 19
link 2 6 0 9 3 8 5 10 7 4

linkb | 0 4 5 10 7 2 9 6 4 8

first {R2, R3, ..., R10 } still forms a sorted list

ch7-40




Example: In-Place Rearrangement

rank 6 2 10 1 9 3 8 4 7 5
i R1 R2 R3 R4 RS R6 R7 RS R9 | R10
key 1 5 77 26 61 11 59 15 48 19
link 2 6 0 9 3 8 5 10 7 4
linkb 0 4 5 10 7 2 9 6 4 8
first
1 fix the position of R6
rank 6 2 10 1 9 3 8 4 7 5
i R1 R2 R3 R4 RS R6 R7 RS R9 | R10
key 1 5 11 26 61 77 59 15 48 19
link 2 6 8 9 6 0 5 10 7 4
linkb 0 4 2 10 7 5 9 6 4 8
first
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List2Array Algorithm

void list1(Element *list, const int n, int first)
// Rearrange the sorted chain firsz so that the records list [1], - - -, list[n]
// are in sorted order. Each record has an additional link field linkb.

{

int prev =03
for (int current = first; current; current = list [current }. link)
// convert chain into a doubly linked list

{

list {current }. linkb = prev;

prev = current;

}

list;

interchange

for (inti = 1;i<n;i++)// move list g, to position i while
// maintaining the list

{

if (first '=10) {

}

if (list[i]. link) list [list [i]. link ] . linkb = first;

list [list[i]. linkb]. link = first;
Element a = list [first); List (first] = list [i]; list[i] = a3

Sirst = list [i]. link;

predecessor

to-be

list;, o
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List-Based Array for Quick-Sort
- To avoid data movement

We can use the following rank array for providing array_based list
for Quick-Sort or Heap Sort = The i-th record is R[t[i]].

Auxiliary table before sorting

Rank Array t | 1 | 2 | 3 | 4 | 5 |
| | | | |
R1 R2 R3 R4 RS Cycle 1
B 50 9 11 8 3 t[1] =
SEEAE t[5] =R1
1 hN
L AN )zt Cycle 2
>N\ t[2] = R4
[ ~ AN t[4] =R3
RankArrayt| 5 | 4 | 2 [ 3 | 1 | t3]=

Rank: RS > R4 > R2 > R3 > Rl

HRIE | Auxiliary table after sorting
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Re-Arrangement Within One Cycle

Before Re-Arrangement

.....
,,,,,,

position
R8
............. 1 8)
Rank array
%—45% R3 %4,_&% R8 %/\%% RI %/\45% R6
After Re-Arrangement l
position 1 3 6 8
Rank array 3 6

H—RERI B=RERI FALERG H/\BERS
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Table Sort Example

R, | R, | Ry | Ry | Rs [ R | R7 | Rs
key | 35 | 14 | 12 | 42 | 26 | 50 | 31 18
t 3 2 8 5 7 1 4 6

t: rank array

(a) Initial configuration

key 12 14 18 | 42 | 26 | 35 31 50
t 1 2 3 5 7 6 4 8

(b) Configuration after rearrangement of first cycle

key 12 14 18 26 31 35 42 || 50 |
t i 2 3 4 5 6 7 8

(c) Configuration after rearrangement of second cycle
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Table Sort

Rank array

void table sort ( Element *list, const int n, int *t)
/I Rearrange list[1], ..., list[n] to correspond to the sequence
/ list[ t[1]], ..., list[ t[n] ], n=1
{
for (int i=1; i<n; i++) {
if (t[i] !=1) { // There is a non-trivial cycle starting at i
Element p = list[i]; int j =1i; // remember first record p=list][i]
do {// Move record list[k] to position j
int k = t[j]; list[j] = list[K]; t[j] = j; j =k;
} while (t[j] !=1i);
list[j| = p; // Move record p to the last position in the cycle
tljl =js
} // end of if statement
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Symbol Table

* Symbol Table
— Can be viewed as a a set of name-attribute pairs
— A form of dictionary
— Applications include spelling checker, thesaurus,
loaders, compilers
« Common operations on a symbol table
— search a particular name in the table
— retrieve the attributes of that name
— modify the attributes of that name
— insert a new name and its attributes

— delete 2a name and its attributes

ch8-3

How To Implement Symbol Table?

* Binary Search Tree

— allows efficient search, insert, and delete operation in O(h),
where h is the height of the tree

— Worst case O(n), where n is the total number of identifiers
— Can be improved to O(log n) - Chapter 10

¢ Hash Table

— A fixed-size linear array, ht
— For an identifier, x,
— The address of x is determined by a hashing function, h(x)

don’t | ht[0]

leave ﬁt{;}

the t

. Y S 9 hashing 5 school ht[3]

identifier: “data” ——| function \ without | ht[4]
data ht[5]

structure | ht[6]
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Terminology

e Bucket and Slot

— There are 8 buckets and two slots per bucket in the hash table
shown below

« Identifier density ‘1’ A A2
— is the ratio n/T, where %
— n is the number of identifiers in the table g D
— T is the total number of possible identifiers g GA G
* Loading factor A hash table

— is a = n/(sb), where

— b is the number of buckets, s is the number of slots per bucket
* Synonyms

— Two identifiers, I, and I, are synonyms if h(I,) = h(I,)
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Collision and Overflow

e Collision

— When two nonidentical identifiers are hashed into
the same bucket

¢ Overflow

— when a new identifier is mapped or hashed by h into

a full bucket
0 A A2
hashing function h(x) = 1% character of identifier x | %
. . i D
Collision exists at location 0 and 7 5
Overflow will occur when AA is hashed into the table! ¢
7 GA G

A hash table
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Efficiency of Hash Table

e Search or insertion time of a hash table

— (1) compute the hash function 0 A A2
— (2) search a bucket é b
. . 5
— The above times are independent of n ¢ ox -
* Collision is inevitable Ahash table

— Taking the first character is not a good hashing because
of too much collision

* many variables in a program begins with the same character

— An overflow mechanism is necessary
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Uniform Hash Function

* Basic desired properties of hash function

— Easy to compute

— The number of collisions is minimized
* A good hash function

— should also depend on every character of an input identifier
* Uniform hash function

— Let x be an identifier chosen at random

— Then, the probability that h(x) =i is 1/b for every bucket i

— That is, the hash function does not result in a biased use of the
hash table for random inputs
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Hash Function (I): Division

hash function h;, (x) =x % M
where % is the modulo operator
That is, the remainder is used as the hash address

6 bits per character 6 bits per character
01010|0|JO0O|O0OJA|T Alf1|{0f|O0fOf[Of[O]O
right-justified zero-filled left-justified

* Hash address
— in the range from 0 through (M-1) - implies that table size is M
* M should not be a power of 2
— otherwise, h;(x) may depend only on the least significant bits of x
— E.g., M=23, then A1->encoded to 2(10) + 1 2> hy(Al)=1
XY1 - encoded to 212(33) +26(34) + 1 > hp(Al)=1

— M is usually a prime number
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Hash Function (I1): Mid-Square

mid-square function h  (x) = use appropriate # bits from (x?)

Identifier Internal Representation

x | JUEfr x| JUEfL  x?
| A 15 1

| A1 134 | 20420
A2 | 135 | 20711
A3 : 136 21204
A : 137 21501
A9 144 23420 |
B ; 2 4
C _ 3 11 |
G ; 74 6l I
DMAX ‘ 4150130 21526443617100 |
DMAX 1 415013034 5264473522151420
AMAX 1150130 135423617100

| AMAXIL 115013034 3454246522151420

The coding of identifier x is right-justified, zero-filled, and has six bits per character
Table size will be a power of 2
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Hash Function(lll): Folding

* Example: x =12320324111220

« Stepl: Partition the identifier into several parts
— P,=123, P,=203, P,=241, P =112, P.=20
e Step 2: Add up each part as a hash address
— (1) Shift folding
h(x) = iél P, =123 + 203 + 241 + 112 + 20 = 699
— (2) Folding at the boundaries
h(x) =123 + 302 + 241 + 211 + 20 =897

reversed
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Hash Function (IV): Digit Analysis

» Application
— when all the identifiers are known in advance
* Procedure
— Step 1: Each identifier is interpreted as a number using radix r
— Step 2: Analyze the distribution of each digit
— Step 3: Drop biased digits

* The digits with the most skewed distributions are deleted one by
one until the remaining digits is small enough to give an address

* Example
— Given three identifiers in radix-9 form: 891, 792, 793
— Digit distribution: 1%t {8, 7, 7}, 24 {9, 9, 9}, 3 {1, 2, 3}
— The most skewed digits: the 2"
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Outline

* The Symbol Table ADT

» Static Hashing
— Hash Table
— Hashing Function
) -~ Overflow Handling

ch8-13

Overflow handling

 Problem

— When a new identifier is hashed into a full bucket,
then we need to find another open bucket

e Methods

— linear probing (or linear open addressing)
+ find the closest bucket that is not full

— chaining

+ implement each bucket as a linked list
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Symbol Table Class Definition

struct identifier {
char *id;
int n;

}s

/I Assume that operators == and != are defined for identifier
int operator=—=(identifier&, identifier&);
int operator!=(identifier&, identifier&);

class SymbolTable {
public:
SymbolTable( int size = defaultsize ) {
buckets = size;
ht = new identifier[buckets]; // linear array as the table
}
private:
int buckets;
identifier *ht;

}s
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Linear Open Addressing

* Procedure of searching an identifier x

— Step 1: compute h(x)

— Step 2: examine identifiers at positions ht[h(x)], ht[h(x)+1], ...,
ht[(h(x)+j] in this order until one of the following happens:
(a) ht[ h(x)+j ] = x; in this case x is found
(b) ht[ h(x)+j ] is null; x is not in the table
(c) We return to the starting position h(x); the table is full and x is
not in the table

first A
B1
B3
search sequence: C
B>B1->A2->B3 found ! GA
G

TITO=T"
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Linear Search

int SymbolTable::LinearSearch(
const identifier& x, int (*hashfunc) (identifier))
/I Search the hash table ht ( each bucket has exactly one slot) for x using
// linear probing.
// Return j such that if x is already in the table, then ht[j] = x
// If x is not in the table, return —1
/I The hash function “hashfunc” is passed as an argument to LinearSearch
{
int i = hashfunc(x);
for (int j=i; ht[j].id && ht[j] !=x; ) {
j=(j+1) % buckets; // treat the table as circular
if (j==i ) return —1; // back to start point

}

if ( ht[j] == x) return j; first A
else return —1; character B

} / Bl
B3 A2

B3

search sequence: C
B->B1>A2->B3 found ! GA

G

Problem of Linear Open Addressing

* Identifiers tend to cluster together

— Increase the search time

— Could be worse than the search tree structure
* An analysis shows that

— It takes (2-a)/(2-2a) to look up an identifier

— Where a is the loading density

* Quadratic probing

TITO=T7

— improve the clustering problem search time

— check sequence:
(h(x)+i2)%b) and (h(x)-i%)%b)
i=1,2, ... 1




Chaining

LS O S E S E SV E g EN D
[ { o
21 | 0
3] D |0
[4] E |0
51 [ 0
6| [~ —{cT3—[cal]
71 [0
[8] 0 Search time: ~ (1+a/2)
0 1.25 when a=0.5
191 1.5 when o=1
[10] 0 - Better than linear open addressing
] | —f—{L[o|
251 | ——f{zA] +—[z]0]

ch8-19

Class Definitions For Chain Search

class ListNode {
friend SymbolTable;
private:
identifier ident;
ListNode *link;
35

typedef ListNode* ListPtr;

class SymbolTable {
public:
SymbolTable ( int size = defaultsize ) {
buckets = size;
ht =new ListPtr[buckets];
35
private:
int buckets; // table size
ListPtr *ht; // hash table

}s

o -
[1] 0
21 [
3] =
4]
Is] E
6] |2
7 ——16| T(6A|
8 |0
o1 [ 0
[101 | o
[11] 0
=
e [ 3-[2[1]
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Chain Search

{

(identifier) )

int j = hashfunc(x); // compute headnode address

// search the chain starting at ht[j]

for ( ListPtr node = ht[j]; node; node = node->link )
if (node>ident == x) return &(node->ident);

return 0;

identifier* SymbolTable::ChainSearch(const identifier& x, int (*hashfunc)

// Search the chained hash table ht for x. On termination, return a pointer
// to the identifier in the hashtable. If the identifier does not exist, return 0

j = hashfunc(“B3”) =1

or | o

ht[1]

— [1]

g0

21 | o

chained hash table
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A Comparison

Hash Function

— division is generally superior to the other types

* Collision handling

— Chaining outperforms linear opening addressing

a=2 0.50 075 090 095

b A ‘
Hash Function | Chain Open | Chain Open | Chain Open | Chain  Open
mid square 1.26 1.73 1.40 9.75 145 37.14 i.47 37.53
division 1.19 4.52 1.31 720 138 2242 141 25.79
shift fold 133 2175 | 148 6510 | 140 7701 | 151 11857
bound fold 1.39 2297 1.57 48.70 1.55 69.63 1.51 97.56
digit analysis 1.35 4.55 149 30.62 152 89.20 1.52 12559
theoretical 1.25 1.50 1.37 2.50 145 5.50 1.48 10.50

(Adapted from V. Lum, P. Yuen, and M. Dodd, CACM, 14:4, 1971)
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