Chapter 13
The Laplace Transform in Circuit

Analysis

13.1 Circuit Elements in the s Domain

13.2-3 Circuit Analysis in the s Domain

13.4-5 The Transfer Function and Natural Response

13.6 The Transfer Function and the Convolution
Integral

13.7 The Transfer Function and the Steady-
State Sinusoidal Response

13.8 The Impulse Function in Circuit Analysis



" J
Key points

m How to represent the initial energy of L, C in the
s-domain?

m Why the functional forms of natural and steady-
state responses are determined by the poles of
transfer function H(s) and excitation source X(s),
respectively?

m Why the output of an LTI circuit is the
convolution of the input and impulse response?
How to interpret the memory of a circuit by
convolution?



Section 13.1

Circuit Elements Iin the s
Domain

1. Equivalent elements of R, L, C



" A
A resistor in the s domain

m |v-relation Iin the time domain

v(t) = R-i(t).

m By operational Laplace transform:

Livit)}=L{R-i(t)}=R-L{i(t)} ,
=V (s)=R-1(s).

m Physical units: V(s) in volt-seconds, I(s) In
ampere-seconds.



" A
An inductor Iin the s domain

m |v-relation in the time domain
d.

v(t) =L -—1(t).

(t) ~ (t)

m By operational Laplace transform:

Liv()}=LiL-I'O}=L- L0}
=V (s)=L-[sl(s)~il,]=sL-1(s)-LI,.

Initial current
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Equivalent circuit of an inductor

m Series equivalent: m Parallel equivalent:
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" A
A capacitor in the s domain

m |v-relation in the time domain

. d
1(t)=C -av(t).

m By operational Laplace transform:

L) f=LIC-V'(D)f= C Liv'(t)}
= 1(s) =C-[sV(s) <V, ] = sC -V (s) - CV,.

Initial voltage
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Equivalent circuit of a capacitor

m Parallel equivalent:

:

1/sC -~

< +e—=eov

Norton —
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m Series equivalent:
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Section 13.2, 13.3

Circuit Analysis in the s
Domain

Procedures

Nature response of RC circuit
Step response of RLC circuit
Sinusoidal source

MCM

Superposition

1.
2.
3.
4.
5.
6.



" A
How to analyze a circuit in the s-domain?

1. Replacing each circuit element with its s-domain
equivalent. The initial energy in L or C Is taken
Into account by adding independent source In
series or parallel with the element impedance.

2. Writing & solving algebraic equations by the
same circuit analysis techniques developed for
resistive networks.

3. Obtaining the t-domain solutions by inverse
Laplace transform.,

10



" A
Why to operate in the s-domain?

m [t Is convenient in solving transient responses of
linear, lumped parameter circuits, for the initial
conditions have been incorporated into the
equivalent circulit.

m It Is also useful for circuits with multiple essential
nodes and meshes, for the simultaneous ODEs
have been reduced to simultaneous algebraic
equations.

m It can correctly predict the impulsive response,
which is more difficult in the t-domain (Sec. 13.8).

11



" J
Nature response of an RC circuit (1)

m Q:i(t), v(t)="?
X

AR

lllllll

lllllllllll

m Replacing the charged capacitor by a Thévenin
equivalent circuit in the s-domain.

m KVL, = algebraic equation & solution of I(s):

\izL+|R,:>|(S)= Vo _ Vo/R —.
s sC 1+ RCs s+(RC)

12
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Nature response of an RC circuit (2)

m The t-domain solution is obtained by inverse
Laplace transform:

-

|(t) _ L—l< VO/R | \ﬁet/(RC)Ll{l}
s+(RC)*| R S

Vo . y(re)

=—¢ u(t).

o (t)

m 1(0*) = V,/R, which is true for v-(0*) = v(0) = V,.

m I(c0) =0, which is true for capacitor becomes
open (no loop current) in steady state.

13
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Nature response of an RC circuit (3)

m To directly solve v(t), replacing the charged
capacitor by a Norton equivalent in the s-domain.

f+ )X L ) 5
(=0

Vor=C [ $R :CVOC‘D ;:slc RSV

| [ e — B

m Solve V(s), perform inverse Laplace transform:
VO

s+(RC)™*

= v(t) = LV, /s + (RC)*[}=V,e "Fu(t) = Ri(t).

CV, =sCV +%, =V (s) =

14



Step response of a parallel RLC (1)

i
1.(0)=0

Ve (0) = .

—~C R 28 - L
75 nF 625 ()
25 mH
{3
+
Lo 1 i ;
T. ) =~ O V <SsL &

llllllll
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" J
Step response of a parallel RLC (2)

m KCL, = algebraic equation & solution of V(s):

i:SCV +V +V , >V (S)=— Idfl/C -
S R sL s+ (RC) s+ (LC)

m Solve | (s):
V(s) _ . (LC)™

sL s[s2+(RC)*s+(LC)™]
_ 3.84 x10’

3[52 + (6.4 ><104)s+(1.6><109)] |

IL(S):

16
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Step response of a parallel RLC (3)

m Perform partial fraction expansion and inverse
Laplace transform:

20127 20£-127

: + : (MA-s).
s—(—32k + j24k) s—(-32k — J24K)

| (s) = 24"‘
S

i, (1) = 24u(t) + [20e”27°e‘(32k)tej<24k)tu(t) + c.c.]
= {24 + 406 ®™'cos|(24K)t +127° |} u(t) (mA)
= {24 — e 24c0s(24K)t — 32sin(24K)t]} u(t) (MA).

17



" J
Transient response due to a sinusoidal source (1)

m For a parallel RLC circuit, replace the current
source by a sinusoidal one: 1,(t) =1 cosat-u(t).
The algebraic equation changes:

lllllllllllllllllll
. o,

sCV + +SL:Ig:SZ+m 7
S A Q.
(1,/C)s®
V(s) = ,
=V (82+a)2)[52+(RC)_1S+(LC)_1]
1 (s) = vV _ | (LC)™'s

sL (32 +a)2)[52 +(RC)‘1S+(LC)‘1] |

18



Transient response due to a sinusoidal source (2)

m Perform partial fraction expansion and inverse
Laplace transform:

* *

Kl Kl KZ K2
IL(S) = . T — + T —c-
s—jw: s+jo s—(<aH+ jp) s-(-a- jB)
Driving Neper Damped
frequency frequency frequency

i, (1) = 2/K,|cos(wt + ZK, )+ 2K, e cos(Bt + ZK, )} u(t).

Steady-state Natural response (RLC
response (source) parameters)

19
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Step response of a 2-mesh circuit (1)

= Q:iy(t), iy(t)=?
>S 84 H 10 H

<>336V 1(0)=0 $400 =0

8.4 s 10 s

ol

48 ()

20



" J
Step response of a 2-mesh circuit (2)

m MCM, = 2 algebraic equations & solutions:

<84s| +42(1, - 1,) = 330 )

42(1, - I1)+(1Os+48)I2 =0--+(2)

42 +8.4s  —42 1,7 [336/s
— X = :
~42  90+10s| |1, 0

. 15 14 1
] [42+84s —42 336/s| | s s+2 s+12
— X = .
B —42  90+10s 0 r_84 14
'S S+2 s+12 |




" A
Step response of a 2-mesh circuit (3)

m Perform inverse Laplace transform:

15 _____________________________

<" <

5 i, (t) =(15-14e — e

= 0= Mo - (42//48)

S e e e Y=YV

=

Q

5

° 4 42
i,(t)=(7-8.4e% +1.4e ™ u(t) > 15 =7A.
0= 0 42 + 48

0 05 1 15 5 >tme (s)
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" J
Use of superposition (1)

m Given 2 independent sources v, 1, and initially

charged C, L, = v,(t)="

23



" J
Use of superposition: V, acts alone (2)

24



" A
Use of superposition (3)

m For convenience, define admittance matrix:

= + - +sC —-sC S
Rl sL " V1
—sC 1 +sC Vi
; 2 _
_ Yll Y12 % V1’ _ _Vg / Rl
_Y12 Y22_ _VZ’_ u O _
B 12/ Rl




"
Use of superposition: I, acts alone (4)

Yll Y12 v _Vl”_ _ 0 —\/ = O
_Y12 Y22 _ _V2”_ I 2 Yl 1Y22 Y

Same matrix Same denominator




" A
Use of superposition: Energized L acts alone (5)

" r— It
+ I
SL} Ve CD% 2 R,
- . _
Y., Y, 'Vlfﬁz‘_p/s_ oy Y.,/S ?
_Y12 Y22 | _Vzﬂi B 0 i 2 Y11Y22 - Yé

Same matrix

Same denominator

27
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Use of superposition: Energized C acts alone (6)

vC
R, 1 1/sC Y Yo “ Vi _ 7o
WS I( T | 2 _Y12 Y22_ v, __7’C_

Y11Y22 - Ylé

SLE V@ §R2 :>V2 __ (Y11 +Y12)C v

m The total voltage is: V, =V, +V,+V,"+V,".

28



Section 13.4, 13.5

The Transfer Function and
Natural Response

29
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What is the transfer function of a circuit?

m The ratio of a circuit’s output to its input in the
s-domain:
H(s) =)
X ()

m A single circuit may have many transfer
functions, each corresponds to some specific
choices of input and output.

30
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Poles and zeros of transfer function

m For linear and lumped-parameter circuits, H(s)
Is always a rational function of s.

m Poles and zeros always appear in complex
conjugate pairs.

m The poles must lie in the left half of the s-plane
If bounded input leads to bounded output.

Im

X A

» Re

31



" J
Example: Series RLC circuit

R s
a4 e I
~ !
V, C_) 1/sC A~V
Input —

m If the output is the loop current I

| 1 B sC
V. R+sL+(sC)' s’LC+sRC+1

g
m |f the output Is the capacitor voltage V:

v.  (sC) 1
V. R+sL+(sC)* s°LC+sRC+1

g

H(s) =

H(s) =



" A
How do poles, zeros influence the solution?

m Since Y(s)=H(s) X(s), = the partial fraction
expansion of the output Y(s) yields a term K/(s-a)
for each pole s=a of H(s) or X(s).

m The functional forms of the transient (natural)
and steady-state responses y,(t) and y.(t) are
determined by the poles of H(s) and X(s),
respectively.

m The partial fraction coefficients of Y (s) and Y(S)
are determined by both H(s) and X(s).

33
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Example 13.2: Linear ramp excitation (1)

B Q:vy(t)=? 10000

——AW\
250 Q)

50t-u(t) v, C)
50 mH

1000

A
250 )

50/s? Vv, CD
- 0.05s

)|

34
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Example 13.2 (2)

m Only one essential node, = use NVM:

VO _Vg Vo Vo
+ +——=0,
1000  250+0.05s 10°/s
 H(s) V, _1000(s +5000)

V,  s2+6000s+(2.5x107)

m H(s) has 2 complex conjugate poles:
s =-3000+ j4000.

m V (s) = 50/s? has 1 repeated real pole: s = 0.

35



Example 13.2 (3)

m The total response in the s-domain is:

5x10* (5 + 5000)
V0 (s)=H (S)Vg (s) = 2(52 +6000s+2.5 ><107)

expansmn coefficients depend on H(s) &V (s)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

=Y, +Y

tr SS

llllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

poles of H(s): -3k * j4k pole of V(s): O(2>
m The total response In the t-domain:
U, (1) = Yy + Ve, = W5 x107%6 9 cos(4,000t +80°) | u(t)
+(10t—4x107) u(t).

36
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Example 13.2 (4)

12

10

— Steady state
component y(t)

' (10,000¢ — 0.4) mV

"=, Total response

1_ r=0.33 ms, impact of y,.(t)
L7111 L 11 )

02 04 06 08 1.0 1.2 14
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Section 13.6

The Transfer Function and
the Convolution Integral

1.
2.
3.
4.

Impulse response
Time invariant
Convolution integral
Memory of circuit

38



Impulse response

m |f the input to a linear, lumped-parameter circuit
IS an impulse o(t), the output function h(t) Is
called impulse response, which happens to be
the natural response of the circuit:

X(s) = L{5(t)}=1, Y(s) = H(s)x1=H(s),
y(t) = LY (s)}= L {H(s)j= h(t).
m The application of an impulse source Is
equivalent to suddenly storing energy in the

circuit. The subsequent release of this energy
gives rise to the natural response.

39
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Time Invariant

m For a linear, lumped-parameter circuit, delaying
the input x(t) by 7z simply delays the response y(t)
by ras well (time invariant):

X(s,7) = L{x(t —2)u(t—7)}=e =X (s),

Y(5,7)=H(s)X(s,7) =e "H(s) X (5) =e ™Y (s),

y(t,7) = LY (s,7)} = LMY (9))
=y({t-2)u(t—r1).

{t>t-1

40



" J
Motivation of working in the time domain

m The properties of impulse response and time-
Invariance allow one to calculate the output
function y(t) of a “linear and time invariant (LTI)”
circuit in the t-domain only.

m This is beneficial when x(t), h(t) are known only
through experimental data.

x() - h() = y(1)

41
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Decompose the input source x(t)

m We can approximate x(t) by a series of
rectangular pulses rec,, (t-A;) of uniform width AA:

x(1)

x(t)
50, (t)

0

{

x(Ay)
VWﬂ@“ x(A)

Ao

f
T S T

m By having AA—0, = rec,, (t-A;)/AL—>o(t-1;), X(t)
converges to a train of impulses:

x(1) SO ~
999 <
e e e S
SCCIE <
$EL &S =
x(Ao) AAL
0.0)
P IV N 'Y ! 1=0

X() =3 X(4)x lim rec,, (t—1)

A1—0

)X AAxO(t—A).

42



" J
Synthesize the output y(t) (1)

m Since the circuitis LTI:

5() > h(t), "
10(t=4) > h(t-4), \
Taxt) > Yayw: ” |
(1)
Q0 a0 Approximation of y(1
= > X(A)AL-5(t - 4) NN
i=0 ]

|
|\
|
]

/
f<

Sy e

)\() )\1 )\2 )\3 . e e

43
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Synthesize the output y(t) (2)

m As AA—0, summation — integration:
If X(t) extends (-oo, o)

y(t) = [ X(A)h(t - 22— | x(A)h(t-2)dA.
m By change of variable u=t-A, =
y(t) = j: X(t — u)h(u)du.

m The output of an LTI circuit is the convolution of
Input and the impulse response of the circuit:

y(t) = x(t) *h(t)
= [ x(Mh(t-A)di=[ x(t-2)h(2)dA.

44



" A
Convolution of a causal circuit

m For physically realizable
circuit, no response can
occur prior to the input
excitation (causal), = {h(t)
=0 for t <0}.

m Excitation Is turned on at t
=0, = {x(t)=0 for t<0}. =

y(t) = x(t) *h(t)
— (t ~ )h(A)dA.

45
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Effect of x(t) is weighted by h(t)

m The convolution integral ’"T\
t
y(t) = [ x(t—2)h(2)dA /: A
shows that the value of y(t) i
IS the weighted average of \:\ NS N
x(t) from t=0 to t=t [from A w0
=t to =0 for x(t-A)]. | 7 \

m |f h(t) Is monotonically decreasing, the highest
weight is given to the present x(t).

46
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Memory of the circuit

m |f h(t) only lasts from t
=0tot=T, the
convolution integral

y(t) = j; X(t— 2)h(1)dA.

Implies that the circuit
has a memory over a
finite interval t=[t-T,t]. -

m If h(t)=06(t), no memory, output at t only depends
on X(t), = y(t) =x(t)*o(t) =x(t), no distortion.

47
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Example 13.3: RL driven by a trapezoidal source (1)

m Q:v, (f)=?
1H ’Ul'
_{,_
”‘(D 10%0, 20V
— |
0 s 10 ' ®
V=TV, = H(s)=Te—_T
S+1 V. s+1

— h(t) = Ll{i} _eu(t)
S+1

48
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Example 13.3 (2)

Vv, (t) = ﬂvi (t—A)h(A)dA. ® Separate into 3 intervals:

v; (1 = \)
h(\)

ﬂ— 20
BE =g e
1.0 \
E 1 | | ,\

e

Impulse response (t—10) (t—5)0 {5 10
A _
0 Vi ([ }\)
20
vi(=N) \5: t<10
L | N
20VI= (t-10)0|¢t-55 ¢ 10
I Folded excitation v; (t —N\)
A

—-10 -5 0 20 |-
N=si=sw
| [ X

0[(t - 10)5 (t—35)10 ¢

49
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Example 13.3 (3)

m Since the circuit has certain memory, v (t) has
some distortion with respect to v;(t).

20 _Excitation PR

18 \/ |
16 — |
4=/ |
12 = / Response |
10 // :
8 I~ y |
6 B / |
2 |

| I I I I t (s)

0 2 4 6 8 10 12 14




Section 13.7
The Transfer Function and

the Steady-State Sinusoidal
Response

51
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How to get sinusoidal steady-state response by H(s)?

m In Chapters 9-11, we used phasor analysis to
get steady-state response y(t) due to a
sinusoidal input x(t) = Acos(at + ¢).

m If we know H(s), y.(t) must be:

Vo (1) =|H (jw)|Acos|at + ¢ + 0(w)
where H(jw)=H (s)L:jw =|H (jo)|e'”.

m The changes of amplitude and phase depend
on the sampling of H(s) along the imaginary axis.

52
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Proof

X(t) = Acos(at + @)= Acos@cos at — Asin gsin .

llllllllllllllllllllllll

X(s):Acos¢§ : S 25_ Asin¢f : @ ZEZASCOS¢ a)sm¢
S N O ST+ W $° + @°

SCOSg-wsing v vy

YO =HEXE)=RE A G Y (0

lllllllllllll

*

Kl Kl

— :
S—jo S+ jo
_ s i

_ H@A@os¢ osing| H(jo)A jocosg—wsing _ H(jw)Ae

@LJCU 2w 2

where Y (S) =

K =Y(O)(s- o),

Y. (t) =L {‘H (Jzazz‘ijj(:)Aem } +..= AH (jo)|coslat + ¢+ 0(w)]

53



" A
Obtain H(s) from H( jw)

m We can reverse the process: determine H( jo)
experimentally, then construct H(s) from the
data (not always possible).

m Once we know H(s), we can find the response to
other excitation sources.

54



Section 13.8

The Impulse Function
In Circuit Analysis

55
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E.g. Impulsive inductor voltage (1)

m Q:v, (f)=?
10 () 3 H
A 2088 o
- L 1.(0°)= +
i 1,(0)=10 A 1503 2(0)=0

+ t =0 i i
<~> 100 V . Vo
2H<LL,

m The opening of the switch forces the two
iInductor currents 1, I, change immediately by
Inducing an impulsive inductor voltage [v=L-1'(t)].

56
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E.g. Equivalent circuit & solution in the s-domain (2)

<+ 100 initial current V.,
— \) 2S

Vo —(100/5+30) V,
10+ 3s 15+ 2s . .
Improper rational

%(6s> +655+150)7 60 10
: =12+—+ .
. 5(S+D5) : S S+5

o >
lllllllllllllllllllllllllllllllll

=V, (S) =

57
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E.g. Solutions in the t-domain (3)

V, (t) = L1{12 + 00 + 105} =125(t) + (60 +10e>")u(t).
S S+ —

m To verify whether this solution v (t) Is correct, we
need to solve i(t) as well.

100/S+30 4 2 . gt
| (S) = =—+—— = 1(t)=(4+2e " u(t).
(5) 10+3s+15+25s s s+5 (t)=( )

58



" J
Impulsive inductor voltage (4)

10 Q) 3H
IVV\, Y Y Y\ @ o
— L 3
L1 15 Q

t=20 i,g
100 V \z : V,

B 2 H< L,
& o

m The jump of i,(t) from 0 to 6 A causes I,(t) =65(t),
contributing to a voltage impulse L,i; (t) =125(t).

m After t > 0,
Vo (1) = (15€)1, (1) + (2H)15(1)
=15(4+2e")+2(-10e>") =60 +10e ™,
consistent with that solved by Laplace transform.
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Key points

m How to represent the initial energy of L, C in the
s-domain?

m Why the functional forms of natural and steady-
state responses are determined by the poles of
transfer function H(s) and excitation source X(s),
respectively?

m Why the output of an LTI circuit is the
convolution of the input and impulse response?
How to interpret the memory of a circuit by
convolution?

60



Practical Perspective

Voltage Surges

61
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Why can a voltage surge occur?

m Q: Why a voltage surge is created when a load
IS switched off?

m Model: A sinusoidal voltage source drives three

loads, where R, is switched off at t=0.
t=20

4 l(}r )&
+ %

g IIV Ra \/() ljl

JXa

m Since I,(t) cannot change abruptly, 1,(t) will jJump
by the amount of 1;(0°), = voltage surge occurs.

62
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Example

m etV =120£0° (rms), f=60 Hz, R,=12 Q3, R, =8
Q, X,=41.1Q (l.e. L,=X /©=109 mH), X,=1 Q (i.e.
L,=2.65 mH). Solve v (t) for t>0-.

Vg<f> L 3R, V, lgi iX,

m To draw the s-domain circuit, we need to
calculate the initial inductor currents 1,(0°), 15(0).
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" J
Steady-state before the switching

m The three branch currents (rms phasors) are:
,=V,/R,=(120£0°)/(12 2)=10£0° A,
,=V /(jX,) =(120£0°)/(j41.1 Q) =2.92/-90° A,
.=V /R,=(12020°)/(8 Q)=15,0° A,

m The line currentis: I,=1;+1,+1;,=25.2/-6.65° A.

m Source voltage: V=V, +1,(X))=125/-11.5° V.

m The two initial inductor currents at t=0- are:
m i,(t)=2.92(¥2)cos(120xt-90°), = i,(07) =0;
m (1) =25.2(V2)cos(120mt-6.65°), = i,(0)=35.4 A,
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S-domain analysis

m The s-domain circuit is:
SL.yg

V — Y YY"\ Q ®

g (L,=2.65mH) \__/+

125/-
11.5° VgCD V“§R SLa

V (rms) - (12 Q) (L,=109
mH)
m By NVM: VomhlooVy Vo (Vo
y NV L, R, sL,
(Ri/L M (s)+1,R, 253 86./6.85 86/ —6.85

= +—— + .
° s+[R (L, +L))/(LL) s+14757 s—j120r s+ j120x
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Inverse Laplace transform

253 86.£6.85 N 864 —6.85

m Given V,(s)= + : : ,
s+14757 s—J120r s+ J120x

— v, (t) = [253e " +173c0s(1207t + 6.85) |- u(t).

«— 425V

4001 170V (surge)
/‘>"\ (Steady 173 V
5 2001 (steady |
=) state)
S of
-200

o 1_ 2
# of cycles, ¢/T
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