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Chapter 9 
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Analysis

9.1-9.2 The Sinusoidal Source and Response
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9.12 Phasor Diagrams



2

Overview


 

We will generalize circuit analysis from 
constant to time-varying sources (Ch7-14).


 

Sinusoidal sources are particularly important 
because: (1) Generation, transmission, 
consumption of electric energy occur under 
sinusoidal conditions. (2) It can be used to 
predict the behaviors of circuits with non- 
sinusoidal sources.


 

Need to work in the realm of complex numbers.
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
 

What is the phase of a sinusoidal function?


 

What is the phasor of a sinusoidal function?


 

What is the phase of an impedance? What are 
in-phase and quadrature?


 

How to solve the sinusoidal steady-state 
response by using phasor and impedance?


 

What is the reflected impedance of a circuit with 
transformer?

Key points
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Section 9.1, 9.2 
The Sinusoidal Source and 
Response

1. Definitions
2. Characteristics of sinusoidal 

response
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Definition

Vm : Amplitude.


 

A source producing a voltage varying 
sinusoidally with time: v(t)=Vm cos(t +).

:
 

Angular frequency, related to period T via = 2/T.
The argument t changes 2

 
radians (360) in one period.

: Phase angle, 
determines the 
value at t =0.
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More on phase angle


 

Change of phase angle shifts the curve along 
the time axis without changing the shape 
(amplitude, angular frequency).


 

Positive phase (>0),  the curve is shifted 
to the left by   in time, and vice versa.

Vm cos(t)

Vm cos(t+)



7

Example: RL circuit (1)


 

Consider an RL circuit with zero initial current
and driven by a sinusoidal voltage

source                               :


 

By KVL: ).cos(   tVRii
dt
dL m

)cos()(   tVtv ms

0)0(  ti
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Example: RL circuit (2)


 

The complete solution to the ODE and initial 
condition is (verified by substitution):

Transient response, 
vanishes as t  .

 .tan 1 RL 

tLRm
tr e

LR
Vti )(

222

)cos()( 









Steady-state response, 
lasts even t  .

)cos()(
222







 t
LR

Vti m
ss

),()()( tititi sstr 



9

Characteristics of steady-state response


 

iss (t) of this example exhibits the following 
characteristics of steady-state response:

)cos()(
222







 t
LR

Vti m
ss

1. It remains sinusoidal of the same frequency as 
the driving source if the circuit is linear (with 
constant R, L, C values).

2. The amplitude differs from that of the source.
3. The phase angle differs from that of the source.
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Purpose of Chapter 9


 

Directly finding the steady-state response 
without solving the differential equation.


 

According to the characteristics of steady-state 
response, the task is reduced to finding two real 
numbers, i.e. amplitude and phase angle, of the 
response. The waveform and frequency of the 
response are already known.


 

Transient response matters in switching. It will 
be dealt with in Chapters 7, 8, 12, 13.
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Section 9.3 
The Phasor

1. Definitions
2. Solve steady-state response by 

phasor
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Definition


 

The phasor is a constant
 

complex number 
that carries the amplitude and phase angle 
information of a sinusoidal function.


 

The concept of phasor is rooted in Euler’s 
identity, which relates the (complex) 
exponential function to the trigonometric 
functions: .sincos  je j 

   .Imsin   ,Recos   jj ee 
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
 

A
 

phasor can be represented in two forms:
1.

 
Polar form (good for , ):

2.
 

Rectangular form (good for +, -):

Phasor representation


 

A sinusoidal function can be represented by the 
real part of a phasor times the “complex carrier”.

,  m
j

m VeVV

.sincos  mm jVV V

 
    tjtjj

m

tj
mm

eeeV

eVtV






 

V Re Re

Re)cos( )(

phasor carrier


Imag.

real

Vm
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Phasor transformation


 

A phasor can be regarded as the “phasor 
transform”

 
of a sinusoidal function from the time 

domain to the frequency domain:

  .)cos(  j
mm eVtVP V

    ).cos(Re1   tVeP m
tj- VV


 

The “inverse phasor transform”
 

of a phasor is a 
sinusoidal function in the time domain:

freq. domaintime domain
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Time derivative  Multiplication of constant

).cos()cos(

),90cos(                            

)sin()cos(

2
2

2













tVtV
dt
d

tV

tVtV
dt
d

mm

m

mm



Time 
domain:

 
.)()cos(

)cos(

22
2

2

90

)90(

VV

V































  

jtV
dt
d

,jeeV

eVtV
dt
d

m

jj
m

j
mm

P

P





Frequency 
domain:



16

How to calculate steady-state solution by phasor?


 

Step 1: Assume that the solution is of the form:


 

Step 2: Substitute the proposed solution into the 
differential equation. The common time-varying 
factor ejt of all terms will cancel out, resulting in 
two algebraic equations to solve for the two 
unknown constants {A, }.

  tjj eAe  Re
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Example: RL circuit (1)

   

),cos()cos()sin(

),cos()cos()cos(









tVtRItLI

tVtIRtI
dt
dL

mmm

mmm

),cos()(   tVtv ms
 

Q: Given                                 calculate iss (t).

).cos()(
Assume

  tIti mss

),cos(

)()(

 



tV

tRiti
dt
dL

m

ssss
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Example: RL circuit (2)


 

By cosine convention:

    .   , VIVI  RLjeeRLj tjtj  


 

A necessary condition is:

     
     
     .ReRe

,ReReRe

, ReReRe

),cos()cos()90cos(
)90(

tjtj

tjtjtj

tjj
m

tjj
m

tjj
m

mmm

eeRLj

eeReLj

eeVeeRIeeLI

tVtRItLI















VI

VII








 


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Example: RL circuit (3)


 

A more convenient way is directly transforming 
the ODE from time to frequency domain:

. i.e.  ,
RLj

eVeI
RLj

j
mj

m 








VI


 

The solution can be obtained by one complex (i.e. 
two real) algebraic equation:

    .  ,

),cos()()(

VIVII 



RLjRjL

tVtRiti
dt
dL mssss




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Section 9.4 
Impedances of The Passive 
Circuit Elements

1. Generalize resistance to impedance
2. Impedances of R, L, C
3. In phase & quadrature
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What is the impedance?

.
)(
)(

ti
tvR 


 

For a resistor, the ratio of voltage v(t) to the 
current i(t) is a real constant R (Ohm’s law):


 

For two terminals of a linear circuit driven by 
sinusoidal sources, the ratio of voltage phasor V 
to the current phasor I is a complex constant Z:

.
I
V

Z

…resistance

…impedance
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The i-v relation and impedance of a resistor


 

i(t) and v(t) reach the peaks simultaneously (in 
phase),  impedance Z=R is real.
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
 

Assume

The i-v relation and impedance of an inductor (1)

)cos()( im tIti  

 
).90cos(

)sin(

)()(







im

im

tLI

tIL

ti
dt
dLtv






 

By phasor transformation:

.LjZ

jL









I
V

IV
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The i-v relation and impedance of an inductor (2)


 

v(t) leads i(t) by T/4 (+90
 

phase, i.e. quadrature) 
 impedance Z = jL is purely positive imaginary.

)()( ti
dt
dLtv 
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The i-v relation and impedance of an capacitor (1)

).()( tv
dt
dCti  .1  ,

Cj
ZjC


 

I
VVI
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The i-v relation and impedance of a capacitor (2)


 

v(t) lags i(t) by T/4 (-90
 

phase, i.e. quadrature) 
 impedance                is purely negative 
imaginary.

 CjZ 1
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More on impedance


 

Impedance Z is a complex number in units of 
Ohms.


 

Impedance of a “mutual” inductance M is jM.


 
are called resistance and 

reactance, respectively.


 
Although impedance is complex, it’s not a 
phasor. In other words, it cannot be transformed 
into a sinusoidal function in the time domain.

    XZRZ  Im  ,Re
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Section 9.5-9.9 
Circuit Analysis Techniques 
in the Frequency Domain
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Summary


 

All the DC circuit analysis techniques:
1. KVL, KCL;
2. Series, parallel, -Y simplifications;
3. Source transformations;
4. Thévenin, Norton equivalent circuits;
5. NVM, MCM;

are still applicable to sinusoidal steady-state 
analysis if the voltages, currents, and passive 
elements are replaced by the corresponding 
phasors and impedances.
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KVL, KCL


 

KVL:

 KCL:    i1 (t) + i2 (t) +… + in (t) = 0, 

.0...21  nVVV

.0...21  nIII

 

  ,0Re

Re)cos(

,0)()()()(

1

1

)(

1

1
21
































tj
n

q

j
mq

n

q

tj
mq

n

q
qmq

n

q
qn

eeV

eVtV

tvtvtvtv

q

q






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Equivalent impedance formulas


j

jab ZZ


 

Impedances in series


j jab ZZ

11


 

Impedances in parallel
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Example 9.6: Series RLC circuit (1)
























,V 30750

, 40
)105)(5000(

11
, 160)1032)(5000(

6

3


s

C

L

jj
Cj

Z

jjLjZ

V





 

Q: Given vs (t)=750 cos(5000t+30),
 

 i(t)=?
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Example 9.6: Series RLC circuit (2)

A. )13.235000cos(5)(

A, 13.235
 13.53150

V 30750
, 13.53150)90120(tan12090

120904016090
122
























tti

Z

jjjZ

ab

s

ab

VI
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Thévenin equivalent circuit


 

Terminal voltage phasor and current phasor are 
the same by using either configuration.
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Example 9.10 (1)


 

Apply source transformation to {120V, 12, 60} 
twice to get a simplified circuit.


 

Q: Find the Thévenin
 

circuit for terminals a, b.

a

b
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Example 9.10 (2)

)2(10100
)1(10010)40130(  ,10)1204010(100





IV
VIVI




x

xx jj
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Example 9.10 (3)

V. 17.2022.835120)10100(10

A, 87.12618
4030

900













IIV

I

Th

j

I
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Example 9.10 (4)

,
120

10
,10)60//12(

,
4010

)60//12(40

xT
b

aax

T

T
a

j

j

VVI

IIV

V    

VI












. 4.382.91

,
12040106

1
1206120

100











jZ
j

TTTh

TTTaaT
abaT

IV

VVVIIVIIII
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Section 9.10, 9.11 
The Transformer

1. Linear transformer, reflected 
impedance

2. Ideal transformer
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Summary


 

A device based on magnetic coupling.


 
Linear transformer is used in communication 
circuits to (1) match impedances, and (2) 
eliminate dc signals.


 

Ideal transformer is used in power circuits to 
establish ac voltage levels.


 

MCM is used in transformer analysis, for the 
currents in various coils cannot be written by 
inspection as functions of the node voltages.
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






.)(0
,)(

2221

2111

II
IIV

L

ss

ZLjRMj
MjLjRZ




Analysis of linear transformer (1)


 

Consider two coils wound around a single core 
(magnetic coupling):

Z11

+
 +



Mesh current 
equations:

Z22
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Analysis of linear transformer (2)

.   22
2211

1
22

222
2211

22
1 ss MZZ

Mj
Z

Mj,
MZZ

Z VIIVI



 






Zint

.
22

22

11
22

22
2211

1
int Z

MZ
Z

MZZZ s 





I
V

Z22Z11
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Input impedance of the primary coil

  .  ,
22

22

22

22

11int
L

rrsab ZLjR
M

Z
MZZLjRZZZ








 

Zr is the equivalent impedance of the secondary 
coil

 
and load

 
due to the mutual inductance.


 

Zab =ZS is needed to prevent power reflection.

Zint

Zab
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Reflected impedance

.*
22

2

22

*
22*

2222

22

22

22

Z
Z
MZ

ZZ
M

Z
MZr 












Z22


 

Linear transformer reflects (Z22 )* into the 
primary coil by a scalar multiplier (M/|Z22 |)2.
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Example 9.13 (1)

VTh = Vcd . Since I2 = 0,  Vcd = I1 jM, where

.A 29.7967.79
)3600200()100500(

0300

11
1










jjZ
sVI

.V 71.106.95)1200()29.7967.79(   jThV


 

Q: Find the Thévenin
 

circuit for terminals c, d.

c

d

I2
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Example 9.13 (2)


 

ZTh =(100+j1600) +Zr , where Zr is the reflected 
impedance of Z11 due to the transformer:

  . 3700700)3600200()100500(11  jjjZ

Z11
Short

  . 26.122409.171)1600100(

),3700700(
3700700

1200
2

*
11

2

11
























jZjZ

j
j

Z
Z
MZ

rTh

r


ZTh

c

d
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Characteristics of ideal transformer


 

An ideal transformer consists of two 
magnetically coupled coils with N1 and N2 turns, 
respectively. It exhibits three properties:

1.
 

Magnetic field is perfectly confined
 

within the 
magnetic core,  magnetic coupling coefficient 
is k=1,                        .

2.
 

The self-inductance of each coil               is 
large, i.e. L1 =L2 .

3.
 

The coil loss is negligible: R1 =R2 .

21LLM 

 2
ii NL 
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
 

By solving the two mesh equations of a general 
linear transformer:

Current ratio

.
1

2

1

2

21

222

2

1

N
N

L
L

LLj
ZLj

Mj
Z L 







I
I

21LL

if L2 >> |ZL |
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
 

Substitute                    into

Voltage ratio

  .
2

1

2

11
22

122

2

1

N
N

L
L

M
L

MZj
MLjZ

L








V
V

1
22

2 II
Z

Mj









.
,

22

2111

IV
IIV

LZ
MjLj 

V1

+



V2

+



21LL

jL2 + ZL
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
 

By the current and voltage ratios,

Input impedance

V1

+



V2

+



21LL

.  ,
2

2

1

2

2

1

1

2

2

1

22

11
Labin

L

ab Z
N
NZZ

N
N

Z
Z




















I
I

V
V

IV
IV

 .2

2

2

1
1 Lab ZR

N
NRZ 










 
For lossy

 
transformer,

in-phase

Zin
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Polarity of the voltage and current ratios

51



52

Example 9.14 (1)

52

2500 
cos(400t)

Zs ZL


 

Q: Find v1 , i1 , v2 , i2 .
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Example 9.14 (2)

  11 ,37.42427)26.16100)(575.23(:(2)By vjV

)1()225.0(02500 11  VI  j

).26.16400cos(100  ,26.16100
724
02500  :)1()2( 11








 ti
j

I

(2))575.23(  
,10  ,10

,)05.02375.0(
11

1221

22 IV
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Section 9.12 
Phasor Diagrams
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Definition


 

Graphical representation of -7-j3 = 7.62-156.8
 on the complex-number plane.


 

Without calculation, we can anticipate a 
magnitude >7, and a phase in the 3rd quadrant.
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Example 9.15 (1)


 

Q: Use a phasor diagram to find the value of R 
that will cause iR to lag the source current is by 
45°

 
when  = 5 krad/s.

j1 -j0.25

.0  ,904
25.0

  ,90
1

 


 m
m

Rm
m

Cm
m

L V
R

V
j

V
j

VIVIVI
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Example 9.15 (2)


 

By KCL, Is = IL + IC + IR . Addition of the 3 current 
phasors can be visualized by vector summation

 on a phase diagram:

j3Vm

To make Is = 45,
IR = 3Vm ,
 R = 1/3 .
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
 

What is the phase of a sinusoidal function?


 

What is the phasor of a sinusoidal function?


 

What is the phase of an impedance? What are 
in-phase and quadrature?


 

How to solve the sinusoidal steady-state 
response by using phasor and impedance?


 

What is the reflected impedance of a circuit with 
transformer?

Key points
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