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Overview

m We will generalize circuit analysis from
constant to time-varying sources (Ch7-14).

m Sinusoidal sources are particularly important
because: (1) Generation, transmission,
consumption of electric energy occur under
sinusoidal conditions. (2) It can be used to
predict the behaviors of circuits with non-
sinusoidal sources.

m Need to work in the realm of complex numbers.
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Key points

m What is the phase of a sinusoidal function?

m What is the phasor of a sinusoidal function?

m What is the phase of an impedance? What are
In-phase and quadrature?

m How to solve the sinusoidal steady-state
response by using phasor and impedance?

m \What is the reflected impedance of a circuit with
transformer?



Section 9.1, 9.2

The Sinusoidal Source and
Response

1. Definitions

2. Characteristics of sinusoidal
response
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Definition

m A source producing a voltage varying
sinusoidally with time: v(t) =V, cos(«t+ ¢).

v V. Amplitude
¢. Phase angle, .

determines the v

value at t=0. |

|‘ -_l
| |

, related to period T via o=2n/T.
The argument ot changes 2x radians (360°) in one period.
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More on phase angle
m Change of phase angle shifts the curve along

the time axis without changing the shape
(amplitude, angular frequency).

m Positive phase (¢ >0), = the curve Is shifted
to the left by ¢/w In time, and vice versa.

()

Vncos(at+g) - ¢ o o
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Example: RL circuit (1)

m Consider an RL circuit with zero initial current
I(t=07)=0 and driven by a sinusoidal voltage
source V. (t) =V_ cos(at + ¢):

o () * L

m By KVL: L%i +Ri1=V_cos(at + @).
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Example: RL circuit (2)

m The complete solution to the ODE and initial
condition is (verified by substitution):

(1) =1, (t) + 15 (1),

V_ coS(¢ — 9)5‘9:'_'('5/'[;;‘5 Transient response,

() =- \/RZ + 0?2 e’ VaNishes as t —» oo
(i (t) = Vin :cos(at + ¢ — ) Steady-state response,
S5 2 212" ’
\/R + a) L ------------------------- IaStS even t% w.

. @ =tan"(wlL/R)



Characteristics of steady-state response

m (1) of this example exhibits the following
characteristics of steady-state response:

. V,
I () = JREL o cos(at + ¢ — 6)

1. It remains sinusoidal of the same frequency as
the driving source if the circuit is linear (with

constant R, L, C values).
2. The amplitude differs from that of the source.
3. The phase angle differs from that of the source.
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Purpose of Chapter 9

m Directly finding the steady-state response
without solving the differential equation.

m According to the characteristics of steady-state
response, the task is reduced to finding two real
numbers, i.e. amplitude and phase angle, of the
response. The waveform and frequency of the
response are already known.

m Transient response matters in switching. It will
be dealt with in Chapters 7, 8, 12, 13.

10



Section 9.3

The Phasor

1. Definitions

2.  Solve steady-state response by
phasor

11
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Definition

m The phasor is a constant complex number
that carries the amplitude and phase angle
information of a sinusoidal function.

m The concept of phasor is rooted in Euler’s
identity, which relates the (complex)
exponential function to the trigonometric
functions: e*1? =cosé + jsiné.

— C0SH = Re{ejé’} . sin@ = Im{ejg}.
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Phasor representation

m A sinusoidal function can be represented by the
real part of a phasor times the “complex carrier”.

V_cos(at+¢)=V_ Re{e“w”@}
_Re{ (v, e k™ | Re{0xe ]
phasor carrier

m A phasor can be represented in two forms:

1. Polar form (good for x, =+):
V=Ve’=V /4

2. Rectangular form (good for +, -): 7,

vV

m

Imag.

V =V_cosg+ JV,_sing. real

13
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Phasor transformation

m A phasor can be regarded as the “phasor
transform” of a sinusoidal function from the time

domain to t

V =

ne frequency domain:

PV cos(wt + @)} =V._el”.

time domain freq. domain

m The “inverse phasor transform” of a phasor is a
sinusoidal function in the time domain:

Pl{V} _ Re{Vej“’t} :Vm COS(G)t + ¢)

14
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Time derivative <> Multiplication of constant

/ ivm cos(awt + @) = -V, sin(wt + @) \
Time dt
domain: = wV,, cos(wt + ¢ +90°),
d 2
5 va cos(at + @) =—w*V,, cos(at + ¢). y
C P {ivm cos(at + ¢)} = oV, ) A
requency dt
domain: = pfv ¥ ={jV;

-

lllllllllll

e
P {%Vm cos(at + ¢)} =(jw)*Vi=-o’V.

15
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How to calculate steady-state solution by phasor?

m Step 1. Assume that the solution is of the form:
Re{ (A ]

m Step 2: Substitute the proposed solution into the
differential equation. The common time-varying
factor elet of all terms will cancel out, resulting in
two algebraic equations to solve for the two
unknown constants {A, /}.

16
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Example: RL circuit (1)

m Q: Given v (t) =V, cos(at + ¢), calculate i(t).

)< R Assume
=0V 7L i@ =1, cos(at+ ).
() <+> d
s\ _ L - L1 () +Rig (1)
=V_cos(at + ¢),
= L% 1._cos(at + B)]+R[I_ cos(at + B)|=V._ cos(at + ¢),

= —aLl sin(at + B) + Rl cos(at + ) =V, cos(at + @),

17
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Example: RL circuit (2)
m By cosine convention:
= oLl cos(awt+ £ +907)+ Rl cos(wt+ f) =V, cos(wt + @),
= ?e{a)LI gl g lel }+ Re{RI Vel |=Re{V et |
= Re{jolLle’ |+ Re{Rle! }= Rejvel}
= Re{(joL + R)le’” | = Re{ve "}

m A necessary condition Is:

(joL+R)1e** = Ve, = (joL +R)1=V.

18
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Example: RL circuit (3)

® A more convenient way Is directly transforming
the ODE from time to frequency domain:

L%iss (t) + Ri. (t) =V. cos(at + @),

= L(jo)l +RI =V, (joL+R)l = V.

m The solution can be obtained by one complex (i.e.
two real) algebraic equation:

19



Section 9.4

Impedances of The Passive
Circuit Elements

1.  Generalize resistance to impedance
2.  Impedancesof R, L, C
3. In phase & quadrature

20
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What is the impedance?

m For a resistor, the ratio of voltage v(t) to the
current i(t) Is a real constant R (Ohm’s law):
v(t .
R = Q ...resistance
I(t)

m For two terminals of a linear circuit driven by
sinusoidal sources, the ratio of voltage phasor V

to the current phasor | Is a complex constant Z:

V .
= T ...Impedance

21
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The I-v relation and impedance of a resistor

m i(t) and v(t) reach the peaks simultaneously (in
phase), = impedance Z=R is real.

v, 1

22
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The I-v relation and impedance of an inductor (1)

m Assume i(t) =1_cos(at + 6,) L
= v(t) = Li() A
= L[~ ol sin(at +6)] i

= oLl  cos(at + 6 +90%).

m By phasor transformation:

. JoL
V=L-jol o o
~72-Y_jaL L. A

1 I
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The I-v relation and impedance of an inductor (2)

m V(1) leads I(t) by T/4 (+90° phase, I.e. quadrature)
= Impedance Z=jwl Is purely positive imaginary.

d.
v(t) = Lal(t)

v, 1

%

90" ’



The I-v relation and impedance of an capacitor (1)

a ﬁ N
O |\ @
+ v -

l

. d
\I(t) =C Ev(t)./

-~

1/joC

@
o

|=C

N

1 (
I ®
V i

I
JoV, = Z =

~
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The I-v relation and impedance of a capacitor (2)

m V(1) lags I(t) by T/4 (-90° phase, I.e. quadrature)
= impedance Z =1/(j@C) is purely negative
Imaginary.
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More on impedance

m Impedance Z is a complex number in units of
Ohms.

m Impedance of a “mutual”’ inductance M is joM.

m Re(Z)=R, Im(Z)= X are called resistance and
reactance, respectively.

m Although impedance is complex, it's not a
phasor. In other words, it cannot be transformed
Into a sinusoidal function in the time domain.
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Section 9.5-9.9

Circuit Analysis Technigues
In the Frequency Domain

28
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Summary

1.

N

> W

All the DC circuit analysis techniques:
KVL, KCL;

Series, parallel, A-Y simplifications;
Source transformations;

Thévenin, Norton equivalent circuits;
NVM, MCM;

are still applicable to sinusoidal steady-state
analysis If the voltages, currents, and passive
elements are replaced by the corresponding
phasors and impedances.

29
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KVL, KCL

m KVL: v,(t)+Vv,(t)+...+Vv (t)= Zn:vq (t) =0,

= anvmq cos(at +6,) = Zn: ReE/mqej(“’t+9q)]
q=1 q=1

V,+V,+..+V, =0.
m KCL: ij(t)+i,()+...+i,()=0,=

I, +1,+...+1 =0.

30



Equivalent impedance formulas

m Impedances in series

Z

Z;

Zn

I

.

31
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Example 9.6: Series RLC circuit (1)

m Q: Given v (t)=750 cos(5000t+30°), = i(t)="

90 () 32 mH
_/\M, Y Y Y

+
vs C_) ;: 5 [.LF

Z, = joL = j(5000)(32x10%) = j160 Q,

1 1 )
c T e (5000)(5x10°)
V, =750£30° V,

N

_j40Q,

32



Example 9.6: Series RLC circuit (2)

a 90Q 160 Q
) AM, —Y Y Y

4,.

I
° /¥
. C_) == —j40 O

o
b

Z. =90+ j160— j40 =90+ j120
= /902 +120% £ tan(120/90) =150./53.13 Q,

oY POEOV o a3z A
Z,, 150/53.13° O

a

= 1(t) =5c0s(5000t — 23.13%) A.

33



Thévenin equivalent circuit

m Terminal voltage phasor and current phasor are
the same by using either configuration.

®ad

Frequency-domain
linear circuit;

may contain

both independent
and dependent
sources. ob

_.a

> C_) Vi

34
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Example 9.10 (1)

m Q: Find the Thévenin circuit for terminals a, b.

—j40 Q
I(
A

llllllllllllllllllllllllllllllll
*

d

W ——¢ AN —o—8
120/0°

- é) \_\_§6OQ§ 10V,

e 2 o b

e %4
llllllllllllllllllllllllllllll

m Apply source transformation to {120V, 12Q, 60Q}
twice to get a simplified circuit.

35
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Example 9.10 (2)

—j40 O

[

A

I
100 | 120 Q
: YW\ WV o—e0a
: o spe

108@§<i> v, 10V, Vi

_ ob

* >
lllllllllllllllllllll

100 = (10— j40+120)1 +10V,, = (130— j40)I +10V, =100---(1)
V, =100-101---(2)

36
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Example 9.10 (3)

—j40 O
| (
| \.
|
10 Q) | 120 Q)
WA W——eo—e0a
+ %
108@ V. 10V, Vo
" ob
= 990 =18/-126.87° A,
30— j40

@:10(100—100 +1201 =835.22/ — 20.17° V.
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Example 9.10 (4)

40 Q | V,
( a =
gl — 40+ (12//60)
la B VT
120 200 | <7 10— j40'
o T4 - V, = (12//60)1, =101,
3 . b
i 6003V, 10V, \Z A
B b ° 120
® L
BT Ve 1] P N VO S
120 6 120 610— 40 120’

@VT/l -91.2- j38.4Q.



Section 9.10, 9.11

The Transformer

1. Linear transformer, reflected
Impedance

2. ldeal transformer

39
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Summary

m A device based on magnetic coupling.

m Linear transformer is used in communication
circuits to (1) match impedances, and (2)
eliminate dc signals.

m |deal transformer is used in power circuits to
establish ac voltage levels.

m MCM is used In transformer analysis, for the
currents in various coils cannot be written by
Inspection as functions of the node voltages.

40
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Analysis of linear transformer (1)

m Consider two coils wound around a single core
(magnetic coupling):

/Zy

Source t.) Transformer d Load
it e,
Mesh current [V; = (Z, + R + joL)1i— joMlI,;

......................................

: S
equations: |0 =— joMI,+ (R, + jal, +Z)1,.
22 41
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Analysis of linear transformer (2)

& o
Source b Transformer d Load

7 :£2211222+a)2M2: a)zl\/lzl
Il ZZZ ZZZ

42
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Input Iimpedance of the primary coll

Zint 4 ANA —6—
I
C 2
o o
Source b Transformer d Load
a)Z M 2 - a)z M 2

Zab:Zint_Zs:(Rl_l_jwl—l)_l_zr’@: 7 - R +JC()|_ L7 :
22 2 2 L

m /Z is the equivalent impedance of the secondary
coil and load due to the mutual inductance.

m /  =Z;is needed to prevent power reflection.

43



Reflected impedance

20/ 2 2 ’
@M _ ‘M wM R
L = —Z, — | Z,,.
22 22622 ‘ 22‘
. e,
a joM ___an Ckzzz

ZLg

5 12
C)Vsl‘ joLy it jols Z |

Source b Transformer d Load

m Linear transformer reflects (Z,,)* into the

primary coil by a scalar multiplier (oM/|Z,,|)?.

44
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Example 9.13 (1)

m Q: Find the Thévenin circuit for terminals c, d.

-

500 Q j1002 4 2000 .
— Y8 AM J

4 L r
300/0°V( Vi j3600 Q

V., =V Since |, =0, = V= I xjwM, where

| =5 _ 300207 ~79.67/—79.29° A.
Z,.  (500+ j100) + (200 + j3600)

ce |

:@: (79.67£ —79.29°) x ( j1200) = 95.6./10.71° V.

45
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Example 9.13 (2)

500 Q J100Q2 4 2000 ; 100 Q

Short

m /., =(100+j1600) + Z,, where Z, is the reflected
impedance of Z,, due to the transformer:

Z,. = (500 + j100) + (200 + j3600) = (700 + j3700)Q.
2 2
z,=| Mz o 1291 (700- j3700),
Z,, 700+ j3700)
@: (100 + j1600) + Z, = (171.09 + j1224.26)Q2

46
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Characteristics of ideal transformer

m An ideal transformer consists of two
magnetically coupled coils with N; and N, turns,
respectively. It exhibits three properties:

1. Magnetic field is perfectly confined within the
magnetic core, = magnetic coupling coefficient

isk=1, = M = JL,L,.
2. The self-inductance of each coill (Li oc Nf) IS

large, i.e. L, =L, —> .

3. The coil loss is negligible: R;=R,— 0.

47



" A
Current ratio

- JuL,
Zs|—e ;od @ /% .-
® ® —I-»
(t VSl‘ JoL joL, 7
@
Source b Transformer d Load

m By solving the two mesh equations of a general

linear transformer: if wl, >>|Z,]
........ .
L7, _je,tz, PIL N,
, joM  jo,LL, L N

48
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Voltage ratio

Vv, |z,

o
Source b Transformer d Load

m Substitute I, =
joL,+Z,

v zé(ja_)Ll)m M? L1 (

V,=271,.

22

jC‘)M into { = Joll, — JoMI,,
l,

49
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Input Iimpedance

Z
_I_
C‘) Vs Vi Zy
Zin r _
Source b Transformer (.1 Load
m By the current and voltage ratios, in-phase

| N, N, )
a — 1/ _1_2_[_1j ’ :>Zm :Zab :K_lj ZL'
Z, V,/I, V, 1, [N, N,

2
m For lossy transformer,= 7z, —» R, + (M] (R,+2Z,)
2

50
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Polarity of the voltage and current ratios

51
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Example 9.14 (1)

m Q: Find vy, iy, vy, 1.

. 237.5 mQ)
1 -9
o+ ™.
vV ()
2500
cos(400t . -
(4001) Ideal °
0250 J2Q 0.2375 Q
A'AA% 2'A'A%
-1, -1,
2508& j0.05 Q
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Example 9.14 (2)

0250 Jj2Q 0.2375 Q

WA : AW
-1 + ol10:1] g + -1

2508& V, \Z j0.05 Q

Ideal

2500.20° = (0.25+ j2)1, +V, -+ (1)

(o 2375+ jO. 05)|2, .
.................................. =V, =(23.75+ j5)I,---(2)

llllllllllllllllllllllllllllllllll

(2) > @): 225;04_0 =100/ —16.26°, i, =100cos(400t —16.26°).

+ )7
By (2):V,=(23.75+ }5)(100£ -16.26") = 2427/ - 4.37°,v, =...

53



Section 9.12

Phasor Diagrams

54
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Definition

m Graphical representation of -7-J3 = 7.62/-156.8°
on the complex-number plane.

N
N
|
) \__—
e

m Without calculation, we can anticipate a

magnitude >7, and a phase in the 3rd quadrant.
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Example 9.15 (1)

m Q: Use a phasor diagram to find the value of R
that will cause I, to lag the source current i, by
45 when @ =5 krad/s.

B i i
y 3 ¥ ' Y R
i C‘) 0,302mH  Z<800uF R
il 0.25
_ L
| =Y oy 90", | =—Yn a4y /90", |, =Ym =V /0
1 —-j0.2
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Example 9.15 (2)

m By KCL, I, =1_ + I + I;. Addition of the 3 current
phasors can be visualized by vector summation

on a phase diagram

Ic= j4V,,

IL — _]1 Vm

Ij« To make /I, =45°,
A i3V, lR=3V,
45°y —~R=1/30Q.
IR — Vm/R

57
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Key points

m What is the phase of a sinusoidal function?

m What is the phasor of a sinusoidal function?

m What is the phase of an impedance? What are
In-phase and quadrature?

m How to solve the sinusoidal steady-state
response by using phasor and impedance?

m \What is the reflected impedance of a circuit with
transformer?

58
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