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Chapter 6 
Inductance, Capacitance, and 
Mutual Inductance

6.1 The inductor
6.2 The capacitor
6.3 Series-parallel combinations of 

inductance and capacitance
6.4 Mutual inductance
6.5 Closer look at mutual inductance



2


 

In addition to voltage sources, current sources, 
resistors, here we will discuss the remaining 2 
types of basic elements: inductors, capacitors.


 

Inductors and capacitors cannot generate nor 
dissipate but store energy.


 

Their current-voltage (i-v) relations involve with 
integral and derivative of time, thus more 
complicated than resistors.

Overview
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
 

Why the i-v relation of an inductor is


 

Why the i-v relation of a capacitor is


 

Why the energies stored in an inductor and a 
capacitor are:

Key points

?
dt
diLv 

?
dt
dvCi 

ly?respective  ,
2
1,

2
1 22 CvLiw   



4

Section 6.1 
The Inductor

1. Physics
2. i-v relation and behaviors
3. Power and energy 
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Fundamentals


 

An inductor of inductance L is symbolized by a 
solenoidal coil.


 

Typical inductance L ranges from 10 H to 10 
mH.


 

The i-v relation of an inductor (under the 
passive sign convention) is:

,
dt
diLv 
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
 

Consider an N1 -turn coil C1 carrying current I1 . 
The resulting magnetic field (Biot- 
Savart law) will pass through C1 itself, causing a

Physics of self-inductance (1)
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P1 is the permeance.
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
 

The ratio of flux linkage to the driving current is 
defined as the self inductance of the loop:

Physics of self-inductance (2)
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which describes how easy a coil current can 
introduce magnetic flux over the coil itself.
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Examples


 

Solenoidal & toroidal coils:


 

RG59/U coaxial cable:

L = 351 nH/m.

L = 36 HL = 270 H

~2 cm
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
 

Faraday’s law states that the electromotive 
force v (emf, in units of volt) induced on a loop 
equals the time derivative of the magnetic flux 
linkage :

The i-v relation

.  , i
dt
dLLi

dt
dv

dt
dv  


 

Note: The emf of a loop is a non-conservative 
force that can drive current flowing along the 
loop. In contrast, the current-driving force due 
to electric charges is conservative.
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Behaviors of inductors


 

DC-current: inductor behaves as a short circuit.


 

Current cannot change instantaneously in an 
inductor, otherwise, infinite voltage will arise.


 

Change of inductor current is the integral of 
voltage during the same time interval:

dt
diLv 
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Inductive effect is everywhere!


 

Nearly all electric circuits have currents flowing 
through conducting wires. Since it’s difficult to 
shield magnetic fields, inductive effect occurs 
even we do not purposely add an inductor into 
the circuit.
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Example 6.1: Inductor driven by a current pulse










 0  ,10
0  ,0

)( 5 tte
t

ti t

The inductor voltage is:










 0  ),51(
0  ,0

)(
5 tte
t

dt
diLtv

t

Inductor 
voltage can 
jump!

Memory-less 
in steady 
state.
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
 

Consider an inductor of inductance L. The 
instantaneous power in the inductor is:


 

Assume there is no initial current (i.e. no initial 
energy),  i(t =0)=0, w(t =0)=0. We are 
interested in the energy W when the current 
increases from zero to I with arbitrary i(t).

Power & energy (1)

.
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Power & energy (2)
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
 

How the current changes with time doesn’t 
matter. It’s the final current I determining the 
final energy.


 

Inductor stores magnetic energy when there is 
nonzero current.
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Example 6.3: Inductor driven by a current pulse



 
t < 0.2,  p> 0, w, charging.



 
t > 0.2,  p< 0, w, discharging.



 
In steady state (t ), i 0, 
v0, p0, w0 (no energy).
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Example 6.3: Inductor driven by a voltage pulse



 
p> 0, w, always charging.



 
In steady state (t), i 2 A, 
v0, p0, w200 mJ 
(sustained current and 
constant energy).
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With memory in 
steady state.
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Section 6.2 
The Capacitor

1. Physics
2. i-v relation and behaviors
3. Power and energy
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Fundamentals


 

A capacitor of capacitance C is symbolized by a 
parallel-plate.


 

Typical capacitance C ranges from 10 pF to 470 
F.


 

The i-v relation of an capacitor (under the 
passive sign convention) is:

.
dt
dvCi 



19


 

If we apply a voltage V12 between two isolated 
conductors, charge Q will be properly 
distributed over the conducting surfaces such 
that the resulting electric field satisfies:

Physics of capacitance (1)
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
 

If , 
 

while the spatial 
distribution of charge remains such that


 

The ratio of the deposited charge to the bias 
voltage is defined as the capacitance of the 
conducting pair:

Physics of capacitance (2)

,
V
QC 

describing how easy a bias voltage can deposit 
charge on the conducting pair.
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Examples


 

Ceramic disc & electrolytic:


 

RG59/U coaxial cable:

C = 53 pF/m.
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
 

From the definition of capacitance:

The i-v relation


 

Note: Charge cannot flow through the 
dielectric between the conductors. However, a 
time-varying voltage causes a time-varying 
electric field that can slightly displace the 
dielectric bound charge. It is the time-varying 
bound charge contributing to the 
“displacement current”.
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Polarization charge
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Behaviors of capacitors


 

DC-voltage: capacitor behaves as an open 
circuit.


 

Voltage cannot change instantaneously in an 
capacitor, otherwise, infinite current will arise.


 

Change of capacitor voltage is the integral of 
current during the same time interval:

dt
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Capacitive effect is everywhere!


 

A Metal-Oxide-Semiconductor (MOS) transistor 
has three conducting terminals (Gate, Source, 
Drain) separated by a dielectric layer with one 
another. Capacitive effect occurs even we do 
not purposely add a capacitor into the circuit.

(info.tuwien.ac.at)

charges
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
 

Consider a capacitor of capacitance C. The 
instantaneous power in the capacitor is:


 

Assume there is no initial voltage (i.e. no initial 
energy),  v(t =0)=0, w(t =0)=0. We are 
interested in the energy W when the voltage 
increases from zero to V with arbitrary v(t).

Power & energy (1)

.
dt
dvCvvip 
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Power & energy (2)


 

How the voltage increases with time doesn’t 
matter. It’s the final voltage V determining the 
final energy.


 

Capacitor stores electric energy when there is 
nonzero voltage.
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Example 6.4: Capacitor driven by a voltage pulse



 
t < 1,  p>0, w, charging.



 
t > 1,  p<0, w, discharging.



 
In steady state (t), i 0, v 
0, p0, w0 (no energy).

Capacitor current 
can jump!

Memory-less in 
steady state.
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Section 6.3 
Series-Parallel 
Combinations

1. Inductors in series-parallel
2. Capacitors in series-parallel
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Inductors in series
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Inductors in parallel
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Capacitors in series
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Capacitors in parallel
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Section 6.4, 6.5 
Mutual Inductance

1. Physics
2. i-v relation and dot convention
3. Energy
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Fundamentals


 

Mutual inductance M is a circuit parameter 
between two magnetically coupled coils.


 

The value of M satisfies                      , where

is the magnetic coupling coefficient.  


 

The emf induced in Coil 2 due to time-varying 
current in Coil 1 is proportional to 

21LLkM 

10  k

 .1 dtdiM
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
 

Coil 1 of N1 turns is driven by a time-varying 
current i1 , while Coil 2 of N2 turns is open.


 

The flux components linking (1) only Coil 1, (2) 
both coils, and (3) total flux linking Coil 1 are:

The i-v relation (1)
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
 

Faraday’s law states that the emf induced on 
Coil 2 (when i2 remains constant) is:

The i-v relation (2)

.)( 12112112112122122 i
dt
dMi

dt
dPNNiNPN

dt
dN

dt
dv  


 

One can show that the emf induced on Coil 1 
(when i1 remains constant) is:

.212212211 i
dt
dMi

dt
dPNNv 


 

For nonmagnetic media (e.g. air, silicon, 
plastic), P21 =P12 ,  M21 =M12 =M= N1 N2 P21 .
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Mutual inductance in terms of self-inductance
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
 

The two self inductances and their product are:


 

The coupling coefficient (1) k=0, if P21 21 =0  
(i.e. no mutual flux), (2) k=1, if P11 =P22 =0 (i.e. 
11 =22 =0, 1 =2 =21 , no flux leakage).
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Dot convention (1)

.2111 i
dt
dMi

dt
dLv 


 

i2 leaves the dot of L2 ,  the “+” polarity of            
is referred the terminal of L1 without a dot.


 

The total voltage across L1 is:

)(2 tiM 
)(2 tiM 
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Dot convention (2)


 

i1 enters the dot of L1 ,  the “+” polarity of            
is referred the terminal of L2 with a dot.


 

The total voltage across L2 is:

)(1 tiM 

)(1 tiM 
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Example 6.6: Write a mesh current equation

0)()H 8())( 5())( 20()H 4( 21211  ii
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Self-inductance,
passive sign convention

Mutual-inductance,
ig i2 enters the dot of 
16-H inductor
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Example 6.6: Steady-state analysis


 

In steady state (t ), inductors are short, 
 the 3 resistors are in parallel (Req =3.75 ).


 

Let v2 =0.  (1) v1 = (16A)(3.75 )=60 V. (2) i12 = 
(60V)/(5) =12A,  i1 = (16-12)=4 A (not zero!). 
(3) i1'2 = (60V)/(20)=3 A,  i22' =(12+3)=15 A.

1 2 1'

2'

12 A 3 A
60 V

4 A
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Energy of mutual inductance (1)


 

Assume i1 , i2 =0 initially. Fix i2 =0 while 
increasing i1 from 0 to some constant I1 . The 
energy stored in L1 becomes:
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Energy of mutual inductance (2)


 

Now fix i1 = I1 , while increasing i2 from 0 to I2 . 
During this period, emf’s will be induced in 
loops 1 and 2 due to the time-varying i2 . The 
total power of the two inductors is:
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
 

An extra energy of W12 +W2 is stored in the pair:
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Energy of mutual inductance (3)


 

The entire process contributes to a total energy

for the two-inductor system.


 

Wtot only depends on the final currents I1 , I2 

[independent of the time evolution of i1 (t), i2 (t)].
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
 

Why the i-v relation of an inductor is


 

Why the i-v relation of a capacitor is


 

Why the energies stored in an inductor and a 
capacitor are:

Key points
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