Operational-Amplifier and Data-Converter Circuits
Outline

- The Two-Stage CMOS Op Amp
- The Folded-Cascode CMOS Op Amp
- The 741 Op-Amp Circuit
- DC Analysis of the 741
- Small-Signal Analysis of the 741
- Gain, Frequency Response, and Slew Rate of the 741
- Data Converters- An Introduction
- D/A Converter Circuits
- A/D Converter Circuits
Input & Output Ranges

Input common-mode range:

\[V_{ICM, \text{max}} = V_{D1} + V_{Tn} = V_{DD} - 1V_{OV1} \]

\[V_{ICM, \text{min}} = V_{D11} - V_{OV1} \]

\[V_{ICM, \text{max}} - V_{D11} - V_{OV1} = V_{OV1} \]

\[V_{ICM, \text{min}} = V_{DD} - V_{OV1} \]

\[V_{DD} = V_{SS} + V_{OV1} + V_{OV2} \]

\[V_{OV1} = V_{DD} - V_{OV1} \]

Output swing:

\[V_{O, \text{max}} = V_{DD} - 1V_{OV1} - |1V_{OV4}| \]
Increase the input common-mode range
The Wide-Swing Current Mirror

Increase the output voltage range
V_{BIAS} Generation

1) Q5 has a W/L ratio equal to $\frac{1}{4}$ that of the transistors in the wide-swing current mirror

2) Same I_{REF} utilized in both circuits
Outline

• The Two-Stage CMOS Op Amp
• The Folded-Cascode CMOS Op Amp
• The 741 Op-Amp Circuit
• DC Analysis of the 741
• Small-Signal Analysis of the 741
• Gain, Frequency Response, and Slew Rate of the 741
• Data Converters- An Introduction
• D/A Converter Circuits
• A/D Converter Circuits
The 741 Op-Amp Circuit

Bias Generation

Widlar Current Source

Input Stage

Second Stage

Output transistors

Short-Circuit Protection
Class A and B Output Stage

Class A output stage

Class B output stage
Class AB Output Stage
Outline

• The Two-Stage CMOS Op Amp
• The Folded-Cascode CMOS Op Amp
• The 741 Op-Amp Circuit
• DC Analysis of the 741
• Small-Signal Analysis of the 741
• Gain, Frequency Response, and Slew Rate of the 741
• Data Converters- An Introduction
• D/A Converter Circuits
• A/D Converter Circuits
Bias Generation Stage

Reference Bias Current

Widlar Current Source

\[R_s = 39 \, \text{k}\Omega \]

\[I_{REF} \]

\[Q_{11} \]

\[Q_{12} \]

\[I_{C10} \]

\[-V_{EE} \]

\[Q_{10} \]

\[R_4 \]
Input Stage

Input Bias Current:
Input Offset Current:
Second Stage

\[R_9 = 50 \text{ k}\Omega \]
\[R_8 = 100 \text{ } \Omega \]
Output Stage
• The Two-Stage CMOS Op Amp
• The Folded-Cascode CMOS Op Amp
• The 741 Op-Amp Circuit
• DC Analysis of the 741
• **Small-Signal Analysis of the 741**
• Gain, Frequency Response, and Slew Rate of the 741
• Data Converters- An Introduction
• D/A Converter Circuits
• A/D Converter Circuits
Input Stage

\[R_{id} = \]

\[G_{m1} = \]
Small-Signal Equivalent Circuit

Output Resistance

\[R_{o1} = \]