Chapter 7

LTI Discrete-Time Systems
In the Transform Domain

R R
cwlin@ee.nthu.edu.tw

03-5731152 g
Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies Graw-Hill Companies, Inc., 2007




TryvrinnnA r\ ~F Tir

lYPES Ol

« The time-domain classification of an LTI digital transfer
function sequence is based on the length of its impulse
response:

— Finite impulse response (FIR) transfer function
— Infinite impulse response (lIR) transfer function

 In the case of digital transfer functions with frequency-
selective frequency responses, there are two types of
classifications
— Classification based on the shape of the magnitude
function |H(e/w)]

— Classification based on the form of the phase function
O(w)
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Classification Based on Magnitude
Characteristics

 One common classification is based on ideal magnitude
response

« A digital filter designed to pass signal components of
certain frequencies without distortion should have a
magnitude response equal to one at these frequencies,
and zero at all other frequencies

« The range of frequencies where the frequency response
takes the value of one is called the passband

« The range of frequencies where the frequency response
takes the value of zero is called the stopband
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* Frequency responses of the four popular types of ideal
digital filters with real coefficients are shown below:
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« The freq. w,, w,,and w,, are called the cutoff frequencies

« An ideal filter has a magnitude response equal to one in the
passband and zero in the stopband, and has a zero phase

everywhere
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 The impulse response of the ideal lowpass filter:
SIN M7
hLP[ﬂ]: , —0o<n<o
n

 The above impulse response is not absolutely summable,
and hence, the corresponding transfer function is not BIBO
stable

» Also, h,p[n] is not causal and is of doubly infinite length

« The remaining three ideal filters are also characterized by
doubly infinite, noncausal impulse responses and are not
absolutely summable

* Thus, the ideal filters with the ideal “brick wall” frequency
responses cannot be realized with finite dimensional LTI
filter
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» To develop stable and realizable transfer functions, the ideal
freq. response specs. are relaxed by including a transition
band between the passband and the stopband

« This allows the magnitude response to decay slowly from its
max. value in the passband to the zero value in the stopband

 Moreover, the magnitude response is allowed to vary by a
small amount both in the passband and the stopband

|(;h.;m}|
] +EIII;|

I =dp

A

— Pass b ——— L L B

0 wy, W, -

Original PowerPoint slides prepared by Transition 7-6

The McGraw-Hill Companies o o McGraw-Hill Companies, Inc., 2007



DAirinAd
U

A | T
DUUIlI U 1 11

m

~ ('\'F
allol

DAA Ay Cinn~rtiance
ned I FuriCuorlis
* A causal stable real-coefficient transfer function H(z) is

defined as a bounded real (BR) transfer function if
|H(e/*)| < 1 for all values of w

« Let x[n] and y[n] denote, respectively, the input and output
of a digital filter characterized by a BR transfer function H(z)
with X(e/*) and Y(e*) denoting their DTFTs

« Then the condition |H(e/w)| < 1 implies that

[Y(e)| = | X(e)?

 Integrating the above from - 1 to 11, and applying Parseval’s

relation we get

Zv\rv[n]\z < i\x[n]\z

n=—co n=—c0
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« Thus, for all finite-energy inputs, the output energy is less
than or equal to the input energy implying that a digital filter
characterized by a BR transfer function can be viewed as a

passive structure

« If |H(e®)| =1, then the output energy is equal to the input
energy, and such a digital filter is therefore a lossless
system

« A causal stable real-coefficient transfer function H(z) with
|H(e®)| = 1 is thus called a lossless bounded real (LBR)
transfer function

« The BR and LBR transfer functions are the keys to the
realization of digital filters with low coefficient sensitivity (see
Sec. 12.9)
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« Example — Consider the causal stable lIR transfer function
Hi=—& — 0<lu/<]
l-oz

where K is a real constant

* |ts square-maagnitude function is _qivezn by
HE | = H@HE) -~k
(1+07)—2acosm
« The maximum value of |H(e/*)|? is obtained when 2a cosw
In the denominator is a maximum and the minimum value is
obtained when 2a cosw is a minimum

 For a> 0, maximum value of 2a cosw is equal to 2a at w =
0, and minimum value is —2a at w =11

__jo
.;,—(.).‘]
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« Thus, for a > 0, the maximum value of |H(e/)|? is equal to
K? /(1 — a)? at w = 0 and the minimum value is equal to

K2/(1+a)Yatw=mm
 On the other hand, for a < 0, the maximum value of 2a cosw

Is equal to —2a at w = 11, and the minimum value is equal to
20atw =0

« Here, the maximum value of |[H(e/%)|? is equal to K? /(1 + a)?
at w = 1 and the minimum value is equal to K2 /(1 — a)?at w
=0

* Hence, the maximum value can be made equal to 1 by

choosing K = +(1 — a), in which case the minimum value
becomes (1 — a)?/(1 + a)?
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* Hence, K
H(Z):—_l, 0<‘OL‘<1
l—az

iIs a BR function for K = +(1 — a)

* Plots of the magnitude function for with values of K chosen
to make H(z) a BR function are shown below
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1 : 1
0.8 \ 0.8
3 \ 8
g 0.8 E 0.6
5 T
= =
0.4 0.4
0.2 - ' : : 0.2 - : : :
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
o @im
Lowpass Filter Highpass Filter

Original PowerPoint slides prepared by S. K. Mitra 7-11

The McGraw-Hill Companies aw-Hill Companies, Inc., 2007




All Dace Trancfar CiinAtiAance
All-FAdSS 1hadrisier FuliCuoris
* An |lIR transfer function A(z) with unity magnitude response

for all frequencies, i.e.,
|H(e®)|? =1, for all w
is called an allpass transfer function

* An M-th order causal real-coefficient allpass transfer

function is of the form

dy +dy)2

++dyz +z
~M +1

Ay (2) == —

1+d12_l + et dﬂ/f—lz +dﬂf2_

* Denote the denominator polynomials of A,,(z) as D,(z) :
Dy/(z)=1+d,z'+...+d, .,z M1 +d,zM
then it follows that A,,(z) can be written as

M 1
z " Dy(z
Ay (2) == M(Z )
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All-Pass Transfer Functions
« Note from the above that if z = re/® is a pole of a real

coefficient allpass transfer function, then it has a zero at
z=(1/r)e?
« The numerator of a real-coefficient allpass transfer function

Is said to be the mirror image polynomial of the
denominator, and vice versa

 We shall use the notation D), (z) to denote the mirror-image
polynomial of a degree-M polynomial D,,(z), i.e.,

= -M -1
Dy (z)=z "Dy (z )
 The expression

AM(Z) _ iZ_MDM(Z_l)

Dy (2)
implies that the poles and zeros of a real-coefficient allpass

_function exhibit mirror image symmetry in the z-plane - _,
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—02+0.18z1+04z 2+ 273 §u D*F ___________________ -
‘43(Z)=_ 1 : — 3 E 05 %
1+04z7+0.18z27-=-0.2z |
1.5 ©
| ) Reél part2 1
« To show that |A,(e®)] =1 we observe that
_ I D, (2)
A (Z l)_ z* M
M Dy, (z7h)

 Therefore
z MDDy (z71) 27 Dy (2)
Dy (z2) Dy (z7™h

Ay (D) Ay (z7H =
e Hence

Ayg (72 = Ay (2) Ay (2™ )‘ =

—o j(,)
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* Now, the poles of a causal stable transfer function must lie
Inside the unit circle in the z-plane

* Hence, all zeros of a causal stable allpass transfer function
must lie outside the unit circle in a mirror-image symmetry
with its poles situated inside the unit circle

« Figure below shows the principal value of the phase of the
3rd-order allpass function

Principal value of phase

L(%) -02+0.18z71+0422+273 i i x\i i
A3(2)=- T - N NS T N S S
1+0.4z71+0.18272-0.2273 : | N
5 | | AN
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 If we unwrap the phase by removing the discontinuity, we
arrive at the unwrapped phase function 6 (w) as follows

Unwrapped phase
0 T T T T
1 1 I 1
1 I 1

Phase, degrees

w/1T

« The unwrapped phase function of any arbitrary causal
stable allpass function is a continuous function of w

7-16
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Properties:

1. A causal stable real-coefficient allpass transfer function is a
lossless bounded real (LBR) function or, equivalently, a
causal stable allpass filter is a lossless structure

2. The magnitude function of a stable allpass function A(z)

satisfies: =1 =

A(z)s=1, for|z|=1
> I, forlzi<l

3. Let 1(w) denote the group delay function of an allpass filter
A(z2), i.e.,

(®) ==L [6,(0)]
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* The unwrapped phase function 8,(w) of a stable allpass
function is a monotonically decreasing function of w so that

T(w) is everywhere positive intherange O < w <

« The group delay of an M-th order stable real-coefficient
allpass transfer function satisfies [ (wyio = Mn

A Simple Application: 0

« A simple but often used application of an allpass filter is as a
delay equalizer

« Let G(z) be the transfer function of a digital filter designed to
meet a prescribed magnitude response

* The nonlinear phase response of G(z) can be corrected by
cascading it with an allpass filter A(z) so that the overall

cascade has a constant group delay in the band of mterest
Original PowerPoint slides prepared by S. K. Mitra
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« Since |A(e™)| =1, we have
|A(e™) G(e)| = |G(e)
« QOverall group delay is the given by the sum of the group
delays of G(z) and A(z)

« Example — Figure below shows the group delay of a 4th
order elliptic filter with the following specifications: w, =

0.3, 6p =1 dB, 68 =35dB — Or:gi"a' Fi“:er : o, Group Dl EqulizeFiter

© Thegroupdelayofthe . . I
original filter cascaded A e s e |
with an 8t order allpass ¢ -~ | | El
filter is also shown P e e o
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Classification Based on Phase
Characteristics

» A second classification of a transfer function is with respect
to its phase characteristics

* In many applications, it is necessary that the digital filter
designed does not distort the phase of the input signal
components with frequencies in the passband

* One way to avoid any phase distortion is to make the
frequency response of the filter real and nonnegative, i.e., to
design the filter with a zero phase characteristic

 However, it is not possible to design a causal digital filter
with a zero phase

* For non-real-time processing of real-valued input signals of
finite length, zero-phase filtering can be very simply

~_Implemented by relaxing the causality requirement T
Original PowerPoint slides prepared by S. K. Mitra
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* One zero-phase filtering scheme is sketched below

x[n]—{ H(z) —— vI[~] uln] —{ H(z) —— wln]

uln] =v[-nj, y[n]=wl-n]
« Let X(ew), V(ew), U(ew), W(ew), and Y(ew)denote the
DTFTs of x[n], v[n], u[n], w[n], and y[n], respectively

« Making use of the symmetry relations we arrive at the
relations between various DTFTs as follows:

V(e) = H(e) X(e*), W(e) = H(e) U(e™)
U(e?) = V*(el), Y(ev) = W*(el)
Combining the above equations we get
Y(e) = W (el®) = H*(e?) UX(e?) = H¥(e) V(e)
= H*(e/*) H(e) X(e) = |H(e™)[* X(e™)
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| inear-Phase Transfer Functions

]

« The output y[n] of a linear-phase filter to

IS then given by
y[n] — Ae—jcoD ej(on — Ag’oo(n—D)

 If x,(f) and y,(f) represent the continuous-time signals whose
sampled versions, sampled at t = nT, are x[n] and y[n] given
above, then the delay between x_(t) and y_({) is precisely the
group delay of amount D

« If Dis an integer, then y[
D samples

« If Dis not an integer, y[n], being delayed by a fractional part,
IS not identical to x[n]

— The waveform of the underlying continuous-time output is identical to
the waveform of the continuous-time input and delayed D units of

Original Povxtelrﬂslﬁn slides prepared by S. K. Mitra 7-22
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« Ifitis desired to pass input signal components in a certain
frequency range undistorted in both magnitude and phase,
then the transfer function should exhibit a unity magnitude

response and a linear-phase response in the band of interest

* Figure below shows the frequency response if a lowpass
filter with a linear-phase characteristic in the passband

« Since the signal components in Hy ()|
the stopban are blocked, the |
phase response in the stopband

can be of any shape e
argHLP(ejm)
T —u)l\O o o
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of an ideal

)

« Example — Determine the impulse respons
lowpass filter with a linear phase response

_ L,—jon
HLP(QJO)):{G 0 o, 0<lm<w,

* Applying the frequency-shifting property of the DTFT to the
Impulse response of an ideal zero-phase lowpass filter we

arrive at sinm,(n—n,)
hppln]=

M, <|o <

2

—0O<N<w©

2

m(n—n,)

» As before, the above filter is noncausal and of doubly infinite
length, and hence, unrealizable

« By truncating the impulse response to a finite number of
terms, a realizable FIR approximation to the ideal lowpass
filter can be developed
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* The truncated approximation may or may not exhibit linear
phase, depending on the value of n, chosen
 |f we choose n,= N/2 with N a positive integer, the truncated

and shifted approximation
sinw.(n—N/2)

Iy o] = L 0<n<N
Lk r(n—-N/2)
will be a length N+1 causal linear-phase FIR filter
0.6 . . N=I12 . T 0.6 . T I\T:l?’ r
0.4 | 0.4
i N A l t 4 i oL@ ? 1 ? 9
\ :L ’ J’ l o © 1
02 2 4 6 g 10 12 025 2 4 6 8 0 12
Time index n Time index n
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« Because of the symmetry of the impulse response
coefficients as indicated in the two figures, the frequency

response of the truncated approximation can be expressed
- A i i?\‘r A B } ~
s Hp(e/®) =Y hyp[n]e /" =™ /ON2 H p ()
n=0
. Where {7 p(»), called the zero-phase response or
amplitude response, is a real function of w will be a length

N+1 causal linear-phase FIR filter
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Minimum-Phase and Maximum-
Phase Transfer Functions

 (Consider the two 1st-order transfer functions:
Hy(2)=Z2 H,(z)=

« Both transfer functlons have a pole Inside the unit circle at
the same location and are stable

« But the zero of H,(z) is inside the unit circle at z = -b,
whereas, the zero of H,(z) is at z = —1/b situated in a mirror-
Image symmetry H.(2)

jlmz

-

bz“ , laj<1, pj<1

N

Original PowerPoint slides prepare. vy <. ix. vuu
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Unit circle

Unit circle

7-27
Graw-Hill Companies, Inc., 2007



Minimum-Phase and Maximum-
Phase Transfer Functions

However, both transfer functions have an identical
magnitude function as

H(2)H,(z7") = Hy(2)H,(z7")
« The corresponding phase functions are

JONT _ -1 sin® -1 sinw
arg[H1 (e )] = tan h+cosm tan a+cos®

JONT _ -1 bsin® _ -1 sino
arg[H2 (6 )] = tan 1+bcos® a+cos®

* Figure below shows the unwrapped phase responses of the
two transfer functions fora=0.8and b =- 0.5

A = — t
A

Phase, degrees

N
7-28
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Minimum-Phase and Maximum-
Phase Transfer Functions

« As shown in the figure, H,(z) has an excess phase lag with
respect to H,(z)

* The excess phase lag property of H,(z) with respect to H,(z)
can also be explained by observing that we can write

Hz(z)=b2+1 :[Z+b)[bz+l)

zZ+a z+a/)\ z+b

J

HT(-‘) AEF:)
where A(z) = (bz +1) /(z + b) is a stable allpass function
* The phase functions of H,(z) and H,(z) are related through
arg[H,(e/*)] = arg[H,(e')] + arg[A(e™)]
* As the unwrapped phase function of a stable first-order

allpass function is a negative function of w, it follows from
the above that Hb%(sz_z_has an excess phase lag with H,(z) ,_,,

Original PowerPoint slides prepared Mitra
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Minimum-Phase and Maximum-
Phase Transfer Functions

* Generalizing the above result, let H,_(z) be a causal stable
transfer function with all zeros inside the unit circle and let
H(z) be another causal stable transfer function satisfying
[H(e™)| = [H,(e™)

» These two transfer functions are then related through H(z) =
H_(z) A(z) where A(z) is a causal stable allpass function

* The unwrapped phase functions of H,(z) and H(z) are thus
related through

arg[H(e)] = arg[H,(e™)] + arg[A(e/)]
* H(z) has an excess phase lag with H,_(z)

» A causal stable transfer function with all zeros inside the unit
circle is called a minimum-phase transfer function

Original PowerPoint slides prepared by S. K. Mitra 7-30
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Minimum-Phase and Maximum-
Phase Transfer Functions

* A causal stable transfer function with all zeros outside the
unit circle is called a maximum-phase transfer function

A causal stable transfer function with zeros inside and

outside the unit circle is called a mixed-phase transfer
function

« Example — Consider the mixed-phase transfer function
200+03z704-27h
1-02z"1H1+0.5z7h
 We can rewrite H(z) as
H—| 20+ 0.32‘1‘ )1 — 0.42‘11 )}{ 04— z“l J
(1-02z"H1+0.5z7" [(1-04z

Minimum-phase function Allpass function 731
Original PowerPoint slides prepared by S. K. Mitra B
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 Itis impossible to design an IIR transfer function with an
exact linear-phase

 Itis always possible to design an FIR transfer function with
an exact linear-phase response

 We now develop the forms of the linear-phase FIR transfer
function H(z) with real impulse response h[n]
N
* Let H(z)= Thnz™

n=0
« If H(z) is to have a linear-phase, its frequency response must

be of the form
H(ew) = elcw*B)H(w)
where ¢ and B are constants, and H(w), called the amplitude

response (zero-phase response), is a real function of w
Original PowerPoint slides prepared by S. K. Mitra 7-32
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« For a real impulse response, the magnitude response
|H(e/*)| is an even function of w, i.e., |H(ew)| = |H(e7w)|

. Since |H(e™)| = |H(w)|, the amplitude response is then either
an even function or an odd function of w, i.e., H(-w) = +tH(w)

« The frequency response satisfies the relation
[H(e/)| = |H*(e7»)]
or, equivalently, the relation
al(cw+B) /:[(w) = @ /(-cw+B) [:I(—w)
- If H(w) is an even function, then the above relation leads to
e/'[3 = e‘./B
implying that either=0or =1
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« From H(ew) = elcw*B) H(w), we have H(w) = e cw*B) H(e/w)
« Substituting the value of  in the above we get
H(w) = te7/ew H(e/w) = +3°  h[n]e w(c+n
* Replacing w with in the previous equation we get
H(-w) = £, h[f]e/v(c+)
 Let/= N - n, we rewrite the above equation as
H(-w) = +>. A[N-n]e/w(c*N-n)
« As H(w) = H(-w) , we have h[n]ew(c+n = h[N-n]e/w(ctN-n)
 The above leads to the condition:
h[n]=h[N-n],0=n<N, wherec=-N/2
* Thus, the FIR filter with an even amplitude response will
orign VS A INgAL phase dfiit.has asymmetric impulse response-s4
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« If H(w) is an odd function of w, then from
ellowB) H(w) = e7(c-wB) H(-w)
we get P = —e7B as H(-w) = -H(w)
 The above is satisfied if 3 = /2 or § = —11/2
« Then H(ew) = elcw*B) H(w) reduces to H(e®) = jelow H(w)

* The last equation can be rewritten as
I-I(w) = —jeIew H(g/w) = —j > h[n]e~w(c*n)
« As H(-w) = -H(w), from the above we get
H(-w) = Z, hifjete*)
« Making a change of variable | = N — n we have
H(-w) = j %, A[N-n]e/(eN-n)
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« Equating the above with
H(w) = =j X, hllle7i(c*
we arrive at the condition for linear phase as
hln] = h[N — n], 0 = n < N, with ¢ = =N/2
* Therefore, an FIR filter with an odd amplitude response will

have linear-phase response if it has an antisymmetric
Impulse response

« Since the length of the impulse response can be either even
or odd, we can define four types of linear-phase FIR transfer
functions

* For an antisymmetric FIR filter of odd length, i.e., N even
h[N/2] =0

Original PowerPoint slides prepared by S. K. Mitra 7-36
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h[n] h[n]
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0 1 l:jﬁ l 0 l?,ilsﬁ
N Center of N Center of
symmetry symmertry
Type 3: N=28 Type 4: N=17
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Type 1. Symmetric Impulse Response with Odd Length
 In this case, the degree N is even (Assume N = 8)
* The transfer function H(z) is given by
H(z) = h[0] + h[1]z™" + h[2] z72 + h[3] z3 + h[4] z~* + h[5]z> +
h[6]z® + h[7]z"" + h[8]z™®
« Because of symmetry, we have h[0] = h[8], h[1] = h[7], h[2] =
h[6], and h[3] = h[5]
 Thus, we can write
H(z) = h[0](1+ z7°) + h[1](z" + ") + h[2)(z™ + Z°°) + h[3](z®
+ z7°)+ h[4] z™*

= Z4h{0)(z* + 2) + h[1)(2° + 29) + h2)(2 + 27?) +
hi3)(z + z')+ hi4]
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» The corresponding frequency response is then given by
H(e/w) = e74w {2h[0]cos(4w) + 2h[1]cos(3w) + 2h[2]cos(2w) +
2h[3]cos(w)+ h[4]}
* The quantity inside the braces is a real function of w, and

can assume positive or negative values in the range 0 < |w|
<TT
« The phase function here is given by
O(w)=-4w + f
where [3 is either O or 11, and hence it is a linear function of w
 The group delay is given by
T(®)=— diﬁ? =4

indicating a constant group delay of 4 samples
Original PowerPoint slides prepared by S. K. Mitra 7-39
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* In the general case for Type 1 FIR filters, the frequency
response is of the form

H(ejco) _ e—];?\-Tw..f""2ﬁ(0))
where the amplitude response H(w), also called the zero-
phase response, is of the form
H(®) —h[ ]+2 Z h[ﬂ n|cos(mn)
n=I

. Example—Consider
1, .-2,.3,_-4,._-5

Hy(z)= [+z +z “4+z "+z " +zZ +%z_6]

which is seen to be a slightly modified version of a length-7
moving-average FIR filter

 The above transfer function has a symmetric impulse

response and therefore a linear phase response
Original PowerPoint slides prepared by S. K. Mitra 7-40
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« The magnitude response of Hy(z):
l \\\ | | — modiﬁeld filter
0.8 \ — moving-average ||
\
$ 0 \\
Egh 0.4} t‘\
0.2 \ TN o |
% 02 0.4 0.6 03 1

W/
* Improved magnitude response obtained by changing the first
and the last impulse response coefficients of MA filter
* This filter can be expressed as a cascade of a 2-point MA
filter with a 6-point MA filter
Hy(z) —%(1+Z_1)-é(1+2_1 e T +Z_5)

* Thus, Hy(z) has a double zero at z= -1, i.e., (w =)
Original PowerPoint slides prepared by S. K. Mitra 7-41
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Type 2: Symmetric Impulse Response with Even Length
 In this case, the degree N is odd (Assume N =7)
* The transfer function H(z) is of the form
H(z) = h[0] + h[1]z' + ... + h[7]Z7
« Because of symmetry, we have h[0] = h[7], h[1] = h[6], h[2] =
h[5], and h[3] = h[4]
 Thus, we can write
H(z) = h[0](1+ z7) + h[1](z"" + Z°) + h[2)(z™* + z7°) + h[3](z®
+ 2‘4)
= 77 TI”{P[0)(2712 + Z7712) + h[1](Z52 + z75/2) + h[2](z312 + z732)
+ h[3](z'2 + z712)}
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» The corresponding frequency response is then given by
H(e/w) = e17w2 I2h[0]cos(7w/2) + 2h[1]cos(5w/2) +
2h[2]cos(3w/2) + 2h[3]cos(w/2)}
* The quantity inside the braces is a real function of w, and
can assume positive or negative values in the range 0 < |w|
<TT

« The phase function here is given by

O(w)=-7Tw/2 + 3
where [3 is either O or 11, and hence it is a linear function of w
The group delay is given by

() = %

indicating a constant group delay of 7/2 samples
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* The expression for the frequency response in the general
case for Type 2 FIR filters is of the form
H(e®)=e N2 H(w)
« where the amplitude response is given by

- (N+1)/2
Hw) =2 ¥ h[f\",;r l_ n]cos(m(n— %))
n=1
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Type 3: Antiymmetric Impulse Response with Odd Length
 In this case, the degree N is even (Assume N = 8)
* The transfer function H(z) is of the form
H(z) = h[0] + h[1]z' + ... + h[8]Z8
« Antisymmetric filter coefficients: h[0] = —h[8], h[1] = —h[7], h[2]
= —h[6], h[3] = - h[5], and h[4] =0
* Applying the symmetry condition we get
H(z) = z4h[0](z* - z7*) + h[1](z3 — z73) + h[2](z? — z7?) +
h[3])(z - z7)}
« The corresponding frequency response is given by
H(ew) = e#wei™2 [2h[0]sin(4w) + 2h[1]sin(3w) + 2h[2]sin(2w)
+ 2h[3]sin(w)}
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It also exhibits a linear phase response given by
O(w)=-4w +m/2+f3

where [3 is either O or 11

 The group delay here is
T(w) =4

iIndicating a constant group delay of 4 samples

* In the general case

H(e'®) = je N ?H(w)
where the amplitude response is of the form

~ N/2 i
H(w) =2 % h[5 —n]sin(wn)

n=l
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Type 4: Antiymmetric Impulse Response with Even Length
 In this case, the degree N is Odd (Assume N =7)
* The transfer function H(z) is of the form
H(z) = h[0] + h[1]z' + ... + h[7]Z7
« Antisymmetric filter coefficients: h[0] = —h[7], h[1] = —h[6], h[2]
= —h[5], and h[3] = — h[4]
* Applying the symmetry condition we get
H(Z) o Z—7/2{h[0](z7/2 —_ Z—7/2) + h[1](z5/2 —_ 2—5/2) + h[2](z3/2 —_
2—3/2) + h[3](21/2 — 2—1/2)}
« The corresponding frequency response is given by
H(ew) = e7w2gm2 [2h[0]sin(7w/2) + 2h[1]sin(5w/2) +
2h[2]sin(3w/2) + 2h[3]sin(w/2)}
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General Form of Frequency

Response

* In each of the four types of linear-phase FIR filters, the

frequency response is of the form
H(e/®)=e 7N 26/ [ ()

 The amplitude response H(m) for each of the four types of
linear-phase FIR filters can become negative over certain
frequency ranges, typically in the stopband

 The magnitude and phase responses of the linear-phase
FIR are given by

[H(e’)|= \H (@)
| _NoiB for H(w)=0
O(w) =+ )

—%+B—TE, for H(m)<0

 The group delay in each case is T(w) = N/2
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General Form of Frequency
Response

* Note that, even though the group delay is constant, since in
general |H(e/?)| is not a constant, the output waveform is not
a replica of the input waveform

* An FIR filter with a frequency response that is a real function
of w is often called a zero-phase filter

« Such a filter must have a noncausal impulse response
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Zero Locations of Linear-Phase FIR
Transfer Functions

« Consider first an FIR filter with a symmetric impulse
response: h[n] = h[N — n]
* |Its transfer functlon can be written as
H(z)= Zh Zh
n=0
« By making a change of varlable m = N — n, we can write

il —n Y —N+m -N S m
Y h[N-nlz "= > hlm]z =z = > hlm]:z
n=0 m=0 m=0

* But, v |
Z;w:oh[m]zm =H(z)
« Hence for an FIR filter with a symmetric impulse response of
length N+1 we have H(z) = zZVH(z™")

« Such kind of H(z) is called a mirror-image polynomial (MIP)
Original PowerPoint slides prepared by S. K. Mitra 7-50
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Zero Locations of Linear-Phase FIR
Transfer Functions

 Now consider an FIR filter with a antisymmetric impulse
response: h[n] = —h[N — n]
* |ts transfer functlon can be ertten as

H(z)= Zh :—Zh
n=0
By maklng a change of varlable m = N — n, we get
- Zh[N =— Zh[m 77Nt = Nz
m=0

* Hence, the transfer function H(z) of an FIR filter with an
antisymmetric impulse response satisfies the condition
H(z) = —zNH(z™")
» Areal-coefficient polynomial H(z) satisfying the above

condition is called an antimirror-image polynomial (AIP)
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Zero Locations of Linear-Phase FIR
Transfer Functions

« |t follows from the relation H(z) = tz”VNH(z ") thatif z=¢_is a
zero of H(z), sois z = 1/¢,

* Moreover, for an FIR filter with a real impulse response, the
zeros of H(z) occur in complex conjugate pairs
« Hence, a zero at z = ¢ is associated withazeroat z=¢_’

 Thus, a complex zero that is not on the unit circle is
associated with a set of 4 zeros given by

z=re?, z=(1/r)e%®
« A zero on the unit circle appear as a pair z = e, as its
reciprocal is also its complex conjugate

* Since a zero at z =t 1 is its own reciprocal, it can appear

only singly
Original PowerPoint slides prepared by S. K. Mitra 7-52
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Zero Locations of Linear-Phase FIR
Transfer Functions

 Now a Type 2 FIR filter satisfies
H(z) = zZNH(z™ ")
with degree N odd
* Hence, H(-1) = (-1)"N H(-1) = =H(=1) implying that H(-1) =
0,i.e., H(z) must have a zero at z = -1
 aType 3 or 4 FIR filter satisfies
H(z) = —zNH(z™")
« Thus, H(1) =-(1)"N H(1) = =H(1) implying that H(z) must
have a zero at z = 1
« On the other hand, only the Type 3 FIR filter is restricted to
have a zero at z = -1 since here the degree N is even and
hence, H(-1) = —=(-1)"N H(-1) = =H(-1)
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Zero Locations of Linear-Phase FIR
Transfer Functions

« Typical zero locations shown below

jlmz

Type 2

o
»\
L Rez

Type 1

Unit circle
. i Im
jims Type 3 ah Type 4
=] o
f \ ) \
1 1 -1 1
% (a]
o 1 1 o
Unit circle Unit circle
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Zero Locations of Linear-Phase FIR
Transfer Functions

Summary
1. Type 1 FIR filter: Either an even number or no zeros at z = 1
and z = -1

2. Type 2 FIR filter: Either an even number or no zeros at z =
1, and an odd number of zeros at z = -1

3. Type 3 FIR filter: An odd number of zerosat z=1and z =
—1

4. Type 4 FIR filter: An odd number of zeros at z= 1, and
either an even number or no zeros at z = -1
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Zero Locations of Linear-Phase FIR
Transfer Functions

 The presence of zeros at z = £1 leads to the following
limitations on the use of these linear-phase transfer
functions for designing frequency-selective filters

 AType 2 FIR filter cannot be used to design a highpass filter
since it always has a zero z = -1

 AType 3 FIR filter has zeros at both at both z=1 and z = -1,
and hence cannot be used to design either a lowpass or a
highpass or a bandstop filter

 AType 4 FIR filter is not appropriate to design lowpass and
bandstop filters due to the presence of a zero at z = 1

 Type 1 FIR filter has no such restrictions and can be used to

design almost any type of filters
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 The simplest lowpass FIR digital filter is the 2-point moving-

average filter given by | o
Ho(z)=4(1+27)=""

 The above transfer function has a zero at z= -1 and a pole
atz=0

* Note that here the pole vector has a unity magnitude for all
values of w

 On the other hand, as w increases from 0 to 1, the
magnitude of the zero vector decreases from a value of 2,
the diameter of the unit circle, to 0

« Hence, the magnitude response |H,(e/*)| is a monotonically
decreasing functionof w fromw =0tow =1

Original PowerPoint slides prepared by S. K. Mitra 7-o7
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and the minimum value is 0O at w =TT, I.€.,
Ho(€®)] =1, |Ho(em)] = 0

|Hy(e®)| = ew2 cos(w/2)

monotonically decreasing function of w

First-order FIR lowpass filter

[
.

_______________________________________________

=
oo

______________________________________________

2
o

'''''''''''''''''''''''''''''''''

2

Magnitude
=

———————————————————————————————————————————————

=
3

=
=

Original PowerPoint slides prepared by S. K. |
The McGraw-Hill companies

The maximum value of the magnitude function is 1 at w = 0,

The frequency response of the above filter is given by

The magnitude response |Hy(e/?)| = e7%2 cos(w/2) is a
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* The frequency w = w,_ at which
Hy(e™) =1 Ho(e"")
is of practical interest since here the gain G(w,) in dB is
givenby G(o.)= 2010%10‘]{(9‘]@0)
= 20log; H(e’") —20log;y~/2 =3 dB
since the dc gain G(0) = 20log,y|H,(e®)| =0
* Thus, the gain G(w) at w = w, is approximately 3 dB less
thanthe gainat w =0
* As aresult, w,is called the 3-dB cutoff frequency
+ To determine the value of w_we set |H (e’ )" =cos’ (o, /2)

which yields w, =1/ 2
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« The 3-dB cutoff frequency w_ can be considered as the

passband edge frequency

* As aresult, for the filter H,y(z) the passband width is
approximately 11/2, and the stopband is from /2 to 1

* Note: Hy(z) has a zero at z= -1 or w = 11, which is in the

stopband of the filter

« A cascade of 3 sections of the FIR filter Hy(z) = 2(1 + )

results in an nnproveu I()Wpdbb equeﬁcy

First-order FIR lowpass filter
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 The simplest highpass FIR filter is obtained from the
simplest lowpass FIR filter by replacing z with -z

For example: H,(z) = Y2(1 - z)
« Corresponding frequency response is given by
« H,(e®) =je w2 sin(w/2)

First-order FIR. highpass filter

s o
(=21 <]

=
e

Magnitude

=
[

0
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Highpass FIR Digital Filters
* The monotonically increasing behavior of the magnitude
function can again be demonstrated by examining the pole-

zero pattern of the transfer function H,(z)
For example: H,(z) = Y2(1 - z)

* The highpass transfer function H,(z) hasazeroatz=1 or w
= 0 which is in the stopband of the filter

* Improved highpass magnitude response can be obtained by
cascading several sections of the first-order highpass filter

« Alternately, a higher-order highpass filter of the form

Hy(n)=L3 0 -1)"z™"

IS obtained by replacing z with —z in the transfer function of a
moving average filter
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« An application of the FIR highpass filters is in moving-target-

indicator (MTI) radars

* In these radars, interfering signals, called clutters, are
generated from fixed objects in the path of the radar beam

* The clutter, generated mainly from ground echoes and
weather returns, has frequency components near zero
frequency (dc)

Ll L T N ~ ] e, d4k=

 The clutter can be removed Dy Tlllerlﬂg the radar return
signal through a two-pulse canceler, which is the first-order
FIR highpass filter H,(z) = Y2(1 - z)

« For a more effective removal it may be necessary to use a
three-pulse canceler obtained by cascading two two-pulse

cancelers
Original PowerPoint slides prepared by S. K. Mitra 7-63
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Simple IR Digital Filters
* We have shown earlier that the first-order causal IIR transfer
function H(z) = K L 0<a<l
l-az

has a lowpass magnitude response fora >0

 On the other hand, the];irst-order causal IR transfer function
H(z)=- —
|—oz
has a highpass magnitude response for a <0
« However, the modified transfer function obtained with the
addition of a factor (1 + z'7) to the numerator
K(+z7h

| -1
| —az
exhibits a lowpass magnitude response

—1l<a <0

H(z)= —l<a<0
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 The modified first-order lowpass transfer function for both
positive and negative values of a is then given by

-
Hyp()="2052 ) 0 cjof<

l—az

* As w increases from 0 to 11, the magnitude of the zero vector
decreases from a value of 2to 0

 The maximum values of the magnitude function is 2K/(1- a)

at w = 0 and the minimum valueisOatw =T, i.e.,
|H, ()] = 2KI(1- a), |H,p(eM)| =

« Therefore, |H, 5(e/?)| is a monotonically decreasing function
ofwfromw=0tow=Tr
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* For most applications, it is usual to have a dc gain of 0 dB,
that is to have |H, 5(e?)| = 1
« To this end, we choose K = (1- a)/2 resulting in the first-
order lIR lowpass transfer function
. T
h&p@)=l2a[l+2_J,O<cx<l

-z

« The above transfer function has a zero at i.e., at w = 1T which

_L---_--

IS in the sto PoOdlld
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« Afirst-order causal lowpass IIR digital filter has a transfer
function given b A
g y H, o) =] a[lJrz J

2 (1-az
where |a| < 1 for stability

« The above transfer function hasazeroatz=-1i.e., atw =
T which is in the stopband

* H,p(z) has areal pole at z=a

« As w increases from 0 to 1, the magnitude of the zero vector
decreases from a value of 2 to 0, whereas, for a positive
value of a, the magnitude of the pole vector increases from a
value of 1- a to 1+ a function is 1 at w = 0, and the minimum

 The maximum value of the magnitude function is 1 at w = 0,

OrlglnaIaPQv%rI;Qr?slrdre]s!rp]rlerpra]rléjdn‘}/ Svﬁllwlrea = O at W= 7-67
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Filters

» Thatis [H,5(e°)] = 1, |HLP(dTr)| =

« Therefore, |H, 5(e/?)| is a monotonically decreasing function
of w from w = 0 to w = 1 as indicated below

' | . : T R
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\ -,u I i _ = N [ AN R
| : : “ ’ 5 U R S JO :k}-:\-\- o e e d e ]
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B R B e A @ — =08 |1 o oroanion SN bn
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 The squared magnitude function is given by

H,p(e!®))* = (1-a)*(1+cosm)

: 2
2(1+ 0" —2acosm)
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« The derivative of |H, 5(e/*)|? with respect to w is given by

d Hyp(e!)* —(1-0)*(1+2a+a’)sino
do 2(1-2acosm+a’)?
d|H, s(e™)|? / dw < 0 in the range 0 < w < 17 verifying again
the monotonically decreasing behavior of the magnitude
function

* To determine the 3-dB cutoff frequency we set
|Hpp(e/®)> =~

 in the expression for the square magnitude function resulting
N (1- oc) (I+cosm,) :l

2(1+a’—2acosm,) 2

or (1- a)?(1+cosw,) = 1+a2-2a cosw, = cosw, = 2a/(1+a?)
Original PowerPoint slides prepared by S. K. Mitra 7-69

The McGraw-Hill Companies e McGraw-Hill Companies, Inc., 2007



MMIAITIM A

11
I_UVVIJCI.DD 11

D N1

R VIl

 The above quadratic equation can be solved for a yielding
two solutions

* The solution resulting in a stable transfer function H, 5(z) is
given by _l-sinwo,
~ COSO,

* |t follows from
(1- (x) (14 cosm)
2(1+0L —20.cosm)

that H, 5(z) is a BR function for |a| < 1

Hpp(e!)]’ =
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« Afirst-order causal highpass |IR digital filter has a transfer
function given by

l+af 1-271
HHP(Z): ;
2 [l—az_lJ

r\ AED) Wo' Al i l+Ave
RERS U al IHLTI O

where |a| < 1 for stability

« The above transfer function hasazeroatz=1i.e.,atw =0
which is in the stopband

 Its 3-dB cutoff frequency is given by
= (1- sinw, )/cosw,
which is the same as that of H, 5(2)
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* Magnitude and gain responses of H,x(z) are shown below
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* H,x(z)is a BR function for |a] < 1
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* Magnitude and gain responses of H,x(z) are shown below

- Example - Design a first-order highpass digital filter with a 3-
dB cutoff frequency of 0.8

* Now, sin(w,) = sin(0.81r) = 0.587785 and cos(0.81) =
—0.80902

* Therefore a = (1- sinw,)/cos w, = —0.5095245
* Therefore,

l+af 1-z7
HHP(_Z)Z .
2 [l—o:z_l]

—
— (0.245238 =z :
14+0.5095245 2~
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A 2nd-order bandpass digital transfer function is given by

- 12
HBP(Z)=1 O{ _ : - QJ

2 \1-B+a)z  +az
Its squared magnitude function is

Hyp (e

- (1—a)*(1-cos2m)
21+ B> (1+ ) + o = 2B(1 + o) cos ® + 20. cos 2]

|Hgp(e/?)|? goes to zeroat w =0 and w =11
It assumes a maximum value of 1 at w = w, called the
center frequency of the bandpass filter, where

w, = cos™'(B)
The frequencies w_, and w_, where |Hgo(€e/)|> becomes 1/2
origniE-Faladthe.3rg B Gutoff frequencies 7-74
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« The difference between the two cutoff frequencies, assuming
W, > W, is called the 3-dB bandwidth and is given by
B,=0, -0, = Cosl[ 2o )

1+ o’
» The transfer function Hgp(z) is a BR function if |a] < 1 and

Bl <1

B =034 a=06
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IARR — =05 — B=05
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0.8 A N . 1 ja\ SN — - p=02
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« Example - Design a 2nd order bandpass digital filter with
central frequency at 0.4t and a 3-dB bandwidth of 0.11r

* Here 3 = cos(w,) = cos(0.41r) = 0.309017 and
2a/(1+a)? = cos(B,,) = cos(0.111) = 0.9510565

« The solution of the above equation yields: a = 1.376382 and
a=0.72654253
* The corresponding transfer functions are
|—z72
1-0.7343424z7" +1.376382 >
and . 1— 772
Hpp(z)=0.13673 1 5
1-0.533531z7" +0.72654253z"

« The poles of Hpp(z) are atz=0.3671712 + j1.11425636

and have a magnitude > 1
Original PowerPoint slides prepared by S. K. Mitra 7-76

The McGraw-Hill Companies e McGraw-Hill Companies, Inc., 2007

Hpp(z)=—0.18819




Hpp(2) |

Bandpass |IR Di —;l

napa anr\ug tal il
Thus, the poles of Hpp(z) are outside the unit circle making
the transfer function unstable

On the other hand, the poles of Hzp(z) are at z = 0.2667655
* J0.8095546 and have a

The solution of the above equation yields: a = 1.376382 and
a =0.72654253 and have a magnitude of 0.8523746
Hence Hpgp(z) is BIBO stable

0.8

=
=

Magnitude
=
=

Group delay, samples

=
[

0 -' ! ! ! I ‘----""'-. -1 1 1 1 1
0 0.2 04 0.6 0.8 | 0 0.2 0.4 0.6 0.8 1

o /T 7-77
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* A 2nd-order bandstop digital filter has a transfer function
given by L
1+ 1-2Bz "+ z~
Hpo(z)= _
53 (2) 2 [l —Bl+a)z +az”

« The transfer function Hgg(z) is a BR function if |a| < 1 and

Bl <1

o8l N\ /. 0.8
2 aya =
2 06} A £ 06
£ . i)
- AV - 0.4
< Ll ;
- I\ |, — a=038 '
Al — a=035
ﬂ.?. r 'KI'IIJ'I. / —- g= 0-2 0.2
ﬂ 1 I$! 1 1 1 D !‘ Iil [ 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
/T /T
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* Here, the magnitude function takes the maximum value of 1
atw=0andw=rTr

* Itgoesto 0 atw = w,, where w,, called the notch frequency,
IS given by

w, = cos—1(B)

» The digital transfer function Hgg(z) is more commonly called
a notch filter

» The frequencies w,, and w,, where |Hgg(e®
are called the 3-dB cutoff frequencies

« The difference between the two cutoff frequencies, assuming
W, > W, is called the 3-dB notch bandwidth and is given by

-1 20
B, =m., —®. =C0s ( 5 )

[+a”
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« By cascading the simple digital filters discussed so far, we
can implement digital filters with sharper magnitude
responses

« Consider a cascade of K first-order lowpass sections
characterized by the transfer function

e correspon i'rg sq'uarec "lag‘l fu'ﬁC ion Is g Iven D'y'
K
(1- OL) (1+cosm)
2(1-|—OL —20.COSM)

G p (e’ {
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 To determine the relation between its 3-dB cuto
w, and the parameter a, we set

{ (1- o) (1+cos®,) T 1

2(1+02 —2acosm,) | 2

frequency

2
which when solved for q, yields for a stable G, 5(z)

1+(1-C)cosm, —sinw,\2C - C?
1-C+cosm,

oL =

where C = 2K=1)/K

It should be noted that the expression for a given earlier
reduces to

1 —sin o,
COS .
for K=1
Original PowerPoint slides prepared by S. K. Mitra 7-81
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« Example - Design a lowpass filter with a 3- dB cutoff
frequency at w, = 0.41 using a single first-order section and
a cascade of 4 first-order sections, and compare their gain
responses

* For the single first-order lowpass filter we have

o 1+smno, _ 1+sin(0.4m) —0.1584
COS®M, c0s(0.4m)

* For the cascade of 4 first-order sections, we substitute K =4
and get

C = 2K-1K = 2(4-1)4 =1,6818
 Next we compute

1+(1-C)coso, —sinw.\2C —C?

o= —
1-C+coso,
_1+(1-1.6818)cos(0.4m) - Sin(0.4?'t)--\.\v,r"|2(1 6818)—(1.681 8)2
Original PowerPoint slides prepared by S. B 1-1.6818+ cos(0.4m)
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« The gain responses of the two filters are shown below

« As can be seen, cascading has resulted in a sharper roll-off
In the gain response

ﬂ I
Passband details
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« The simple filters discussed so far are characterized either by
a single passband and/or a single stopband

« There are applications where filters with multiple passbands
and stopbands are required

« The comb filter is an example of such filters

* |In its most general form, a comb filter has a frequency
response that is a periodic function of w with a period 211/L,
where L is a positive integer

« |f H(z) is a filter with a single passband and/or a single
stopband, a comb filter can be easily generated from it by
replacing each delay in its realization with L delays resulting
in a structure with a transfer function given by G(z) = H(z})

Original PowerPoint slides prepared by S. K. Mitra 7-84
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- If [H(e)| exhibits a peak at w,, then |G(e/)| will exhibit L
peaks at wk/L, 0 = k<L - 1inthe frequency range 0 < w <
21T

 Likewise, if |H(e/*)| has a notch at w,, then then |G(e/?)| have
L notches at w k/L, 0 < k<L -1 in the frequency range 0 £ w
<21

« A comb filter can be generated from either an FIR or an [IR
prototype filter

* For example, the comb filter generated from the prototype
lowpass FIR filter Hy(z) = 1/2 (1 + z7') has a transfer function

Go(z) = Hy(zH) =172 (1 + z71)
« |Gy(e¥)| has L notches at w = (2k+1)1/L and L peaks at w =

2Tk/IL, 0 < k < L-1, in the frequency range 0 < w < 21
Original PowerPoint slides prepared by S. K. Mitra 7-85
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* On the other hand, the comb filter generated from the
prototype lowpass FIR filter H,(z) = 1/2 (1 -z ') has a
transfer function
G(z)=H,(zH)=12(1-z1)
« |G,(e¥)| has L notches at w = (2k+1)1/L and L peaks at w =
2Tk/IL, 0 < k < L-1, in the frequency range 0 < w < 21

fw Comb filter from lowpass prototype ; Comb filter from highpass prototype
|Go(g )l ] F W, I F T 7 7 |G (gw)l 1 T I K T a1 I,
‘l'| 'f 1 lrr ! 1 3 v / 1 ! \H 1 Hf b IIIyl 4 Yo \H
\ Y [ f'J \ i \. A 1. [ \ )
| | L | ' \ 1 \ | | \ 1| . I'. | I Il' |
0.8F-F----7---%---— | '----‘.--+--IL---' ----- 'rlr'---%-----l-'-— " 08— J.‘ AF---F -tl 1-f----4---4----f---}
\ |II l: 'I | : { I' § i J |I II ]. \ | | |I Ii |I Il
o L ] S R R
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* Depending on applications, comb filters with other types of
periodic magnitude responses can be easily generated by
appropriately choosing the prototype filter

* For example, the M-point moving average filter

_ 1z
H(z)= M-z

has been used as a prototype

« This filter has a peak magnitude at w = 0, and M - 1 notches
at w=21lIM, 1s < M -1

* The corresponding comb filter has a transfer function

: LM
- e
whose magnitude has L peaks at 2mk/L, 1< k< L -1 and

L(M -1) notches at 2Tk/LM, 1< k< L(M -1)
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Delay Complementary Transfer

Functions

» Aset of L transfer functions, {H(z)}, 0 =/< L -1, is defined to
be delay-complementary of each other if the sum of their
transfer functions is equal to some integer multiple of unit

delays, i.e., L-1
> Hi(z)=pz"", B#0
i=0
where n, is a nonnegative integer
* A delay-complementary pair {H,(z), H,(z)} can be readily
designed if one of the pairs is a known Type 1 FIR transfer
function of odd length

* Let Hy(z) be a Type 1 FIR transfer function of length M =
2K+1, its delay-complementary transfer function is given by
H,(z) = K = Hy(2)
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Delay Complementary Transfer
Functions

* Let the magnitude response of Hy(z) be equal to 1 o, in the
passband and less than or equal to 0. in the stopband where
0,and o are very small numbers

* Now the frequency response of Hy(z) can be expressed as
Hy(e!®)=e5°Hy(w)
where H,(w)is the amplitude response

* Its delay-complementary transfer function H,(z) has a
frequency response given by

H,(e’®)= e X°H (0) = ¢ K1 - Ay (o))
» Now, in the passband, 1- 3, < Hy(») <1+, and in the
stopband, -6, Hy(w) < 9

Original PowerPoint slides prepared by S. K. Mitra 7-89
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Delay Complementary Transfer

Functions

- It follows from the above equation that -5, < H,(») <d,, and
in the stopband, 1- 5. < Hi(®) <1+,

* As aresult, H,(z) has a complementary magnitude response
characteristic to that of Hy(z) with a stopband exactly
identical to the passband of H,(z), and a passband that is
exactly identical to the stopband of Hy(z)

« Thus, if Hy(z) is a lowpass filter, H,(z) will be a highpass filter,
dlld VICE Velod

« The frequency w, at which Hy(®,)=H,(®,)=0.5
the gain responses of both filters are 6 dB below their
maximum values

« The frequency is thus called the 6-dB crossover frequency
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Delay Complementary Transfer

Functions

« Example - Consider the Type 1 bandstop transfer function
Hpg(2) =é(1 +272) (1 -4z2+5z27% 4528 —4z710 4 212y

 Its delay-complementary Type 1 bandpass transfer function
IS gIVeN by 7,2y =210~ (2)

=L (-2 144272 45270 45278 442710 4 712

1" s — TN P
HBS[I] \ / HBP(E} \ ;‘j
0.8F I"|.I / l'\ lr'll
_t]'; -.III Ir'l .\Il .."
= 0.6 Y (
= 'll.lJ \.l'
Ey f\ M
2 04f /\
| I| |"
/ ) .|" III\
0.2 [\ [
/ '|__ I '
0b—= \\f—hﬁ /r—\/ .\w —
0 0.2 0.4 0.6 0.8 1
- . . /T 7-91
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Allpass Complementary Filters

A set of M transfer functions, {H(z)}, 0 <i< M - 1, is defined
to be allpass-complementary of each other, if the sum of
their transfer functions is equal to an allpass function, i.e.,

M -1

3 Hi(2) = A(2)
=0
Example - Consider the two transfer functions Hy(z) and H,(z)
given by
Hy(z) = 72 [Ao(2) + A4(2)]
H1(z) = 72 [Ay(2) — A4(2)]
where A,(z) and A,(z) are stable allpass transfer functions
Note that Hy(z) + H,(z) = Ay(2)
Hence, H,(z) and H,(z) are allpass complementary
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* A set of M transfer functions, {H,(z)}, 0 <i< M -1, is defined
to be power-complementary of each other, if the sum of

their square-magnitude responses is equal to a constant K
for all values of w, i.e., M-l

o
1o

Z ‘H (e"’)) for all ®
« By analytic continuation, the above property is equal to
M -1
SH(2)H.(z7) =K, for all ®
i=0

for real coefficient H,(z)

« Usually, by scaling the transfer functions, the power-
complementary property is defined for K = 1
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» For a pair of power-complementary transfer functions, H,(z)
and H,(z) , the frequency w, where |Hy(e/“°)|? = |[H,(e/*“°)|* =
0.5, is called the cross-over frequency

» At this frequency the gain responses of both filters are 3-dB

below their maximum values
* As aresult, is called the 3-dB cross-over frequency

- Example - Consider the two transfer functions H,(z) and H,(z)
given by

o
1o

Hy(2) = 72 [Ag(2) + A4(2)]
H1(z) = 72 [Ao(2) — A4(2)]
where A,(z) and A,(z) are stable allpass transfer functions

* Hy(z) and H,(z) are allpass and power complementary
Original PowerPoint slides prepared by S. K. Mitra 7-94
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« A set of M transfer functions satisfying both the allpass

complementary and the power complementary properties is
known as a doubly-complementary set

* A pair of doubly-complementary |IR transfer functions, H,(z)
and H,(z) , with a sum of allpass decomposition can be
simply realized as indicated below

3 " Ao(2) B— ¥(2)
X(2) —D—-
| Ay(2) >D— %(2)
Yo(z) Y )
Hy(2) = %5 H,(2) =
Original PowerPoint slides prepared by S. K. Mitra 7-95
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« Example - The first-order lowpass transfer function

. . ~1
HLP(Z) — 120{[ 1+z 1)

l-az

can be expressed as

Hyp(2) =119 LA+ 4G

l-az

where |

A(2)=1, A(z)="2TZ

l-oaz
 Its power-complementary highpass transfer function is thus

given by HHP(Z)_é[AO(Z)_Al(Z)]—é[l0t+z )

l-az
_ l+a 'l—z_1
2 'l—a.z_l
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 The above expression is precisely the firstorder highpass
transfer function described earlier

* Figure below demonstrates the allpass complementary
property and the power complementary property of

can be expressed as H,5(z) and H,(2)
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« Areal-coefficient causal digital filter with a transfer function
H(z) is said to be a power-symmetric filter if it satisfies the
condition

H(z)H(z") + H-2)H(-z7") = K

where K> 0 is a constant

It can be shown that the gain function G(w) of a power-

symmetric transfer function at w = 11 is given by
» |f we define G(z) = H(-z), then it follows from the definition of

the power-symmetric filter that H(z) and G(z) are power-
complementary as

H(z)H(z™") + G(z)G(z™") = a constant
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 [|f a power-symmetric filter has an FIR transfer function H(z)
of order N, then the FIR digital filter with a transfer function
G(z) = zNH(-z")
Is called a conjugate quadratic filter of H(z) and vice-versa

|t follows from the definition that G(z) is also a power-
symmetric causal filter quadratic filters

|t also can be seen that a pair of conjugate quadratic filters
H(z) and G(z) are also power-complementary
« Example -LetH(z) =1-2z"17+ 6272+ 3z
H(z)H(z™") + H(-z)H(-z"") = 100
* H(z) is a power-symmetric transfer function
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