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Types of Transfer FunctionsTypes of Transfer Functions
• The time-domain classification of an LTI digital transfer 

function sequence is based on the length of its impulse 
response:
– Finite impulse response (FIR) transfer function
– Infinite impulse response (IIR) transfer function

• In the case of digital transfer functions with frequency-
selective frequency responses, there are two types of 
classificationsclassifications
– Classification based on the shape of the magnitude 

function |H(ejω)|function |H(ej )|
– Classification based on the form of the phase function 
θ(ω)
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Classification Based on Magnitude 
Characteristics

• One common classification is based on ideal magnitude 
response 

• A digital filter designed to pass signal components of 
certain frequencies without distortion should have a 
magnitude response equal to one at these frequencies, 
and zero at all other frequenciesand zero at all other frequencies

• The range of frequencies where the frequency response 
takes the value of one is called the passbandtakes the value of one is called the passband

• The range of frequencies where the frequency response 
takes the value of zero is called the stopbandtakes the value of zero is called the stopband
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Ideal FiltersIdeal Filters
• Frequency responses of the four popular types of ideal 

di it l filt ith l ffi i t h b ldigital filters with real coefficients are shown below: 

• The freq. ωc, ωc1,and ωc2 are called the cutoff frequenciesThe freq. ωc, ωc1,and ωc2 are called the cutoff frequencies
• An ideal filter has a magnitude response equal to one in the 

passband and zero in the stopband, and has a zero phase 
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Ideal FiltersIdeal Filters
• The impulse response of the ideal lowpass filter:

• The above impulse response is not absolutely summable, p p y
and hence, the corresponding transfer function is not BIBO 
stable

• Also, hLP[n] is not causal and is of doubly infinite length
• The remaining three ideal filters are also characterized by 

d bl i fi it l i l d tdoubly infinite, noncausal impulse responses and are not 
absolutely summable
Thus the ideal filters with the ideal “brick wall” frequency• Thus, the ideal filters with the ideal “brick wall” frequency 
responses cannot be realized with finite dimensional LTI 
filter
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Ideal FiltersIdeal Filters
• To develop stable and realizable transfer functions, the ideal 

f l d b i l di t itifreq. response specs. are relaxed by including a transition 
band between the passband and the stopband
This allo s the magnit de response to deca slo l from its• This allows the magnitude response to decay slowly from its 
max. value in the passband to the zero value in the stopband 

• Moreover the magnitude response is allowed to vary by a• Moreover, the magnitude response is allowed to vary by a 
small amount both in the passband and the stopband 

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-6



Bounded Real Transfer FunctionsBounded Real Transfer Functions
• A causal stable real-coefficient transfer function H(z) is 

d fi d b d d l (BR) t f f ti ifdefined as a bounded real (BR) transfer function if
|H(ejω)| ≤ 1 for all values of ω

• Let x[n] and y[n] denote, respectively, the input and output 
of a digital filter characterized by a BR transfer function H(z) 
with X(ejω) and Y(ejω) denoting their DTFTswith X(ejω) and Y(ejω) denoting their DTFTs

• Then the condition |H(ejω)| ≤ 1 implies that
|Y(ejω)|2 ≤ |X(ejω)|2|Y(ejω)|2 ≤ |X(ejω)|2

• Integrating the above from − π to π, and applying Parseval’s 
relation we getrelation we get
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Bounded Real Transfer FunctionsBounded Real Transfer Functions
• Thus, for all finite-energy inputs, the output energy is less 

th l t th i t i l i th t di it l filtthan or equal to the input energy implying that a digital filter 
characterized by a BR transfer function can be viewed as a 
passive structurepassive structure

• If |H(ejω)| = 1 , then the output energy is equal to the input 
energy and such a digital filter is therefore a losslessenergy, and such a digital filter is therefore a lossless 
system

• A causal stable real-coefficient transfer function H(z) with ( )
|H(ejω)| = 1 is thus called a lossless bounded real (LBR) 
transfer function

• The BR and LBR transfer functions are the keys to the 
realization of digital filters with low coefficient sensitivity (see 
S 12 9)
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Bounded Real Transfer FunctionsBounded Real Transfer Functions
• Example – Consider the causal stable IIR transfer function

here K is a real constantwhere K is a real constant
• Its square-magnitude function is given by 

• The maximum value of |H(ejω)|2 is obtained when 2α cosω e a u a ue o | (e )| s ob a ed e α cosω
in the denominator is a maximum and the minimum value is 
obtained when 2α cosω is a minimum

• For α > 0, maximum value of 2α cosω is equal to 2α at ω = 
0, and minimum value is −2α at ω = π
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Bounded Real Transfer FunctionsBounded Real Transfer Functions
• Thus, for α > 0, the maximum value of |H(ejω)|2 is equal to  

K2 /(1 )2 t 0 d th i i l i l tK2 /(1 − α)2 at ω = 0 and the minimum value is equal to       
K2 /(1 + α)2 at ω = π
On the other hand for α < 0 the ma im m al e of 2α cos• On the other hand, for α < 0, the maximum value of 2α cosω 
is equal to −2α at ω = π, and the minimum value is equal to 
2α at ω = 02α at ω  0

• Here, the maximum value of |H(ejω)|2 is equal to K2 /(1 + α)2

at ω = π and the minimum value is equal to K2 /(1 − α)2 at ω q ( )
= 0 

• Hence, the maximum value can be made equal to 1 by 
choosing K = ±(1 − α), in which case the minimum value 
becomes (1 − α)2/(1 + α)2
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Bounded Real Transfer FunctionsBounded Real Transfer Functions
• Hence, 

is a BR function for K = ±(1 − α)
• Plots of the magnitude function for with values of K chosen 

to make H(z) a BR function are shown below
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All Pass Transfer FunctionsAll-Pass Transfer Functions
• An IIR transfer function A(z) with unity magnitude response 

f ll f i ifor all frequencies, i.e., 
|H(ejω)|2 = 1, for all ω

is called an allpass transfer function
• An M-th order causal real-coefficient allpass transfer 

f ti i f th ffunction is of the form

• Denote the denominator polynomials of AM(z) as DM(z) :
( ) 1 M 1 MDM(z) = 1 + d1 z−1 + ... + dM−1 z −M+1 + dM z −M

then it follows that AM(z) can be written as
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All Pass Transfer FunctionsAll-Pass Transfer Functions
• Note from the above that if z = rejϕ is a pole of a real 

ffi i t ll t f f ti th it h tcoefficient allpass transfer function, then it has a zero at      
z = (1/r)ejϕ

The n merator of a real coefficient allpass transfer f nction• The numerator of a real-coefficient allpass transfer function 
is said to be the mirror image polynomial of the 
denominator and vice versadenominator, and vice versa

• We shall use the notation   to denote the mirror-image 
polynomial of a degree-M polynomial DM(z), i.e., p y g p y M( ), ,

• The expressionThe expression

implies that the poles and zeros of a real-coefficient allpass
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All Pass Transfer FunctionsAll-Pass Transfer Functions

• To show that |AM(ejω)| = 1 we observe that 
Real part

• Therefore

• Hence
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All Pass Transfer FunctionsAll-Pass Transfer Functions
• Now, the poles of a causal stable transfer function must lie 

i id th it i l i th linside the unit circle in the z-plane
• Hence, all zeros of a causal stable allpass transfer function 

m st lie o tside the nit circle in a mirror image s mmetrmust lie outside the unit circle in a mirror-image symmetry 
with its poles situated inside the unit circle

• Figure below shows the principal value of the phase of the• Figure below shows the principal value of the phase of the 
3rd-order allpass function
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All Pass Transfer FunctionsAll-Pass Transfer Functions
• If we unwrap the phase by removing the discontinuity, we 

i t th d h f ti θ ( ) f llarrive at the unwrapped phase function θc(ω) as follows

/

• The unwrapped phase function of any arbitrary causal 
stable allpass function is a continuous function of ω

ω/π

stable allpass function is a continuous function of ω
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All Pass Transfer FunctionsAll-Pass Transfer Functions
Properties:
1. A causal stable real-coefficient allpass transfer function is a 

lossless bounded real (LBR) function or, equivalently, a 
ca sal stable allpass filter is a lossless str ct recausal stable allpass filter is a lossless structure

2. The magnitude function of a stable allpass function A(z) 
satisfies:satisfies:

3. Let τ(ω) denote the group delay function of an allpass filter 
A(z) i eA(z), i.e.,
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All Pass Transfer FunctionsAll-Pass Transfer Functions
• The unwrapped phase function θc(ω) of a stable allpass 

f ti i t i ll d i f ti f th tfunction is a monotonically decreasing function of ω so that 
τ(ω) is everywhere positive in the range 0 < ω < π
The gro p dela of an M th order stable real coefficient• The group delay of an M-th order stable real-coefficient 
allpass transfer function satisfies

A Simple Application:A Simple Application:
• A simple but often used application of an allpass filter is as a 

delay equalizerdelay equalizer
• Let G(z) be the transfer function of a digital filter designed to 

meet a prescribed magnitude responsemeet a prescribed magnitude response
• The nonlinear phase response of G(z) can be corrected by 

cascading it with an allpass filter A(z) so that the overall 
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All Pass Transfer FunctionsAll-Pass Transfer Functions

• Since |A(ejω)| = 1 , we have 
|A(ejω) G(ejω)| = |G(ejω)|

• Overall group delay is the given by the sum of the group 
delays of G(z) and A(z) 

• Example – Figure below shows the group delay of a 4th 
d lli ti filt ith th f ll i ifi tiorder elliptic filter with the following specifications: ωp = 

0.3π, δp = 1 dB, δs = 35 dB 
• The group delay of the• The group delay of the 

original filter cascaded 
with an 8th order allpass 
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Classification Based on Phase 
Characteristics

• A second classification of a transfer function is with respect seco d c ass cat o o a t a s e u ct o s t espect
to its phase characteristics

• In many applications, it is necessary that the digital filter y pp y g
designed does not distort the phase of the input signal 
components with frequencies in the passband

• One way to avoid any phase distortion is to make the 
frequency response of the filter real and nonnegative, i.e., to 
design the filter with a zero phase characteristicdesign the filter with a zero phase characteristic

• However, it is not possible to design a causal digital filter 
with a zero phasewith a zero phase

• For non-real-time processing of real-valued input signals of 
finite length, zero-phase filtering can be very simply
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Zero Phase Transfer FunctionsZero-Phase Transfer Functions
• One zero-phase filtering scheme is sketched below 

• Let X(ejω), V(ejω), U(ejω), W(ejω), and Y(ejω)denote the 
DTFTs of x[n], v[n], u[n], w[n], and y[n], respectively 

• Making use of the symmetry relations we arrive at the 
relations between various DTFTs as follows:

V(ejω) = H(ejω) X(ejω), W(ejω) = H(ejω) U(ejω)
U(ejω) = V*(ejω), Y(ejω) = W*(ejω)

• Combining the above equations we get
Y(ejω) = W*(ejω) = H*(ejω) U*(ejω) = H*(ejω) V(ejω)
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Linear Phase Transfer FunctionsLinear-Phase Transfer Functions
• The output y[n] of a linear-phase filter to an input x[n] = Aejωn

i th i bis then given by
y[n] = Ae−jωD ejωn = Aejω(n−D)

• If xa(t) and ya(t) represent the continuous-time signals whose 
sampled versions, sampled at t = nT, are x[n] and y[n] given 
above then the delay between x (t) and y (t) is precisely theabove, then the delay between xa(t) and ya(t) is precisely the 
group delay of amount D 

• If D is an integer then y[n] is identical to x[n] but delayed byIf D is an integer, then y[n] is identical to x[n], but delayed by 
D samples 

• If D is not an integer, y[n], being delayed by a fractional part,If D is not an integer, y[n], being delayed by a fractional part, 
is not identical to x[n]
– The waveform of the underlying continuous-time output is identical to 
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Linear Phase Transfer FunctionsLinear-Phase Transfer Functions
• If it is desired to pass input signal components in a certain 

f di t t d i b th it d d hfrequency range undistorted in both magnitude and phase, 
then the transfer function should exhibit a unity magnitude 
response and a linear-phase response in the band of interestresponse and a linear-phase response in the band of interest

• Figure below shows the frequency response if a lowpass 
filter with a linear-phase characteristic in the passbandfilter with a linear phase characteristic in the passband

• Since the signal components in 
the stopban are blocked, thethe stopban are blocked, the 
phase response in the stopband 
can be of any shape
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Linear Phase Transfer FunctionsLinear-Phase Transfer Functions
• Example – Determine the impulse response of an ideal 

l filt ith li hlowpass filter with a linear phase response

• Applying the frequency-shifting property of the DTFT to the 
impulse response of an ideal zero-phase lowpass filter we 
arrive at

• As before, the above filter is noncausal and of doubly infinite 
length, and hence, unrealizable

• By truncating the impulse response to a finite number of 
terms, a realizable FIR approximation to the ideal lowpass 
filter can be developed
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Linear Phase Transfer FunctionsLinear-Phase Transfer Functions
• The truncated approximation may or may not exhibit linear 

phase, depending on the value of no chosen
• If we choose no = N/2 with N a positive integer, the truncated 

and shifted approximation

will be a length N+1 causal linear-phase FIR filter
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Zero Phase Transfer FunctionsZero-Phase Transfer Functions
• Because of the symmetry of the impulse response 

coefficients as indicated in the two figures, the frequency 
response of the truncated approximation can be expressed 
as:

Wh ll d th h• Where            , called the zero-phase response or 
amplitude response, is a real function of ω will be a length 
N+1 causal linear-phase FIR filterN+1 causal linear phase FIR filter
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Minimum-Phase and Maximum-
Phase Transfer Functions

• Consider the two 1st-order transfer functions:Co s de t e t o st o de t a s e u ct o s

• Both transfer functions have a pole inside the unit circle atBoth transfer functions have a pole inside the unit circle at 
the same location and are stable

• But the zero of H1(z) is inside the unit circle at z = −b, 1( ) ,
whereas, the zero of H2(z) is at z = −1/b situated in a mirror-
image symmetry H1(z) H2(z)
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Minimum-Phase and Maximum-
Phase Transfer Functions

• However, both transfer functions have an identical o e e , bot t a s e u ct o s a e a de t ca
magnitude function as

H1(z)H1(z−1) = H2(z)H2(z−1)1( ) 1( ) 2( ) 2( )
• The corresponding phase functions are

• Figure below shows the unwrapped phase responses of theFigure below shows the unwrapped phase responses of the 
two transfer functions for a = 0.8 and b = − 0.5

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-28



Minimum-Phase and Maximum-
Phase Transfer Functions

• As shown in the figure, H2(z) has an excess phase lag with s s o t e gu e, 2( ) as a e cess p ase ag t
respect to H1(z)

• The excess phase lag property of H2(z) with respect to H1(z) p g p p y 2( ) p 1( )
can also be explained by observing that we can write

where A(z) = (bz +1) /(z + b) is a stable allpass functionwhere A(z)  (bz +1) /(z + b) is a stable allpass function
• The phase functions of H1(z) and H2(z) are related through

arg[H2(ejω)] = arg[H1(ejω)] + arg[A(ejω)]arg[H2(ej )] = arg[H1(ej )] + arg[A(ej )]
• As the unwrapped phase function of a stable first-order 

allpass function is a negative function of ω, it follows from
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Minimum-Phase and Maximum-
Phase Transfer Functions

• Generalizing the above result, let Hm(z) be a causal stable Ge e a g t e abo e esu t, et m( ) be a causa stab e
transfer function with all zeros inside the unit circle and let 
H(z) be another causal stable transfer function satisfying 
|H(ejω)| = |Hm(ejω)|

• These two transfer functions are then related through H(z) = 
H ( ) A( ) h A( ) i l t bl ll f tiHm(z) A(z) where A(z) is a causal stable allpass  function

• The unwrapped phase functions of Hm(z) and H(z) are thus 
related throughrelated through 

arg[H(ejω)] = arg[Hm(ejω)] + arg[A(ejω)]
H(z) has an excess phase lag with H (z)• H(z) has an excess phase lag with Hm(z)

• A causal stable transfer function with all zeros inside the unit 
circle is called a minimum phase transfer function
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Minimum-Phase and Maximum-
Phase Transfer Functions

• A causal stable transfer function with all zeros outside the causa stab e t a s e u ct o t a e os outs de t e
unit circle is called a maximum-phase transfer function

• A causal stable transfer function with zeros inside and 
outside the unit circle is called a mixed-phase transfer 
function

• Example – Consider the mixed-phase transfer function 

• We can rewrite H(z) as
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Linear Phase FIR Transfer FunctionsLinear-Phase FIR Transfer Functions
• It is impossible to design an IIR transfer function with an t s poss b e to des g a t a s e u ct o t a

exact linear-phase
• It is always possible to design an FIR transfer function with y p g

an exact linear-phase response
• We now develop the forms of the linear-phase FIR transfer 

function H(z) with real impulse response h[n]
• Let

• If H(z) is to have a linear-phase, its frequency response must 
be of the form

H(ejω) = ej(cω+β)Ȟ(ω)
where c and β are constants, and Ȟ(ω), called the amplitude 
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Linear Phase FIR Transfer FunctionsLinear-Phase FIR Transfer Functions
• For a real impulse response, the magnitude response o a ea pu se espo se, t e ag tude espo se

|H(ejω)| is an even function of ω, i.e., |H(ejω)| = |H(e−jω)|
• Since |H(ejω)| = |Ȟ(ω)|, the amplitude response is then either | ( )| | ( )| p p

an even function or an odd function of ω, i.e., Ȟ(−ω) = ±Ȟ(ω)
• The frequency response satisfies the relation

|H(ejω)| = |H*(e−jω)|
or, equivalently, the relation 

ej(cω+β) Ȟ(ω) = e−j(−cω+β) Ȟ(−ω)
• If Ȟ(ω) is an even function, then the above relation leads to 

ejβ = e−jβ

implying that either β = 0 or β = π
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Linear Phase FIR Transfer FunctionsLinear-Phase FIR Transfer Functions
• From H(ejω) = ej(cω+β) Ȟ(ω), we have Ȟ(ω) = e−j(cω+β) H(ejω)o (e ) e (ω), e a e (ω) e (e )
• Substituting the value of β in the above we get

Ȟ(ω) = ±e−jcω H(ejω) = ±∑n h[n]e−jω(c+n) Ȟ(ω)  ±e H(e )  ±∑n h[n]e
• Replacing ω with in the previous equation we get

Ȟ(−ω) = ±∑l h[l]ejω(c+l) Ȟ( ω)  ±∑l h[l]e
• Let l = N − n, we rewrite the above equation as

Ȟ(−ω) = ±∑ h[N−n]ejω(c+N−n) Ȟ( ω)  ±∑n h[N n]ej ( )

• As Ȟ(ω) = Ȟ(−ω) , we have h[n]e−jω(c+n) = h[N−n]ejω(c+N−n) 

• The above leads to the condition:• The above leads to the condition: 
h[n] = h[N − n], 0 ≤ n ≤ N, where c = −N / 2

• Thus the FIR filter with an even amplitude response will
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Linear Phase FIR Transfer FunctionsLinear-Phase FIR Transfer Functions
• If Ȟ(ω) is an odd function of ω, then from(ω) s a odd u ct o o ω, t e o

ej(cω+β) Ȟ(ω) = e−j(c−ω+β) Ȟ(−ω)
we get ejβ = −e−jβ as Ȟ(−ω) = −Ȟ(ω)we get e  e as Ȟ( ω)  Ȟ(ω)

• The above is satisfied if β = π/2 or β = −π/2 
• Then H(ejω) = ej(cω+β) Ȟ(ω) reduces to H(ejω) = jejcω Ȟ(ω)Then H(e )  e Ȟ(ω) reduces to H(e )  je Ȟ(ω) 
• The last equation can be rewritten as

Ȟ(ω) = −je−jcω H(ejω) = −j ∑ h[n]e−jω(c+n) Ȟ(ω)  je j H(ej )  j ∑n h[n]e j ( )

• As Ȟ(−ω) = −Ȟ(ω),  from the above we get 
Ȟ(−ω) = j ∑ h[l]ejω(c+l)Ȟ( ω) = j ∑l h[l]ej ( )

• Making a change of variable l = N − n we have
Ȟ(−ω) = j ∑ h[N−n]ejω(c+N−n)
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Linear Phase FIR Transfer FunctionsLinear-Phase FIR Transfer Functions
• Equating the above with quat g t e abo e t

Ȟ(ω) = −j ∑l h[l]e−jω(c+l)

we arrive at the condition for linear phase aswe arrive at the condition for linear phase as
h[n] = h[N − n], 0 ≤ n ≤ N, with c = −N/2

• Therefore an FIR filter with an odd amplitude response willTherefore, an FIR filter with an odd amplitude response will 
have linear-phase response if it has an antisymmetric
impulse response

• Since the length of the impulse response can be either even 
or odd, we can define four types of linear-phase FIR transfer 
functions

• For an antisymmetric FIR filter of odd length, i.e., N even
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Linear Phase FIR Transfer FunctionsLinear-Phase FIR Transfer Functions
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Type 1 FIR Transfer FunctionsType-1 FIR Transfer Functions
Type 1: Symmetric Impulse Response with Odd Lengthype Sy et c pu se espo se t Odd e gt
• In this case, the degree N is even (Assume N = 8)
• The transfer function H(z) is given byThe transfer function H(z) is given by

H(z) = h[0] + h[1]z−1 + h[2] z−2 + h[3] z−3 + h[4] z−4 + h[5]z−5 + 
h[6]z−6 + h[7]z−7 + h[8]z−8[ ] [ ] [ ]

• Because of symmetry, we have h[0] = h[8], h[1] = h[7], h[2] = 
h[6], and h[3] = h[5]

• Thus, we can write
H(z) = h[0](1+ z−8) + h[1](z−1 + z−7) + h[2](z−2 + z−6) + h[3](z−3( ) [ ]( ) [ ]( ) [ ]( ) [ ](

+ z−5)+ h[4] z−4

= z−4{h[0](z4 + z−4) + h[1](z3 + z−3) + h[2](z2 + z−2) + 
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Type 1 FIR Transfer FunctionsType-1 FIR Transfer Functions
• The corresponding frequency response is then given bye co espo d g eque cy espo se s t e g e by

H(ejω) = e−j4ω {2h[0]cos(4ω) + 2h[1]cos(3ω) + 2h[2]cos(2ω) + 
2h[3]cos(ω)+ h[4]}[ ] ( ) [ ]}

• The quantity inside the braces is a real function of ω, and 
can assume positive or negative values in the range 0 ≤ |ω| 
≤ π

• The phase function here is given by
θ(ω) = −4ω + β

where β is either 0 or π, and hence it is a linear function of ω
• The group delay is given by
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Type 1 FIR Transfer FunctionsType-1 FIR Transfer Functions
• In the general case for Type 1 FIR filters, the frequency t e ge e a case o ype te s, t e eque cy

response is of the form

where the amplitude response , also called the zero-
phase response, is of the form

• Example – ConsiderExample Consider

which is seen to be a slightly modified version of a length-7which is seen to be a slightly modified version of a length 7 
moving-average FIR filter

• The above transfer function has a symmetric impulse 
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Type 1 FIR Transfer FunctionsType-1 FIR Transfer Functions
• The magnitude response of H0(z):e ag tude espo se o 0( )

I d it d bt i d b h i th fi t
ω/π

• Improved magnitude response obtained by changing the first 
and the last impulse response coefficients of MA filter

• This filter can be expressed as a cascade of a 2-point MA• This filter can be expressed as a cascade of a 2-point MA 
filter with a 6-point MA filter
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Type 2 FIR Transfer FunctionsType-2 FIR Transfer Functions
Type 2: Symmetric Impulse Response with Even Lengthype Sy et c pu se espo se t e e gt
• In this case, the degree N is odd (Assume N = 7)
• The transfer function H(z) is of the formThe transfer function H(z) is of the form

H(z) = h[0] + h[1]z−1 + … + h[7]z−7

• Because of symmetry we have h[0] = h[7] h[1] = h[6] h[2] =Because of symmetry, we have h[0]  h[7], h[1]  h[6], h[2]  
h[5], and h[3] = h[4]

• Thus, we can writeus, e ca te
H(z) = h[0](1+ z−7) + h[1](z−1 + z−6) + h[2](z−2 + z−5) + h[3](z−3

+ z−4))
= z−7/2{h[0](z7/2 + z−7/2) + h[1](z5/2 + z−5/2) + h[2](z3/2 + z−3/2) 

+ h[3](z1/2 + z−1/2)}

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-42



Type 2 FIR Transfer FunctionsType-2 FIR Transfer Functions
• The corresponding frequency response is then given bye co espo d g eque cy espo se s t e g e by

H(ejω) = e−j7ω/2 {2h[0]cos(7ω/2) + 2h[1]cos(5ω/2) + 
2h[2]cos(3ω/2) + 2h[3]cos(ω/2)}[ ] ( ) [ ] ( )}

• The quantity inside the braces is a real function of ω, and 
can assume positive or negative values in the range 0 ≤ |ω| 
≤ π

• The phase function here is given by
θ(ω) = −7ω/2 + β

where β is either 0 or π, and hence it is a linear function of ω
• The group delay is given by
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Type 2 FIR Transfer FunctionsType-2 FIR Transfer Functions
• The expression for the frequency response in the general e e p ess o o t e eque cy espo se t e ge e a

case for Type 2 FIR filters is of the form

• where the amplitude response is given by
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Type 3 FIR Transfer FunctionsType-3 FIR Transfer Functions
Type 3: Antiymmetric Impulse Response with Odd Lengthype 3 t y et c pu se espo se t Odd e gt
• In this case, the degree N is even (Assume N = 8)
• The transfer function H(z) is of the formThe transfer function H(z) is of the form

H(z) = h[0] + h[1]z−1 + … + h[8]z−8

• Antisymmetric filter coefficients: h[0] = −h[8] h[1] = −h[7] h[2]Antisymmetric filter coefficients: h[0]  h[8], h[1]  h[7], h[2] 
= −h[6], h[3] = − h[5], and h[4] = 0

• Applying the symmetry condition we getpp y g t e sy et y co d t o e get
H(z) = z−4{h[0](z4 − z−4) + h[1](z3 − z−3) + h[2](z2 − z−2) + 

h[3](z − z−1)}[ ]( )}
• The corresponding frequency response is given by

H(ejω) = e−j4ωejπ/2 {2h[0]sin(4ω) + 2h[1]sin(3ω) + 2h[2]sin(2ω) 
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Type 3 FIR Transfer FunctionsType-3 FIR Transfer Functions
• It also exhibits a linear phase response given byt a so e b ts a ea p ase espo se g e by

θ(ω) = −4ω + π/2 + β
where β is either 0 or πwhere β is either 0 or π

• The group delay here is 
τ(ω) = 4τ(ω) 4

indicating a constant group delay of 4 samples
• In the general caseIn the general case

where the amplitude response is of the formwhere the amplitude response is of the form
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Type 4 FIR Transfer FunctionsType-4 FIR Transfer Functions
Type 4: Antiymmetric Impulse Response with Even Lengthype t y et c pu se espo se t e e gt
• In this case, the degree N is Odd (Assume N = 7)
• The transfer function H(z) is of the formThe transfer function H(z) is of the form

H(z) = h[0] + h[1]z−1 + … + h[7]z−7

• Antisymmetric filter coefficients: h[0] = −h[7] h[1] = −h[6] h[2]Antisymmetric filter coefficients: h[0]  h[7], h[1]  h[6], h[2] 
= −h[5], and h[3] = − h[4]

• Applying the symmetry condition we getpp y g t e sy et y co d t o e get
H(z) = z−7/2{h[0](z7/2 − z−7/2) + h[1](z5/2 − z−5/2) + h[2](z3/2 −

z−3/2) + h[3](z1/2 − z−1/2)}) [ ]( )}
• The corresponding frequency response is given by

H(ejω) = e−j7ω/2ejπ/2 {2h[0]sin(7ω/2) + 2h[1]sin(5ω/2) + 
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General Form of Frequency 
Response

• In each of the four types of linear-phase FIR filters, the eac o t e ou types o ea p ase te s, t e
frequency response is of the form 

• The amplitude response           for each of the four types of 
linear-phase FIR filters can become negative over certain 
frequency ranges typically in the stopbandfrequency ranges, typically in the stopband

• The magnitude and phase responses of the linear-phase 
FIR are given byg y

Th d l i h i ( ) N/2
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General Form of Frequency 
Response

Note that even though the group delay is constant since in• Note that, even though the group delay is constant, since in 
general |H(ejω)| is not a constant, the output waveform is not 
a replica of the input waveforma replica of the input waveform

• An FIR filter with a frequency response that is a real function 
of ω is often called a zero-phase filter

• Such a filter must have a noncausal impulse response
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Zero Locations of Linear-Phase FIR 
Transfer Functions

Consider first an FIR filter with a symmetric impulse• Consider first an FIR filter with a symmetric impulse 
response: h[n] = h[N − n]

• Its transfer function can be written asIts transfer function can be written as 

• By making a change of variable m = N − n, we can write

• But,

• Hence for an FIR filter with a symmetric impulse response of 
length N+1 we have H(z) = z−NH(z−1) 
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Zero Locations of Linear-Phase FIR 
Transfer Functions

Now consider an FIR filter with a antisymmetric impulse• Now consider an FIR filter with a antisymmetric impulse 
response: h[n] = −h[N − n]

• Its transfer function can be written asIts transfer function can be written as 

• By making a change of variable m = N − n, we get

• Hence, the transfer function H(z) of an FIR filter with an 
antisymmetric impulse response satisfies the conditionantisymmetric impulse response satisfies the condition

H(z) = −z−NH(z−1) 
• A real-coefficient polynomial H(z) satisfying the above 
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Zero Locations of Linear-Phase FIR 
Transfer Functions

It follows from the relation H(z) = ±z−NH(z−1) that if z = ξ is a• It follows from the relation H(z) = ±z NH(z 1) that if z = ξo is a 
zero of H(z), so is z = 1/ξo

• Moreover for an FIR filter with a real impulse response the• Moreover, for an FIR filter with a real impulse response, the 
zeros of H(z) occur in complex conjugate pairs

• Hence a zero at z = ξ is associated with a zero at z = ξ *Hence, a zero at z  ξo is associated with a zero at z  ξo

• Thus, a complex zero that is not on the unit circle is 
associated with a set of 4 zeros given byassociated with a set of 4 zeros given by

z = re±jϕ, z = (1/r)e±jϕ

• A zero on the unit circle appear as a pair z = e±jϕ, as itsA zero on the unit circle appear as a pair z  e , as its 
reciprocal is also its complex conjugate

• Since a zero at z = ± 1 is its own reciprocal, it can appear 

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-52

p , pp
only singly



Zero Locations of Linear-Phase FIR 
Transfer Functions

Now a Type 2 FIR filter satisfies• Now a Type 2 FIR filter satisfies 
H(z) = z−NH(z−1)

with degree N oddwith degree N odd
• Hence, H(−1) = (−1)−N H(−1) = −H(−1) implying that H(−1) = 

0 , i.e., H(z) must have a zero at z = −1, , ( )
• a Type 3 or 4 FIR filter satisfies

H(z) = −z−NH(z−1)
• Thus, H(1) = −(1)−N H(1) = −H(1) implying that H(z) must 

have a zero at z = 1
• On the other hand, only the Type 3 FIR filter is restricted to 

have a zero at z = −1 since here the degree N is even and 
h H( 1) ( 1) N H( 1) H( 1)
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hence, H(−1) = −(−1)−N H(−1) = −H(−1) 



Zero Locations of Linear-Phase FIR 
Transfer Functions

Typical zero locations shown below• Typical zero locations shown below

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-54



Zero Locations of Linear-Phase FIR 
Transfer Functions

SummarySummary
1. Type 1 FIR filter: Either an even number or no zeros at z = 1 

and z = −1and z = −1
2. Type 2 FIR filter: Either an even number or no zeros at z = 

1 and an odd number of zeros at z = −11 , and an odd number of zeros at z  1
3. Type 3 FIR filter: An odd number of zeros at z = 1 and z = 

−11
4. Type 4 FIR filter: An odd number of zeros at z = 1, and 

either an even number or no zeros at z = −1
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Zero Locations of Linear-Phase FIR 
Transfer Functions

The presence of zeros at z = ±1 leads to the following• The presence of zeros at z = ±1 leads to the following 
limitations on the use of these linear-phase transfer 
functions for designing frequency-selective filtersfunctions for designing frequency selective filters

• A Type 2 FIR filter cannot be used to design a highpass filter 
since it always has a zero z = −1y

• A Type 3 FIR filter has zeros at both at both z = 1 and z = −1, 
and hence cannot be used to design either a lowpass or a 
highpass or a bandstop filter

• A Type 4 FIR filter is not appropriate to design lowpass and 
bandstop filters due to the presence of a zero at z = 1

• Type 1 FIR filter has no such restrictions and can be used to 
d i l t t f filt
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Simple Lowpass FIR Digital FiltersSimple Lowpass FIR Digital Filters
• The simplest lowpass FIR digital filter is the 2-point moving-

average filter given by

• The above transfer function has a zero at z = −1 and a pole 
at z = 0

• Note that here the pole vector has a unity magnitude for all 
values of ω
O h h h d i f 0 h• On the other hand, as ω increases from 0 to π, the 
magnitude of the zero vector decreases from a value of 2, 
the diameter of the unit circle to 0the diameter of the unit circle, to 0

• Hence, the magnitude response |H0(ejω)| is a monotonically 
decreasing function of ω from ω = 0 to ω = π
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decreasing function of ω from ω  0 to ω  π



Lowpass FIR Digital FiltersLowpass FIR Digital Filters
• The maximum value of the magnitude function is 1 at ω = 0, 

and the minimum value is 0 at ω = π, i.e.,
|H0(ej0)| = 1,      |H0(ejπ)| = 0

• The frequency response of the above filter is given by 
|H0(ejω)|  = e−jω/2 cos(ω/2)

• The magnitude response |H0(ejω)| = e−jω/2 cos(ω/2) is a 
monotonically decreasing function of ω
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Lowpass FIR Digital FiltersLowpass FIR Digital Filters
• The frequency ω = ωc at which c

is of practical interest since here the gain G(ωc) in dB is 
given by

since the dc gain G(0) = 20log10|H0(ej0)| = 0
Th h i G( ) i i l 3 dB l• Thus, the gain G(ω) at ω = ωc is approximately 3 dB less 
than the gain at ω = 0
A lt i ll d th 3 dB t ff f• As a result, ωc is called the 3-dB cutoff frequency

• To determine the value of ωc we set
hi h i ld / 2
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Lowpass FIR Digital FiltersLowpass FIR Digital Filters
• The 3-dB cutoff frequency ωc can be considered as the c

passband edge frequency
• As a result, for the filter H0(z) the passband width is 

approximately π/2, and the stopband is from π/2 to π
• Note: H0(z) has a zero at z = −1 or ω = π, which is in the 

t b d f th filtstopband of the filter
• A cascade of 3 sections of  the FIR filter H0(z) = ½(1 + z-1) 

results in an improved lowpass frequencyresults in an improved lowpass frequency

cascadecascade
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Highpass FIR Digital FiltersHighpass FIR Digital Filters
• The simplest highpass FIR filter is obtained from the 

simplest lowpass FIR filter by replacing z with −z
For example: H1(z) = ½(1 − z-1) 

• Corresponding frequency response is given by
• H1(ejω) = je−jω/2 sin(ω/2)
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Highpass FIR Digital FiltersHighpass FIR Digital Filters
• The monotonically increasing behavior of the magnitude 

function can again be demonstrated by examining the pole-
zero pattern of the transfer function H1(z)
For example: H1(z) = ½(1 − z-1) 

• The highpass transfer function H1(z) has a zero at z = 1 or ω 
0 hi h i i th t b d f th filt= 0 which is in the stopband of the filter

• Improved highpass magnitude response can be obtained by 
cascading several sections of the first order highpass filtercascading several sections of the first-order highpass filter

• Alternately, a higher-order highpass filter of the form 

is obtained by replacing z with −z in the transfer function of a 
moving average filter
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Highpass FIR Digital FiltersHighpass FIR Digital Filters
• An application of the FIR highpass filters is in moving-target-

indicator (MTI) radars
• In these radars, interfering signals, called clutters, are 

generated from fixed objects in the path of the radar beam
• The clutter, generated mainly from ground echoes and 

th t h f tweather returns, has frequency components near zero 
frequency (dc)

• The clutter can be removed by filtering the radar return• The clutter can be removed by filtering the radar return 
signal through a two-pulse canceler, which is the first-order 
FIR highpass filter H1(z) = ½(1 − z-1)FIR highpass filter H1(z)  ½(1 z ) 

• For a more effective removal it may be necessary to use a 
three-pulse canceler obtained by cascading two two-pulse 
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Simple IIR Digital FiltersSimple IIR Digital Filters
• We have shown earlier that the first-order causal IIR transfer 

f tifunction

has a lowpass magnitude response for α > 0
• On the other hand, the first-order causal IIR transfer function

has a highpass magnitude response for α < 0
• However, the modified transfer function obtained with the 

addition of a factor (1 + z-1) to the numerator

exhibits a lowpass magnitude response
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exhibits a lowpass magnitude response



Simple IIR Digital FiltersSimple IIR Digital Filters
• The modified first-order lowpass transfer function for both 

iti d ti l f i th i bpositive and negative values of α is then given by

• As ω increases from 0 to π, the magnitude of the zero vector 
d f l f 2 t 0decreases from a value of 2 to 0

• The maximum values of the magnitude function is 2K/(1− α) 
at ω = 0 and the minimum value is 0 at ω = π i eat ω = 0 and the minimum value is 0 at ω = π, i.e.,

|HLP(ej0)| = 2K/(1− α),  |HLP(ejπ)| = 0
Th f |H ( jω)| i t i ll d i f ti• Therefore, |HLP(ejω)| is a monotonically decreasing function 
of ω from ω = 0 to ω = π
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Simple IIR Digital FiltersSimple IIR Digital Filters
• For most applications, it is usual to have a dc gain of 0 dB, 

th t i t h |H ( j0)| 1that is to have |HLP(ej0)| = 1
• To this end, we choose K = (1− α)/2 resulting in the first-

d IIR l t f f tiorder IIR lowpass transfer function

• The above transfer function has a zero at i.e., at ω = π which 
is in the stopbandis in the stopband
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Lowpass IIR Digital FiltersLowpass IIR Digital Filters
• A first-order causal lowpass IIR digital filter has a transfer 

f ti i bfunction given by 

where |α| < 1 for stability
• The above transfer function has a zero at z = −1 i.e., at ω = 

hi h i i th t b dπ which is in the stopband
• HLP(z) has a real pole at z = α

A i f 0 h i d f h• As ω increases from 0 to π, the magnitude of the zero vector 
decreases from a value of 2 to 0, whereas, for a positive 
value of α the magnitude of the pole vector increases from avalue of α, the magnitude of the pole vector increases from a 
value of 1− α to 1+ α function is 1 at ω = 0, and the minimum

• The maximum value of the magnitude function is 1 at ω = 0
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The maximum value of the magnitude function is 1 at ω  0, 
and the minimum value is 0 at ω = π



Lowpass IIR Digital FiltersLowpass IIR Digital Filters
• That is |HLP(ej0)| = 1, |HLP(ejπ)| = 0
• Therefore, |HLP(ejω)| is a monotonically decreasing function 

of ω from ω = 0 to ω = π as indicated below

• The squared magnitude function is given by 
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Lowpass IIR Digital FiltersLowpass IIR Digital Filters
• The derivative of |HLP(ejω)|2 with respect to ω is given by

d|HLP(ejω)|2 / dω ≤ 0 in the range 0 ≤ ω ≤ π verifying again 
the monotonically decreasing behavior of the magnitude 
f tifunction

• To determine the 3-dB cutoff frequency we set

• in the expression for the square magnitude function resulting 
iin

(1 )2(1 ) 1 2 2 2 /(1 2)
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Lowpass IIR Digital FiltersLowpass IIR Digital Filters
• The above quadratic equation can be solved for α yielding 

t l titwo solutions
• The solution resulting in a stable transfer function HLP(z) is 

i bgiven by

It f ll f• It follows from

that HLP(z) is a BR function for |α| < 1
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Highpass IIR Digital FiltersHighpass IIR Digital Filters
• A first-order causal highpass IIR digital filter has a transfer 

f ti i bfunction given by

where |α| < 1 for stability
• The above transfer function has a zero at z = 1 i.e., at ω = 0 

which is in the stopband
I 3 dB ff f i i b• Its 3-dB cutoff frequency is given by

α = (1− sinωc )/cosωc

which is the same as that of HLP(z)
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Highpass IIR Digital FiltersHighpass IIR Digital Filters
• Magnitude and gain responses of HHP(z) are shown below

• HHP(z) is a BR function for |α| < 1
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Highpass IIR Digital FiltersHighpass IIR Digital Filters
• Magnitude and gain responses of HHP(z) are shown below
• Example - Design a first-order highpass digital filter with a 3-

dB cutoff frequency of 0.8π
• Now, sin(ωc) = sin(0.8π) = 0.587785 and cos(0.8π) = 

−0.80902
Th f (1 i )/ 0 5095245• Therefore α = (1− sinωc)/cos ωc = −0.5095245

• Therefore,
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Bandpass IIR Digital FiltersBandpass IIR Digital Filters
• A 2nd-order bandpass digital transfer function is given by

• Its squared magnitude function is

• |H (ejω)|2 goes to zero at ω = 0 and ω = π• |HBP(ejω)|2 goes to zero at ω = 0 and ω = π
• It assumes a maximum value of 1 at ω = ωo called the 

center frequency of the bandpass filter wherecenter frequency of the bandpass filter, where
ωo = cos−1(β)

• The frequencies ω and ω where |H (ejω)|2 becomes 1/2

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-74

• The frequencies ωc1 and ωc2 where |HBP(ejω)|2 becomes 1/2 
are called the 3-dB cutoff frequencies



Bandpass IIR Digital FiltersBandpass IIR Digital Filters
• The difference between the two cutoff frequencies, assuming 

i ll d th 3 dB b d idth d i i bωc1 > ωc2 is called the 3-dB bandwidth and is given by

• The transfer function HBP(z) is a BR function if |α| < 1 and   
|β| < 1
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Bandpass IIR Digital FiltersBandpass IIR Digital Filters
• Example - Design a 2nd order bandpass digital filter with 

t l f t 0 4 d 3 dB b d idth f 0 1central frequency at 0.4π and a 3-dB bandwidth of 0.1π
• Here β = cos(ωo) = cos(0.4π) = 0.309017 and

2α/(1+α)2 = cos(Bw) = cos(0.1π) = 0.9510565
• The solution of the above equation yields: α = 1.376382 and 

0 72654253α = 0.72654253
• The corresponding transfer functions are

and

• The poles of                are at z = 0.3671712 ± j1.11425636 
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Bandpass IIR Digital FiltersBandpass IIR Digital Filters
• Thus, the poles of               are outside the unit circle making 

th t f f ti t blthe transfer function unstable
• On the other hand, the poles of             are at z = 0.2667655 

± j0 8095546 and ha e a± j0.8095546 and have a 
• The solution of the above equation yields: α = 1.376382 and 

α = 0 72654253 and have a magnitude of 0 8523746α = 0.72654253 and have a magnitude of 0.8523746
• Hence              is BIBO stable
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Bandstop IIR Digital FiltersBandstop IIR Digital Filters
• A 2nd-order bandstop digital filter has a transfer function 

i bgiven by

• The transfer function HBS(z) is a BR function if |α| < 1 and    
|β| 1|β| < 1
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Bandstop IIR Digital FiltersBandstop IIR Digital Filters
• Here, the magnitude function takes the maximum value of 1 

t 0 dat ω = 0 and ω = π
• It goes to 0 at ω = ωo, where ωo, called the notch frequency,

i i bis given by
ωo = cos−1(β)

Th di it l t f f ti H ( ) i l ll d• The digital transfer function HBS(z) is more commonly called 
a notch filter

• The frequencies ω and ω where |H (ejω)|2 becomes 1/2• The frequencies ωc1 and ωc2 where |HBS(ejω)|2 becomes 1/2 
are called the 3-dB cutoff frequencies

• The difference between the two cutoff frequencies assuming• The difference between the two cutoff frequencies, assuming 
ωc1 > ωc2 is called the 3-dB notch bandwidth and is given by
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High Order IIR Digital FiltersHigh-Order IIR Digital Filters
• By cascading the simple digital filters discussed so far, we 

i l t di it l filt ith h it dcan implement digital filters with sharper magnitude 
responses
C id d f K fi t d l ti• Consider a cascade of K first-order lowpass sections 
characterized by the transfer function

• The corresponding squared magnitude function is given by• The corresponding squared-magnitude function is given by
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High Order IIR Digital FiltersHigh-Order IIR Digital Filters
• To determine the relation between its 3-dB cutoff frequency 

d th t tωc and the parameter α, we set

which when solved for α, yields for a stable GLP(z)

where  C = 2(K−1)/K

• It should be noted that the expression for α given earlier 
reduces to
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for K = 1



High Order IIR Digital FiltersHigh-Order IIR Digital Filters
• Example - Design a lowpass filter with a 3- dB cutoff 

f t 0 4 i i l fi t d ti dfrequency at ωc = 0.4π using a single first-order section and 
a cascade of 4 first-order sections, and compare their gain 
responsesresponses

• For the single first-order lowpass filter we have

• For the cascade of 4 first-order sections, we substitute K = 4 
dand get

C = 2(K−1)/K = 2(4−1)/4 =1.6818
• Next we compute

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-82



High Order IIR Digital FiltersHigh-Order IIR Digital Filters
• The gain responses of the two filters are shown below
• As can be seen, cascading has resulted in a sharper roll-off 

in the gain response
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Comb FiltersComb Filters
• The simple filters discussed so far are characterized either by 

i l b d d/ i l t b da single passband and/or a single stopband
• There are applications where filters with multiple passbands 

d t b d i dand stopbands are required
• The comb filter is an example of such filters

I it t l f b filt h f• In its most general form, a comb filter has a frequency 
response that is a periodic function of ω with a period 2π/L,
where L is a positive integerwhere L is a positive integer

• If H(z) is a filter with a single passband and/or a single 
stopband, a comb filter can be easily generated from it bystopband, a comb filter can be easily generated from it by 
replacing each delay in its realization with L delays resulting 
in a structure with a transfer function given by G(z) = H(zL)
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Comb FiltersComb Filters
• If |H(ejω)| exhibits a peak at ωp, then |G(ejω)| will exhibit L 

k t k/L 0 k L 1 i th f 0peaks at ωpk/L, 0 ≤ k ≤ L − 1 in the frequency range 0 ≤ ω < 
2π
Lik i if |H( jω)| h t h t th th |G( jω)| h• Likewise, if |H(ejω)| has a notch at ωo, then then |G(ejω)| have 
L notches at ωok/L, 0 ≤ k ≤ L − 1 in the frequency range 0 ≤ ω 
< 2π< 2π

• A comb filter can be generated from either an FIR or an IIR 
prototype filterp yp

• For example, the comb filter generated from the prototype 
lowpass FIR filter H0(z) = 1/2 (1 + z−1) has a transfer function0( ) ( )

G0(z) = H0(zL) = 1/2 (1 + z−L)
• |G0(ejω)| has L notches at ω = (2k+1)π/L and L peaks at ω = 
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Comb FiltersComb Filters
• On the other hand, the comb filter generated from the 

t t l FIR filt H ( ) 1/2 (1 1) hprototype lowpass FIR filter H1(z) = 1/2 (1 − z−1) has a 
transfer function

G ( ) H ( L) 1/2 (1 −L)G1(z) = H1(zL) = 1/2 (1 − z−L)
• |G1(ejω)| has L notches at ω = (2k+1)π/L and L peaks at ω = 

2πk/L 0 ≤ k ≤ L−1 in the frequency range 0 ≤ ω < 2π2πk/L, 0 ≤ k ≤ L−1, in the frequency range 0 ≤ ω < 2π
|G1(ejω)| |G0(ejω)| 
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Comb FiltersComb Filters
• Depending on applications, comb filters with other types of 

i di it d b il t d bperiodic magnitude responses can be easily generated by 
appropriately choosing the prototype filter
F l th M i t i filt• For example, the M-point moving average filter 

has been used as a prototype
• This filter has a peak magnitude at ω = 0, and M − 1 notches 

2 l/M 1 l M 1at ω = 2πl/M, 1≤ l ≤ M −1
• The corresponding comb filter has a transfer function

whose magnitude has L peaks at 2πk/L, 1≤ k ≤ L −1 and    
L(M 1) t h t 2 k/LM 1≤ k ≤ L(M 1)
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Delay Complementary Transfer 
Functions

• A set of L transfer functions, {Hi(z)}, 0 ≤ i ≤ L − 1, is defined to set o t a s e u ct o s, { i( )}, 0 , s de ed to
be delay-complementary of each other if the sum of their 
transfer functions is equal to some integer multiple of unit 
delays, i.e.,

where no is a nonnegative integer
• A delay-complementary pair {H0(z), H1(z)} can be readily 

d i d if f h i i k T 1 FIR fdesigned if one of the pairs is a known Type 1 FIR transfer 
function of odd length
L t H ( ) b T 1 FIR t f f ti f l th M• Let H0(z) be a Type 1 FIR transfer function of length M =
2K+1, its delay-complementary transfer function is given by 
H1(z) = z−K − H0(z)

© The McGraw-Hill Companies, Inc., 2007
Original PowerPoint slides prepared by S. K. Mitra 7-88

H1(z)  z H0(z)



Delay Complementary Transfer 
Functions

• Let the magnitude response of H0(z) be equal to 1± δp in the g p 0( ) q p
passband and less than or equal to δs in the stopband where 
δp and δs are very small numbers

• Now the frequency response of H0(z) can be expressed as

where           is the amplitude response
• Its delay-complementary transfer function H1(z) has a 1

frequency response given by

• Now, in the passband, 1− δp ≤           ≤ 1+ δp, and in the 
stopband, −δs ≤            ≤ δs
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Delay Complementary Transfer 
Functions

• It follows from the above equation that −δp ≤           ≤ δp, and t o o s o t e abo e equat o t at δp δp, a d
in the stopband, 1− δs ≤            ≤ 1+ δs

• As a result, H1(z) has a complementary magnitude response 1( ) p y g p
characteristic to that of H0(z) with a stopband exactly 
identical to the passband of H0(z), and a passband that is 

tl id ti l t th t b d f H ( )exactly identical to the stopband of H0(z)
• Thus, if H0(z) is a lowpass filter, H1(z) will be a highpass filter, 

and vice versaand vice versa
• The frequency ωo at which

th i f b th filt 6 dB b l th ithe gain responses of both filters are 6 dB below their 
maximum values

• The frequency is thus called the 6 dB crossover frequency
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• The frequency is thus called the 6-dB crossover frequency



Delay Complementary Transfer 
Functions

• Example - Consider the Type 1 bandstop transfer functiona p e Co s de t e ype ba dstop t a s e u ct o

• Its delay-complementary Type 1 bandpass transfer functionIts delay complementary Type 1 bandpass transfer function 
is given by
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Allpass Complementary FiltersAllpass Complementary Filters
• A set of M transfer functions, {Hi(z)}, 0 ≤ i ≤ M − 1, is defined set o t a s e u ct o s, { i( )}, 0 , s de ed

to be allpass-complementary of each other, if the sum of 
their transfer functions is equal to an allpass function, i.e.,

• Example - Consider the two transfer functions H0(z) and H1(z)Example Consider the two transfer functions H0(z) and H1(z) 
given by

H0(z) = ½ [A0(z) + A1(z)]H0(z)  ½ [A0(z)  A1(z)]
H1(z) = ½ [A0(z) − A1(z)]

where A0(z) and A1(z) are stable allpass transfer functionswhere A0(z) and A1(z) are stable allpass transfer functions
• Note that H0(z) + H1(z) = A0(z)
• Hence H0(z) and H1(z) are allpass complementary
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Hence, H0(z) and H1(z) are allpass complementary



Power Complementary FiltersPower Complementary Filters
• A set of M transfer functions, {Hi(z)}, 0 ≤ i ≤ M − 1, is defined set o t a s e u ct o s, { i( )}, 0 , s de ed

to be power-complementary of each other, if the sum of 
their square-magnitude responses is equal to a constant K 
for all values of ω, i.e.,

• By analytic continuation, the above property is equal to

for real coefficient H0(z)for real coefficient H0(z)
• Usually, by scaling the transfer functions, the power-

complementary property is defined for K = 1
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Power Complementary FiltersPower Complementary Filters
• For a pair of power-complementary transfer functions, H0(z) o a pa o po e co p e e ta y t a s e u ct o s, 0( )

and H1(z) , the frequency ωo where |H0(ejωo)|2 = |H1(ejωo)|2 = 
0.5, is called the cross-over frequency

• At this frequency the gain responses of both filters are 3-dB 
below their maximum values
A lt i ll d th 3 dB f• As a result, is called the 3-dB cross-over frequency

• Example - Consider the two transfer functions H0(z) and H1(z) 
given bygiven by

H0(z) = ½ [A0(z) + A1(z)]
H ( ) ½ [A ( ) A ( )]H1(z) = ½ [A0(z) − A1(z)]

where A0(z) and A1(z) are stable allpass transfer functions
H ( ) d H ( ) ll d l t
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Doubly Complementary FiltersDoubly Complementary Filters
• A set of M transfer functions satisfying both the allpass set o t a s e u ct o s sat s y g bot t e a pass

complementary and the power complementary properties is 
known as a doubly-complementary set

• A pair of doubly-complementary IIR transfer functions, H0(z) 
and H1(z) , with a sum of allpass decomposition can be 
i l li d i di t d b lsimply realized as indicated below
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Doubly Complementary FiltersDoubly Complementary Filters
• Example - The first-order lowpass transfer functiona p e e st o de o pass t a s e u ct o

can be expressed as

where

• Its power-complementary highpass transfer function is thus p p y g p
given by
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Doubly Complementary FiltersDoubly Complementary Filters
• The above expression is precisely the firstorder highpasse abo e e p ess o s p ec se y t e sto de g pass

transfer function described earlier
• Figure below demonstrates the allpass complementary 

property and the power complementary property of 
can be expressed as HLP(z) and HHP(z)
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Power Symmetric FiltersPower Symmetric Filters
• A real-coefficient causal digital filter with a transfer function ea coe c e t causa d g ta te t a t a s e u ct o

H(z) is said to be a power-symmetric filter if it satisfies the 
condition

H(z)H(z−1) + H(−z)H(−z−1) = K
where K > 0 is a constant
It b h th t th i f ti G( ) f• It can be shown that the gain function G(ω) of a power-
symmetric transfer function at ω = π is given by

• 10log K 3 dB• 10log10K − 3 dB 
• If we define G(z) = H(−z), then it follows from the definition of 

the power-symmetric filter that H(z) and G(z) are power-the power-symmetric filter that H(z) and G(z) are power-
complementary as

H(z)H(z−1) + G(z)G(z−1) = a constant
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Conjugate Quadratic FiltersConjugate Quadratic Filters
• If a power-symmetric filter has an FIR transfer function H(z)a po e sy et c te as a t a s e u ct o ( )

of order N, then the FIR digital filter with a transfer function
G(z) = z−NH(−z−1)

is called a conjugate quadratic filter of H(z) and vice-versa
• It follows from the definition that G(z) is also a power-

t i l filt d ti filtsymmetric causal filter quadratic filters
• It also can be seen that a pair of conjugate quadratic filters 

H(z) and G(z) are also power complementaryH(z) and G(z) are also power-complementary
• Example - Let H(z) = 1− 2z−1 + 6z−2 + 3z−3

H( )H( −1) + H( )H( −1) 100H(z)H(z−1) + H(−z)H(−z−1) = 100
• H(z) is a power-symmetric transfer function
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