

LTI Discrete-Time Systems in the Transform Domain

清大電機系林嘉文 cwlin@ee.nthu.edu.tw

03-5731152

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

© The McGraw-Hill Companies, Inc., 2007

Types of Transfer Functions

- The time-domain classification of an LTI digital transfer function sequence is based on the length of its impulse response:
 - Finite impulse response (FIR) transfer function
 - Infinite impulse response (IIR) transfer function
- In the case of digital transfer functions with frequencyselective frequency responses, there are two types of classifications
 - Classification based on the shape of the magnitude function $|H(e^{j\omega})|$
 - Classification based on the form of the phase function $\theta(\omega)$

Original PowerPoint slides prepared by S. K. Mitra

Classification Based on Magnitude Characteristics

- One common classification is based on ideal magnitude response
- A digital filter designed to pass signal components of certain frequencies without distortion should have a magnitude response equal to one at these frequencies, and zero at all other frequencies
- The range of frequencies where the frequency response takes the value of one is called the passband
- The range of frequencies where the frequency response takes the value of zero is called the **stopband**

Original PowerPoint slides prepared by S. K. Mitra

Ideal Filters

• Frequency responses of the four popular types of ideal digital filters with real coefficients are shown below:

- The freq. ω_c , ω_{c1} , and ω_{c2} are called the **cutoff frequencies**
- An ideal filter has a magnitude response equal to one in the passband and zero in the stopband, and has a zero phase everywhere

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

Ideal Filters

• The impulse response of the ideal lowpass filter:

$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

- The above impulse response is not absolutely summable, and hence, the corresponding transfer function is not BIBO stable
- Also, $h_{LP}[n]$ is not causal and is of doubly infinite length
- The remaining three ideal filters are also characterized by doubly infinite, noncausal impulse responses and are not absolutely summable
- Thus, the ideal filters with the ideal "brick wall" frequency responses cannot be realized with finite dimensional LTI filter

Original PowerPoint slides prepared by S. K. Mitra

Ideal Filters

- To develop stable and realizable transfer functions, the ideal freq. response specs. are relaxed by including a transition **band** between the passband and the stopband
- This allows the magnitude response to decay slowly from its max. value in the passband to the zero value in the stopband

7-6

 Moreover, the magnitude response is allowed to vary by a small amount both in the passband and the stopband

 A causal stable real-coefficient transfer function H(z) is defined as a bounded real (BR) transfer function if

 $|H(e^{j\omega})| \le 1$ for all values of ω

- Let x[n] and y[n] denote, respectively, the input and output of a digital filter characterized by a BR transfer function H(z)with $X(e^{j\omega})$ and $Y(e^{j\omega})$ denoting their DTFTs
- Then the condition $|H(e^{j\omega})| \le 1$ implies that

 $|Y(e^{j\omega})|^2 \leq |X(e^{j\omega})|^2$

Integrating the above from – π to π, and applying Parseval's relation we get

$$\sum_{n=-\infty}^{\infty} |y[n]|^2 \le \sum_{n=-\infty}^{\infty} |x[n]|^2$$

- Thus, for all finite-energy inputs, the output energy is less than or equal to the input energy implying that a digital filter characterized by a BR transfer function can be viewed as a passive structure
- If |*H*(*e^{jω}*)| = 1, then the output energy is equal to the input energy, and such a digital filter is therefore a lossless system
- A causal stable real-coefficient transfer function *H*(*z*) with |*H*(*e^{jω}*)| = 1 is thus called a **lossless bounded real (LBR)** transfer function
- The BR and LBR transfer functions are the keys to the realization of digital filters with low coefficient sensitivity (see Sec. 12.9)

Original PowerPoint slides prepared by S. K. Mitra

• Example – Consider the causal stable IIR transfer function

$$H(z) = \frac{K}{1 - \alpha z^{-1}}, \quad 0 < |\alpha| < 1$$

where *K* is a real constant

- Its square-magnitude function is given by $|H(e^{j\omega})|^2 = H(z)H(z^{-1})|_{z=e^{j\omega}} = \frac{K^2}{(1+\alpha^2) - 2\alpha\cos\omega}$
- The maximum value of |*H*(*e^{jω}*)|² is obtained when 2α cosω in the denominator is a maximum and the minimum value is obtained when 2α cosω is a minimum
- For α > 0, maximum value of 2α cosω is equal to 2α at ω = 0, and minimum value is -2α at ω = π

Original PowerPoint slides prepared by S. K. Mitra

- Thus, for $\alpha > 0$, the maximum value of $|H(e^{j\omega})|^2$ is equal to $K^2 / (1 \alpha)^2$ at $\omega = 0$ and the minimum value is equal to $K^2 / (1 + \alpha)^2$ at $\omega = \pi$
- On the other hand, for α < 0, the maximum value of 2α cosω is equal to -2α at ω = π, and the minimum value is equal to 2α at ω = 0
- Here, the maximum value of $|H(e^{j\omega})|^2$ is equal to $K^2 / (1 + \alpha)^2$ at $\omega = \pi$ and the minimum value is equal to $K^2 / (1 - \alpha)^2$ at $\omega = 0$
- Hence, the maximum value can be made equal to 1 by choosing $K = \pm (1 \alpha)$, in which case the minimum value becomes $(1 \alpha)^2/(1 + \alpha)^2$

• Hence,

$$H(z) = \frac{K}{1 - \alpha z^{-1}}, \quad 0 < |\alpha| < 1$$

is a BR function for $K = \pm(1 - \alpha)$

 Plots of the magnitude function for with values of K chosen to make H(z) a BR function are shown below

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

© The McGraw-Hill Companies, Inc., 2007

• An IIR transfer function A(z) with unity magnitude response for all frequencies, i.e.,

 $|H(e^{j\omega})|^2 = 1$, for all ω

is called an allpass transfer function

• An *M*-th order causal real-coefficient allpass transfer function is of the form $A_M(z) = + \frac{d_M + d_{M-1}z^{-1} + \dots + d_1z^{-M+1} + z^{-M}}{d_M + d_M + d_M$

$$A_M(z) = \pm \frac{M - M - 1}{1 + d_1 z^{-1} + \dots + d_{M-1} z^{-M+1} + d_M z^{-M}}$$

• Denote the denominator polynomials of $A_M(z)$ as $D_M(z)$:

$$D_M(z) = 1 + d_1 z^{-1} + \dots + d_{M-1} z^{-M+1} + d_M z^{-M}$$

then it follows that $A_M(z)$ can be written as

$$A_M(z) = \pm \frac{z^{-M} D_M(z^{-1})}{D_M(z)}$$

Original PowerPoint slides prepared by S. K

© The McGraw-Hill Companies, Inc., 2007

- Note from the above that if $z = re^{j\phi}$ is a pole of a real coefficient allpass transfer function, then it has a zero at $z = (1/r)e^{j\phi}$
- The numerator of a real-coefficient allpass transfer function is said to be the mirror image polynomial of the denominator, and vice versa
- We shall use the notation $\tilde{D}_M(z)$ to denote the mirror-image polynomial of a degree-*M* polynomial $D_M(z)$, i.e.,

$$\widetilde{D}_M(z) = z^{-M} D_M(z^{-1})$$

• The expression

$$A_M(z) = \pm \frac{z^{-M} D_M(z^{-1})}{D_M(z)}$$

implies that the poles and zeros of a real-coefficient allpass function exhibit mirror image symmetry in the z-plane 7-13 Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

• To show that $|A_M(e^{j\omega})| = 1$ we observe that

$$A_M(z^{-1}) = \pm \frac{z - D_M(z)}{D_M(z^{-1})}$$

• Therefore

$$A_M(z)A_M(z^{-1}) = \frac{z^{-M}D_M(z^{-1})}{D_M(z)} \frac{z^M D_M(z)}{D_M(z^{-1})}$$

Hence

$$|A_M(e^{j\omega})|^2 = A_M(z)A_M(z^{-1})\Big|_{z=e^{j\omega}} = 1$$

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

- Now, the poles of a causal stable transfer function must lie inside the unit circle in the z-plane
- Hence, all zeros of a causal stable allpass transfer function must lie outside the unit circle in a mirror-image symmetry with its poles situated inside the unit circle
- Figure below shows the principal value of the phase of the 3rd-order allpass function

• If we unwrap the phase by removing the discontinuity, we arrive at the unwrapped phase function $\theta_c(\omega)$ as follows

• The unwrapped phase function of any arbitrary causal stable allpass function is a continuous function of ω

Original PowerPoint slides prepared by S. K. Mitra

Properties:

- A causal stable real-coefficient allpass transfer function is a lossless bounded real (LBR) function or, equivalently, a causal stable allpass filter is a lossless structure
- 2. The magnitude function of a stable allpass function A(z) satisfies: |z| > 1

$$A(z) \bigg| \begin{cases} < 1, & \text{for } |z| > 1 \\ = 1, & \text{for } |z| = 1 \\ > 1, & \text{for } |z| < 1 \end{cases}$$

3. Let $\tau(\omega)$ denote the group delay function of an allpass filter A(z), i.e.,

$$\tau(\omega) = -\frac{d}{d\omega} [\theta_c(\omega)]$$

Original PowerPoint slides prepared by S. K. Mitra

- The unwrapped phase function $\theta_c(\omega)$ of a stable allpass function is a monotonically decreasing function of ω so that $\tau(\omega)$ is everywhere positive in the range $0 < \omega < \pi$
- The group delay of an *M*-th order stable real-coefficient allpass transfer function satisfies $\int_{1}^{\pi} \tau(\omega) d\omega = M\pi$
- A Simple Application:
- A simple but often used application of an allpass filter is as a delay equalizer
- Let *G*(*z*) be the transfer function of a digital filter designed to meet a prescribed magnitude response
- The nonlinear phase response of G(z) can be corrected by cascading it with an allpass filter A(z) so that the overall cascade has a constant group delay in the band of interest

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

• Since $|A(e^{j\omega})| = 1$, we have

 $|A(e^{j\omega}) G(e^{j\omega})| = |G(e^{j\omega})|$

- Overall group delay is the given by the sum of the group delays of G(z) and A(z)
- Example Figure below shows the group delay of a 4th order elliptic filter with the following specifications: $\omega_p = 0.3\pi$, $\delta_p = 1 \text{ dB}$, $\delta_s = 35 \text{ dB}$
- The group delay of the original filter cascaded with an 8th order allpass filter is also shown
 Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

Classification Based on Phase Characteristics

- A second classification of a transfer function is with respect to its phase characteristics
- In many applications, it is necessary that the digital filter designed does not distort the phase of the input signal components with frequencies in the passband
- One way to avoid any phase distortion is to make the frequency response of the filter real and nonnegative, i.e., to design the filter with a zero phase characteristic
- However, it is not possible to design a causal digital filter with a zero phase
- For non-real-time processing of real-valued input signals of finite length, zero-phase filtering can be very simply implemented by relaxing the causality requirement 7-20

The McGraw-Hill Companies

Zero-Phase Transfer Functions

One zero-phase filtering scheme is sketched below

$$x[n] \longrightarrow H(z) \longrightarrow v[n] \qquad u[n] \longrightarrow H(z) \longrightarrow w[n]$$
$$u[n] = v[-n], \qquad y[n] = w[-n]$$

- Let X(e^{jω}), V(e^{jω}), U(e^{jω}), W(e^{jω}), and Y(e^{jω})denote the DTFTs of x[n], v[n], u[n], w[n], and y[n], respectively
- Making use of the symmetry relations we arrive at the relations between various DTFTs as follows:

$$V(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega}), W(e^{j\omega}) = H(e^{j\omega}) U(e^{j\omega})$$
$$U(e^{j\omega}) = V^*(e^{j\omega}), Y(e^{j\omega}) = W^*(e^{j\omega})$$

• Combining the above equations we get

$$Y(e^{j\omega}) = W^*(e^{j\omega}) = H^*(e^{j\omega}) U^*(e^{j\omega}) = H^*(e^{j\omega}) V(e^{j\omega})$$

$$= H^*(e^{j\omega}) H(e^{j\omega}) X(e^{j\omega}) = |H(e^{j\omega})|^2 X(e^{j\omega})$$

Original PowerPoint slides prepared by S. K. Mitra

• The output y[n] of a linear-phase filter to an input $x[n] = Ae^{j\omega n}$ is then given by

$$y[n] = Ae^{-j\omega D} e^{j\omega n} = Ae^{j\omega(n-D)}$$

- If x_a(t) and y_a(t) represent the continuous-time signals whose sampled versions, sampled at t = nT, are x[n] and y[n] given above, then the delay between x_a(t) and y_a(t) is precisely the group delay of amount D
- If D is an integer, then y[n] is identical to x[n], but delayed by D samples
- If D is not an integer, y[n], being delayed by a fractional part, is not identical to x[n]
 - The waveform of the underlying continuous-time output is identical to the waveform of the continuous-time input and delayed *D* units of

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

- If it is desired to pass input signal components in a certain frequency range undistorted in both magnitude and phase, then the transfer function should exhibit a unity magnitude response and a linear-phase response in the band of interest
- Figure below shows the frequency response if a lowpass filter with a linear-phase characteristic in the passband
- Since the signal components in the stopban are blocked, the phase response in the stopband can be of any shape

 Example – Determine the impulse response of an ideal lowpass filter with a linear phase response

$$H_{LP}(e^{j\omega}) = \begin{cases} e^{-j\omega n_o}, & 0 < |\omega| < \omega_c \\ 0, & \omega_c \le |\omega| \le \pi \end{cases}$$

- Applying the frequency-shifting property of the DTFT to the impulse response of an ideal zero-phase lowpass filter we arrive at $h_{LP}[n] = \frac{\sin \omega_c (n n_o)}{\pi (n n_o)}, \quad -\infty < n < \infty$
- As before, the above filter is noncausal and of doubly infinite length, and hence, unrealizable
- By truncating the impulse response to a finite number of terms, a realizable FIR approximation to the ideal lowpass filter can be developed

- The truncated approximation may or may not exhibit linear • phase, depending on the value of n_o chosen
- If we choose $n_o = N/2$ with N a positive integer, the truncated and shifted approximation

$$\hat{h}_{LP}[n] = \frac{\sin \omega_c (n - N/2)}{\pi (n - N/2)}, \quad 0 \le n \le N$$

will be a length *N*+1 causal linear-phase FIR filter

Zero-Phase Transfer Functions

- Because of the symmetry of the impulse response coefficients as indicated in the two figures, the frequency response of the truncated approximation can be expressed as: $\hat{H}_{LP}(e^{j\omega}) = \sum_{n=0}^{N} \hat{h}_{LP}[n]e^{-j\omega n} = e^{-j\omega N/2} \tilde{H}_{LP}(\omega)$
- Where *H˜_{LP}*(ω), called the zero-phase response or amplitude response, is a real function of ω will be a length *N*+1 causal linear-phase FIR filter

• Consider the two 1st-order transfer functions:

 $H_1(z) = \frac{z+b}{z+a}, \ H_2(z) = \frac{bz+1}{z+a}, \ |a| < 1, \ |b| < 1$

- Both transfer functions have a pole inside the unit circle at the same location and are stable
- But the zero of $H_1(z)$ is inside the unit circle at z = -b, whereas, the zero of $H_2(z)$ is at z = -1/b situated in a mirrorimage symmetry $H_1(z) = H_2(z)$

 However, both transfer functions have an identical magnitude function as

 $H_1(z)H_1(z^{-1}) = H_2(z)H_2(z^{-1})$

• The corresponding phase functions are

$$\arg[H_1(e^{j\omega})] = \tan^{-1} \frac{\sin\omega}{b + \cos\omega} - \tan^{-1} \frac{\sin\omega}{a + \cos\omega}$$

$$\arg[H_2(e^{j\omega})] = \tan^{-1} \frac{b\sin\omega}{1+b\cos\omega} - \tan^{-1} \frac{\sin\omega}{a+\cos\omega}$$

 Figure below shows the unwrapped phase responses of the two transfer functions for a = 0.8 and b = -0.5

- As shown in the figure, H₂(z) has an excess phase lag with respect to H₁(z)
- The excess phase lag property of $H_2(z)$ with respect to $H_1(z)$ can also be explained by observing that we can write

$$H_2(z) = \frac{bz+1}{z+a} = \left(\underbrace{\frac{z+b}{z+a}}_{H_1(z)} \underbrace{\frac{bz+1}{z+b}}_{A(z)}\right)$$

where A(z) = (bz + 1) / (z + b) is a stable allpass function

- The phase functions of $H_1(z)$ and $H_2(z)$ are related through $\arg[H_2(e^{j\omega})] = \arg[H_1(e^{j\omega})] + \arg[A(e^{j\omega})]$
- As the unwrapped phase function of a stable first-order allpass function is a negative function of ω , it follows from the above that $H_2(z)$ has an excess phase lag with $H_1(z)_{7-29}$

The McGraw-Hill Companies

- Generalizing the above result, let $H_m(z)$ be a causal stable transfer function with all zeros inside the unit circle and let H(z) be another causal stable transfer function satisfying $|H(e^{j\omega})| = |H_m(e^{j\omega})|$
- These two transfer functions are then related through $H(z) = H_m(z) A(z)$ where A(z) is a causal stable allpass function
- The unwrapped phase functions of $H_m(z)$ and H(z) are thus related through

 $\arg[H(e^{j\omega})] = \arg[H_m(e^{j\omega})] + \arg[A(e^{j\omega})]$

- H(z) has an excess phase lag with $H_m(z)$
- A causal stable transfer function with all zeros inside the unit circle is called a **minimum-phase transfer function**

Original PowerPoint slides prepared by S. K. Mitra

- A causal stable transfer function with all zeros outside the unit circle is called a **maximum-phase transfer function**
- A causal stable transfer function with zeros inside and outside the unit circle is called a mixed-phase transfer function
- Example Consider the mixed-phase transfer function $H(z) = \frac{2(1+0.3z^{-1})(0.4-z^{-1})}{(1-0.2z^{-1})(1+0.5z^{-1})}$
- We can rewrite H(z) as

$$H(z) = \left[\frac{2(1+0.3z^{-1})(1-0.4z^{-1})}{(1-0.2z^{-1})(1+0.5z^{-1})}\right] \left(\frac{0.4-z^{-1}}{1-0.4z^{-1}}\right)$$

Minimum-phase function

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

7-31

Allpass function

- It is impossible to design an IIR transfer function with an exact linear-phase
- It is always possible to design an FIR transfer function with an exact linear-phase response
- We now develop the forms of the linear-phase FIR transfer function H(z) with real impulse response h[n]
- Let $H(z) = \sum_{n=0}^{N} h[n] z^{-n}$
- If *H*(*z*) is to have a linear-phase, its frequency response must be of the form

$$H(e^{j\omega}) = e^{j(c\omega+\beta)}\check{H}(\omega)$$

where *c* and β are constants, and $\check{H}(\omega)$, called the amplitude response (zero-phase response), is a real function of ω Original PowerPoint slides prepared by S. K. Mitra

- For a real impulse response, the magnitude response $|H(e^{j\omega})|$ is an even function of ω , i.e., $|H(e^{j\omega})| = |H(e^{-j\omega})|$
- Since $|H(e^{j\omega})| = |\check{H}(\omega)|$, the amplitude response is then either an even function or an odd function of ω , i.e., $\check{H}(-\omega) = \pm \check{H}(\omega)$
- The frequency response satisfies the relation

$$|H(e^{j\omega})| = |H^*(e^{-j\omega})|$$

or, equivalently, the relation

 $e^{j(c\omega+\beta)}\check{H}(\omega) = e^{-j(-c\omega+\beta)}\check{H}(-\omega)$

• If $\check{H}(\omega)$ is an even function, then the above relation leads to $e^{j\beta} = e^{-j\beta}$

implying that either $\beta = 0$ or $\beta = \pi$

- From $H(e^{j\omega}) = e^{j(c\omega+\beta)} \check{H}(\omega)$, we have $\check{H}(\omega) = e^{-j(c\omega+\beta)} H(e^{j\omega})$
- Substituting the value of β in the above we get $\check{H}(\omega) = \pm e^{-jc\omega} H(e^{j\omega}) = \pm \sum_n h[n]e^{-j\omega(c+n)}$
- Replacing ω with in the previous equation we get $\check{H}(-\omega) = \pm \sum_{l} h[l] e^{j\omega(c+l)}$
- Let I = N n, we rewrite the above equation as $\check{H}(-\omega) = \pm \sum_{n} h[N-n]e^{j\omega(c+N-n)}$
- As $\check{H}(\omega) = \check{H}(-\omega)$, we have $h[n]e^{-j\omega(c+n)} = h[N-n]e^{j\omega(c+N-n)}$
- The above leads to the condition:

 $h[n] = h[N - n], 0 \le n \le N$, where c = -N/2

 Thus, the FIR filter with an even amplitude response will <u>Original Pave at inear phase if it</u> has asymmetric impulse response-34

• If $\check{H}(\omega)$ is an odd function of ω , then from $e^{j(c\omega+\beta)}\check{H}(\omega) = e^{-j(c-\omega+\beta)}\check{H}(-\omega)$

we get $e^{j\beta} = -e^{-j\beta}$ as $\check{H}(-\omega) = -\check{H}(\omega)$

- The above is satisfied if $\beta = \pi/2$ or $\beta = -\pi/2$
- Then $H(e^{j\omega}) = e^{j(c\omega+\beta)} \check{H}(\omega)$ reduces to $H(e^{j\omega}) = je^{jc\omega} \check{H}(\omega)$
- The last equation can be rewritten as

$$\dot{\mathcal{H}}(\omega) = -je^{-jc\omega} H(e^{j\omega}) = -j \sum_n h[n]e^{-j\omega(c+n)}$$

- As $\check{H}(-\omega) = -\check{H}(\omega)$, from the above we get $\check{H}(-\omega) = j \sum_{l} h[l] e^{j\omega(c+l)}$
- Making a change of variable I = N n we have $\check{H}(-\omega) = j \sum_{n} h[N-n]e^{j\omega(c+N-n)}$

• Equating the above with

$$\check{H}(\omega) = -j \sum_{l} h[l] e^{-j\omega(c+l)}$$

we arrive at the condition for linear phase as

 $h[n] = h[N - n], 0 \le n \le N$, with c = -N/2

- Therefore, an FIR filter with an odd amplitude response will have linear-phase response if it has an antisymmetric impulse response
- Since the length of the impulse response can be either even or odd, we can define four types of linear-phase FIR transfer functions
- For an antisymmetric FIR filter of odd length, i.e., *N* even

$$h[N/2] = 0$$

Original PowerPoint slides prepared by S. K. Mitra
Linear-Phase FIR Transfer Functions

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

Type 1: Symmetric Impulse Response with Odd Length

- In this case, the degree N is even (Assume N = 8)
- The transfer function H(z) is given by $H(z) = h[0] + h[1]z^{-1} + h[2] z^{-2} + h[3] z^{-3} + h[4] z^{-4} + h[5]z^{-5} + h[6]z^{-6} + h[7]z^{-7} + h[8]z^{-8}$
- Because of symmetry, we have h[0] = h[8], h[1] = h[7], h[2] = h[6], and h[3] = h[5]
- Thus, we can write

$$\begin{split} H(z) &= h[0](1+z^{-8}) + h[1](z^{-1}+z^{-7}) + h[2](z^{-2}+z^{-6}) + h[3](z^{-3}+z^{-5}) + h[4] z^{-4} \end{split}$$

$$= z^{-4} \{ h[0](z^4 + z^{-4}) + h[1](z^3 + z^{-3}) + h[2](z^2 + z^{-2}) + h[3](z + z^{-1}) + h[4] \}$$

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

- The corresponding frequency response is then given by $H(e^{j\omega}) = e^{-j4\omega} \{2h[0]\cos(4\omega) + 2h[1]\cos(3\omega) + 2h[2]\cos(2\omega) + 2h[3]\cos(\omega) + h[4]\}$
- The quantity inside the braces is a real function of ω, and can assume positive or negative values in the range 0 ≤ |ω| ≤ π
- The phase function here is given by

 $\theta(\omega) = -4\omega + \beta$

where β is either 0 or $\pi,$ and hence it is a linear function of ω

• The group delay is given by

$$t(\omega) = -\frac{d\theta(\omega)}{d\omega} = 4$$

indicating a constant group delay of 4 samples

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

© The McGraw-Hill Companies, Inc., 2007

• In the general case for Type 1 FIR filters, the frequency response is of the form

$$H(e^{j\omega}) = e^{-jN\omega/2}\tilde{H}(\omega)$$

where the **amplitude response** $\tilde{H}(\omega)$, also called the **zerophase response**, is of the form

$$\widetilde{H}(\omega) = h[\frac{N}{2}] + 2\sum_{n=1}^{N/2} h[\frac{N}{2} - n]\cos(\omega n)$$

• Example – Consider

$$H_0(z) = \frac{1}{6} \left[\frac{1}{2} + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5} + \frac{1}{2} z^{-6} \right]$$

which is seen to be a slightly modified version of a length-7 moving-average FIR filter

• The above transfer function has a symmetric impulse response and therefore a linear phase response Original PowerPoint slides prepared by S. K. Mitra

7-40

• The magnitude response of $H_0(z)$:

- Improved magnitude response obtained by changing the first and the last impulse response coefficients of MA filter
- This filter can be expressed as a cascade of a 2-point MA filter with a 6-point MA filter

$$H_0(z) = \frac{1}{2}(1+z^{-1}) \cdot \frac{1}{6}(1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5})$$

• Thus, $H_0(z)$ has a double zero at z = -1, i.e., ($\omega = \pi$) Original PowerPoint slides prepared by S. K. Mitra

Type 2: Symmetric Impulse Response with Even Length

- In this case, the degree N is odd (Assume N = 7)
- The transfer function H(z) is of the form

 $H(z) = h[0] + h[1]z^{-1} + \dots + h[7]z^{-7}$

- Because of symmetry, we have h[0] = h[7], h[1] = h[6], h[2] = h[5], and h[3] = h[4]
- Thus, we can write

$$\begin{split} H(z) &= h[0](1+z^{-7}) + h[1](z^{-1}+z^{-6}) + h[2](z^{-2}+z^{-5}) + h[3](z^{-3}\\&+z^{-4}) \\ &= z^{-7/2} \{h[0](z^{7/2}+z^{-7/2}) + h[1](z^{5/2}+z^{-5/2}) + h[2](z^{3/2}+z^{-3/2})\\&+ h[3](z^{1/2}+z^{-1/2}) \} \end{split}$$

Original PowerPoint slides prepared by S. K. Mitra

- The corresponding frequency response is then given by $H(e^{j\omega}) = e^{-j7\omega/2} \{2h[0]\cos(7\omega/2) + 2h[1]\cos(5\omega/2) + 2h[2]\cos(3\omega/2) + 2h[3]\cos(\omega/2)\}$
- The quantity inside the braces is a real function of ω, and can assume positive or negative values in the range 0 ≤ |ω| ≤ π
- The phase function here is given by

 $\theta(\omega) = -7\omega/2 + \beta$

where β is either 0 or $\pi,$ and hence it is a linear function of ω

• The group delay is given by

$$\tau(\omega) = \frac{7}{2}$$

indicating a constant group delay of 7/2 samples Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

© The McGraw-Hill Companies, Inc., 2007

The expression for the frequency response in the general case for Type 2 FIR filters is of the form

 $H(e^{j\omega}) = e^{-jN\omega/2}\tilde{H}(\omega)$

• where the amplitude response is given by

$$\widetilde{H}(\omega) = 2 \sum_{n=1}^{(N+1)/2} h[\frac{N+1}{2} - n] \cos(\omega(n - \frac{1}{2}))$$

Original PowerPoint slides prepared by S. K. Mitra

Type 3: Antiymmetric Impulse Response with Odd Length

- In this case, the degree N is even (Assume N = 8)
- The transfer function H(z) is of the form

 $H(z) = h[0] + h[1]z^{-1} + \dots + h[8]z^{-8}$

- Antisymmetric filter coefficients: *h*[0] = −*h*[8], *h*[1] = −*h*[7], *h*[2] = −*h*[6], *h*[3] = − *h*[5], and *h*[4] = 0
- Applying the symmetry condition we get $H(z) = z^{-4} \{h[0](z^4 - z^{-4}) + h[1](z^3 - z^{-3}) + h[2](z^2 - z^{-2}) + h[3](z - z^{-1})\}$
- The corresponding frequency response is given by

 $H(e^{j\omega}) = e^{-j4\omega}e^{j\pi/2} \{2h[0]\sin(4\omega) + 2h[1]\sin(3\omega) + 2h[2]\sin(2\omega) + 2h[3]\sin(\omega)\}$

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

• It also exhibits a linear phase response given by

$$\theta(\omega) = -4\omega + \pi/2 + \beta$$

where β is either 0 or π

• The group delay here is

$$T(\omega) = 4$$

indicating a constant group delay of 4 samples

• In the general case

$$H(e^{j\omega}) = je^{-jN\omega/2}\tilde{H}(\omega)$$

where the amplitude response is of the form

$$\widetilde{H}(\omega) = 2\sum_{n=1}^{N/2} h[\frac{N}{2} - n]\sin(\omega n)$$

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

Type 4: Antiymmetric Impulse Response with Even Length

- In this case, the degree N is Odd (Assume N = 7)
- The transfer function H(z) is of the form

 $H(z) = h[0] + h[1]z^{-1} + \dots + h[7]z^{-7}$

- Antisymmetric filter coefficients: *h*[0] = −*h*[7], *h*[1] = −*h*[6], *h*[2] = −*h*[5], and *h*[3] = − *h*[4]
- Applying the symmetry condition we get $H(z) = z^{-7/2} \{h[0](z^{7/2} - z^{-7/2}) + h[1](z^{5/2} - z^{-5/2}) + h[2](z^{3/2} - z^{-3/2}) + h[3](z^{1/2} - z^{-1/2})\}$
- The corresponding frequency response is given by $H(e^{j\omega}) = e^{-j7\omega/2}e^{j\pi/2} \{2h[0]\sin(7\omega/2) + 2h[1]\sin(5\omega/2) + 2h[2]\sin(3\omega/2) + 2h[3]\sin(\omega/2)\}$

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

© The McGraw-Hill Companies, Inc., 2007

General Form of Frequency Response

• In each of the four types of linear-phase FIR filters, the frequency response is of the form $II(-i\Theta) = -\frac{iN\Theta}{2} - \frac{i\Theta}{i\Theta} \tilde{I}(-)$

 $H(e^{j\omega}) = e^{-jN\omega/2} e^{j\beta} \tilde{H}(\omega)$

- The amplitude response $\tilde{H}(\omega)$ for each of the four types of linear-phase FIR filters can become negative over certain frequency ranges, typically in the stopband
- The magnitude and phase responses of the linear-phase FIR are given by

$$(e^{j\omega})| = |\tilde{H}(\omega)|$$

$$\theta(\omega) = \begin{cases} -\frac{N\omega}{2} + \beta, & \text{for } \tilde{H}(\omega) \ge 0\\ -\frac{N\omega}{2} + \beta - \pi, & \text{for } \tilde{H}(\omega) < 0 \end{cases}$$

• The group delay in each case is $\tau(\omega) = N/2$

Original PowerPoint slides prepared by S. K. Mitra

|H|

General Form of Frequency Response

- Note that, even though the group delay is constant, since in general |*H*(*e^{jω}*)| is not a constant, the output waveform is not a replica of the input waveform
- An FIR filter with a frequency response that is a real function of ω is often called a zero-phase filter
- Such a filter must have a noncausal impulse response

- Consider first an FIR filter with a symmetric impulse response: h[n] = h[N - n]
- Its transfer function can be written as

$$H(z) = \sum_{n=0}^{N} h[n] z^{-n} = \sum_{n=0}^{N} h[N-n] z^{-n}$$

• By making a change of variable m = N - n, we can write

$$\sum_{n=0}^{N} h[N-n]z^{-n} = \sum_{m=0}^{N} h[m]z^{-N+m} = z^{-N} \sum_{m=0}^{N} h[m]z^{m}$$

• But,

$$\sum_{m=0}^{N} h[m] z^{m} = H(z^{-1})$$

• Hence for an FIR filter with a symmetric impulse response of length *N*+1 we have $H(z) = z^{-N}H(z^{-1})$

• Such kind of *H*(*z*) is called a **mirror-image polynomial (MIP)** Original PowerPoint slides prepared by S. K. Mitra

- Now consider an FIR filter with a antisymmetric impulse response: h[n] = -h[N - n]
- Its transfer function can be written as

$$H(z) = \sum_{n=0}^{N} h[n] z^{-n} = -\sum_{n=0}^{N} h[N-n] z^{-n}$$

• By making a change of variable m = N - n, we get

$$-\sum_{n=0}^{N} h[N-n]z^{-n} = -\sum_{m=0}^{N} h[m]z^{-N+m} = -z^{-N}H(z^{-1})$$

- Hence, the transfer function H(z) of an FIR filter with an antisymmetric impulse response satisfies the condition $H(z) = -z^{-N}H(z^{-1})$
- A real-coefficient polynomial H(z) satisfying the above condition is called an antimirror-image polynomial (AIP)

Original PowerPoint slides prepared by S. K. Mitra

- It follows from the relation $H(z) = \pm z^{-N}H(z^{-1})$ that if $z = \xi_0$ is a zero of H(z), so is $z = 1/\xi_0$
- Moreover, for an FIR filter with a real impulse response, the zeros of H(z) occur in complex conjugate pairs
- Hence, a zero at $z = \xi_0$ is associated with a zero at $z = \xi_0^*$
- Thus, a complex zero that is not on the unit circle is ۲ associated with a set of 4 zeros given by

 $z = re^{\pm j\phi}, z = (1/r)e^{\pm j\phi}$

- A zero on the unit circle appear as a pair $z = e^{\pm j\phi}$, as its reciprocal is also its complex conjugate
- Since a zero at $z = \pm 1$ is its own reciprocal, it can appear only singly 7-52

Original PowerPoint slides prepared by S. K. Mitra

- Now a Type 2 FIR filter satisfies $H(z) = z^{-N}H(z^{-1})$ with degree *N* odd
- Hence, *H*(−1) = (−1)^{-N} *H*(−1) = −*H*(−1) implying that *H*(−1) = 0, i.e., *H*(*z*) must have a zero at *z* = −1
- a Type 3 or 4 FIR filter satisfies

$$H(z) = -z^{-N}H(z^{-1})$$

- Thus, $H(1) = -(1)^{-N} H(1) = -H(1)$ implying that H(z) must have a zero at z = 1
- On the other hand, only the Type 3 FIR filter is restricted to have a zero at z = −1 since here the degree N is even and hence, H(−1) = −(−1)^{-N} H(−1) = −H(−1)

Original PowerPoint slides prepared by S. K. Mitra

• Typical zero locations shown below

Original PowerPoint slides prepared by S. K. Mitra

The McGraw Hill Companies

Summary

- 1. Type 1 FIR filter: Either an even number or no zeros at z = 1 and z = -1
- 2. Type 2 FIR filter: Either an even number or no zeros at z = 1, and an odd number of zeros at z = -1
- 3. Type 3 FIR filter: An odd number of zeros at z = 1 and z = -1
- 4. Type 4 FIR filter: An odd number of zeros at z = 1, and either an even number or no zeros at z = -1

- The presence of zeros at $z = \pm 1$ leads to the following limitations on the use of these linear-phase transfer functions for designing frequency-selective filters
- A Type 2 FIR filter cannot be used to design a highpass filter since it always has a zero z = −1
- A Type 3 FIR filter has zeros at both at both z = 1 and z = -1, and hence cannot be used to design either a lowpass or a highpass or a bandstop filter
- A Type 4 FIR filter is not appropriate to design lowpass and bandstop filters due to the presence of a zero at z = 1
- Type 1 FIR filter has no such restrictions and can be used to design almost any type of filters

Original PowerPoint slides prepared by S. K. Mitra

Simple Lowpass FIR Digital Filters

 The simplest lowpass FIR digital filter is the 2-point movingaverage filter given by

$$H_0(z) = \frac{1}{2}(1+z^{-1}) = \frac{z+1}{2z}$$

- The above transfer function has a zero at z = -1 and a pole at z = 0
- Note that here the pole vector has a unity magnitude for all values of $\boldsymbol{\omega}$
- On the other hand, as ω increases from 0 to π, the magnitude of the zero vector decreases from a value of 2, the diameter of the unit circle, to 0
- Hence, the magnitude response $|H_0(e^{j\omega})|$ is a monotonically decreasing function of ω from $\omega = 0$ to $\omega = \pi$

- The maximum value of the magnitude function is 1 at $\omega = 0$, and the minimum value is 0 at $\omega = \pi$, i.e., $|H_0(e^{j0})| = 1$, $|H_0(e^{j\pi})| = 0$
- The frequency response of the above filter is given by $|H_0(e^{j\omega})| = e^{-j\omega/2}\cos(\omega/2)$
- The magnitude response $|H_0(e^{j\omega})| = e^{-j\omega/2} \cos(\omega/2)$ is a monotonically decreasing function of ω

• The frequency $\omega = \omega_c$ at which

$$|H_0(e^{j\omega_c})| = \frac{1}{\sqrt{2}} |H_0(e^{j0})|$$

is of practical interest since here the gain $G(\omega_c)$ in dB is given by $G(\omega_c) = 20\log_{10} |H(e^{j\omega_c})|$ $= 20\log_{10} |H(e^{j0})| - 20\log_{10} \sqrt{2} \approx -3 \text{ dB}$

since the dc gain $G(0) = 20\log_{10}|H_0(e^{j0})| = 0$

- Thus, the gain $G(\omega)$ at $\omega = \omega_c$ is approximately 3 dB less than the gain at $\omega = 0$
- As a result, ω_c is called the **3-dB cutoff frequency**
- To determine the value of ω_c we set $|H_0(e^{j\omega_c})|^2 = \cos^2(\omega_c/2) = \frac{1}{2}$ which yields $\omega_c = \pi/2$

Original PowerPoint slides prepared by S. K. Mitra

- The 3-dB cutoff frequency ω_{c} can be considered as the passband edge frequency
- As a result, for the filter $H_0(z)$ the passband width is approximately $\pi/2$, and the stopband is from $\pi/2$ to π
- Note: $H_0(z)$ has a zero at z = -1 or $\omega = \pi$, which is in the stopband of the filter
- A cascade of 3 sections of the FIR filter $H_0(z) = \frac{1}{2}(1 + z^{-1})$ results in an improved lowpass frequency

Highpass FIR Digital Filters

- The simplest highpass FIR filter is obtained from the simplest lowpass FIR filter by replacing *z* with -zFor example: $H_1(z) = \frac{1}{2}(1 - z^{-1})$
- Corresponding frequency response is given by
- $H_1(e^{j\omega}) = je^{-j\omega/2} \sin(\omega/2)$

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

Highpass FIR Digital Filters

The monotonically increasing behavior of the magnitude function can again be demonstrated by examining the pole-zero pattern of the transfer function H₁(z)
For example: H₁(z) = ½(1 - z⁻¹)

• The highpass transfer function $H_1(z)$ has a zero at z = 1 or $\omega = 0$ which is in the stopband of the filter

- Improved highpass magnitude response can be obtained by cascading several sections of the first-order highpass filter
- Alternately, a higher-order highpass filter of the form $H_1(z) = \frac{1}{M} \sum_{n=0}^{M-1} (-1)^n z^{-n}$

is obtained by replacing z with -z in the transfer function of a moving average filter

Original PowerPoint slides prepared by S. K. Mitra

Highpass FIR Digital Filters

- An application of the FIR highpass filters is in moving-targetindicator (MTI) radars
- In these radars, interfering signals, called **clutters**, are generated from fixed objects in the path of the radar beam
- The clutter, generated mainly from ground echoes and weather returns, has frequency components near zero frequency (dc)
- The clutter can be removed by filtering the radar return signal through a **two-pulse canceler**, which is the first-order FIR highpass filter $H_1(z) = \frac{1}{2}(1 z^{-1})$
- For a more effective removal it may be necessary to use a three-pulse canceler obtained by cascading two two-pulse cancelers

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

Simple IIR Digital Filters

• We have shown earlier that the first-order causal IIR transfer function $H(z) = \frac{K}{1 - \alpha z^{-1}}, \quad 0 < \alpha < 1$

has a lowpass magnitude response for $\alpha > 0$

• On the other hand, the first-order causal IIR transfer function $H(z) = \frac{K}{1 - \alpha z^{-1}}, -1 < \alpha < 0$

has a highpass magnitude response for $\alpha < 0$

• However, the modified transfer function obtained with the addition of a factor $(1 + z^{-1})$ to the numerator

$$H(z) = \frac{K(1 + z^{-1})}{1 - \alpha z^{-1}}, \quad -1 < \alpha < 0$$

exhibits a lowpass magnitude response

Original PowerPoint slides prepared by S. K. Mitra

Simple IIR Digital Filters

• The modified first-order lowpass transfer function for both positive and negative values of α is then given by

$$H_{LP}(z) = \frac{K(1+z^{-1})}{1-\alpha z^{-1}}, \quad 0 < |\alpha| < 1$$

- As ω increases from 0 to $\pi,$ the magnitude of the zero vector decreases from a value of 2 to 0
- The maximum values of the magnitude function is $2K/(1-\alpha)$ at $\omega = 0$ and the minimum value is 0 at $\omega = \pi$, i.e.,

 $|H_{LP}(e^{j0})| = 2K/(1-\alpha), |H_{LP}(e^{j\pi})| = 0$

• Therefore, $|H_{LP}(e^{j\omega})|$ is a monotonically decreasing function of ω from $\omega = 0$ to $\omega = \pi$

Simple IIR Digital Filters

- For most applications, it is usual to have a dc gain of 0 dB, that is to have $|H_{LP}(e^{j0})| = 1$
- To this end, we choose $K = (1 \alpha)/2$ resulting in the firstorder IIR lowpass transfer function

$$H_{LP}(z) = \frac{1 - \alpha}{2} \left(\frac{1 + z^{-1}}{1 - \alpha z^{-1}} \right), \quad 0 < |\alpha| < 1$$

• The above transfer function has a zero at i.e., at $\omega = \pi$ which is in the stopband

• A first-order causal lowpass IIR digital filter has a transfer function given by $1-\alpha(1+z^{-1})$

$$H_{LP}(z) = \frac{1 - \alpha}{2} \left(\frac{1 + z^{-1}}{1 - \alpha z^{-1}} \right)$$

where $|\alpha| < 1$ for stability

- The above transfer function has a zero at z = -1 i.e., at ω = π which is in the stopband
- $H_{LP}(z)$ has a real pole at $z = \alpha$
- As ω increases from 0 to π, the magnitude of the zero vector decreases from a value of 2 to 0, whereas, for a positive value of α, the magnitude of the pole vector increases from a value of 1- α to 1+ α function is 1 at ω = 0, and the minimum
- The maximum value of the magnitude function is 1 at $\omega = 0$, and the minimum value is 0 at $\omega = \pi$ Original PowerPoint slides prepared by S. K. Mitra

- That is $|H_{LP}(e^{j0})| = 1$, $|H_{LP}(e^{j\pi})| = 0$
- Therefore, $|H_{LP}(e^{j\omega})|$ is a monotonically decreasing function of ω from $\omega = 0$ to $\omega = \pi$ as indicated below

• The squared magnitude function is given by

$$|H_{LP}(e^{j\omega})|^{2} = \frac{(1-\alpha)^{2}(1+\cos\omega)}{2(1+\alpha^{2}-2\alpha\cos\omega)}$$

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

© The McGraw-Hill Companies, Inc., 2007

• The derivative of $|H_{LP}(e^{j\omega})|^2$ with respect to ω is given by

$$\frac{d |H_{LP}(e^{j\omega})|^2}{d\omega} = \frac{-(1-\alpha)^2(1+2\alpha+\alpha^2)\sin\omega}{2(1-2\alpha\cos\omega+\alpha^2)^2}$$

 $d|H_{LP}(e^{j\omega})|^2 / d\omega \le 0$ in the range $0 \le \omega \le \pi$ verifying again the monotonically decreasing behavior of the magnitude function

• To determine the 3-dB cutoff frequency we set

$$|H_{LP}(e^{j\omega_c})|^2 = \frac{1}{2}$$

• in the expression for the square magnitude function resulting in $\frac{(1-\alpha)^2(1+\cos\omega_c)}{2} = \frac{1}{2}$

$$\frac{1}{2(1+\alpha^2-2\alpha\cos\omega_c)}=\frac{1}{2}$$

or
$$(1 - \alpha)^2 (1 + \cos \omega_c) = 1 + \alpha^2 - 2\alpha \cos \omega_c \Rightarrow \cos \omega_c = 2\alpha/(1 + \alpha^2)$$

Original PowerPoint slides prepared by S. K. Mitra

- The above quadratic equation can be solved for α yielding two solutions
- The solution resulting in a stable transfer function $H_{LP}(z)$ is given by $\alpha = \frac{1 \sin \omega_c}{\cos \omega_c}$
- It follows from

$$H_{LP}(e^{j\omega})|^{2} = \frac{(1-\alpha)^{2}(1+\cos\omega)}{2(1+\alpha^{2}-2\alpha\cos\omega)}$$

that $H_{LP}(z)$ is a BR function for $|\alpha| < 1$

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

Highpass IIR Digital Filters

• A first-order causal highpass IIR digital filter has a transfer function given by

$$H_{HP}(z) = \frac{1+\alpha}{2} \left(\frac{1-z^{-1}}{1-\alpha z^{-1}} \right)$$

where $|\alpha| < 1$ for stability

- The above transfer function has a zero at z = 1 i.e., at ω = 0 which is in the stopband
- Its 3-dB cutoff frequency is given by

 $\alpha = (1 - \sin \omega_c) / \cos \omega_c$

which is the same as that of $H_{LP}(z)$

© The McGraw-Hill Companies, Inc., 2007

Highpass IIR Digital Filters

• Magnitude and gain responses of $H_{HP}(z)$ are shown below

• $H_{HP}(z)$ is a BR function for $|\alpha| < 1$

Original PowerPoint slides prepared by S. K. Mitra
Highpass IIR Digital Filters

- Magnitude and gain responses of $H_{HP}(z)$ are shown below
- Example Design a first-order highpass digital filter with a 3dB cutoff frequency of 0.8π
- Now, $\sin(\omega_c) = \sin(0.8\pi) = 0.587785$ and $\cos(0.8\pi) = -0.80902$
- Therefore $\alpha = (1 \sin \omega_c)/\cos \omega_c = -0.5095245$
- Therefore,

$$H_{HP}(z) = \frac{1+\alpha}{2} \left(\frac{1-z^{-1}}{1-\alpha z^{-1}} \right)$$
$$= 0.245238 \left(\frac{1-z^{-1}}{1+0.5095245 z^{-1}} \right)$$

Original PowerPoint slides prepared by S. K. Mitra

• A 2nd-order bandpass digital transfer function is given by

$$H_{BP}(z) = \frac{1 - \alpha}{2} \left(\frac{1 - z^{-2}}{1 - \beta(1 + \alpha) z^{-1} + \alpha z^{-2}} \right)$$

Its squared magnitude function is

$$= \frac{\left|H_{BP}(e^{j\omega})\right|^{2}}{2[1+\beta^{2}(1+\alpha)^{2}+\alpha^{2}-2\beta(1+\alpha)^{2}\cos\omega+2\alpha\cos2\omega]}$$

- $|H_{BP}(e^{j\omega})|^2$ goes to zero at $\omega = 0$ and $\omega = \pi$
- It assumes a maximum value of 1 at $\omega = \omega_o$ called the **center frequency** of the bandpass filter, where

$$\omega_o = \cos^{-1}(\beta)$$

• The frequencies ω_{c1} and ω_{c2} where $|H_{BP}(e^{j\omega})|^2$ becomes 1/2 Original Green called the 3-d B cutoff frequencies 7-74

The McGraw-Hill Companies

 The difference between the two cutoff frequencies, assuming ω_{c1} > ω_{c2} is called the **3-dB bandwidth** and is given by

$$B_w = \omega_{c2} - \omega_{c1} = \cos^{-1} \left(\frac{2\alpha}{1 + \alpha^2} \right)$$

• The transfer function $H_{BP}(z)$ is a BR function if $|\alpha| < 1$ and $|\beta| < 1$

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

- Example Design a 2nd order bandpass digital filter with central frequency at 0.4π and a 3-dB bandwidth of 0.1π
- Here $\beta = \cos(\omega_o) = \cos(0.4\pi) = 0.309017$ and $2\alpha/(1+\alpha)^2 = \cos(B_w) = \cos(0.1\pi) = 0.9510565$
- The solution of the above equation yields: $\alpha = 1.376382$ and $\alpha = 0.72654253$
- The corresponding transfer functions are

$$H'_{BP}(z) = -0.18819 \frac{1 - z^{-2}}{1 - 0.7343424z^{-1} + 1.37638z^{-2}}$$

and
$$H''_{BP}(z) = 0.13673 \frac{1 - z^{-2}}{1 - 0.533531z^{-1} + 0.72654253z^{-2}}$$

• The poles of $H'_{BP}(z)$ are at $z = 0.3671712 \pm j1.11425636$ and have a magnitude > 1

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

- Thus, the poles of $H_{BP}(z)$ are outside the unit circle making the transfer function unstable
- On the other hand, the poles of $H_{BP}^{"}(z)$ are at $z = 0.2667655 \pm j0.8095546$ and have a
- The solution of the above equation yields: $\alpha = 1.376382$ and $\alpha = 0.72654253$ and have a magnitude of 0.8523746
- Hence $H_{BP}^{"}(z)$ is BIBO stable

Bandstop IIR Digital Filters

A 2nd-order bandstop digital filter has a transfer function given by

$$H_{BS}(z) = \frac{1+\alpha}{2} \left(\frac{1-2\beta z^{-1} + z^{-2}}{1-\beta(1+\alpha) z^{-1} + \alpha z^{-2}} \right)$$

• The transfer function $H_{BS}(z)$ is a BR function if $|\alpha| < 1$ and $|\beta| < 1$

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

Bandstop IIR Digital Filters

- Here, the magnitude function takes the maximum value of 1 at ω = 0 and ω = π
- It goes to 0 at $\omega = \omega_o$, where ω_o , called the **notch frequency**, is given by

 $\omega_o = \cos(-1)(\beta)$

- The digital transfer function $H_{BS}(z)$ is more commonly called a **notch filter**
- The frequencies ω_{c1} and ω_{c2} where |H_{BS}(e^{jω})|² becomes 1/2 are called the 3-dB cutoff frequencies
- The difference between the two cutoff frequencies, assuming $\omega_{c1} > \omega_{c2}$ is called the **3-dB notch bandwidth** and is given by

$$B_w = \omega_{c2} - \omega_{c1} = \cos^{-1} \left(\frac{2\alpha}{1 + \alpha^2} \right)$$

Original PowerPoint slides prepared by S. K. Mitra

- By cascading the simple digital filters discussed so far, we can implement digital filters with sharper magnitude responses
- Consider a cascade of *K* first-order lowpass sections characterized by the transfer function

$$H_{LP}(z) = \frac{1 - \alpha}{2} \left(\frac{1 + z^{-1}}{1 - \alpha z^{-1}} \right)$$

• The corresponding squared-magnitude function is given by

$$|G_{LP}(e^{j\omega})|^{2} = \left[\frac{(1-\alpha)^{2}(1+\cos\omega)}{2(1+\alpha^{2}-2\alpha\cos\omega)}\right]^{K}$$

Original PowerPoint slides prepared by S. K. Mitra

• To determine the relation between its 3-dB cutoff frequency ω_c and the parameter α , we set

$$\left[\frac{(1-\alpha)^2(1+\cos\omega_c)}{2(1+\alpha^2-2\alpha\cos\omega_c)}\right]^K = \frac{1}{2}$$

which when solved for α , yields for a stable $G_{LP}(z)$

$$\alpha = \frac{1 + (1 - C)\cos\omega_c - \sin\omega_c\sqrt{2C - C^2}}{1 - C + \cos\omega_c}$$

where $C = 2^{(K-1)/K}$

• It should be noted that the expression for α given earlier reduces to $1-\sin \omega$.

$$\alpha = \frac{1 - \sin \omega_c}{\cos \omega_c}$$

for
$$K = 1$$

Original PowerPoint slides prepared by S. K. Mitra

- Example Design a lowpass filter with a 3- dB cutoff frequency at $\omega_c = 0.4\pi$ using a single first-order section and a cascade of 4 first-order sections, and compare their gain responses
- For the single first-order lowpass filter we have

$$\alpha = \frac{1 + \sin \omega_c}{\cos \omega_c} = \frac{1 + \sin(0.4\pi)}{\cos(0.4\pi)} = 0.1584$$

 For the cascade of 4 first-order sections, we substitute K = 4 and get

$$C = 2^{(K-1)/K} = 2^{(4-1)/4} = 1.6818$$

• Next we compute $\alpha = \frac{1 + (1 - C)\cos\omega_c - \sin\omega_c\sqrt{2C - C^2}}{1 - C + \cos\omega_c}$ Original PowerPoint slides prepared by S. The McGraw-Hill Companies = -0.251

- The gain responses of the two filters are shown below
- As can be seen, cascading has resulted in a sharper roll-off in the gain response

Original PowerPoint slides prepared by S. K. Mitra

- The simple filters discussed so far are characterized either by a single passband and/or a single stopband
- There are applications where filters with multiple passbands and stopbands are required
- The **comb filter** is an example of such filters
- In its most general form, a comb filter has a frequency response that is a periodic function of ω with a period $2\pi/L$, where *L* is a positive integer
- If H(z) is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with *L* delays resulting in a structure with a transfer function given by $G(z) = H(z^L)$

Original PowerPoint slides prepared by S. K. Mitra

- If $|H(e^{j\omega})|$ exhibits a peak at ω_p , then $|G(e^{j\omega})|$ will exhibit *L* peaks at $\omega_p k/L$, $0 \le k \le L 1$ in the frequency range $0 \le \omega < 2\pi$
- Likewise, if $|H(e^{j\omega})|$ has a notch at ω_o , then then $|G(e^{j\omega})|$ have L notches at $\omega_o k/L$, $0 \le k \le L - 1$ in the frequency range $0 \le \omega \le 2\pi$
- A comb filter can be generated from either an FIR or an IIR prototype filter
- For example, the comb filter generated from the prototype lowpass FIR filter $H_0(z) = 1/2 (1 + z^{-1})$ has a transfer function $G_0(z) = H_0(z^L) = 1/2 (1 + z^{-L})$
- $|G_0(e^{j\omega})|$ has *L* notches at $\omega = (2k+1)\pi/L$ and *L* peaks at $\omega = 2\pi k/L$, $0 \le k \le L-1$, in the frequency range $0 \le \omega < 2\pi$ Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

• On the other hand, the comb filter generated from the prototype lowpass FIR filter $H_1(z) = 1/2 (1 - z^{-1})$ has a transfer function

$$G_1(z) = H_1(z^L) = 1/2 (1 - z^{-L})$$

• $|G_1(e^{j\omega})|$ has L notches at $\omega = (2k+1)\pi/L$ and L peaks at $\omega = 2\pi k/L$, $0 \le k \le L-1$, in the frequency range $0 \le \omega < 2\pi$

- Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter
- For example, the *M*-point moving average filter

$$H(z) = \frac{1 - z^{-M}}{M(1 - z^{-1})}$$

has been used as a prototype

- This filter has a peak magnitude at $\omega = 0$, and M 1 notches at $\omega = 2\pi I/M$, $1 \le I \le M 1$
- The corresponding comb filter has a transfer function

$$G(z) = \frac{1 - z^{-LM}}{M(1 - z^{-L})}$$

whose magnitude has L peaks at $2\pi k/L$, $1 \le k \le L - 1$ and L(M - 1) notches at $2\pi k/LM$, $1 \le k \le L(M - 1)$

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

 A set of *L* transfer functions, {*H_i(z)*}, 0 ≤ *i* ≤ *L* − 1, is defined to be **delay-complementary** of each other if the sum of their transfer functions is equal to some integer multiple of unit delays, i.e., ^{L-1}
 ∑*H_i(z) = βz^{-n_o}*, β ≠ 0

where n_o is a nonnegative integer

i=0

- A delay-complementary pair {H₀(z), H₁(z)} can be readily designed if one of the pairs is a known Type 1 FIR transfer function of odd length
- Let $H_0(z)$ be a Type 1 FIR transfer function of length M = 2K+1, its delay-complementary transfer function is given by $H_1(z) = z^{-K} H_0(z)$

Original PowerPoint slides prepared by S. K. Mitra

- Let the magnitude response of $H_0(z)$ be equal to $1 \pm \delta_p$ in the passband and less than or equal to δ_s in the stopband where δ_p and δ_s are very small numbers
- Now the frequency response of $H_0(z)$ can be expressed as

$$H_0(e^{j\omega}) = e^{-jK\omega} \breve{H}_0(\omega)$$

where $H_0(\omega)$ is the **amplitude response**

• Its delay-complementary transfer function $H_1(z)$ has a frequency response given by

$$H_1(e^{j\omega}) = e^{-jK\omega} \breve{H}_1(\omega) = e^{-jK\omega} [1 - \breve{H}_0(\omega)]$$

• Now, in the passband, $1 - \delta_p \le H_0(\omega) \le 1 + \delta_p$, and in the stopband, $-\delta_s \le H_0(\omega) \le \delta_s$

- It follows from the above equation that $-\delta_p \leq H_1(\omega) \leq \delta_p$, and in the stopband, $1 \delta_s \leq H_1(\omega) \leq 1 + \delta_s$
- As a result, H₁(z) has a complementary magnitude response characteristic to that of H₀(z) with a stopband exactly identical to the passband of H₀(z), and a passband that is exactly identical to the stopband of H₀(z)
- Thus, if $H_0(z)$ is a lowpass filter, $H_1(z)$ will be a highpass filter, and vice versa
- The frequency ω_o at which $H_0(\omega_o) = H_1(\omega_o) = 0.5$ the gain responses of both filters are 6 dB below their maximum values
- The frequency is thus called the **6-dB crossover frequency**

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

- Example Consider the Type 1 bandstop transfer function $H_{BS}(z) = \frac{1}{64}(1+z^{-2})^4(1-4z^{-2}+5z^{-4}+5z^{-8}-4z^{-10}+z^{-12})$
- Its delay-complementary Type 1 bandpass transfer function is given by $H_{BP}(z) = z^{-10} H_{BS}(z)$

 $=\frac{1}{64}(1-z^{-2})^4(1+4z^{-2}+5z^{-4}+5z^{-8}+4z^{-10}+z^{-12})$

The McGraw-Hill Companies

Allpass Complementary Filters

- A set of *M* transfer functions, $\{H_i(z)\}, 0 \le i \le M 1$, is defined to be **allpass-complementary** of each other, if the sum of their transfer functions is equal to an allpass function, i.e., $\sum_{i=1}^{M-1} H_i(z) = A(z)$
- Example Consider the two transfer functions $H_0(z)$ and $H_1(z)$ given by

 $H_0(z) = \frac{1}{2} [A_0(z) + A_1(z)]$ $H_1(z) = \frac{1}{2} [A_0(z) - A_1(z)]$

where $A_0(z)$ and $A_1(z)$ are stable allpass transfer functions

- Note that $H_0(z) + H_1(z) = A_0(z)$
- Hence, $H_0(z)$ and $H_1(z)$ are allpass complementary

Power Complementary Filters

- A set of *M* transfer functions, $\{H_i(z)\}, 0 \le i \le M 1$, is defined to be **power-complementary** of each other, if the sum of their square-magnitude responses is equal to a constant *K* for all values of ω , i.e., $\frac{M-1}{\sum_{i=0}^{M-1} |H_i(e^{j\omega})|^2} = K$, for all ω
- By analytic continuation, the above property is equal to $\sum_{i=0}^{M-1} H_i(z)H_i(z^{-1}) = K, \quad \text{for all } \omega$

for real coefficient $H_0(z)$

 Usually, by scaling the transfer functions, the powercomplementary property is defined for K = 1

Power Complementary Filters

- For a pair of power-complementary transfer functions, $H_0(z)$ and $H_1(z)$, the frequency ω_o where $|H_0(e^{j\omega o})|^2 = |H_1(e^{j\omega o})|^2 = 0.5$, is called the **cross-over frequency**
- At this frequency the gain responses of both filters are 3-dB below their maximum values
- As a result, is called the **3-dB cross-over frequency**
- Example Consider the two transfer functions $H_0(z)$ and $H_1(z)$ given by

 $H_0(z) = \frac{1}{2} [A_0(z) + A_1(z)]$ $H_1(z) = \frac{1}{2} [A_0(z) - A_1(z)]$

where $A_0(z)$ and $A_1(z)$ are stable allpass transfer functions

• $H_0(z)$ and $H_1(z)$ are allpass and power complementary

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

Doubly Complementary Filters

- A set of *M* transfer functions satisfying both the allpass complementary and the power complementary properties is known as a doubly-complementary set
- A pair of doubly-complementary IIR transfer functions, $H_0(z)$ and $H_1(z)$, with a sum of allpass decomposition can be simply realized as indicated below

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

Doubly Complementary Filters

Example - The first-order lowpass transfer function

$$H_{LP}(z) = \frac{1-\alpha}{2} \left(\frac{1+z^{-1}}{1-\alpha z^{-1}} \right)$$

can be expressed as

$$H_{LP}(z) = \frac{1}{2} \left(1 + \frac{-\alpha + z^{-1}}{1 - \alpha z^{-1}} \right) = \frac{1}{2} \left[A_0(z) + A_1(z) \right]$$

where

$$A_0(z) = 1, \quad A_1(z) = \frac{-\alpha + z^{-1}}{1 - \alpha z^{-1}}$$

• Its power-complementary highpass transfer function is thus given by $H_{HP}(z) = \frac{1}{2} [A_0(z) - A_1(z)] = \frac{1}{2} \left(1 - \frac{-\alpha + z^{-1}}{1 - \alpha z^{-1}} \right)$ $= \frac{1 + \alpha}{2} \left(\frac{1 - z^{-1}}{1 - \alpha z^{-1}} \right)$

Original PowerPoint slides prepared by S. K. Mitra

© The McGraw-Hill Companies, Inc., 2007

Doubly Complementary Filters

- The above expression is precisely the firstorder highpass transfer function described earlier
- Figure below demonstrates the allpass complementary property and the power complementary property of can be expressed as $H_{IP}(z)$ and $H_{HP}(z)$

Original PowerPoint slides prepared by S. K. Mitra

The McGraw-Hill Companies

© The McGraw-Hill Companies, Inc., 2007

Power Symmetric Filters

 A real-coefficient causal digital filter with a transfer function H(z) is said to be a power-symmetric filter if it satisfies the condition

$$H(z)H(z^{-1}) + H(-z)H(-z^{-1}) = K$$

where K > 0 is a constant

- It can be shown that the gain function $G(\omega)$ of a powersymmetric transfer function at $\omega = \pi$ is given by
- $10\log_{10}K 3 \, dB$
- If we define G(z) = H(-z), then it follows from the definition of the power-symmetric filter that H(z) and G(z) are power-complementary as

$$H(z)H(z^{-1}) + G(z)G(z^{-1}) = a \text{ constant}$$

Original PowerPoint slides prepared by S. K. Mitra

Conjugate Quadratic Filters

• If a power-symmetric filter has an FIR transfer function H(z)of order *N*, then the FIR digital filter with a transfer function $G(z) = z^{-N}H(-z^{-1})$

is called a **conjugate quadratic filter** of H(z) and vice-versa

- It follows from the definition that *G*(*z*) is also a power-symmetric causal filter quadratic filters
- It also can be seen that a pair of conjugate quadratic filters
 H(z) and G(z) are also power-complementary
- Example Let $H(z) = 1 2z^{-1} + 6z^{-2} + 3z^{-3}$

 $H(z)H(z^{-1}) + H(-z)H(-z^{-1}) = 100$

• H(z) is a power-symmetric transfer function