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Chapter 2

Discrete-Time Signals
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 Signals are represented as sequences of numbers, called 
samples

 Sample value of a typical signal or sequence denoted as x
= {x[n]} with − ∞ ≤ n ≤ ∞ 

 x[n] is defined only for integer values of n and undefined for 
non-integer values of n

 Representation of discrete-time signals:

 Functional representation

 Tabular representation

 Sequence representation

x(n) = {…,0.2, 2.2, 1.1, 0.2, -3.7, 2.9. …}

  2, 0

3, 0

n n
x n

n

 
   
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Discrete-Time Signals
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 Graphical representation 

Discrete-Time Signals
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 Sampling a speech signal

  ( ),ax n x nT n    
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Basic Sequences
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 Unit sample sequence -

 Unit step sequence -

  1, 0

0, 0
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     1n u n u n   
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 Unit ramp signal -

 Real exponential signal -

  , 0

0, 0r

n n
u n

n


  

     is a real valuenx n A 

Basic Sequences

0  <1 >1

-1 0  -1 
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 Complex exponential signal -
 

    

0 0

0 0

              

cos sin

n j n jn j

n

x n A A e e e

A n j n

    

    

  

   

   0cos
n

Rx n A n   

     R Ix n x n jx n 

   0sin
n

Ix n A n   

Basic Sequences
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 Complex exponential signal -
         R Ix n x n jx n x n x n   

    nx n A n r 

   x n n n   

Basic Sequences
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 Sinusoidal signals with different frequencies

Basic Sequences
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Basic Sequences

 An arbitrary sequence can be represented in the time-
domain as a weighted sum of some basic sequence and 
its delayed (advanced) versions 

     
k

p n p k n k




 
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The Norm of a Discrete-Time Signal

 Size of a Signal - given by the norm of the signal

Lp-norm：

where p is a positive integer

 The value of p is typically 1 or 2 or ∞

L2-norm        is the root-mean-squared (rms) value of {x[n]}

L1-norm        is the mean absolute value of {x[n]}

L∞-norm        is the peak absolute value of {x[n]} (why?)
1
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Classification of  Discrete-Time Signals

 Periodic signals and aperiodic signals
 A signal is periodic with period N (N > 0) if and only if

 The smallest value of N for which the above condition
holds is called the (fundamental) period

 A signal not satisfying the periodicity condition is
called nonperiodic or aperiodic

      for all x n N x n n 
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Classification of  Discrete-Time Signals

 Conjugate-symmetric sequence:

 If x[n] is real, then it is an even sequence

 for a conjugate-symmetric sequence {x[n]}, x[0] 
must be a real number

   *x n x n 
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Classification of  Discrete-Time Signals

 Conjugate-antisymmetric sequence:

 If x[n] is real, then it is an odd sequence

 for a conjugate anti-symmetric sequence {y[n]}, y[0] 
must be an imaginary number

   *x n x n  
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Classification of  Discrete-Time Signals
 Any complex sequence can be expressed as a sum of its 

conjugate-symmetric and conjugate-antisymmetric parts:

where

 Any real sequence can be expressed as a sum of its even 
part and its odd part:

where

     cs cax n x n x n 

      

      

*
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
   


     ev odx n x n x n 

      

      
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   
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Classification of  Discrete-Time Signals

 Periodic signals and aperiodic signals
 A signal is periodic with period N (N > 0) if and only if

 The smallest value of N for which the above condition
holds is called the (fundamental) period

 A signal not satisfying the periodicity condition is
called nonperiodic or aperiodic

      for all x n N x n n 
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Classification of  Discrete-Time Signals

 Energy signals and power signals
 The total energy of a signal x(n) is defined by

 An infinite length sequence with finite sample values
may or may not be an energy signal (with finite energy)

 The average power of a discrete-time signal x[n] is
defined by

 Define the signal energy of x(n) over the finite interval
− N ≤ n ≤ N as

  2

n

E x n




 

  21
lim

2 1



 

N

N
n N

P x n
N

  2
N

N
n N

E x n


 
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Classification of  Discrete-Time Signals

 Energy signals and power signals
 The signal energy can then be expressed as

 The average power of x(n) becomes

 If E is finite, P = 0. On the other hand, if E is infinite,
the average power P may be either finite or infinite

 If P is finite (and nonzero), the signal is called a power
signal

lim


 N
N

E E

1
lim

2 1


 N
N

P E
N
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Classification of  Discrete-Time Signals

 Energy signals and power signals
 Example – Determine the power and energy of the

unit step sequence

The average power of the unit step signal is

It’s a power signal with infinite energy

 Example - Consider the causal sequence defined by

Note: x(n) has infinite energy, its average power is

   3 1 , 0

0, 0

n
n

x n
n

   

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Classification of  Discrete-Time Signals

 An infinite energy signal with finite average power is 
called a power signal

 Example - A periodic sequence which has a finite
average power but infinite energy

 A finite energy signal with zero average power is called 
an energy signal

 Example - A finite-length sequence which has finite
energy but zero average power
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Classification of  Discrete-Time Signals

 A sequence x[n] is said to be bounded if

 Example - The sequence x[n] = cos0.3πn is a bounded 
sequence as

 A sequence x[n] is said to be absolutely summable if

 Example - The following sequence is absolutely 
summable 0.3 , 0

[ ]
0, 0

n n
y n

n

 
 



 
n

x n




 

  cos(0.3 ) 1x n n 

  xx n B  
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Classification of  Discrete-Time Signals

 A sequence x[n] is said to be square summable if

 Example - The sequence

is square-summable but not absolutely summable

  2

n

x n




 

sin(0.4 )
[ ]h n

n





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Manipulation of  Discrete-Time Signals (1/5)

 Transformation of independent variable (time)
 Time shifting: A signal x[n] may be shifted in time by

replacing the independent variable n by n – k

2011/3/2 Digital Signal Processing 24

 Transformation of independent variable (time)
 Folding/Reflection: A signal x[n] may be folded in

time by replacing the independent variable n by –n

Manipulation of  Discrete-Time Signals (2/5)
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 The operations of folding and time delaying (or
advancing) a signal are NOT commutative

 Denote the time-delay operation by TD and the folding
operation by FD

Now

whereas

    ,      0kTD x n x n k k  

    FD x n x n 

        k kTD FD x n TD x n x n k    

            k kFD TD x n FD x n k x n k TD FD x n     

Manipulation of  Discrete-Time Signals (3/5)
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 Transformation of independent variable (time)
 Time Scaling or down-sampling: A signal x[n] may

be scaled in time by replacing n by n

Manipulation of  Discrete-Time Signals (4/5)
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 Transformation of independent variable (time)
 Addition, multiplication, and scaling of sequences:

Amplitude modifications include addition, multiplication,
and scaling of discrete-time

 Amplitude scaling of a signal by a constant :

 Sum of two signals:

 Product of two signals:

   ,      y n Ax n n    

     1 2+ ,      y n x n x n n    

     1 2 ,      y n x n x n n    

Manipulation of  Discrete-Time Signals (5/5)
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Discrete-Time Systems
 Discrete-time system: A device or an algorithm that

performs some prescribed operation on a discrete-time
signal (input or excitation) to produce another discrete-
time signal (output or response)

 We say that the input signal x[n] is “transformed” by the
system into a signal y[n] as expressed below

    y n T x n
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Input-Output Description of  Systems
 The input-output description or a discrete-time system

consists of a mathematical expression or a rule, which
explicitly defines the relation between the input and
output signals

 Example: Determine the response of the following
systems to the input signal

(a) (b)

(c) (d)

   Tx n y n

  , 3 3

0, otherwise

n n
x n

   
 


   1y n x n          1
1 1

3
y n x n x n x n    

        median 1 , , 1y n x n x n x n      
n

k

y n x k


 
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Linear Systems: Accumulator

 Accumulator -

 The output y[n] is the sum of the input sample x[n] and 
the previous output y[n −1]

 The system cumulatively adds, i.e., it accumulates all 
input sample values

 Input-output relation can also be written in the form

 The second form is used for a causal input sequence, in 
which case y[−1] is called the initial condition

1

[ ] [ ]

[ ] [ ] [ 1] [ ]

n

l

n

l

y n x l

x l x n y n x n









    





1

0 0

[ ] [ ] [ ] [ 1] [ ],   0
n n

l l l

y n x l x l y x l n


  

       
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Linear Systems: Moving Average
   

         

2

11 2

1 1 2
1 2

1

1

1
1 ... 1 ...

1

M

k M

y n x n k
M M

x n M x n M x n x n x n M
M M



 
 

           
 



 An application: Consider x[n] = s[n] + d[n] where s[n] =
2[n(0.9)n] is the signal corrupted by a random noise d[n]
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Nonlinear Systems: Median Filter (1/3)

 The median of a set of (2K+1) numbers is the number 
such that K numbers from the set have values greater than 
this number and the other K numbers have values smaller 

 Median can be determined by rank-ordering the numbers 
in the set by their values and choosing the number at the 
middle

 Example: Consider the set of numbers

{2, −3, 10, 5, −1}

 Rank-order set is given by
{−3 , −1, 2 , 5, 10}

 median{2, −3, 10, 5, −1} = 2
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 Median Filtering Example

Nonlinear Systems: : Median Filter (2/3)

2011/3/2 Digital Signal Processing 34

Original Image Noisy Image
(pepper-and-salt noise)

Filtered Image

 Median Filtering Example

Nonlinear Systems: Median Filter (3/3)
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Block Diagram Representation of  
Discrete-Time Systems
 Adder

 Constant multiplier

2011/3/2 Digital Signal Processing 35

 Signal multiplier/Modulator

 Unit delay element

 Unit advance element

2011/3/2 Digital Signal Processing 36

Block Diagram Representation of  
Discrete-Time Systems
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 Example:        1 1 1
1 1

4 2 2
y n y n x n x n    
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Block Diagram Representation of  
Discrete-Time Systems

Static vs. Dynamic Systems

 A discrete-time system is called static or memoryless if
its output at any time instant depends at most on the
input sample at the same time

 If a discrete-time system is not static, it is said to be 
dynamic or to have memory

   
     3

y n ax n

y n nx n bx n



 

     

   
0

3 1    (finite memory)

         (infinite memory)
k

y n x n x n

y n x n k




  

 

    ,y n x n n T

2011/3/2 Digital Signal Processing 38



20

Time (Shift) Invariance

 Time-invariant vs. time-variant systems
 A system is called time-invariant if its input-output

characteristics do not change with time

 Definition: A relaxed system T is time-invariant or 
shift-invariant if and only if 

Implies that

For every input signal x(n) and every time shift k.

 In general, we can write the output of a time-invariant
system as

    y n x n T

( ) ( )x n y nT

( ) ( )x n k y n k  T

 ( , ) ( )y n k x n k T

2011/3/2 Digital Signal Processing 39

 Examples         1y n x n x n x n   T

   ,y n k y n k 

     , 1y n k x n k x n k    

     1y n k x n k x n k     

time invariant

      y n x n nx n T

   ,y n k y n k 

   ,y n k nx n k 

     y n k n k x n k   

time variant

2011/3/2 Digital Signal Processing 40

Time (Shift) Invariance
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 Examples       y n x n x n  T

   ,y n k y n k 

   ,y n k x n k  

   y n k x n k   

time variant

       0cosy n x n x n n T

   ,y n k y n k time variant

    0, cosy n k x n k n 

     0cosy n k x n k n k   
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Time (Shift) Invariance

Linearity (1/3)

 A linear system is one that satisfies the superposition
principle

 Definition: A system T is linear if and only if

for any arbitrary input sequences x1[n] and x2[n], and any
arbitrary constants a1 and a2.

 Multiplicative/scaling property: Suppose that a2 = 0

 Additivity property: Suppose that a1 = a2 = 1

          1 1 2 2 1 1 2 2a x n a x n a x n a x n  T T T

       1 1 1 1 1 1a x n a x n a y n T T

              1 2 1 2 1 2x n x n x n x n y n y n    T T T

2011/3/2 Digital Signal Processing 42
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 Graphical representation of the superposition principle

T is linear if and only if y[n] = y’[n]

2011/3/2 Digital Signal Processing 43

Linearity (2/3)

Linearity (3/3)

 Linear vs. non-linear systems
 The linear condition can be extended arbitrarily to any

weighted linear combination of signals

where

 If a system produces a nonzero output with a zero
input, it may be either non-relaxed or nonlinear

 Examples: (a) y[n] = nx[n], (b) y[n] = x[n2], (c) y[n] =
x2[n], (d) y[n] = Ax[n] + B, (e) y[n] = ex[n]

       
1 1

1 1

M M

k k k k
k k

x n a x n y n a y n
 

 

   T

    ,     1,2, , 1k ky n x n k M  T

2011/3/2 Digital Signal Processing 44
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Causality

 Causal vs. non-causal systems
 Definition: A system is said to be causal if the output

of the system at any time n depends only on present
and past inputs, but does not depend on future inputs

where T{·} is some arbitrary function.

 Noncausal vs. anticausal

 If a system produces a nonzero output with a zero
input, it may be either non-relaxed or nonlinear

 Examples: (a) y[n] = x[n]  x[n  1], (b) y[n] = x[n] +
3x[n+4], (c) y[n] = x[n2], (d) y[n] = x[2n], (e) y[n] = x[n]

        , 1 , 2 ,y n x n x n x n   T
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Stability
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 Bounded-Input, Bounded Output (BIBO) stability

If y[n] is the response to an input x[n] and if

 Example – the M-point moving average filter is BIBO
stable

 With a bounded input

then
[ ]      for all values of xx n B n

[ ]      for all values of yy n B n
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[ ] [ ]
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y n x n k
M





 
[ ] xx n B

 

1 1

0 0

1 1
[ ] [ ] [ ]

1

M M

k k

x x

y n x n k x n k
M M

MB B
M

 

 

   

 

 



24

Passive & Lossless Systems
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 A discrete-time system is defined to be passive if, for
every finite-energy input x[n], the output y[n] has, at
most, the same energy

 For a lossless system, the above inequality is satisfied 
with an equal sign for every input 

 Example - Consider the discrete-time system defined by 
y[n] =α x[n − N] with N a positive integer

 Its output energy is given by

passive system if ǀαǀ <1, and lossless if ǀαǀ =1











nn

nxny
22

][][

2 2 2
[ ] [ ]

n n

y n x n
 

 

 

Interconnection of  Discrete-Time Systems

 Cascade interconnection

 Systems T1 and T2 can be combined or consolidated
into a single overall system

 In general . However, if systems T1 and T2

are LTI, then (a) is time invariant and (b)

    1 1y n x nT

        2 1 2 1y n y n x n T T T

     2 1   where c cy n x n T T TT

1 2 2 1 TT TT

1 2 2 1 TT TT
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Interconnection of  Discrete-Time Systems

 Parallel interconnection

 We can use parallel and cascade interconnection of
systems to construct larger, more complex systems

     
     

    
  

3 1 2

1 2

1 2

p

y n y n y n

x n x n

x n

x n

 

 

 



T T

T T

T
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Techniques for the Analysis of  Linear 
Systems
 Two basic methods for analyzing the behavior of a linear

system:

 The first is based on the direct solution of the input-
output equation

 The second method is to decompose or resolve the
input signal into a sum of elementary signals. Then,
using the linearity of the system, the response of the
system to the elementary signals are sum to obtain
the total response
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     
1 0

N M

k k
k k

y n a y n k b x n k
 

     
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Techniques for the Analysis of  Linear 
Systems

 Suppose the input signal is resolved into a weighted
sum of elementary signals

 The response yk[n] of the system to the component
xk[n] is

 If the system is linear, we have
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   k k
k

x n c x n 

    k ky n x nT

      

    

k k
k

k k k k
k k

y n x n c x n

c x n c y n

 
  

 
 



 

T = T

T

Why  & how to do the signal decomposition?

Resolution of a Discrete-Time Signal into 
Impulses
 Select the elementary signals xk[n] to be

where k represents the delay of the unit sample sequence

 Multiply the two sequences x[n] and [nk]?
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   kx n n k 

       x n n k x k n k   
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 Consequently

 Example - Consider a finite-duration sequence given as

The sequence can be resolved as
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     
k

x n x k n k




 

   2, 4,0,3x n 

       2 1 4 3 2x n n n n      

Resolution of a Discrete-Time Signal into 
Impulses

 The response of a relaxed linear system to the unit sample 
sequence input:

 If the impulse at the input is scaled by as

 If the input is expressed as

The output becomes
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      , ,y n k h n k n k  T

     , ,kc h n k x k h n k

     
k

x n x k n k




 

        

        ,

k

k k

y n x n x k n k

x k n k x k h n k









 

 

    
 

  



 

T T

T

Resolution of a Discrete-Time Signal into 
Impulses
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Response of LTI Systems to Arbitrary 
Inputs
 If the system is time invariant, and denote the response of 

the LTI system to the unit sample sequence as 

 The response of the system to             is

 Consequently

 The relaxed LTI system is completely characterized by a 
single function h[n], the impulse response.

 Convolution is commutative
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    h n k n k  T

     
k

y n x k h n k




 

 [ ] [ ]h n n k T

 n k 

         
k k

y n x k h n k h k x n k
 

 

    

 The output of an LTI system at n = n0 is given by 

 To compute y[n0]

 Folding. Fold h[k] about k = 0 to obtain h[k]

 Shifting. Shift h[k] by n0 to the right (left) if is positive 
(negative), to obtain h[n0k]

 Multiplication. Multiply x[k] by h[n0k] to obtain the 
product sequence

 Summation. Sum all the values of           to obtain y[n0]
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     0 0
k

y n x k h n k




 

     
0 0nv k x k h n k 

 
0nv k

Computing the Convolution Sum
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Computing the Convolution Sum

2011/3/2 Digital Signal Processing 57

   1, 2,3,1x n     1, 2,1, 1h n  

   , 0,0,1, 4,8,8,3, 2, 1,0,0,y n    

Computing the Convolution Sum
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Computing the Convolution Sum
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Tabular Method of Convolution Sum 
Computation
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 Example:

   ,   1nh n a u n a 

   x n u n

 
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0 1
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

    1
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Computing the Convolution Sum
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Computing the Convolution Sum
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Properties of Convolution (1/2)
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 Commutative Property

 Identity and Shifting Properties

         

       
k

k

y n x n h n x k h n k

h n x n h k x n k
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



   

   





       y n x n n x n  

       x n n k y n k x n k     

Properties of Convolution (2/2)
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 Associative Property

 Distributive Property

                    1 2 2 1 1 2x n h n h n x n h n h n x n h n h n       

              1 2 1 2x n h n h n x n h n x n h n     
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Causality of LTI Systems (1/2)
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 The output of an LTI system at n = n0 is given by

 Divide the sum into two sets of terms:

 For a causal system, h[n] = 0 for n < 0

 Since h[n] is the response of the relaxed LTI system to a 
unit impulse sequence at n = 0, an LTI system is causal 
if and only if its impulse response is zero for negative 
values of n

     0 0
k

y n x k h n k

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 The output of an causal LTI system becomes

 A sequence x[n] is called a causal sequence if x[n] = 0 
for n < 0; otherwise, it’s a noncausal sequence

 If the input to a causal LTI system is a causal sequnce, 
the input-output equation reduces to

 Example: Determine the unit step response of the LTI 
system with impulse response 
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Causality of LTI Systems (2/2)
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Stability of LTI Systems (1/3)
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 BIBO Stability Condition - A discrete-time system is 
BIBO stable if and only if the output sequence {y[n]} 
remains bounded for all bounded input sequence {x[n]} 

 An LTI discrete-time system is BIBO stable if and only if 
its impulse response sequence {h[n]} is absolutely 
summable, i.e. 

 Proof: Assume h[n] is a real sequence

Sufficient condition: Since the input sequence x[n] is 
bounded we have
therefore
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Stability of LTI Systems (2/3)
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 Thus, Bh < ∞ implies ǀy[n]ǀ ≤ BxBh < ∞, indicating that y[n] is
also bounded

 To prove the necessary condition, assume y[n] is bounded, 
i.e., ǀy[n]ǀ ≤ By

 Consider the bounded input given by

 For this input, y[n] at n = 0 is

 Therefore, if Bh = ∞, then {y[n]} is not a bounded sequence
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Stability of LTI Systems (3/3)
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 Example - Consider a causal LTI discrete-time system 
with an impulse response

 For this system

 Therefore Bh < ∞ if |a| < 1 , for which the system is BIBO 
stable

 If |a| = 1, the system is not BIBO stable
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