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Discrete-Time Signals

Signals are represented as sequences of numbers, called
samples

Sample value of a typical signal or sequence denoted as x
={x[n]} with =0 <n <

x[n] is defined only for integer values of n and undefined for
non-integer values of n

Representation of discrete-time signals:
n-2, n>0

Functional representation x[n]:{ 3 0
-3, n<

Tabular representation
Sequence representation
x(n)={...,-0.2,2.2,1.1,0.2,-3.7,2.9. ...}

2011/3/2 Digital Signal Processing 2




Discrete-Time Signals

= Graphical representation

x[-1] x[0]
1 x|n
x[-2] [ [2 []
mIIH [l
9 876-5-4-32-1012 3 l !
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Discrete-Time Signals

= Sampling a speech signal

x[n]=x,(nT), —o<n<oo

mm\m/\m

\/ VoV

T 256 samples
(b)
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‘ Basic Sequences

) 1, n=0
= Unit sample sequence - §[n]=
0, nz0
1
‘ Unit sample
0 n

1 n=0

= Unit step sequence - “[n]:{o n<o0 k—

Unit step

I st
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Basic Sequences

n, n=0

= Unit ramp signal - ur[n]z{0 g

= Real exponential signal -
J a is a real value

[ il
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Basic Sequences

= Complex exponential signal -

x(n)=Aa" =|Ale” |a| el a =|ale’™
_ =|Al|a|" (cos(@yn+ @)+ jsin(wn+4))
x[n]=xy[n]+ ix, [n] g
05} T
X [n] =|Al|a[" cos(@,n +¢) _02_ : 377 LA
]
0 5 10 15 20 25 30 35 40
(a)
F
05+
X [n]=|A||05|nSin(a)0n+¢) 0 T”Hhh SpprEeer e
rDSl'
710 ; l‘(l 15 2}) 25 30 35 40
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Basic Sequences

= Complex exponential signal -
X[n]=x.[n]+ jx, [n] =|x[n] £x[n]

['“”H!Iu;;

-3-2-10 123 4

X[n]|=A[n]=r"

(a) Graph of A(n) =", r = 0.9

(5) Graph of ¢(n) = & n, modulo 2 plotted in the range (-, m)
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‘ Basic Sequences

= Sinusoidal signals with different frequencies

UL
s
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Basic Sequences

= An arbitrary sequence can be represented in the time-
domain as a weighted sum of some basic sequence and
its delayed (advanced) versions

p[n]=

3 plkloln-k]
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The Norm of a Discrete-Time Signal

Size of a Signal - given by the norm of the signal

b, S b0l

where p is a positive integer

Lp-norm :

The value of p is typically 1 or 2 or «
L,-norm ||X||2 is the root-mean-squared (rms) value of {x[n]}
L;-norm ||X||l is the mean absolute value of {x[n]}

L,o-norm||X||w is the peak absolute value of {x[n]} (why?)

[l =¥l
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Classification of Discrete-Time Signals

Periodic signals and aperiodic signals
o A signal is periodic with period N (N > 0) if and only if
x[n+N]=x[n] foralln

o The smallest value of N for which the above condition
holds is called the (fundamental) period

4“TT,,_HMTTH_OMTTH_C[

n
%6 -5 4-3-2-1 01 2 3 4 56 78 9 10111213 1415

o A signal not satisfying the periodicity condition is
called nonperiodic or aperiodic
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Classification of Discrete-Time Signals

= Conjugate-symmetric sequence:
x[n]=x"[-n]

o If x[n] is real, then it is an even sequence

o for a conjugate-symmetric sequence {x[n]}, x[0]
must be a real number

T 17 6‘rm . 1l T
T =TT 1]
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Classification of Discrete-Time Signals

= Conjugate-antisymmetric sequence:
x[n]=-x"[-n]

a If x[n] is real, then it is an odd sequence

o for a conjugate anti-symmetric sequence {y[n]}, y[0]
must be an imaginary number
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Classification of Discrete-Time Signals

Any complex sequence can be expressed as a sum of its
conjugate-symmetric and conjugate-antisymmetric parts:
x[n]=x4[n]+x,[n]

where X [n] :%(x[n]+ X [—n])

1 .
xca[n]:z(x[n]—x [-n])
Any real sequence can be expressed as a sum of its even
part and its odd part:

x[n]=x, [n]+ X4 [Nn]
where 1

xev[n]zi(x[n]+x[—n])
K [0] =2 (x(n] - x[-n])
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Classification of Discrete-Time Signals

Periodic signals and aperiodic signals
o A signal is periodic with period N (N > 0) if and only if
x[n+N]=x[n] foralln

o The smallest value of N for which the above condition
holds is called the (fundamental) period

4MTT3_HMTTH_.:MTTH_C[

n
%6 -5 4-3-2-1 01 2 3 4 56 78 9 10111213 1415

o A signal not satisfying the periodicity condition is
called nonperiodic or aperiodic
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Classification of Discrete-Time Signals

Energy signals and power signals
o The total energy of a signal x(n) is defined by

E Ez Ix[n]f

o An infinite length sequence with finite sample values
may or may not be an energy signal (with finite energy)

o The average power of a discrete-time signal x[n] is
defined by N 2
N== 2N +1n:Z_N|X[n]|

o Define the signal energy of x(n) over the finite interval

-Nsns<Nas N ,
EN=n:z_N|x[n]|
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Classification of Discrete-Time Signals

Energy signals and power signals

o The signal energy can then be expressed as
E=IlimE,

N -

a The average power of x(n) becomes

P=Ilim
N—= 2N +1

a If E is finite, P = 0. On the other hand, if E is infinite,
the average power P may be either finite or infinite

o If Pis finite (and nonzero), the signal is called a power
signal

Ey
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Classification of Discrete-Time Signals

Energy signals and power signals

o Example — Determine the power and energy of the
unit step sequence

The average power of the unit step signal is
N
P=Ilim D 1=lim N+l _1
No= 2N +1655  No=2N+1 2
It's a power signal with infinite energy
o Example - Consider the causal sequence defined by
[ :{3(—1) , =0
0, n<0
Note: x(n) has infinite energy, its average power is

. 1 N
P=lim 9% 1(=45
Now 2N +1( z J

n=0
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Classification of Discrete-Time Signals

An infinite energy signal with finite average power is
called a power signal

o Example - A periodic sequence which has a finite
average power but infinite energy

A finite energy signal with zero average power is called
an energy signal

o Example - A finite-length sequence which has finite
energy but zero average power

2011/3/2 Digital Signal Processing 20
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Classification of Discrete-Time Signals

A sequence x[n] is said to be bounded if
|X[I’l]|§ B, <o

o Example - The sequence x[n] = cos0.31mn is a bounded

sequence as
[X[n] =|cos(0.37n)| <1

A sequence x[n] is said to be absolutely summable if

Z_: X[n] <o
o Example - The following sequence is absolutely
summable 03", n>0
y[n]=
0, n<O
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Classification of Discrete-Time Signals

A sequence x[n] is said to be square summable if

nijx[n]r <o

o Example - The sequence

sin(0.47x)
zn
is square-summable but not absolutely summable

h[n] =

2011/3/2 Digital Signal Processing 22
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Manipulation of Discrete-Time Signals (1/5)

Transformation of independent variable (time)

o Time shifting: A signal x[n] may be shifted in time by
replacing the independent variable n by n — k

x(n)
4

atll] (Al

-4-3-2-10 1 2

(a)

x(n+2)

TIIW

—6-5-4-3-2-10 1 2

(¢)
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Manipulation of Discrete-Time Signals (2/5)

Transformation of independent variable (time)

o Folding/Reflection: A signal x[n] may be folded in
time by replacing the independent variable n by —n

I!l‘t![[ 'I]Inm

3-2-1 ‘o

—4-3-2-1 [0

(a) ™
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Manipulation of Discrete-Time Signals (3/5)

o The operations of folding and time delaying (or
advancing) a signal are NOT commutative

o Denote the time-delay operation by TD and the folding
operation by FD

O {x[nj = x[n—k]. k>0
e {x{ol} - (]
Now D, {FD{x[n]}} =TD, {x[-n]} =x[-n+k]

whereas

FO{TD, {x[n]}} = FD {x[n~k]} =x[-n-k]=TD, {FD {x[n]}}

2011/3/2 Digital Signal Processing 25

Manipulation of Discrete-Time Signals (4/5)

Transformation of independent variable (time)
o Time Scaling or down-sampling: A signal x[n] may
be scaled in time by replacing n by un

O I

lll <—3<—2<—||01 4 FZ(—]‘OIQ,‘%

@ (®)
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Manipulation of Discrete-Time Signals (5/5)

Transformation of independent variable (time)

o Addition, multiplication, and scaling of sequences:
Amplitude modifications include addition, multiplication,
and scaling of discrete-time

o Amplitude scaling of a signal by a constant :
y[n]=Ax[n], -cwo<n<w
o Sum of two signals:
y[n]=x[n]+x,[n], —cw<n<w
o Product of two signals:

y[n]:xl[n]xz[n], —00<N< 0

2011/3/2 Digital Signal Processing 27

Discrete-Time Systems

Discrete-time system: A device or an algorithm that
performs some prescribed operation on a discrete-time
signal (input or excitation) to produce another discrete-
time signal (output or response)

— 7{) —
x[n] y[n]

We say that the input signal x[n] is “transformed” by the
system into a signal y[n] as expressed below

y[n]=T {x[n]}
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Input-Output Description of Systems

The input-output description or a discrete-time system
consists of a mathematical expression or a rule, which
explicitly defines the relation between the input and
output signals

X[n]——[n]
Example: Determine the response of the following
systems to the input signal

{|n| -3<n<3
x[n]= .
0, otherwise

() yIn]=x[n-1] (b) yIn] =3 (x[n-1]+ x[n]+ x[n+1])
(c) y[n]= median{x[n—l],x[n],x[n +1]} (d) y[n]= Zn: x[K]

k=—o0

2011/3/2 Digital Signal Processing 29

Linear Systems: Accumulator

n

Accumulator - y[nl=>_ x[I]

|=—x

= ni X[11+ x[n] = y[n—1]+ x[n]

The output y[n] is the sum of the input sample x[n] and
the previous output y[n —-1]

The system cumulatively adds, i.e., it accumulates all
input sample values

Input-output relation can also be written in the form

=

y[n]= Z x[I]+Zn:x[I] = y[—l]+Zn:x[I], n>0

|=—o0

The second form is used for a causal input sequence, in
which case y[-1] is called the initial condition

2011/3/2 Digital Signal Processing 30
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Amplitude

Linear Systems: Moving Average

M,

=i, K

=M,
1

:m{x[n+ M, ]+x[n+M, —1]+...+ x[n]+x[n—1]+...+x[n—M2]}

An application: Consider x[n] = s[n] + d[n] where s[n] =
2[n(0.9)" is the signal corrupted by a random noise d[n]

7 -
— d[n N
h . \[l“]I 6 N\
© 4 ™ . x[n] \“‘ — yIn]
4 X 5t \ i
=
- ~ é 4 ™
2k o { \
2 g3l
/ < "
o 2l X
il =
2 L L ' L ,
0 10 20 30 40 50 0 1
Time index n 10 20 30 40 50
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Nonlinear Systems: Median Filter (1/3)

The median of a set of (2K+1) numbers is the number
such that K numbers from the set have values greater than
this number and the other K numbers have values smaller

Median can be determined by rank-ordering the numbers
in the set by their values and choosing the number at the
middle

Example: Consider the set of numbers
{2, -3, 10, 5, -1}

Rank-order set is given by
{-3,-1,2,5,10}

median{2, -3, 10, 5, -1} =2

2011/3/2 Digital Signal Processing 32
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Nonlinear Systems: : Median Filter (2/3)

= Median Filtering Example

MEDIAN MEAN MEDIAN MEDIAN
10 I by 10 Hﬂ« 10 10]
. . l ol
5 10 5 10 5 10 5 10
original original original original
10 H«m 10 ” 10 10
5 5 W ‘ 5 F 5 H
| ! il Ml
5 10 5 10 5 10 5 10
window =3 window =3 window = 3 window =3
10 3 10, W 10] 10
5 5 5 5
1Tﬂ il ( . mﬂ”
5 10 5 10 5 10 5 10
window =5 window =5 window = 5 window = 5
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Nonlinear Systems: Median Filter (3/3)

= Median Filtering Example

Original Image Noisy Image Filtered Image
(pepper-and-salt noise)

2011/3/2 Digital Signal Processing 34
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Block Diagram Representation of
Discrete-Time Systems
u Adder x(n)

y(n) =x(n) + x,(n)

xo(n)

= Constant multiplier

x(n) a y(n) = ax(n)

2011/3/2 Digital Signal Processing 35

Block Diagram Representation of
Discrete-Time Systems

= Signal multiplier/Modulator
x](n) ’/—\ )’(n):xl(n)x2(")

N
. xo(n)
= Unit delay element
x(n) y(n) =x(n-1)
7!
= Unit advance element
x(n) y(n)=x(n+1)
i
2011/3/2 Digital Signal Processing 36
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Block Diagram Representation of
Discrete-Time Systems
= Example: y[n]:%y[n—1]+%x[n]+%x[n—l]

Black box

x(n) E m E
: + + ’ y(n)
: O / '

x ! 0.5 :
f |
' 025
(b)
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Static vs. Dynamic Systems

= A discrete-time system is called static or memoryless if
its output at any time instant depends at most on the
input sample at the same time y[n]=3{x[n],n}
y[n]=ax[n]
y[n]=nx[n]+bx’[n]
= If a discrete-time system is not static, it is said to be
dynamic or to have memory

y[n]=x[n]+3x[n-1] (finite memory)
y[n]= ix[n k] (infinite memory)
k=0
2011/3/2 Digital Signal Processing 38

19



Time (Shift) Invariance

Time-invariant vs. time-variant systems

o A system is called time-invariant if its input-output
characteristics do not change with time y[n]=3{x[n]}

o Definition: A relaxed system g is time-invariant or
shift-invariant if and only if
x(n)—"—y(n)

Implies that X(n—K)—Z—> y(n—k)

For every input signal x(n) and every time shift k.
o In general, we can write the output of a time-invariant

system as
y(n,k) =3 [x(n-K)]

2011/3/2 Digital Signal Processing 39

Time (Shift) Invariance

Examples
y[n] =7 {x[n]}=x[n]-x[n-1]
x(n) y(n)y=x(n)—x(n-1) n’k =xIn=-kl|l=-xIn=-k-1
o y{nk]=x[n—k]-x{n-k-1
7] “Differentiator” y[n—k]:X[n—k]—X[n_k_l]
-] y[nk]=y[n-Kk]
y[n]=5{x[n]} = nx[n]
X Ym = y[nk]=nx[n—k]
“Time” multiplier
T " k] =[n-k]x[n—k]
vink]2yin=k]
2011/3/2 Digital Signal Processing 40
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Time (Shift) Invariance

Examples y[n]=9{x[n]} =x[-n]

y[nk]=x[-n—k]

x(n) v(n) = x(—n)
“Folder” y[n_k]:X[_n+k]
yInkl=y[n-K

x(n) my(n):x(rx)coxwun Y[n]=5{X[n]}=X[n]COSa}On

C/ Modulator y[n,k]:x[n—k]COSa)on

Co8 won

y[n—k]=x[n-k]cosa,[n—k]

y[n,k]i y[n—k]

2011/3/2 Digital Signal Processing 41

Lineatity (1/3)

A linear system is one that satisfies the superposition
principle
Definition: A system g is linear if and only if

T {ax[n]+ax,[n]}=a7 {x[n]}+a,7 {x,[n]|

for any arbitrary input sequences x,[n] and x,[n], and any
arbitrary constants a, and a,.

Multiplicative/scaling property: Suppose that a,=0

7 {ax [n]}=a7 {x[n]}=ay,[n]
Additivity property: Suppose that a; = a, =1

T {x[n]+%[n]} =7 {x[n]}+7 {x,[n]} = y,[n]+y,[n]

2011/3/2 Digital Signal Processing 42
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Linearity (2/3)

Graphical representation of the superposition principle
xy(n)

a

y(n)
O 7 |
Xo(n)

dy
xp(n) ay

yi(n)
. T

g is linear if and only if y[n] = y’[n]

2011/3/2 Digital Signal Processing 43

Linearity (3/3)

Linear vs. non-linear systems

o The linear condition can be extended arbitrarily to any
weighted Iinear combination of signals

x[n]= Zakxk[n——>y[n Zakyk[n

where Y [n]=7{x[n]}, k=12..M-1

o If a system produces a nonzero output with a zero
input, it may be either non-relaxed or nonlinear

o Examples: (a) y[n] = nx[n], (b) y[n] = x[n?], (c) y[n] =
x2[n], (d) y[n] = AxX[n] + B, (e) y[n] = e

2011/3/2 Digital Signal Processing 44
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Causality

Causal vs. non-causal systems

o Definition: A system is said to be causal if the output
of the system at any time n depends only on present
and past inputs, but does not depend on future inputs

y[n]=5{x[n].x[n-1],x[n-2],.. }
where J{-} is some arbitrary function.

o Noncausal vs. anticausal

o If a system produces a nonzero output with a zero
input, it may be either non-relaxed or nonlinear

o Examples: (a) y[n] = x[n] — x{n — 1], (b) y[n] = x[n] +
3x[n+4], (c) yIn] = x[n?], (d) yIn] = x[2n], (e) y[n] = X[-n]

2011/3/2 Digital Signal Processing 45

Stability

Bounded-Input, Bounded Output (BIBO) stability
If y[n] is the response to an input x[n] and if

|x[n]]<B, forall values of n

then
ly[n]|<B, forall values of n

Example — the M-point moving average filter is BIBO

stable 1 M4
y[n] =VZ x[n—K]
k=0

With a bounded input |x[n]/< B,

M-1

L 1
|y[n]|: ﬁ; x[n—k] Sﬁéh[n—kﬂ
1
3V(MBX)=BX

2011/3/2 Digital Signal Processing 46
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Passive & Lossless Systems

A discrete-time system is defined to be passive if, for
every finite-energy input x[n], the output y[n] has, at
most, the same energy

Z\y[nl\ g Z\X[nl\

For alossless system the above inequality is satisfied
with an equal sign for every input

Example - Consider the discrete-time system defined by
yln] =a x[n — N] with N a positive integer
Its output energy is given by

> Il =laf 3 anlf
passive system if lal <1, and lossless if lal =1

2011/3/2 Digital Signal Processing 47

Interconnection of Discrete-Time Systems

Cascade interconnection

x(n) l yi(n) y(n)

y1[n] :ﬁl.{x[n]}
y[n]= % n[n]} =% {Z{x[n]}}

a Systems J, and J, can be combined or consolidated
into a single overall system
y[n]=Z {x[n]} where =25

o In general 4% # %4 . However, if systems 5, and 5,
are LTI, then (a) is time invariant and (b) g;y;:g;g;

2011/3/2 Digital Signal Processing 48
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Interconnection of Discrete-Time Systems

Parallel interconnection

x(n) i ° boya(n)

_____________________________________

=7 {x[n]}
o We can use parallel and cascade interconnection of
systems to construct larger, more complex systems

2011/3/2 Digital Signal Processing 49

Techniques for the Analysis of Linear

Systems
Two basic methods for analyzing the behavior of a linear
system:
The first is based on the direct solution of the input-
output equation

y[n]:—gaky[n—khébkx[n—k]

The second method is to decompose or resolve the
input signal into a sum of elementary signals. Then,
using the linearity of the system, the response of the
system to the elementary signals are sum to obtain
the total response

2011/3/2 Digital Signal Processing 50
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Techniques for the Analysis of Linear

Systems
Suppose the input signal is resolved into a weighted
sum of elementary signals

X[n]=-2_cx[n]
k
The response y,[n] of the system to the component
x,[n] is
Ye[n]=7 {x[n]}
If the system is linear, we have
y[n]=7{x[n]} :i{chxk [n]}
k
=Zk:ckf{xk [n]} =Zk:ckyk [n]

‘ Why & how to do the signal decomposition? ‘
2011/3/2 Digital Signal Processing 51

Resolution of a Discrete-Time Signal into

Impulses
Select the elementary signals x,[n] to be
% [n]=6[n-K]
where k represents the delay of the unit sample sequence
Multiply the two sequences x[n] and dn—k]?

x[n]6[n-k]=x[k]S[n-k]

x(k) b(n—k)
11
n

71”1[_’:_11 !iITIILiILIIT

x(k) k

(©)
‘ “ x(k)
3 n

2011/3/2 Digital Signal Processing 52
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Resolution of a Discrete-Time Signal into
Impulses
Consequently

x[n]:kix[kp[n—k]

Example - Consider a finite-duration sequence given as

x[n]={2,4,0,3}
The sequence can be resolved as

x[n]=26[n+1]+45[n]+35[n-2]

2011/3/2 Digital Signal Processing 53

Resolution of a Discrete-Time Signal into
Impulses

The response of a relaxed linear system to the unit sample
sequence input:

y[n,k]zh[n,k]zf{é[n—k]}
If the impulse at the input is scaled by as

c.h[n k] =x[k]h[n,k]
If the input is expressed as -
x[n]= > x[k]s[n—k]
k=—o0

The output becomes

y[n]= {x[n]} =j{kix[k]5[n—k]}
:kix[k]f{é[n—k]} =kiox[k]h[n,k]

2011/3/2 Digital Signal Processing 54
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Response of LTI Systems to Arbitrary

Inputs

If the system is time invariant, and denote the response of
the LTI system to the unit sample sequence as

h[n]= .7 {S[n—k]}
The response of the system to 5[n—k] is

h[n-k]=7{5[n-k]}

y[n]= 3 fk]n[n—k]

The relaxed LTI system is completely characterized by a
single function h[n], the impulse response.

Convolution is commg@tative

y[n]= 3 x[k]h[n_k]:kih[k]x[n_k]

k=—o0

Consequently

2011/3/2 Digital Signal Processing 55

Computing the Convolution Sum

The output of an LTI system at n = n, is given by

y[no] = kz X[k]h[no _k]
To compute y{n,] -
a Folding. Fold h[k] about k = 0 to obtain h[-K]
o Shifting. Shift h[-k] by n, to the right (left) if is positive
(negative), to obtain h[n,—k]

a Multiplication. Multiply x[k] by h[n,—k] to obtain the
product sequence
v, [k]=x[k]h[n, —K]

No

o Summation. Sum all the values of Vi, [X] to obtain yinl

2011/3/2 Digital Signal Processing 56
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‘Computing the Convolution Sum

x[n]={1,2,31} h[n]={1,2,1,-1)

ik * -t = &) = (y Product
3 Multipl Juen
T 2 th x(ky '
1l [l gt ] - '
1o ] kE w 10023 ¥ “1ol 01
()
Fold & 58
v =3 v, (k)
ok Product k;zm
hi-ky 4 Yotk cequenc
R 4
2 2 3
211 I :
o2 k 1012 k ; &k
0] w32l 0123 467
b
Shift ©
N Product
:> vy (k)
- 4 sequence
Jroo y[n]={....0,0,1,4,8,8,3-2,-10,0,...)
- with x(k) -
111 |
lo12 k 02 k
«)
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Computing the Convolution Sum
hln]

0 2 n

)

S =4l i = ( 2 X[K]oln- k]j*h[n] = (%, [n]+ x,[n]+ x[n])*h[n]

k=—o0

= (X[-2]6[n + 2]+ x[0]s[n]+ X[3]6[n — 3] ) * h[n]
= X[-2]([n+ 2]*h[n]) + X[0](6[n]*h[n]) + X[3](6[n —3]* h[n])
= X[=2]h[n+ 2]+ X[0]h[n] + X[3]h[n —3] = y ,[n] + Y, [n]+ y5[n]

[ x_5[n] = x[-2]8[n + 2] l v.aln] = x[-2]hln + 2]

-2 0 n -2 0 n
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Computing the Convolution Sum

‘ xo[n] = x[0][n]

{ { voln] = x[0]h]n]

0 n

x3[n] = x[3]3[n - 3]

0 2 n

vl = x{31{n - 3]

5

0

|

\ n 0

x[n] =x5[n] + xp[n] + x53[n]

3
0 l n 2 0

2011/3/2
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Tabular Method of Convolution Sum

Computation
yIn] = g[n]*h[n] = Y gln - kh[k]

K=N,

n—N,
k=n-N

g[kJh[n—k] = nEfg[k]h[—(k -n)]

i k=n—N;
R 0 1 2 3 4 5
glnl: £l0] gl1] gl2] gl3]
hin]: h[0] h(1] h(2] -
glO1A[0]  g[11A[0} g[2]R[0] g[3]A(0]

- glOlR[1]  g[1A[1]  gl2ln[1]  g[3]A[1]

- gl01r]2]  g[1In[2] g[2]Al2] gl[31RI2]
y[n]: yi0] yill y[2] ¥[3] y[4] y[5]
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Computing the Convolution Sum

hiky x(k)
= Example: ! I [ T ! [ [ [ W
e
nln]=a'ufn], [o|<1 o
x[n]=u[n] -] | |
y[O] :1 302 -1 0 1 & . Lo o1 2
y[1]=1+a T e
y[2]=1+a+a’ 1] : : [
y[n]=1+a+a’+--+a" 1o @ |
B 1_an+1 . { [ *T’
- 1_a -1 0 1 2 B f . -1 0 1 2
y[eo]=limy[n] 1 Ty Ty e
s
2011/3/2 Dig 1o 4 k

Computing the Convolution Sum

o fi[n-k]

x x[k]
h[n]=u[n]—u[n—N] ‘HH |
X[n]:anu[n] ! ! | | | [1T11+

© n=-(N-1) (a)
y[n]=x[n]*h[n] = > h[k]x[n—k]
k=-o0
=Y a" un-KJulk]-ulk—=N])= > a™* [ ‘ | INETTTY
k=—o0 k<n,k>0,k<N DR
n-(N-1) (b)
0, ifn<0 I ] i
n N _ a—(n+) n i "ux,ﬂ
:Zaﬂfk:Le‘ﬂ): a« if 0<n<N-1 ||l||"77"”
k=0 1-a k=0 L "
N-1 neM_o-N _aN ©
an—k _ a (1 a-_l ) — an—N+1[1aJ’ |f n> N
par l-a 1-a { vinl
Note: 3o - =0 ]_I]HJHHIH
K=N 1-r N-1
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Properties of Convolution (1/2)
= Commutative Property

0

y[n]=x[n]*h[n]= > x[k]h[n-K]

k=-o0

—h[n]#x[n]= 3 h[K]x[n—k]
k=-0
x(n) - y(n) h(n) - y(n)

= ldentity and Shifting Properties
y[n]=x[n]*s[n]=x[n]

x[n]*S[n—-k]=y[n-k]=x[n-K]
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 Properties of Convolution (2/2)
= Associative Property

(x[n]*h.[n])=hy[n] = (x[n]*h, [n])h,[n] = x[n]=(h[n]«h, [n])
P i e e yl;l<}:,'>—>h2[n1 ] f—> & B[] hyln)

.\:[n] x[n]

yln]

= Distributive Property
X[n]* (b [n]+h,[n])=x[n]*h, [n]+ x[n]«h, [n]

fy[n]

— — ity[n] + hyn] f——
x[n] v[n] x[n] yln]

hs[n]
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Causality of LTI Systems (1/2)
The output of an LTI system at n = n, is given by
y[]= 3 x[kInln, k]

Dioyide the sum into two sets of terms:

YIS hIKIxIn K]+ 3% h(0)[K]x(n, K]

= h[O]x[nO]+h[1]x[n01]+--}+[h[1]x[n0 +1]+h[-2]x[n, + 2]+

depend on present and past inputs depend on future inputs

For a causal system, h[n] =0 forn<0

Since h[n] is the response of the relaxed LTI system to a
unit impulse sequence at n =0, an LTI system is causal
if and only if its impulse response is zero for negative
values of n
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Causality of LTI Systems (2/2)

The output of an causal LTI system becomes

y[n]= Zh x[n-k]= z [n—k]
A sequence x[n] |s called a causal sequence if x[n] =
for n < 0; otherwise, it's a noncausal sequence

If the input to a causal LTI system is a causal sequnce,
the input-output equation reduces to

Zh [k]x[n—k] Zx[k]h[n—k]

k=0

Example: Determine the unit step response of the LTI
system with impulse response
h[ ] a”u[n] |a] <1

n+l
za _1 a
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Stability of LTI Systems (1/3)

BIBO Stability Condition - A discrete-time system is
BIBO stable if and only if the output sequence {y[n]}
remains bounded for all bounded input sequence {x[n]}

An LTI discrete-time system is BIBO stable if and only if
its impulse response sequence {h[n]} is absolutely

summable, i.e. o0
B, =kz Ih[K]|< e

Proof: Assume h[n] is a real sequence

Sufficient condition: Since the input sequence x[n] is
bounded we have |x(n)|<B, <
therefore

IyIn]|=| 3 hiKIX{n - k]

<3 |hiK]|xin-Kk] < B, 3 |hik] = B,B, <
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Stability of LTI Systems (2/3)

Thus, B, < « implies ly[n]l < B,B,, < <, indicating that y[n] is
also bounded
To prove the necessary condition, assume y[n] is bounded,

i.e., lyln]l < B,
Consider the bounded input given by
h™[-n]
, h{n|=0
ORI
0, h[n]=0

For this input, y[n]atn=0is

o)- 3 x{pl- 3 HE -

k=—x0 =—0

Therefore, if B, = «, then {y[n]} is not a bounded sequence
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Stability of LTI Systems (3/3)

Example - Consider a causal LTI discrete-time system
with an impulse response

h[n]=a"u[n]
For this system

0 0 1 B
B, = 2 [a{ulk] =2 Jal T if [af <1
k=—c0 k=0

Therefore B, < « if |a| <1, for which the system is BIBO
stable

If |a| = 1, the system is not BIBO stable
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