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ABSTRACT

In this paper, we consider the problem for maximizing the
throughput of a discrete-time wireless network, where only
certain sets of links can transmit simultaneously. It is well-
known that each set of such links can be represented by a
configuration vector and the convex hull of the configuration
vectors determines the capacity region of the wireless network.
In the literature, packet scheduling polices that stabilize any
admissible traffic in the capacity region are mostly related
to the maximum weighted matching algorithm (MWM) that
identifies the most suitable configuration vector in every time
slot. Unlike the MWM algorithm, we propose a dynamic frame
sizing (DFS) algorithm that also stabilizes any admissible
traffic in the capacity region. The DFS algorithm, as an
extension of our previous work for wired networks, also does
not have a fixed frame size. To determine the frame size, an
optimization problem needs to be solved at the beginning of
each frame. Once the frame size is determined, a hierarchical
smooth schedule is devised to determine both the schedule
for configuration vectors and the schedule for multicast traffic
flows in each link. Under the assumption of Bernoulli arrival
processes with admissible rates, we show that the number
of packets of each multicast traffic flow inside the wireless
network is bounded above by a constant and thus one only
requires to implement a finite internal buffer in each link in
such a wireless network.

I. INTRODUCTION

Packet scheduling in both wired and wireless networks to
achieve maximum system throughout or provide quality of
service has been an ongoing research problem for a long
period of time. Our objective in this paper is to extend the
dynamic frame sizing (DFS) algorithm for switches [3] and
wired networks [8] to the setting of wireless networks. For
this, we consider the configuration vector model that is often
used in the literature to model the effect of link interference
in a wireless network. A configuration vector is a vector
of indicator variables that specifies a set of links which are
allowed to transmit packets at the same time in a wireless
network. The configuration vector model then characterizes
a wireless network by a set of configuration vectors. Such a

model is also known as the generalized constrained queueing
model in [4]. For the configuration vector model, it is well-
known that the capacity region for a wireless network is the
convex hull of the set of configuration vectors. There are plenty
of studies in the literature (see e.g., [13], [12], [4], [7]) that
addressed the packet scheduling problem for maximizing the
throughput in such a wireless network model. In particular,
a scheduling algorithm is called throughput-optimal if it can
stabilize the network for arrival traffic with rates falling within
the capacity region. Most of throughput-optimal scheduling
schemes are related to the maximum weighted matching
(MWM) algorithm in [13], which identifies the most suitable
configuration vector according to the queue length information
available at each time slot.

Unlike the MWM algorithm, there is no need for the DFS
algorithm to solve an optimization problem in every time slot.
In the DFS algorithm, time is partitioned into frames, and
an optimization problem is solved to determine the frame
size at the beginning of each frame. For a wireless network
that implements per flow queueing for each multicast flow,
the frame size is chosen to be the minimum amount of
time, known as the minimum clearance time, to clear the
backlogs observed at the ingress queues at the beginning of
the frame. By so doing, the backlogs at the ingress queues
at the beginning of a frame is then bounded above by the
arrivals during the previous frame, and a packet that arrives
at an ingress queue in one frame will leave the ingress queue
and enter the network in the next frame. Thus, as long as the
expected size of each frame is finite, the expected backlog
at each ingress queue remains finite. For packets that have
departed from their ingress queues and entered the network,
the DFS algorithm provides each flow in a frame a guaranteed
rate that is proportional to the backlog observed at the ingress
queue at the beginning of that frame. Such a guaranteed rate
service then ensures the number of packets of each flow inside
the network is bounded above by a finite constant. As a result,
every internal buffer is finite and this mitigates the problem of
implementing unlimited internal buffers as pointed out in [5].

The extension of the DFS algorithm to the configuration
vector model is not as straightforward as one might expect.
There are two technical difficulties that need to be conquered



for such an extension. First, unlike the models for switches
[3] and wired networks [8], there is no explicit expression for
the frame size in the configuration model as the minimum
clearance time is now a solution of an optimization problem.
Without an explicit expression for the frame size, it would
be difficult to use the large deviation argument in [3], [8] to
prove the finiteness of the expected frame size. Second, packet
scheduling in the configuration vector model is much more
complicated than that for switches and wired networks. In the
configuration vector model, there are two levels of scheduling:
(i) the upper level for scheduling configuration vectors and (ii)
the lower level for scheduling flows in each link. Providing
guaranteed rate services in such a two-level schedule for each
frame poses a challenging problem.

Our contributions of this paper are mainly to solve these
two technical problems. For the problem on the frame size,
we derive an explicit upper bound for the minimum clearance
time that can be used for the large deviation argument. Our
idea for the upper bound is to compare the minimum clearance
time with the time to drain the backlog at each link with the
rate equal to its arrival rate (even though the actual arrival
rate is not known). By so doing, we are able to establish the
connection between the external arrival rates and the frame
size so that the large deviation argument in [3], [8] can be
used. To provide guaranteed rate services inside the network,
we propose a hierarchical smooth schedule (as an extension of
the smooth schedule in [6], [3], [8]). We then derive bounds on
the differences between the guaranteed rate services provided
by the hierarchical smooth schedule and the ideal rate services.
These bounds are then used for bounding the number of
packets in each internal queue.

The rest of this paper is organized as follows. First, we
describe our mathematical model in Section II. In Section III,
we propose our DFS algorithm, including determining the
frame size in Section III-A, proposing the hierarchical smooth
schedule in Section III-B, and proving the finiteness of the
expected frame size in Section III-C. In Section IV, we
conclude this paper by addressing some further extensions.

II. THE MATHEMATICAL MODEL

In this section, we first introduce the mathematical model
and the notations that will be used in the paper.

A. Per flow queueing for multicast flows

Consider a network with L links and J multicast traffic
flows, indexed from 1 to L and from 1 to J , respectively.
Each flow enters the network at some queue, traverses through
a set of queues arranged in a fan-out tree, and then leaves the
network. There might be several flows traversing a common
link, and we assume that per flow queueing is used in every
link, i.e., every flow has its own queue in every link it traverses.
We define q

(j)
` as the queue for flow j traversing link `.

Moreover, we denote q(j) as the ingress queue for the jth flow,
and all the queues other than ingress ones are called internal
queues. Notice that q(j) and q

(j)
` represent the same queue

if link ` is the first link traversed by flow j in the network.

The queues traversed right before and after queue q are named
the upstream queue of q and the downstream queue(s) of q,
respectively. For the clarity of our presentation, we assume at
this moment that all the queues are of infinite sizes (including
both ingress queues and internal queues) so that no packets
are lost. Later, we will show that all internal queues are of
finite sizes.

Throughout this paper, we consider the usual discrete-time
setting by assuming that packets are of the same size and that
time is slotted so that one packet can be transmitted within a
time slot. Also, we assume that each queue is started from an
empty system at time 0. We now define x

(j)
` (t) as the number

of packets in queue q
(j)
` at time t. Then, the governing equation

for each queue q
(j)
` can be represented as

x
(j)
` (t + 1) = x

(j)
` (t) + a

(j)
` (t + 1)− b

(j)
` (t + 1), (1)

where a
(j)
` (t) and b

(j)
` (t) are the number of packets arriving

at q
(j)
` at time t and the number of packets departing for the

downstream queue(s) of q
(j)
` or leaving the network at time t,

respectively. Notice that if q
(j)
` is the ingress queue for flow

j (i.e., q
(j)
` = q(j)), a

(j)
` (t) is simply the number of external

arrival packets at time t, which is denoted as a(j)(t). On the
other hand, for internal queue q

(j)
` , the arrival packets of q

(j)
`

are exactly the departure packets of q
(j)
u(j,`), where u(j, `) is

the upstream queue of link ` for flow j. That is,

a
(j)
` (t) = b

(j)
u(j,`)(t)

for an internal queue q
(j)
` .

In this paper, x
(j)
` (t), a

(j)
` (t) and b

(j)
` (t) are nonnegative

integers for flows and links. Moreover, we assume that each
multicast traffic flow does not traverse any link twice. Ac-
cording to (1), all the downstream queues of q

(j)
` receive the

packets sent by q
(j)
` in the same time slot. Such a multicast

policy is named no fanout splitting in the literature [9].

B. Constrained simultaneous transmissions for links
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Fig. 1. A directed graph with 6 nodes and 9 directed links.

As there is interference in wireless networks, not every
link can transmit at the same time. We model this by using
configuration vectors. An L-vector P = [p1, p2, . . . , pL] is
called a configuration vector if, for all 1 ≤ ` ≤ L, exactly p`



packets can be transmitted through link ` in a time slot. Here
we assume that p`’s are either 1 or 0, and we say that ` ∈ P
if p` = 1 and ` /∈ P otherwise.

Let W be the collection of all configuration vectors. In
practice, W reflects both physical and topological constraints
on the network. For example, consider the network represented
by the directed graph in Figure 1, where each directed link
represents that packets can be sent from the head of the link
to the tail of the link. Under the node exclusive interference
model [12], links 1 and 7 in Figure 1 can transmit packets
at the same time. However, since each pair of links are
separated by at most one link in Figure 1, there is at most one
input/output pair can transmit a packet at the same time under
the assumption of IEEE 802.11 based interference model [12].
As configuration vectors are mainly due to interference in
wireless networks, it is reasonable to assume in this paper
that the set W is coordinate convex, i.e., if P1 ≤ P2 and
P2 is in W , then P1 is also in W . Note that the inequality
P1 ≤ P2 holds componentwise, i.e., every component in P1 is
not greater than the corresponding component in P2.

With the collection of configuration vectors W , the capacity
region of the network, denoted by Γ, is known to be the convex
hull of all the configuration vectors in W , namely,

Γ = {r = (r1, r2, . . . , rL)|∃ {φk}K
k=1 and

{Pk}K
k=1 ⊂ W such that φk ≥ 0, ∀1 ≤ k ≤ K,

K∑

k=1

φk = 1 and r ≤
K∑

k=1

φkPk}. (2)

Clearly, if
∑K

k=1 φk ≤ 1 for a set of nonnegative numbers
{φk}K

k=1, then
∑K

k=1 φkPk is in capacity region Γ. The set
of nonnegative numbers {φk}K

k=1 are called the weights with
respect to the configuration vectors {Pk}K

k=1.

C. Routing Vectors and admissible traffic

In this paper, we only consider a fixed route for each
multicast flow. For this, we define the L-vector R(j) =
[R(j)

1 , R
(j)
2 , . . . , R

(j)
L ] as the routing vector for flow j, where

R
(j)
` = 1 if the jth flow traverses link ` and R

(j)
` = 0

otherwise. Moreover, the set F` is used to denote all the flows
traversing link `, namely,

F` = {j|R(j)
` = 1, 1 ≤ j ≤ J}, (3)

for all 1 ≤ ` ≤ L. For example, assume that there are two
traffic flows in Figure 1. The first flow traverses through links
6, 2, 4 and 5 sequentially, and the second flow traverses
through links 8, 1, and 4 sequentially. Thus, the routing
vectors for the first and second flows in Figure 1 can be
represented as R(1) = (0, 1, 0, 1, 1, 1, 0, 0, 0) and R(2) =
(1, 0, 0, 1, 0, 0, 0, 1, 0), respectively. Also, according to (3), we
have that F1 = {2} and F4 = {1, 2}.

Let λ(j) be the average number of flow j packets that arrive
at the network in a time slot. For the ease of our presentation,
we simply call λ(j) the arrival rate of flow j. With the routing
vector for every flow in the network, we can then compute the

average number of packets that need to go through a particular
link in a time slot. Specifically, we have

Λ = (λ1, λ2, . . . , λL) =
J∑

j=1

λ(j)R(j), (4)

where λ`, ` = 1, 2, . . . , L, is the average number of packets
that need to go through link ` in a time slot. The vector Λ is
called the arrival rate vector in this paper. In the following,
we define the traffic intensity and admissible traffic.

Definition 1 (Intensity and admissible traffic) The intensity
ρ = ||Λ|| of Λ is defined as

||Λ|| = inf
ρ′
{ρ′ =

K∑

k=1

φk|∃ weights {φk}K
k=1 and

{Pk}K
k=1 ⊂ W such that Λ ≤

K∑

k=1

φkPk ∈ Γ}. (5)

The input traffic is said to be admissible if ρ < 1.

If the input traffic is admissible, one can always find a set of
weights {φk}K

k=1 and a set of configuration vectors {Pk}K
k=1

such that
∑K

k=1 φk = 1 and Λ <
∑K

k=1 φkPk. In view of
this, a simple time sharing policy that schedules configuration
vector Pk proportional to the weight φk guarantees that the
arrival rate at each link is strictly smaller than the service rate
of that link. If, furthermore, each flow is stationary and ergodic
with a known rate, then there are many scheduling polices in
the literature that can be used for stabilizing each queue in
the network (see e.g., the rate proportional processor sharing
(RPPS) scheme in [10] and the service curve earliest deadline
first (SCED) scheme in [11]). However, if the arrival rates are
not known, then most packet scheduling polices that stabilize
any admissible traffic in the capacity region are related to
the maximum weighted matching (MWM) algorithm in [13],
where the most suitable configuration vector is identified in
every time slot. In the next section, we will extend the dynamic
frame sizing algorithm for switches and wired networks in [3],
[8] to the mathematical model for wireless networks described
in this paper.

III. DYNAMIC FRAME SIZING ALGORITHM

In [3], [8], the dynamic frame sizing (DFS) algorithm has
been used for stabilizing queues in switches and wired net-
works without knowing the arrival rates. In the DFS algorithm,
time is partitioned into frames, where the frame size is not
fixed and is determined at the beginning of each frame. The
main idea of the DFS algorithm is to determine the minimum
frame size at the beginning of a frame so that the backlog
observed at the ingress queue of each flow at the beginning of
the frame can be cleared by the end of the frame. To ensure the
number of packets of each flow inside the network is bounded
above by a finite constant, the DFS algorithm then provides
each flow in a frame a guaranteed rate that is proportional to
the backlog observed at the ingress queue at the beginning



of that frame. As long as the expected size of each frame is
finite, the expected backlog at each queue remains finite.

In view of this, there are two steps for the extension of
the DFS algorithm to the mathematical model for wireless
networks described in Section II.

(i) Determine the frame size at the beginning of each
frame.

(ii) Provide guaranteed rate services in our mathematical
model.

We will address the first step in Section III-A. By proposing
a hierarchical smooth algorithm in Section III-B, we show how
to provide guaranteed rate services in our mathematical model.
The proof for the finiteness for the expected frame size under
the DFS algorithm will be given in Section III-C.

A. Determining the frame size

In this section, we present the method for determining
the frame size at the beginning of each frame in the DFS
algorithm.
(S1) Denote by τn the last time slot of the (n − 1)th

frame (and by τn + 1 the beginning time slot of the nth

frame). Suppose that there are x(j)(τn) packets stored in
the ingress queue q(j) for flow j at the beginning of the
nth frame, j = 1, 2, . . . , J . The workload of the nth frame
Y (n) = (y1(n), y2(n), . . . , yL(n)) can be thus defined as

Y (n) =
J∑

j=1

x(j)(τn)R(j), (6)

where R(j) is the routing vector of flow j. That is, y`(n) is
the total number of packets that need to be sent through link
` in the nth frame. If y`(n) = 0 for all ` = 1, 2, . . . , L, then
we simply set the size of the nth frame, denoted by Tn, to be
1. Otherwise, Tn is defined as follows:

Tn = inf
T ′
{T ′ =

K∑

k=1

mk|∃ positive integers

{mk}K
k=1 and {Pk}K

k=1 ⊂ W

such that
K∑

k=1

mkPk ≥ Y (n)}. (7)

As the set of configuration vectors is coordinate convex, one
can always replace a configuration vector by a smaller con-
figuration vector in the minimization problem in (7). As such,
the minimization problem in (7) can be written equivalently
(with an equality and possibly a larger set of configuration
vectors) as follows:

Tn = inf
T ′
{T ′ =

K∑

k=1

mk|∃ positive integers

{mk}K
k=1 and {Pk}K

k=1 ⊂ W

such that
K∑

k=1

mkPk = Y (n)}. (8)

To see the intuition of Tn, suppose that
∑K

k=1 mkPk =
Y (n) for some mk and Pk, k = 1, 2, . . . , K. If we set the
configuration vector Pk for mk times for all k = 1, 2, . . . , K,
then the workload at every link will be cleared. As Tn is the
minimum amount of time to do that, it is known as the mini-
mum clearance time. Note that the problem of determining the
minimum clearance time in switches and wired networks are
quite simple and in fact there are explicit formulae as shown
in [3], [8]. However, the problem here is much more difficult
as it is formulated as an integer programming problem.

Without an explicit representation for the frame size Tn,
we cannot simply follow the proofs in [3], [8] to show
the finiteness of the expected frame size. One of the main
contributions of this paper is the following upper bound for
the frame size Tn that allows us to extend the result for wired
networks to our mathematical model for wireless networks
here.

The idea for the upper bound is to consider the smooth
schedule in [6]. For a set of configuration vectors {Pk}K

k=1

and their weights {φk}K
k=1, the smooth schedule in [6] assigns

each configuration vector a class of tokens. The nth token
of configuration vector Pk is assigned with the eligible time
1 + b(n− 1)/φkc and the deadline dn/φke. That is, there is
a token generated and eliminated every 1/φk time slots for
configuration vector Pk. At each time slot t, the schedule
selects one eligible token with the earliest deadline (the EDF
policy in the literature) among all the remaining tokens and
removes that token. If the token for configuration vector Pk is
selected at the beginning of time slot t, then each link ` ∈ Pk

is allowed to send a packet in that time slot. It is shown in
Lemma 3.1. in [8] that each token is selected not later than its
deadline in such a smooth schedule if the sum of the weights
is not greater than 1, i.e.,

∑K
k=1 φk ≤ 1.

Lemma 2 For a set of configuration vectors {Pk}K
k=1 and

their weights {φk}K
k=1, let S` be the set of the configuration

vectors containing link `, namely,

S` = {k|the `th element of Pk > 0, 1 ≤ k ≤ K}, (9)

and ψ` be the aggregate weight for link `, namely,

ψ` =
∑

k∈S`

φk.

If
∑K

k=1 φk ≤ 1 and ψ` > 0 for each link ` with y`(n) > 0,
then

Tn ≤ max
1≤`≤L

[y`(n) + |S`|
ψ`

]
+ 1. (10)

Proof. If y`(n) = 0 for all ` = 1, 2, . . . , L, then we know
Tn = 1 and the bound in (10) holds trivially. Now assume
there exist some ` such that y`(n) > 0. For this case, Tn

is the minimum clearance time defined in (7). As such, Tn is
upper bounded by the time needed to clear all the backlogs by
using the smooth schedule with the set of configuration vectors
{Pk}K

k=1 and their weights {φk}K
k=1. Since each token is

selected not later than its deadline in such a smooth schedule,



the total number of tokens that are selected for configuration
vector Pk by time t is at least bφktc (as the deadline of the
bφktcth token for configuration vector Pk is dbφktc/φke ≤ t).
This then implies that the total number of packets that link `
can transmit by time t is at least

∑
k∈S`

bφktc. Let

T = max
1≤`≤L

⌈
y`(n) + |S`|

ψ`

⌉
.

Then, the total number of packets sent out from link ` in the
duration [0, T ] is at least

∑

k∈S`

bφkT c ≥
∑

k∈S`

(φkT − 1)

≥
∑

k∈S`

φk(
y`(n) + |S`|

ψ`
)− |S`| = y`(n) (11)

for all 1 ≤ ` ≤ L. Thus, by time T , the backlog in every link
is cleared by using the smooth schedule. Clearly, we have

T ≤ max
1≤`≤L

[y`(n) + |S`|
ψ`

]
+ 1,

and the upper bound also holds for this case.

B. A hierarchical smooth schedule
In this section, we propose a hierarchical smooth schedule

that is able to provide guaranteed rate services in our mathe-
matical model for wireless networks. There are two levels of
this schedule: (i) the upper level for configuration vectors and
(ii) the lower level for flows in each link.
(S2) The smooth schedule for configuration vectors:

Suppose the next frame size Tn is determined in the mini-
mization problem in (8) with the set of configuration vectors
{Pk}K

k=1 and the set {mk}K
k=1 (the index n is omitted here

for clarity). During the nth frame, run the smooth schedule
with weights mk/Tn. As Tn =

∑K
k=1 mk in the minimization

problem in (8), the sum of the weights is 1 in this smooth
schedule, i.e.,

∑K
k=1 mk/Tn = 1. Specifically, the ith token

of the configuration vector Pk is assigned with the eligible
time τn + 1 + b(i− 1)Tn/mkc and deadline τn + diTn/mke,
1 ≤ i ≤ mk, 1 ≤ k ≤ K. Then, for each time slot t in
the interval [τn + 1, τn + Tn], the smooth schedule selects
the eligible token with the earliest deadline, and assigns the
corresponding configuration vector at time t. At the beginning
of the nth frame, the schedule for all the configuration vectors
in [τn + 1, τn + Tn] is computed and then transmitted to all
the links in the network.
(S3) The smooth schedule for flows in each link:

Since {mk}K
k=1 and {Pk}K

k=1 achieve the minimization
problem in (8), we have that

K∑

k=1

mkPk = Y (n). (12)

Similar to (9), let S` be the set of the configuration vectors
in {Pk}K

k=1 containing link ` within the nth frame. Thus, we
have from (12) and (6) that∑

k∈S`

mk = y`(n) =
∑

j∈F`

x(j)(τn), (13)

where F`, 1 ≤ ` ≤ L, is the set of all traffic flows traversing
link ` as defined in (3). We now say that a link is allowed to
transmit a packet or simply allowable at time t if a configu-
ration vector containing the link is selected at that time slot.
Then, according to (13), there are totally y`(n) allowable time
slots for link ` in the nth frame. For these y`(n) allowable time
slots, we denote H`(i) as the ith allowable time slot for link `
in this frame. The lower level schedule for link ` now generates
x(j)(τn) tokens for each flow j in F` within the nth frame.
Then, in the nth frame, the ith token of flow j is assigned
with the eligible time H`

(
1 +

⌊
(i− 1)y`(n)/x(j)(τn)

⌋)
and

the deadline H`

(⌈
i · y`(n)/x(j)(τn)

⌉)
. When the link ` is

allowed to transmit one packet, namely, the upper schedule
for configuration vectors selects some Pk that contains link `,
the lower level schedule for link ` selects the eligible token
that has the earliest deadline among all the flows in F` and
removes that token. Suppose the selected token is for flow
j, then queue q

(j)
` is allowed to send a packet in that time

slot. In other words, the lower level schedule is also a smooth
schedule for the traffic flows traversing link ` with the weights
{x(j)(τn)/y`(n)}j∈F`

on all the y`(n) allowable time slots for
link `. Note from (13) that the sum of the weights is also 1,
i.e.,

∑
j∈F`

x(j)(τn)/y`(n) = 1.
As both the sums of the weights in (S2) and (S3) are 1, the

following lemma is a direct consequence of the well-known
result for a smooth schedule (see e.g., Lemma 3.1 in [8]).

Lemma 3 Under the hierarchical smooth schedule described
in (S2) and (S3),

(i) each token in the smooth schedule for the configuration
vectors is selected not later than its deadline, and

(ii) each token in the smooth schedule for flows in each link
is also selected not later than its deadline.

In the following lemma, we derive an upper bound and a
lower bound on the total number of tokens selected during
an interval for a particular flow by a link traversed by that
flow. These bounds will be used to bound the total number of
packets in an internal buffer for each flow in Theorem 5. The
proof of Lemma 4 is given in Appendix A.

Lemma 4 Let C
(j)
` (t) be the cumulative number of tokens

selected for flow j by link ` by time t. Suppose s is a time
slot in the n1

th frame and t > s is another time slot in the
n2

th frame. Then, for each link ` traversed by flow j, the
total number of tokens selected for flow j by link ` in the time
interval [s + 1, t], i.e., C

(j)
` (t) − C

(j)
` (s), have the following

upper and lower bounds:

E(j)(s, t)− 2(Smax + 1) ≤ C
(j)
` (t)− C

(j)
` (s)

≤ E(j)(s, t) + 2(Smax + 1), (14)



where

E(j)(s, t) =
n1−1∑

n′=n2

x(j)(τn′)

+
(

x(j)(τn2)
t− τn2

Tn2

− x(j)(τn1)
s− τn1

Tn1

)
, (15)

and Smax is the maximum size of the set of all the configura-
tion vectors in W containing link `, namely,

Smax = max
1≤`≤L

|{P |` ∈ P, P ∈ W}|. (16)

Now we show in the following theorem that the total number
of packets in an internal buffer is bounded by a finite constant.

Theorem 5 Under the DFS algorithm specified in (S1), (S2)
and (S3), the total number of packets of a flow in any internal
queue traversed by the flow is upper bounded by 4(Smax +1)
for any time slot, where Smax is the constant defined in (16).
Specifically, suppose that q

(j)
` is an internal queue for flow j

at link `. Then

x
(j)
` (t) ≤ 4(Smax + 1), (17)

where x
(j)
` (t) is the number of packets in q

(j)
` at time t.

Proof. Consider the governing equation of queue q
(j)
` in (1).

Note that there is a departure from q
(j)
` at time t, i.e., b

(j)
` (t) =

1, if a token is selected for flow j by link ` at time t and there
are packets that can be departed from the queue. Let c

(j)
` (t) be

the indicator variable for the event that a token is selected for
flow j by link ` at time t. Thus, we can rewrite the governing
equation of queue q

(j)
` in (1) as follows:

x
(j)
` (t + 1) = max[0, x

(j)
` (t) + a

(j)
` (t + 1)− c

(j)
` (t + 1)]. (18)

As we assume the queue is empty at time 0, recursively
expanding the governing equation in (18) yields

x
(j)
` (t) = max

0≤s≤t

[
A

(j)
` (t)−A

(j)
` (s)

−
(
C

(j)
` (t)− C

(j)
` (s)

) ]
, (19)

where A
(j)
` (t) =

∑t
t1=1 a

(j)
` (t1) and C

(j)
` (t) =∑t

t1=1 c
(j)
` (t1) are the accumulative number of packets

arriving at q
(j)
` and the accumulative number of tokens

selected for flow j by link ` by time t, respectively. Recall
that u(j, `) is the upstream link of link ` for flow j. For
link `, we define B

(j)
` (t) =

∑t
t1=1 b

(j)
` (t1) as the cumulative

number of packets that depart from q
(j)
` by time t. Since a

packet can depart from an upstream queue only if there is a
token selected for the upstream queue, it then follow that

A
(j)
` (t)−A

(j)
` (s) = B

(j)
u(j,`)(t)−B

(j)
u(j,`)(s)

≤ C
(j)
u(j,`)(t)− C

(j)
u(j,`)(s), (20)

for each internal queue q
(j)
` .

From (20) and Lemma 4, it follows that

A
(j)
` (t)−A

(j)
` (s) ≤ C

(j)
u(j,`)(t)− C

(j)
u(j,`)(s)

≤ E(j)(s, t) + 2(Smax + 1). (21)

According to Lemma 4, we have that

C
(j)
` (t)− C

(j)
` (s) ≥ E(j)(s, t)− 2(Smax + 1). (22)

Thus, the result in (17) follows directly from (19), (21) and
(22).

C. Frame Bound

In this section, we show that, for Bernoulli arrival traffic
with arrival rates inside the capacity region, the expected
frame size is finite. Thus, the DFS algorithm guarantees 100%
throughput for such Bernoulli traffic.

Here we make three specific assumptions on the input
traffic.

(A1) All the multicast flows are independent Bernoulli pro-
cesses when they arrive at the network. Specifically, a(j)(t)’s
are independent Bernoulli random variables for all j and t.

(A2) Assume that the arrival rate of flow j is λ(j), 1 ≤
j ≤ J , and this rate information is unknown to the network.
Without loss of generality, we also assume λ(j) > 0 for all j
and every link is traversed by at least one flow, i.e.,

0 < Λ = (λ1, λ2, . . . , λL) =
J∑

j=1

λ(j)R(j),

where 0 is the L-vector with all its elements being 0.
(A3) The input traffic is admissible, i.e., the intensity

defined in (5) is strictly smaller than 1, i.e., ρ = ||Λ|| < 1.
As we assume that the traffic is admissible, there is a set of

weights {φk}K
k=1 and a set of configuration vectors {Pk}K

k=1

such that

0 < ρ =
K∑

k=1

φk < 1, (23)

and

0 < Λ ≤
K∑

k=1

φkPk. (24)

Theorem 6 Assume that the input traffic satisfies (A1)–(A3).
Consider the set of weights {φk}K

k=1 and the set of con-
figuration vectors {Pk}K

k=1 that satisfy (23) and (24). Let
ψ` =

∑
k∈S`

φk/ρ, where S` is the set of configuration
vectors containing link ` in {Pk}K

k=1 as in (9). Also, let
ψmin = min1≤`≤L ψ` and δ = max1≤`≤L(|S`|/ψ`)+1. Then,
under the DFS algorithm specified in (S1), we have for n > 1

log E[eθ∗Tn ] ≤ max
(

θ∗,
2 log L + 2δθ∗

1− ρ

)
(25)

where θ∗ is the unique positive solution of

eθ/ψmin − 1
θ/ψmin

=
1 + ρ

2ρ
. (26)



As a results, the expectation of the frame size E[Tn] is bounded
by max

(
2 log L+2δθ∗

θ∗(1−ρ)

)
.

As a direct consequence of Theorem 6, the expected number
of packets in each ingress queue is also finite. In conjunction
with the bound for an internal queue in Theorem 5, the
DFS algorithm stabilizes the network for the Bernoulli traffic
described in (A1)–(A3).
Proof.

Let φ̃k = φk/ρ. It then follows from (23) that

K∑

k=1

φ̃k = 1. (27)

Moreover, we have from (24) that

ψ` =
∑

k∈S`

φ̃k =
∑

k∈S`

φk

ρ
≥ λ`

ρ
> 0. (28)

Thus, the condition in Lemma 2 is satisfied (with the set
of weights {φ̃k}K

k=1 and the set of configuration vectors
{Pk}K

k=1) and we have from (10) that

Tn+1 ≤ max
1≤`≤L

[y`(n + 1) + |S`|
ψ`

]
+ 1. (29)

For θ > 0, we have that

eθTn+1 ≤ max
1≤`≤L

exp
[
θ

(
y`(n + 1) + |S`|

ψ`
+ 1

)]

≤
∑

1≤`≤L

exp
[
θ

(
y`(n + 1) + |S`|

ψ`
+ 1

)]
.

According to (6) and (13), the workload y`(n + 1) for link `
can be represented by

y`(n + 1) =
∑

j∈F`

x(j)(τn+1) =
∑

j∈F`

τn+1∑
t=τn+1

a(j)(t), (30)

where a(j)(t) is the external arrival packets for flow j at
time t and F` is the set that contains all the traffic flows
traversing link ` as described in (3). Since we assume that
the arrival processes are independent Bernoulli processes in
(A1) and {a(j)(t)}∞t=1 are i.i.d Bernoulli random variables
with parameter λ(j) in (A2), it then follows that

E[eθTn+1 |Tn] ≤
∑

1≤`≤L

eθ(1+|S`|/ψ`)

{
E

[
exp

(
θ
∑

j∈F`
a(j)(1)

ψ`

)]}Tn

. (31)

Notice that

log E

[
exp

(
θ
∑

j∈F`
a(j)(1)

ψ`

)]

=
∑

j∈F`

log E

[
exp

(
θa(j)(1)

ψ`

)]

=
∑

j∈F`

log
(
λ(j)eθ/ψ` + 1− λ(j)

)

≤
∑

j∈F`

λ(j)(eθ/ψ` − 1)

= λ`(eθ/ψ` − 1)
≤ ρψ`(eθ/ψ` − 1), (32)

where we use log(1 + x) ≤ x for x > 0 in the first inequality
and (28) in the last inequality.

Hence, we have that

E
[
eθTn+1 |Tn

] ≤ eθδ
∑

1≤`≤L

exp
[
ρTnψ`(eθ/ψ` − 1)

]
. (33)

For fixed θ > 0, according to Taylor’s expansion, we have that

ψ`(eθ/ψ` − 1) = ψ`

[ ∞∑

k=0

1
k!

(
θ

ψ`

)k

− 1

]

= ψ`

(
θ

ψ`
+

1
2!

θ2

ψ2
`

+
1
3!

θ3

ψ3
`

· · ·
)

= θ +
∞∑

k=1

θk+1

(k + 1)!ψk
`

, (34)

which decreases monotonically as ψ` increases. As such,

ψ`(eθ/ψ` − 1) ≤ ψmin(eθ/ψmin − 1) (35)

for all 1 ≤ ` ≤ L. From (33) and (35), we have that

E
[
eθTn+1 |Tn

] ≤ eθδL exp
(
ρTnψmin(eθ/ψmin − 1)

)
. (36)

Taking expectation on both sides of (36) yields

E[eθTn+1 ] ≤ eθδLE
[
exp(ρTnψmin(eθ/ψmin − 1))

]
. (37)

According to (26), we have that

ρψmin(eθ∗/ψmin − 1) = θ∗(ρ + 1)/2,

and (37) can be rewritten (with θ being replaced by θ∗) as

E[eθ∗Tn+1 ] ≤ eθ∗δLE[eθ∗Tn(1+ρ)/2]. (38)

Since log E[eθTn ] is convex in θ (see e.g., [1, Proposition
7.1.8]) and ρ < 1, we have that

log E[eθ∗Tn(1+ρ)/2] ≤ 1 + ρ

2
log E[eθ∗Tn ]. (39)

Using (39) and (38) yields

log E[eθ∗Tn+1 ] ≤ log L + δθ∗ +
1 + ρ

2
log E[eθ∗Tn ]. (40)

Since T1 = 1 (as the network is started from an empty system),
one can verify (25) from induction by using (40). Finally, we



use (25) to show the bound of the frame size in Theorem 6.
Since eθx is convex in x, it follows from Jensen’s Inequality
that

E[Tn] ≤ 1
θ∗

log E[eθ∗Tn ] ≤ max
(

1,
2 log L + 2δθ∗

θ∗(1− ρ)

)
. (41)

IV. CONCLUSION

In this paper, we extended the dynamic frame sizing al-
gorithm to the setting of wireless networks. We modeled
wireless networks by configuration vectors that specify the
sets of links that can transmit at the same time. For such
a mathematical model, we considered multicast flows with
per flow queueing. We proved that the DFS algorithm indeed
stabilizes the network for any admissible Bernoulli traffic. In
comparison with the previous results for the DFS algorithm
in [3], [8], our main contributions in this paper are the two
new technical results: (i) an upper bound for the frame size
that has an explicit expression in terms of the workload, and
(ii) a hierarchical smooth schedule that provides guaranteed
rate services in such a mathematical model. The first result
allows us to modify the large deviation argument in [3], [8]
to prove the finiteness of the expected frame size, while the
second result leads to an upper bound for the total number of
packets in an internal queue.

There are some possible extensions of this work.
(i) In (S1), the frame size is chosen to be 1 when there

is no backlog in each ingress queue. In the worst
case, this requires the optimization problem to be
carried out in every time slot (which is as bad as the
maximum weighted matching algorithm). We note
that it is possible to set a bound on the minimum
frame size so that the optimization problem needs not
be carried out too often. This is because our proof
only relies on the assumption that the backlog in each
ingress queue at the beginning of a frame needs to
be cleared by the end of that frame.

(ii) The DFS algorithm described in this paper does
not provide traffic isolation. When the traffic is
not admissible, the expected frame size cannot be
bounded. As all the flows are coupled through the
optimization problem that determines the frame size
at the beginning of each frame, the performance
could be very bad for all the flows. In view of this,
one should enforce an upper limit for the frame
size. But this also limits the throughput that can be
achieved by the DFS algorithm.

V. APPENDIX A

In the proof of Lemma 4, we need to consider multiple
frames. As such, we add the index n in K(n), mk(n), Pk(n),
S`(n), and F`(n) to represent all the corresponding parameters
used in the DFS algorithm within frame n. First, we consider
a time slot t in the nth frame. Define D`(t) as the cumulative
number of allowable time slots for link ` by time t. According

to (S2) and (S3), when a token for the configuration vector
Pk(n) ∈ S`(n) is selected by the schedule at a time slot, then
link ` is allowable at that time slot. Prior to the nth frame,
we know from (13) that there are totally

∑n−1
n′=1 y`(n′) tokens

selected for link `.
Now, consider the nth frame that t belongs to. First, the

cumulative number of allowable time slots for link ` by time
t in the nth frame is D`(t) −

∑n−1
n′=1 y`(n′) and this number

cannot be greater than the total number of tokens generated
for configuration vectors containing link `. On the other hand,
from Lemma 3(i), all the tokens for configuration vectors
{Pk(n)}K(n)

k=1 are selected before their deadlines. As such,
the allowable time slots for link ` in the nth frame is not
less than the total number of tokens for configuration vectors
containing link ` with deadlines not later than t. Thus, for
τn + 1 ≤ t ≤ τn + Tn, we have the following upper bound
and lower bound:

∑

k∈S`(n)

⌊
t− τn

Tn
mk(n)

⌋
≤ D`(t)−

n−1∑

n′=1

y`(n′)

≤
∑

k∈S`(n)

⌈
t− τn

Tn
mk(n)

⌉
. (42)

In the nth frame, we also know from (13) that there are
x(j)(τn) tokens selected for flow j by link `. Hence, before the
nth frame, there are

∑n−1
n′=1 x(j)(τn′) tokens selected by link

` for flow j. Within the nth frame, the cumulative number of
tokens selected for flow j by link ` by time t is upper bounded
by the number of tokens generated for flow j by link ` by time
t. Thus, it follows from the schedule in (S3) that

C
(j)
` (t)−

n−1∑

n′=1

x(j)(τn′)

≤
⌈

x(j)(τn)
y`(n)

(
D`(t)−

n−1∑

n′=1

y`(n′)

)⌉
. (43)

On the other hand, from Lemma 3(ii), each token for flow j is
selected before its deadline. As such, the cumulative number
of tokens selected for flow j by link ` by time t is lower
bounded by the tokens with deadlines not later than t. This
then implies

C
(j)
` (t)−

n−1∑

n′=1

x(j)(τn′)

≥
⌊

x(j)(τn)
y`(n)

(
D`(t)−

n−1∑

n′=1

y`(n′)

)⌋
. (44)

It follows from (43), (44) and (42) that
x(j)(τn)

y`(n)

∑

k∈S`(n)

⌊
t− τn

Tn
mk(n)

⌋

≤ C
(j)
` (t)−

n−1∑

n′=1

x(j)(τn′)



≤



x(j)(τn)
y`(n)

∑

k∈S`(n)

⌈
t− τn

Tn
mk(n)

⌉


(45)

for each time slot t in the nth frame, namely, τn + 1 ≤ t ≤
τn + Tn.

Now suppose s is a time slot in the n1
th frame and t > s

is another time slot in the n2
th frame. Using (45) yields

C
(j)
` (t)− C

(j)
` (s)

≥
n2−1∑

n′=n1

x(j)(τn′)

+

x(j)(τn2)
y`(n2)

∑

k∈S`(n2)

⌊
t− τn2

Tn2

mk(n2)
⌋

−



x(j)(τn1)
y`(n1)

∑

k∈S`(n1)

⌈
s− τn1

Tn1

mk(n1)
⌉


≥
n2−1∑

n′=n1

x(j)(τn′)

+
x(j)(τn2)
y`(n2)

∑

k∈S`(n2)

⌊
t− τn1

Tn2

mk(n2)
⌋

−x(j)(τn1)
y`(n1)

∑

k∈S`(n1)

⌈
s− τn1

Tn1

mk(n1)
⌉
− 2

≥
n2−1∑

n′=n1

x(j)(τn′)

+
x(j)(τn2)
y`(n2)


 t− τn1

Tn2

∑

k∈S`(n2)

mk(n2)− |S`(n2)|



−x(j)(τn1)
y`(n1)


s− τn1

Tn1

∑

k∈S`(n1)

mk(n1) + |S`(n1)|

− 2

=
n2−1∑

n′=n1

x(j)(τn′)

+
(

x(j)(τn2)
t− τn2

Tn2

− x(j)(τn1)
s− τn1

Tn1

)

−x(j)(τn2)
y`(n2)

|S`(n2)| − x(j)(τn1)
y`(n1)

|S`(n1)| − 2, (46)

where we use (13) in the last equality. Notice from (16) that
S`(n) ≤ Smax for each frame n. Then, it follows from (46)
that

C
(j)
` (t)− C

(j)
` (s) ≥

n2−1∑

n′=n1

x(j)(τn′)

+
(

x(j)(τn2)
t− τn2

Tn2

− x(j)(τn1)
s− τn1

Tn1

)

−2(Smax + 1). (47)

Also, from (45), we have that

C
(j)
` (t)− C

(j)
` (s) ≤

n2−1∑

n′=n1

x(j)(τn′)

+




x(j)(τn2)
y`(n2)

∑

k∈S`(n2)

⌈
t− τn1

Tn2

mk(n2)
⌉


−
x(j)(τn1)

y`(n1)

∑

k∈S`(n1)

⌊
s− τn1

Tn1

mk(n1)
⌋ . (48)

By following a similar procedure, one can verify that

C
(j)
` (t)− C

(j)
` (s) ≤

n2−1∑

n′=n1

x(j)(τn′)

+
(

x(j)(τn2)
t− τn2

Tn2

− x(j)(τn1)
s− τn1

Tn1

)

+2(Smax + 1). (49)

Thus, (14) follows from (47) and (49).
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