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Abstract—Recently, a new optical device called variable optical
delay line (VODL) has been proposed in the literature. As
suggested by its name, the delay of a VODL can be dynamically
set within a certain range. Once set, a VODL behaves like a
traditional fiber delay line and can admit packets requiring the
same delay as that set by the VODL. As in the queueing context,
a VODL can thus be viewed as a server that serves packets with
the service times equal to the required delays.

In this paper, we consider loss systems with parallel VODLs
subject to various classes of packet arrivals. Such loss systems
are different from the classical loss systems as a VODL, even
when occupied, can still admit new packets with the same delay.
For the case with an infinite number of VODLs, we show that
the number of VODLs occupied by different classes of packets
still has a product form solution. However, the analysis for the
case with a finite number of VODLs is much more difficult.
For this, we propose an approximation method based on state
truncation. We show that the packet loss probabilities derived
from our approximation are very close to those generated from
simulations. In order to minimize the packet loss probabilities
in such loss systems, we also consider the problem of assigning
dedicated VODLS to various classes of packets. We show under
the light traffic condition, the complete sharing policy, i.e., the
policy that does not assign any dedicated VODLs, is optimal.
For the general traffic condition, we propose a greedy search
algorithm to find a suboptimal assignment of dedicated VODLS.
Simulation results show that our greedy algorithm yields very
good assignments when comparing with the optimal ones.

Index Terms—optical buffers, variable optical delay lines,
optimal assigment, complete sharing

I. INTRODUCTION

The increasing varieties of Internet services have pushed
the need for high-speed packet switched network. Optical
fiber is an ideal transmission medium because it promises
lossless transmission over a very broad frequency range.
Although the optical transmission technology is very powerful
in transmission capability, it is relatively limited in signal
processing ability. Therefore, the current packet switched
communication networks transmit information in optical form
in optical links. However, optical information in the form of
packets are received, converted into electronic form, stored,
processed and converted back to optical form for transmission
in routers or switches. This optical-electric-optical conversion
seriously slows down the speed of the optical networks.

To avoid optical-electric-optical conversion and to achieve
all-optical packet switched networks, one needs to store pack-
ets in optical form. The device that stores packets in optical
form is called an optical buffer. There has been a surge of
research interest in optical buffers recently. In the late nineties
and early 2000s, designs of optical buffers and experimental
studies were reported in the research literature [8], [9], [23],
[11], [14], [12], [13]. A series of theoretical research on the
design of optical buffers has been reported in [2], [3], [10],
[4], [6], [7], [22]. These studies focus on clever designs of
optical buffers using switched delay lines that exactly emulate
optical buffers of various service disciplines. In addition,
these designs achieve logarithmic or sublinear complexity.
Rigorous mathematical proofs are presented to support the
claims on sublinear complexity and exact emulation. Some
optical buffers built with fiber delay lines allow asynchronous
and variable length packets. Queueing analyses have been
proposed to study the effect of granularity to such buffers [1],
[16], [18], [17].

Recently, a new optical device called variable optical delay
line (VODL) has been proposed in [5], [15], [24]. It is achieved
by varying the dispersion curve of the medium based on the
use of semiconductor quantum dots and the electromagneti-
cally induced transparency mechanism [19]. When we set the
adjustable optical memory to certain storage time, it acts like
traditional optical delay lines and thus can accept packets with
the same delay requirement. One can not modify the storage
time when there is an optical signal in the variable optical
memory. This is because it may cause an unexpected release
time. When all optical signals are released, it can be adjusted
to another storage time. As in the queueing context, a VODL
can thus be viewed as a server that serves packets with the
service times equal to the required delays (a schematic diagram
of a VODL is shown in Figure 1).

In this paper, we consider loss systems with parallel VODLs
subject to various classes of packet arrivals. Instead of focusing
on exact emulation or sublinear complexity, we focus on
queueing analysis and optimal operation of the loss systems
such that the packet loss probabilities are minimized. In our
setting, VODLs can be tuned to different delay values when
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Fig. 1. A variable optical delay line

they are idle. Unlike the classical queueing context, a busy
VODL can accept further packets before the packets in it have
left. However, for each time slot, a VODL can accept at most
one packet and the requested delay of the accepted packet
must be identical to that of packets stored in the VODL.

For such loss systems, we show that they can be modeled
by Markov chains. When the number of VODLs is infinite, the
corresponding Markov chain can be solved easily. In particular,
we show that the number of VODLs occupied by different
classes of packets still has a product form solution. However,
the analysis for the case with a finite number of VODLs is
much more difficult. For this, we propose an approximation
method based on state truncation. We show that the packet loss
probabilities derived from our approximation are very close
to those generated from simulations. In order to minimize the
packet loss probabilities in such loss systems, we also consider
the problem of assigning dedicated VODLS to various classes
of packets. We show under the light traffic condition, the com-
plete sharing policy, i.e., the policy that does not assign any
dedicated VODLs, is optimal. For the general traffic condition,
we propose a greedy search algorithm to find a suboptimal
assignment of dedicated VODLS. Simulation results show
that our greedy algorithm yields very good assignments when
comparing with the optimal ones.

This paper is organized as follows. In Section II, we
model and analyze the loss system with parallel VODLs by
a Markov chain. We then show that the Markov chain has
a product form solution in Section II-C when the number
of VODLs is infinite. Based on state truncation, we then
derive an approximation in Section II-D for the case with
a finite number of VODLs. An upper bound for the packet
loss probability is also derived in Section II-E. In Section III,
we consider the problem of optimal assignment of dedicated
VODLS to minimize the loss probability. When the traffic is
light, we show that the complete sharing policy is optimal in
Section III-A. For the general traffic condition, a greedy search
algorithm is proposed in Section III-B. Various numerical
results are obtained to verify our approximations in Section
IV. The paper is concluded in Section V, where we address
possible extensions.

II. MODELLING AND ANALYSIS

A. queueing model

In this section, we present our queueing model for loss
systems with variable optical delay lines (VODLs). Here we
consider the discrete-time setting and make the following
assumptions:

(A1) Packets are of the same size.

(A2) Time is slotted and synchronized so that a packet can
be transmitted within a time slot.

In the literature of optical switching, fiber delay lines are often
used for delaying packets to a fixed integer number of time
slots. To avoid conflict, packets might be required to have
different delays. As such, one needs to have a network element
like a VODL that is capable of delaying packets to a range
of delays. Here we assume that the delay of each VODL can
be dynamically set within the range [1, d]. A VODL is said to
be occupied (resp. idle) if there is at least one packet (resp.
no packet) in it. When a packet arrives requesting a certain
delay within the range of the delay of an idle VODL, the
delay of the VODL can be set to match the required delay
of the packet and the packet is then “served” by the VODL
with the service time equal to the delay set by the VODL.
In the classical queueing setting, a server, once occupied, can
no longer admit new customers. However, in our setting, an
occupied VODL, due to its physical property, can still admit
new packets with the same delay as that set by the VODL. This
makes the analysis of VODLs a new paradigm of queueing
theory.

Lost packets�

1�

2�

c�

Class 1�

Class 2�

Class d�

Fig. 2. A loss system with c variable optical delay lines and d classes of
packets

To carry out our analysis, we assume that there are c VODLs
in total, and that there are d classes of packets (as shown
in Figure 2). A class i packet is required to be delayed by
i time slots, i = 1, 2, . . . , d. Since an occupied VODL can
keep on accepting new packets, VODLs occupied by packets
requesting long delay can be held up for a long time. Thus,
packets requesting long delay are more likely to be served
and packets requesting short delay are more likely to be
lost. To minimize packet loss probability, we assign dedicated
VODLs to each traffic class. Specifically for class i packets,
we dedicate Ni VODLs statically. These VODLs will be called
dedicated VODLs. The remaining c−∑d

i=1 Ni VODLs can be
dynamically set to accommodate packets of any class. These
VODLs will be called shared VODLs. Let

b = c −
d∑

i=1

Ni (1)
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be the number of shared VODLs.
Now we specify the policy of placing packets into VODLs.

Let ai(t) be the number of class i packets arriving at time t.
Step 1. As new class i packets arrive, they first try to enter

their dedicated VODLs.
Step 2. If there are not enough dedicated VODLs, the rest

(ai(t) − Ni)+ arrivals attempt to enter the shared
VODLs that are already occupied by class i packets
that arrive before time t. Here we use the symbol
(x)+ to denote max(x, 0).

Step 3. If there are still class i new arrivals that cannot be
assigned to VODLs after the above two steps, they
can be assigned to idle shared VODLs according to a
priority order that is randomly chosen in every time
slot.

Step 4. If there are not enough idle shared VODLs left,
then packets are lost.

Specifically, let the priority of class i at time t be p(i, t).
Numerically smaller priority values correspond to higher prior-
ities. Also, let Xi(t) be the number of class i packets placed
into shared VODLs at time t, and Yi(t) be the number of
shared VODLs occupied by earlier class i packets that arrive
before t. Note that if a class i packet is placed into a VODL at
time t, that VODL will remain occupied from time t to time
t + i − 1. As we always try those VODLs occupied by class
i packets first, we have

Yi(t) = max[Xi(t − 1), . . . , Xi(t − i + 1)]. (2)

To ease our presentation, we let Y1(t) = 0 for all t (as class 1
packets with delay 1 only occupy VODLs for one time slot).
We note that (2) is in fact the governing equation that makes
the loss system with VODLs different from the traditional loss
system. In the traditional loss system, the number of “busy”
servers is represented by the sum of all the customers in the
system. Here in (2), it is represented by the maximum of
packets placed in various time slots. Clearly, this implies that
the loss system with VODLs will yield a much lower packet
loss probability than that in the traditional loss system. We
will further verify this by computer simulations in Section IV.

According to the priority assignment, the number of shared
VODLs that can be used by class i packets, denoted by Ni(t),
is

Ni(t) = b−
∑

p(j,t)<p(i,t)

max[Xj(t), Yj(t)]−
∑

p(j,t)>p(i,t)

Yj(t),

(3)
where the first (resp. second) summation is the number of
shared VODLs used by those classes of packets with priority
higher (resp. lower) than class i packets at time t. Thus, we
have

Xi(t) = min[(ai(t) − Ni)+, Ni(t)], (4)

and the number of lost class i packets at time t is

(ai(t) − Ni − Ni(t))+. (5)

To compute the total number of lost packets at time t, one
may simply add up all the lost packets for each class in (5).

However, the computation of the total number of lost packets
at time t using that approach depends on the priority order.
Here we derive a much simpler expression that is independent
of the priority order (once Yi(t)’s are given). First, we note
that the number of class i packets that need to be assigned to
idle shared VODLs at time t (after the second step) is

(ai(t) − Ni − Yi(t))+.

Thus, the total number of packets that need to be assigned to
idle shared VODLs at time t is

d∑
i=1

(ai(t) − Ni − Yi(t))+.

On the other hand, the total number of idle shared VODLs at
time t is

b −
d∑

i=1

Yi(t).

From these, the total number of lost packets at time t is

( d∑
i=1

(ai(t) − Ni − Yi(t))+ − (b −
d∑

i=1

Yi(t))
)+

.

Since

(ai(t) − Ni − Yi(t))+ + Yi(t) = max[ai(t) − Ni, Yi(t)],

the total number of lost packets at time t, denoted by L(t), is

L(t) =
(
(

d∑
i=1

max[ai(t) − Ni, Yi(t)]) − b
)+

. (6)

B. The Markov chain

To carry out a probabilistic analysis, we need to make an
assumption on the arrival processes:

(A3) {ai(t), t ≥ 1} is a sequence of independent and
identically distributed (i.i.d.) random variables with
the common distribution

Fi(z) = Pr(ai(1) ≤ z).

The sequence is also independent of everything else.

Under (A3), the packet loss probability, denoted by
�(N1, N2, . . . , Nd), is then given by the ratio of the expected
number of lost packets to the expected number of packet
arrivals in a time slot. Specifically, we have from (6) that

�(N1, N2, . . . , Nd)

= E
[ d∑

i=1

max[ai(t) − Ni, Yi(t)] − b
]+

/
d∑

i=1

E[ai(t)].

(7)

For i = 2, . . . , d, let

Xi(t) = (Xi(t − 1), . . . , Xi(t − i + 1)).

Also let
X(t) = (X2(t), . . . ,Xd(t)).
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In view of (4) and (3), we know that X(t+1) is a deterministic
function of X(t) and ai(t), i = 1, 2, . . . , d, once the priority
order is given. From (A3), ai(t), i = 1, 2, . . . , d, are indepen-
dent of X(t). Thus, X(t) is a discrete-time Markov chain and
the packet loss probability in (7) can be obtained by solving the
steady state probabilities of the Markov chain X(t). However,
the size of the state space of X(t) is astronomical even for
small d and c. Thus, we have to seek for an approximation
method.

C. The case with an infinite number of VODLs

Suppose that the number of shared VODLs b is infinite. In
that case, there are no lost packets and we will show that the
Markov chain X(t) has a product form joint distribution. As
b is infinite, we note from (4) and (3) that

Xi(t) = (ai(t) − Ni)+, i = 1, 2, . . . , d. (8)

Let xi = (xi,1, . . . , xi,i−1) be a nonnegative (i − 1)-vector,
and x = (x1, . . . ,xd). Then we have from (A3) that

Pr(Xi(t) ≤ xi) =
i−1∏
j=1

Pr(ai(t − j) − Ni ≤ xi,j)

=
i−1∏
j=1

Fi(Ni + xi,j). (9)

Moreover, it follows from (A3) that Xi(t), i = 1, 2, . . . , d, are
independent. As such,

Pr(X(t) ≤ x) =
d∏

i=1

Pr(Xi(t) ≤ xi)

=
d∏

i=1

i−1∏
j=1

Fi(Ni + xi,j). (10)

In view of (9) and (2), we then have for i = 2, . . . , d,

Pr(Yi(t) ≤ k) = Pr(Xi(t) ≤ (k, k, . . . , k))
= Fi(Ni + k)i−1. (11)

Let πi(n) = Pr(Yi(t) = n), n ≥ 0, when b is infinite. It then
follows that

πi(0) = Pr(Yi(t) = 0) = Fi(Ni)i−1, (12)

πi(n) = Pr(Yi(t) = n)
= Fi(Ni + n)i−1 − Fi(Ni + n − 1)i−1. n ≥ 1.

(13)

Note from (A3) and (2) that Yi(t)’s are independent. As such,

Pr(Y2(t) = n2, . . . , Yd(t) = nd)

=
d∏

i=2

Pr(Yi(t) = ni)

=
d∏

i=2

πi(ni). (14)

This shows that the number of VODLs occupied by different
classes of packets still has a product form solution.

D. The case with a finite number of VODLs

When b is not infinite, Yi(t)’s are not independent and we
do not have the product form in (14). When b is finite, we
know that

d∑
i=2

Yi(t) ≤ b. (15)

Thus, the stochastic process (Y2(t), . . . , Yd(t)) is constrained.
In view of this constraint, we propose the following state
truncation approximation for the joint distribution of Yi(t)’s:

Pr(Y2(t) = n2, . . . , Yd(t) = nd) = G

d∏
i=2

πi(ni), (16)

where πi(n)’s are defined in (12) and (13), and

G =
( ∑

{(n2,...,nd)∈S}

d∏
i=2

πi(ni)
)−1

(17)

is the normalization constant with respect to the truncated state
space

S =

{
(n2, . . . , nd)

∣∣∣ d∑
i=2

ni ≤ b, nj ≥ 0, j = 2, . . . , d

}
.

(18)
Such an approximation would be exact if the unrestricted
process (Y2(t), . . . , Yd(t)) formed a time-reversible Markov
process (see e.g., [20][p. 443]). However, (Y2(t), . . . , Yd(t)),
as defined in (2), is not even a Markov process.

With the approximation for the joint distribution of Yi(t)’s
in (16), the packet loss probability in (7) can be obtained by
calculating the conditional expected number of lost packets.
Specifically, for state n = (n2, . . . , nd) ∈ S, let φ(n) denote
the conditional expected number of lost packets given that
(Y2(t), . . . , Yd(t)) is in state n. Since ai(t)’s are independent
of Yi(t)’s, we have from (6) that

φ(n) = E[L(t)|(Y2(t), . . . , Yd(t)) = (n2, . . . , nd)]

=
∞∑

k1,...,kd=0

⎡
⎣ d∑

j=1

max[(kj − Nj)+, nj] − b

⎤
⎦

+

×
d∏

i=1

(F (ki) − F (ki − 1)), (19)

where n1 = 0 and F (ki)−F (ki−1) is simply the probability
that there are ki class i arrivals at time t. Finally, the approx-
imated packet loss probability, denoted by Φ(N1, . . . , Nd), is
given by

Φ(N1, . . . , Nd) =

G
∑

(n2,...,nd)∈S

d∏
i=2

πi(ni)φ(n)

∑d
i=1 E[ai]

, (20)

where G is the normalization constant in (17).
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E. An upper bound

In this section, we derive an upper bound for the packet loss
probability. Note that the number of class i packets that can
be placed in the shared VODLs at time t is bounded above
(ai(t) − Ni)+, i.e.,

Xi(t) ≤ (ai(t) − Ni)+, (21)

and the inequality becomes an equality for the unrestricted
process, i.e., b is infinite. As such, we have from (2) that

Yi(t) = max[Xi(t − 1), . . . , Xi(t − i + 1)]
≤ max[(ai(t − 1) − Ni)+, . . . , (ai(t − i + 1) − Ni)+]
= Y u

i (t), (22)

where Y u
i (t) is the unrestricted process of Yi(t) in Section

II-C and it has the steady state distribution specified in (11).
Using this in (7) yields

�(N1, N2, . . . , Nd)

≤ E
[ d∑

i=1

max[ai(t) − Ni, Y
u
i (t)] − b

]+
/

d∑
i=1

E[ai(t)].

(23)

Following the same argument as that for (20), we can compute
the expectation in (23) and derive the following upper bound:

�(N1, N2, . . . , Nd) ≤

∑
n2,...,nd

d∏
i=2

πi(ni)φ(n)

∑d
i=1 E[ai]

, (24)

where φ(n) is defined in (19) and πi(n)’s are defined in (12)
and (13).

Note that the difference between the upper bound in (24)
and the approximation in (20) is that the sum in (24) is
unconstrained. This implies that the approximation in (20)
should be very good when b is very large or when the traffic
is very light.

III. OPTIMAL ASSIGNMENT OF DEDICATED VODLS

In this section, we study the problem of optimal assignment
of the numbers of dedicated VODLs, N1, N2, . . . , Nd, so that
the packet loss probability is minimized.

A. Complete sharing in light traffic

As argued in Section II-E, the packet loss probability
approaches to the upper bound in (24) when the traffic is light.
In such a case, we will show that the complete sharing policy,
i.e., choosing N1 = N2 = . . . = Nd = 0, is the optimal policy
that minimizes the loss probability. To see this, note from (23),

(1), and (22) that

(
d∑

i=1

max[ai(t) − Ni, Y
u
i (t)]) − b

= (
d∑

i=1

max[ai(t) − Ni, Y
u
i (t)] + Ni) − c

= (
d∑

i=1

max[Ni, max
0≤j≤i−1

[ai(t − j)]]) − c, (25)

where c is the total number of VODLs. Clearly, the expression
in (25) is increasing in Ni. Thus, the minimum of the expres-
sion in (25) is achieved when N1 = N2 = . . . = Nd = 0.

B. A Greedy Search Algorithm

For the general traffic condition, we use the approximation
for the packet loss probability in (20) as the objective function.
Let S′ be the set that contains all the legitimate vector
(N1, N2, . . . , Nd), i.e.,

S′ =

{
(n1, n2, . . . , nd)

∣∣∣ d∑
i=1

ni ≤ c, nj ≥ 0, j = 1, 2, . . . , d

}
.

(26)
To find the value of (N1, N2, . . . , Nd) that minimizes the
packet loss probability in (20), one needs to solve the fol-
lowing nonlinear integer programming problem

min
(N1,...,Nd)∈S′

Φ(N1, . . . , Nd).

In general, this is an NP-complete problem. We now present
a greedy search algorithm that gives us a suboptimal solution.
We construct a search graph which consists of nodes corre-
sponding to points in S′ and directed links. To construct the
graph we start with node (0, 0, . . . , 0), corresponding to the
complete sharing policy. Each node in the graph has d descen-
dant nodes. Consider node (n1, n2, . . . , nd) for example. The
d descendant nodes of this node are

(n1 + 1, n2, . . . , nd)
(n1, n2 + 1, n3, . . . , nd)
...
(n1, . . . , nd−1, nd + 1).

We connect node (n1, . . . , nd) with all its descendant nodes
by directed links which point from node (n1, n2, . . . , nd) to
its descendant nodes. We recursively construct for each node
in the graph its descendant nodes until the node satisfies n1 +
n2 + . . . + nd = c. The search graph corresponding to c = 4
and d = 2 is shown in Figure 3.

The greedy search algorithm starts from the node (0, . . . , 0).
We compute the approximated packet loss probabilities of this
node and all its descendant nodes. If there is a descendant
node whose approximated packet loss probability is less than
that of the node (0, . . . , 0), we move to the descendant node
that has the smallest approximated packet loss probability.
We repeat this process until we reach a node that has a
smaller approximated packet loss probability than that of all
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its descendant nodes. This is the solution of the greedy search
algorithm.

0,0�

1,0� 0,1�

2,0�

3,0� 2,1� 1,2�

0,2�1,1�

0,3�

4,0� 3,1� 2,2� 1,3� 0,4�

Fig. 3. The search graph for c = 4 and d = 2

IV. SIMULATION AND NUMERICAL RESULTS

In this section we present our simulation and numeri-
cal results. First we examine the accuracy of the approx-
imation by state truncation in (20). For any c, d and d-
vector (N1, N2, . . . , Nd), we obtain packet loss probability
�(N1, . . . , Nd) by simulation. The length of our simulation is
one million time slots. We use batch mean method to estimate
99-percent confidence intervals. The number of batches is
ten. Therefore, there are 105 time slots in each batch. In our
simulation results, all simulated packet loss probabilities fall
inside their confidence intervals. In Figure 4 we show the
packet loss probability as a function of the total arrival rate.
In this example, c = 10 and d = 5 and Ni = 0 for all i.
The arrivals of each class of packets are generated by i.i.d.
Poisson random variables with equal rates. From this figure,
we see that the approximation fits the simulation result very
well. We also compare the performance with the traditional
loss system where servers cannot admit new customers once
they are occupied. The loss probability in such a loss system
can be obtained by the famous Erlang loss formula [21][p.
170], i.e.,

B(c, ρ) =
ρc/c!∑c

j=0 ρj/j!
, (27)

where

ρ
def=

d∑
i=1

iλi.

From Figure 4 we see that the loss systems with VODLs can
be three orders of magnitude better than the traditional loss
systems in packet loss probability.

In Figure 5 we keep the same c and d. The Poisson arrival
rates are increasing. Specifically, if λi is the arrival rate of
class i, it satisfies

λi = λi+1/2. (28)

Similarly, we show the packet loss probability for decreasing
arrival rates

λi = 2λi+1 (29)

in Figure 6. In these three figures, it seems that our approxi-
mations fit the simulation results very well.
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Fig. 4. Packet loss probability vs. traffic arrival rate (with equal arrival rates
among all traffic classes)
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Fig. 5. Packet loss probability vs. traffic arrival rate (with increasing arrival
rates)

We then conduct a larger experiment. We consider two
values for c, two values for d and three traffic loadings
corresponding to low, medium and heavy traffic conditions.
The total arrival rates of these three cases are 1, 6 and 12
when c = 10. When c = 5, the arrival rates are half of
the above values. For each traffic loading, we consider equal
arrival rates, increasing arrival rates (see (28)) and decreasing
arrival rates (see (29)) for traffic classes. The two values for c
are 5 and 10, and the two values for d are 3 and 5, respectively.
In addition, we consider three different (N1, N2, . . . , Nd)
vectors. The first two vectors are (0, . . . , 0) corresponding to
the complete sharing policy and (1, 1, 0, . . . , 0) which assigns
dedicated VODLs to packets requesting short delay. For the
third vector we introduce a class of assignment method based
on proportionality. Specifically, we allocate roughly r · c
dedicated VODLs and roughly (1− r) · c shared VODLs. For
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Fig. 6. Packet loss probability vs. traffic arrival rate (with decreasing arrival
rates)
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Fig. 7. The relative frequency of the relative errors

class i traffic, we allocate

Ni =

⌊
rcλi∑d
j=1 λj

⌋
, i = 2, 3, . . . , d, (30)

and for class 1 we allocate

N1 = �rc� −
d∑

i=2

Ni. (31)

For the third vector, we assign dedicated VODLs according
to (30) and (31) with r = 1/2. In this experiment, there are
totally 108 cases. We define relative error to be

Φ(N1, N2, . . . , Nd) − �s(N1, N2, . . . , Nd)
�s(N1, N2, . . . , Nd)

,

where �s(N1, N2, . . . , Nd) is the packet loss probability ob-
tained by simulation using the d-vector (N1, N2, . . . , Nd). In
Figure 7 we show the relative frequency of the relative errors
occurred in the 108 cases. We can see that in most cases the
approximation method works fairly well.
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Complete Sharing

Fig. 8. The packet loss probability of the solution obtained by the greedy
search algorithm, the exhaustive algorithm, the complete sharing scheme and
a hybrid proportional assignment scheme

Next we study the greedy search algorithm. We are inter-
ested in whether its solution is close to an optimal solution.
We consider the case where d = 5 and c = 10 and assume
that the arrival rates of all traffic classes are equal. The
greedy search algorithm starts from node (0, 0, . . . , 0) and
descends according to the packet loss probabilities calculated
by the approximation. The greedy search algorithm stops at a
node, say node (Ñ1, Ñ2, . . . , Ñd). The packet loss probability
�s(Ñ1, Ñ2, . . . , Ñd) is shown in Figure 8 and is labeled with
”Greedy Descend”. By exhaustive search, we find the vector
(N̂1, N̂2, . . . , N̂d) such that Φ(N̂1, N̂2, . . . , N̂d) is minimized.
We plot �s(N̂1, N̂2, . . . , N̂d) in Figure 8 with label ”Exhaus-
tive Search”. Finally, we find the vector (N�

1 , N�
2 , . . . , N�

d )
such that �s(N�

1 , N�
2 , . . . , N�

d ) is minimized. This result is
labeled with ”Optimal Solution” in Figure 8. From Figure 8,
we find that the greedy search algorithm produces solutions
that are extremely close to optimal solutions. Figure 8 also
suggests that the packet loss probability is not very sensitive
to the selection of the number of dedicated VODLs.

To further examine the effectiveness of the greedy search
algorithm, we form an ascending list of the packet loss prob-
ability �s(N1, N2, . . . , Nd) for all (N1, . . . , Nd) in S′. The
optimality ranking for the greedy search algorithm is defined
as the place of �s(Ñ1, . . . , Ñd) in the list. Similarly, the
optimality ranking of the exhaustive search method is defined
as the place of �s(N̂1, . . . , N̂d) in the list. The optimality
ranking is shown in Figure 9. For Figure 9 we mention that
the state space S′ has 3003 points. We define the optimality
difference for the greedy search algorithm as

�s(Ñ1, Ñ2, . . . , Ñd) − �s(N�
1 , N�

2 , . . . , N�
d )

�s(N�
1 , N�

2 , . . . , N�
d )

.

The optimality difference for the exhaustive algorithm is
defined similarly. In Figure 10 We show the optimality differ-
ence. These studies indicate that although the approximation
based on state truncation produces errors, the greedy search
algorithm still finds suboptimal solutions that are close enough
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Fig. 9. The optimality ranking of the greedy search algorithm, the exhaustive
search algorithm, the complete sharing scheme and a hybrid proportional
assignment scheme
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Fig. 10. The optimality difference of the greedy search algorithm, the
exhaustive search algorithm, the complete sharing scheme and a hybrid
proportional assignment scheme

to the optimal solutions. We have also studied the greedy
search algorithm for other values of c and d, and various
settings of packet arrival rates. The results are similar to what
are shown in Figure 8, Figure 9 and Figure 10.

From Figure 8, Figure 9 and Figure 10, we see that the
greedy search algorithm is useful in finding a very good
solution. However one may wonder if one can find a good
solution without executing the greedy search algorithm. From
our experience with the vast cases that we have studied, it
seems that a hybrid policy that combines the complete sharing
scheme and the proportional assignment scheme in (30) and
(31) is a good policy. Specifically, the hybrid scheme adopts
the complete sharing scheme if the total arrival rate is less
than or equal to c/2. If the total arrival rate is more than
c/2 but less than c, the hybrid scheme adopts the proportional
assignment scheme with r = 1/2 in (30) and (31). If the
total arrival rate is more than or equal to c, the hybrid scheme
adopts the proportional scheme with r = 1. The intuition of

the proportional assignment scheme is as follows. Suppose
that arrivals are deterministic. That is, traffic class i has λi

new packet arrivals in every time slot. Since a VODL can
accept exactly one packet in a time slot, a scheme that assigns
dedicated VODLs proportional to the numbers of arrivals
can equalize the individual packet loss probabilities of traffic
classes. In reality, arrivals are not deterministic. Therefore, we
set aside roughly (1−r)c VODLs as shared VODLs to handle
the statistical variance of the arrivals. The performance of this
dedicated VODL assignment scheme is shown Figure 8, Figure
9 and Figure 10 with label ”Proportional Assignment”. For
comparison purpose, the performance of the complete sharing
scheme is also shown in these three figures. From these figures,
the complete sharing scheme performs well only under the
light traffic condition. However, the proportional assignment
scheme performs quite well in the medium and heavy traffic
conditions as well.
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Fig. 11. comparison of the approximation method and the upper bound in
light traffic

We study the accuracy of the upper bound in (24) in
light traffic. As the complete sharing policy is optimal in
light traffic, we do not assign any dedicated VODLs in this
experiment. In Figure 11 we show the packet loss probability
obtained by simulation, the approximation in (20) and the
upper bound in (24). Since the packet loss probability is quite
small, we lengthen the simulation time to 5 × 108 time slots.
Moreover we assume that the number of arrivals for each class
is a geometrically distribution random variable. The arrival
rates for different traffic classes are equal in this study. Eq. (24)
can be easily computed for geometrically distributed arrivals.
From Figure 11, we see that both the approximation and the
upper bound are very close to the simulation under light traffic
condition.

V. CONCLUSION

Motivated by the recent development of optical memory in
the literature, in this paper, we performed queueing analysis of
loss systems with parallel VODLs subject to various classes
of packet arrivals. Such loss systems are different from the
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classical loss systems as a VODL, even occupied, can still
admit new packets with the same delay. For the case with an
infinite number of VODLs, we showed that the number of
VODLs occupied by different classes of packets has a product
form solution. When the number of VODLs is finite , we
proposed an approximation method based on state truncation.
By computer simulation, we showed that the packet loss
probabilities derived from our approximation were very good.
In order to minimize the packet loss probabilities in such
loss systems, we also considered the problem of assigning
dedicated VODLS to various classes of packets. We showed
that the complete sharing policy is optimal under the light
traffic condition. For the general traffic condition, a greedy
search algorithm was proposed to find a suboptimal assign-
ment of dedicated VODLS. The effectiveness of the greedy
search algorithm was also verified by computer simulations.

At last, we address some problems for future research.

(i) Continuous-time setting: in this paper, we only con-
sidered the discrete-time setting. As synchronization
of optical packet might be difficult, it would be of
interest to extend our analysis to the continuous-time
setting, where packets arrive asynchronously. How-
ever, the state space for the corresponding Markov
chain in the continuous-time setting appears to be
much larger than that in the discrete-time setting.

(ii) Dispatching policies: when dispatching a packet to
an occupied VODL with the same delay, we did not
consider the remaining service time for that VODL
to become idle. To use VODLs more efficiently, it
is intuitive to dispatch a packet to the VODL with
the longest remaining service time among all the
occupied VODLs with the same delay. The gain of
doing that is not clear (at least it cannot be seen from
our approximation).

(iii) Fast simulation in light traffic: as pointed out in our
simulation, the simulation length to obtain the packet
loss probability is much longer in light traffic. To
accelerate the speed of the simulation in light traffic,
one may consider using the method of importance
sampling. However, how to choose the right change
of measure may require further study.
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