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Abstract—Inspired by the recent development of optical queue-
ing theory, in this paper we study a class of multistage in-
terconnection networks (MINs), called twister networks. Unlike
the usual recursive constructions of MINs (either by two-stage
expansion or by three-stage expansion), twister networks are
constructed directly by a concatenation of bipartite networks.
Moreover, the biadjacency matrices of these bipartite networks
are sums of subsets of the powers of the circular shift matrix.
Though MINs have been studied extensively in the literature, we
show there are several distinct properties for twister networks,
including routability and conditionally nonblocking properties.
In particular, we show that a twister network satisfying (A1) in
the paper is routable, and packets can be self-routed through the
twister network by using the C-transform developed in optical
queueing theory. Moreover, we define an N -modulo distance
and use it to show that a twister network satisfying (A2) in
the paper is conditionally nonblocking if the N -modulo distance
between any two outputs is not greater than two times of the
N -modulo distance between the corresponding two inputs. Such
a conditionally nonblocking property allows us to show that a
twister network with N inputs/outputs can be used as a p × p
rotator and a p× p symmetric TDM switch for any 2 ≤ p ≤ N .
As such, one can use a twister network as the switch fabric for
a two-stage load balanced switch that is capable of providing
incremental update of the number of linecards.

I. INTRODUCTION

Multistage Interconnection Networks (MINs) are commonly
used for the constructions of switch fabric and they have been
studied extensively in the literature (see e.g., the books [18],
[16], [7]). In particular, it is well known that an N ×N Benes
network [3] can be constructed recursively by the three-stage
Clos network [8] and it is capable of realizing all the N !
permutations between its N inputs and its N outputs. As such,
an N ×N Benes network is known as a nonblocking switch
like an N ×N crossbar switch fabric. On the other hand, an
N × N banyan network, constructed by using the two-stage
expansion, can only realize a subset of the N ! permutations
and it is known as a conditionally nonblocking switch [16].

Inspired by the recent development of optical queueing
theory [9], [6], in this paper we consider a class of MINs
directly constructed by a concatenation of bipartite networks
(CBN). Twister networks form a subclass of CBN, where
the biadjacency matrices of the bipartite graphs used for
characterizing the interconnections between stages are sums

of subsets of the powers of the circular shift matrix. In
spite of the similarity to chordal rings [1], circulant [10,
p. 8], and data vortex [19], [11] discussed in the literature,
there are several distinct properties for the twister networks,
including routability and conditionally nonblocking properties.
In particular, we show that twister networks satisfying (A1) in
Section II are routable, and packets can be self-routed through
such networks by using the C-transform developed in [9], [6].
Moreover, we define an N -modulo distance and use that to
show that a special type of twister networks that satisfy (A2)
in Section II are conditionally nonblocking if the N -modulo
distance between any two outputs is not greater than two
times of the N -modulo distance between the corresponding
two inputs.

One of the most important applications of our development
is that twister networks can be used for providing incremental
update of the number of linecards in the two-stage load bal-
anced switches [4], [14], [15], [13]. In the literature, there are
two well-known conditionally nonblocking switches, rotators
(that implements all the powers of the circular shift matrix)
and symmetric TDM switches, that can be used for generating
the needed connection patterns for the switch fabrics in the
two-stage load balanced switches. In this paper, we show
that a twister network with N inputs/outputs can be used for
exact emulation of a p × p rotator and a p × p symmetric
TDM switch for any 2 ≤ p ≤ N . Moreover, we depicts a
placement rule for adding a new linecard to a twister network
so that all the existing linecards need not be changed. As
such, twister networks can be used for solving the incremental
update problem for an arbitrary number of linecards in [15]. As
twister networks are capable of self-routing, the new routing
paths after an incremental update can be easily determined by
the C-transform. This is much better than using the Benes
networks as the new routing paths in the Benes networks
cannot be easily determined.

This paper is organized as follows. In Section II, we
introduce a class of MINs by a concatenation of bipartite
networks. We formally define twister networks in Section III
and address its routability problem. In Section IV, we show
the conditionally nonblocking property for twister networks.
Then we show they can be used for exact emulation of rotators
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and symmetric TDM switches in Section V. We conclude the
paper in Section VI by addressing possible extensions of our
work.

II. BIPARTITE NETWORK AND ITS CONCATENATION

A graph G(V, E) (see Fig. 1(a)) is called a directed bipartite
graph if all the nodes V can be partitioned into two sets: the set
of input nodes X and the set of output nodes Y . Moreover, all
the nodes in the same set are not adjacent to each other, and all
the directed edges in E are from the input set X to the output
set Y . A directed bipartite graph can be characterized by its
biadjacency matrix [2]. Specifically, let |X| = N (resp. |Y | =
L) and all the nodes in X are indexed from 0 to N−1 (resp. all
the nodes in Y are indexed from 0 to L−1). Hence, the links
connecting X and Y can be represented by the biadjacency
matrix A = [aij ]N×L, where aij = 1 if there is a directed
edge from node i in X to node j in Y and aij = 0 otherwise
[2]. We assume that there is no multiple edges connecting each
pair of nodes, and all the links have the same weight in this
paper.

Switching networks consisting of a set of switches and
links are commonly used to route packets from input ports
to output ports. It is well known that a switching network can
be represented by a directed graph by viewing each switch
(resp. link) in the switching network as a node (resp. directed
edge) in the graph. In this paper, we are particularly interested
in the switching networks that can be represented by directed
bipartite graphs. Such switching networks are called bipartite
networks in this paper. As a directed bipartite graph, a bipartite
network can also be characterized by its biadjacency matrix.

(a)

Input Output

(b)

Input Output

(c)

Input Output

Fig. 1. (a) A directed bipartite graph (b) A complete bipartite graph (c) A
three-stage concatenation of bipartite networks

In a bipartite network, one may not be able to route a packet
from any input node to any output node. To route packets
for all possible input/output pairs, the bipartite network has
to form a complete bipartite graph as shown in Fig. 1(b).
However, we can alternatively route packets through a con-
catenation of bipartite networks as shown in Fig. 1(c), whereas
none of the bipartite networks is complete. Hence, to provide
better routing capability, we are motivated to concatenate
various bipartite networks to form a multistage interconnection
network (MIN). Such a MIN is called a concatenation of
bipartite networks (CBN). Specifically, in a CBN with M +1
stages, all the nodes in the CBN can be partitioned into M +1
independent sets for some M ≥ 1. These independent sets are
called stages in this paper, and are indexed from 0 to M .

Each link in a CBN lies only between two consecutive stages.
Thus, every two consecutive stages and the associated links
between these stages constitute a directed bipartite graph that
can be characterized by a biadjacency matrix. As such, a CBN
with M + 1 stages and Nk, k = 0, 1, 2, . . . ,M , nodes at the
kth stage is characterized by M biadjacency matrices A(k),
1 ≤ k ≤ M , where A(k) is the Nk−1×Nk biadjacency matrix
for the bipartite network between the (k − 1)th stage and the
kth stage.

A CBN can be used as a switching network to route packets
from a subset of nodes at stage 0 to another subset of nodes
at stage M . For this, we name the ith node at stage 0 as
input i and the jth node at stage M as output j of the
CBN, respectively. The jth node at the kth stage is denoted
as node (k, j), and these two representations will be used
interchangeably in this paper. As each node in a CBN is in
fact a switch, the links from the nodes at the stage right before
(resp. to the nodes at the stage right after) are its input links
(resp. output links).

We assume all the nodes in a CBN are nonblocking
switches. Specifically, if there are m input links and n output
links for a node, then that node is an m × n switch that can
implement all the m× n sub-permutation matrices. Note that
all the elements in a sub-permutation matrix are either 0 or 1
and there is at most a 1 in each row or column. As such, each
input link can only be connected to at most one output link,
and vice versa.

v1
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v3

v4
v5

v6
e1

e2

e3

e4
e5

e6

Fig. 2. A directed graph with six nodes and six edges.

As a CBN is used as a switching network, the first question
about a CBN is whether it is able to route packets to the
corresponding output ports. In other words, one wonders
whether there exists a routing path for any input/output pair
(i, o) or not. For a directed graph, a routing path can be
described by a sequence of consecutive vertices and edges.
For example, (v1, e1, v2, e2, v3, e4, v5) is a routing path from
node v1 to v5 in Fig. 2. As we assume there is at most one
edge between each pair of nodes in this paper, the routing path
can be simply written as (v1, v2, v3, v5). Then, the routability
of a CBN can be defined as follows.

Definition 1 A CBN is routable if there exists at least one
routing path for any input/output pair (i, o).

For a CBN, we state in the following proposition a method
to compute the number of routing paths between each in-
put/output pair (i, o). The argument (omitted here) is the same
as the well-known method for computing the number of walks
of a certain length between two nodes in a graph (see e.g.,
Lemma 2.5 [2, p. 11]).
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Proposition 2 Consider a CBN with M + 1 stages. Let Nk

be the number of nodes at the kth stage and A(k) be the
biadjacency matrix for the bipartite network between stages
k − 1 and k, k = 1, 2, . . . , M .

(i) The (i, j)th element in the product
∏M

k=1 A(k) of all
the biadjacency matrices is the number of paths that a
packet from input i to output j can be routed through.

(ii) Under the Boolean algebra (for matrix multiplication),
the (i, j)th element in the product

∏M
k=1 A(k) of all the

biadjacency matrices is 1 if and only if there exists a
routing path for the packet from input i to output j and
is 0 otherwise.

According to Proposition 2, we have the following corollary
for the routability of a CBN.

Corollary 3 Consider a CBN with M + 1 stages. Let Nk

be the number of nodes at the kth stage and A(k) be the
biadjacency matrix for the bipartite network between stages
k− 1 and k, k = 1, 2, . . . ,M . The following three statements
are equivalent.

(i) The CBN is routable.
(ii) Each element in the N0 × NM matrix

∏M
k=1 A(k) is

nonzero.
(iii) Each element in the N0×NM matrix

∏M
k=1 A(k) is one

under the Boolean algebra (for matrix multiplication).

III. TWISTER NETWORK

In this section, we introduce a special class of CBNs, which
is called twister network. In this paper, an N × N twister
network is constructed according to the circular shift matrix
P , which is defined as

pij =
{

1 , if j = (i + 1) mod N
0 , otherwise , (1)

where 0 ≤ i, j ≤ N − 1. Notice that
∑N−1

n=0 Pn is an N ×N
matrix with all its elements being one. If one constructs a
CBN such that the product of all the biadjacency matrices
under the Boolean algebra contains the summation

∑N−1
n=0 Pn,

then the CBN is a routable switching network from Corollary
3. That is the motivation for us to define twister networks
below.

Definition 4 ((r,d)-twister network) Let r = (r1, r2, . . . , rM )
and d = (d1, d2, . . . , dM ) be two M -vectors. A CBN with
M + 1 stages is called an N × N (r,d)-twister network if
there are N nodes in each stage and the biadjacency matrix
for the bipartite network between stages k − 1 and k is

A(k) =
rk−1∑

j=0

P j·dk = I + P dk + P 2dk + · · ·+ P (rk−1)dk

for all 1 ≤ k ≤ M , where P is the circular shift matrix.

In Fig. 3(a), we show a 6×6 (r, d)-twister network with r =
(2, 2) and d = (1, 2). If we place evenly all the nodes at the

same stage on a circle, the twister network can be viewed as a
cylinder, as shown in Fig. 3(b). The links induced by nonzero
multiples of circular shift matrices constititue the screw threads
on the cylinder, which is the motivation for the name twister.

We note that twister networks bear some similarity to
chordal rings [1], circulant [10, p. 8], and data vortex [19],
[11] discussed in the literature. In particular, if we fold all
the nodes with the same index in all the stages into a single
node, then an N×N (r,d)-twister network becomes a circulant
X(ZN , C) [10, p. 8], where ZN = {0, 1, . . . , N − 1} and C
is the union of all the Ck’s and Ck = {j · dk|0 ≤ j ≤ rk − 1}
for all 1 ≤ k ≤ M . Note that a circulant is a graph with
its adjacency matrix being cyclo-symmetric. The data vortex
studied in [19], [11] has several parallel cylinders and it is
mainly for deflection routing. In such a MIN, all the nodes
are 2× 2 switches and there is a one unit delay in every link.

0

1

2

3

4

5

0

1

2

3

4

5
(a) 0  

1

2

3

-1

0

1

-1

0

1

(b)

Input
Output

0

1

2

3

4

5

5

4

3

2

1

0

Fig. 3. (a) A 6 × 6 (r,d)-twister network with r = (2, 2) and d = (1, 2)
(b) Another point of view of this 6× 6 twister network.

A. Routability and Generalized C-transform

Notice that an N × N (r,d)-twister network may not be
routable. Consider the 6 × 6 twister network shown in Fig.
3(a). The packet from input 0 cannot be routed to output 4
and output 5 in this twister network. For the routability of a
twister network, we introduce the generalized C-transform for
integer representation in [6].

Definition 5 (Generalized C-transform) Consider two M -
vectors r = (r1, r2, . . . , rM ) and d = (d1, d2, . . . , dM ) with
ri ∈ {2, 3, 4 . . .} and di ∈ {1, 2, 3 . . .}, i = 1, 2 . . . ,M .
Define a mapping Cg : {0, 1, 2, . . .} → {0, 1, . . . , r1 − 1} ×
{0, 1, . . . , r2 − 1} × · · · × {0, 1, . . . , rM − 1} as follows:

Cg(x) = (Ig
1 (x), Ig

2 (x), . . . , Ig
M (x)) (2)

where Ig
M (x), Ig

M−1(x), . . . , Ig
1 (x) (in that order) are given

recursively by

Ig
i (x) =





ri − 1, if x−∑M
k=i+1 Ig

k (x) · dk

≥ (ri − 1)di,

j, if jdi ≤ x−∑M
k=i+1 Ig

k (x) · dk

< (j + 1)di

for some 0 ≤ j ≤ ri − 2,

(3)

where we adopt the convention that the sum in (3) is zero if
the upper index is smaller than its lower index.
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The M -vector Cg(x) is called the generalized C-transform
of x with respect to r = (r1, r2, . . . , rM ) and d =
(d1, d2, . . . , dM ). Intuitively, one can view Cg(x) as the
“quotients” obtained by the “long division” of x with respect
to d = (d1, d2, . . . , dM ). In the special case that ri = 2 and
di = 2i−1 for all 1 ≤ i ≤ M , then the generalized C-transform
is simply the usual binary representation. If we choose d1 = 1
and di = ri−1di−1 =

∏i−1
k=1 rk for all 2 ≤ i ≤ M , the

generalized C-transform yields the so-called generalized r-ary
representation with respect to r = (r1, r2, . . . , rM ).

Here, we list the two conditions that will be used for the
selection of the M -vectors r and d in this paper.
(A1) Assume that d1 = 1, 1 ≤ dk ≤

∑k−1
`=1 (r` − 1)d` + 1 for

all 2 ≤ k ≤ M and rk ≥ 2 for all 1 ≤ k ≤ M .
(A2) Assume that d1 = 1, dk = rk−1dk−1 for all 2 ≤ k ≤ M
and rk ≥ 2 for all 1 ≤ k ≤ M .

Note that every selection of r and d in (A2) is also in (A1).
Thus, (A1) contains a broader class of selections.

One of the key properties of the generalized C-transform
is the complete decomposition property in Proposition 6(v) in
[6].

Proposition 6 (Complete decomposition property [6]) Sup-
pose that (A1) holds. Then for any integer 0 ≤ n ≤∑M

k=1(rk − 1) · dk, it can be represented by the generalized
C-transform, i.e., n =

∑M
k=1 Ig

k (n) · dk.

Theorem 7 (Routability) Assume that r and d satisfy (A1).
An N ×N (r,d)-twister network is routable if and only if

N ≤
M∑

k=1

(rk − 1)dk + 1.

Proof: We first prove the “if” part. Consider an N ×N
(r,d)-twister network with N ≤ ∑M

k=1(rk − 1)dk + 1. The
product of all the biadjacency matrices in this (r,d)-twister
network can be written as

M∏

k=1

A(k) =
M∏

k=1

rk−1∑

j=0

P j·dk

=
∑

(I1,I2,...,IM )∈Sr

P I1d1+I2d2+...+IM dM , (4)

where Sr = {(I1, I2, . . . , IM )|0 ≤ Ik ≤ rk−1, ∀1 ≤ k ≤ M}.
From the complete decomposition property in Proposition

6 and the assumption N ≤ ∑M
k=1(rk − 1)dk + 1, we know

that any integer n ∈ {0, 1, . . . , N − 1} can be decomposed
through the generalized C-transform with respect to r and
d as n =

∑M
k=1 Ig

k (n)dk. Since 0 ≤ Ig
k (n) ≤ rk − 1 for

all 1 ≤ k ≤ M , the generalized C-transform Cg(n) =
(Ig

1 (n), Ig
2 (n), . . . , Ig

M (n)) is definitely contained in the set
Sr for all 0 ≤ n ≤ N − 1. Thus, Pn, 0 ≤ n ≤ N − 1, are
contained in the summation in (4). As such, each element of∏M

k=1 A(k) is nonzero. According to Corollary 3, we see that
an N ×N (r,d)-twister network is routable.

We prove the “only if” part by contradiction. Suppose
there is a routable N × N (r,d)-twister network with N >∑M

k=1(rk−1)dk +1. Again, the product of all the biadjacency
matrices can be obtained as in (4). Since the twister network is
routable, there exists a routing path from input 0 to output N-
1. According to Proposition 2(i), the element at the (0, N−1)
position in the matrix

∏M
k=1 A(k) is positive. In view of (4),

we know that PN−1 is contained in the summation in (4).
Thus, N − 1 =

∑M
i=1 Iidi for some (I1, I2, . . . , IM ) ∈ Sr.

This implies N −1 ≤ ∑M
k=1(rk−1)dk, which contradicts the

assumption that N >
∑M

k=1(rk − 1)dk + 1.

B. Routing paths

Instead of using a detailed description of all the nodes
traversed, the routing path for a packet from an input i to
an output o in a twister network with M + 1 stages can be
simply described by the (M + 1)-tuple v = (v0, v1, · · · , vM ),
where vj is the index of the node traversed by the packet at
the jth stage for all 0 ≤ j ≤ M . That is, the packet traverses
node (j, vj) at the jth stage, where v0 = i and vM = o.

Notice that there may be multiple routing paths for an
input/output pair (i, o) in a routable CBN. For example,
consider the 7 × 7 (r, d)-twister network as shown in Fig.
4, where r = (2, 2, 2) and d = (1, 2, 3). In this 7 × 7 twister
network, the packet from input 1 to output 4 can be routed
either through the path v = (1, 1, 1, 4) or through the path
v′ = (1, 2, 4, 4).
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Fig. 4. A 7× 7 (r,d)-twister network with r = (2, 2, 2) and d = (1, 2, 3).

In this paper, we specify the routing path for a routable
twister network according to the generalized C-transform.

Definition 8 (Routing path) Consider a routable N×N (r,d)-
twister network as described in Theorem 7, i.e., the M -vectors
r and d satisfy (A1) and N ≤ ∑M

k=1(rk − 1)dk + 1. Define
the space delay x for the input/output pair (i, o) as

x = (o− i) mod N. (5)

The routing path v = (v0, v1, . . . , vM ) for the input/output
pair (i, o) in the N × N (r,d)-twister network is defined
recursively by

vj =
(
vj−1 + Ig

j (x)dj

)
mod N (6)
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for all 1 ≤ j ≤ M , where v0 = i and Cg(x) =
(Ig

1 (x), Ig
2 (x), . . . , Ig

M (x)) is the generalized C-transform of
the space delay x.

Such a routing path is feasible because we know from the
biadjacency matrix A(k) between stages k−1 and k that node
(k − 1, j) at the (k − 1)th stage is connected to the set of
nodes {(k, jn), n = 0, 1, . . . , rk − 1} at the kth stage, where
jn = (j + n · dk) mod N .

On the other hand, we have from the recursive definition in
(6) that the routing path v = (v0, v1, · · · , vM ) can be written
alternatively by

vj =

(
i +

j∑

k=1

Ig
k (x)dk

)
mod N. (7)

From the completion decomposition property in Proposition
6, we have x =

∑M
k=1 Ig

k (x)dk. Thus,

vM =
(
i +

M∑

k=1

Ig
k (x)dk

)
mod N = (i + x) mod N = o, (8)

and a packet from input i can indeed be self-routed to output
o by using the routing path determined by the generalized C-
transform. For example, consider routing a packet from input 1
to output 4 in the 7×7 (r, d)-twister network in Fig. 4. For this
case, the space delay x = 3, Cg(x) = (Ig

1 (x), Ig
2 (x), Ig

3 (x)) =
(0, 0, 1), and the routing path v = (1, 1, 1, 4).

IV. CONDITIONAL NONBLOCKING PROPERTIES

Like a switch or a switching network, a connection matrix
for an (r,d)-twister network is a sub-permutation matrix that
specifies the connections from a subset of its inputs to a
subset of its outputs. Also, two routing paths are said to have
a conflict if they share a common link. As we assume that
every switch inside an (r,d)-twister network is nonblocking, a
connection matrix is feasible for an (r,d)-twister network if we
can find non-conflicting routing paths for all the input/output
pairs specified in that connection matrix. In other words, every
pair of the routing paths for that connection matrix have to be
link-disjoint and they do not share any common link. In this
section, we will show that a connection matrix that satisfies
a certain property is feasible for an (r,d)-twister network that
satisfies the assumption in (A2). As such, twister networks are
conditionally nonblocking switches.

To prove the conditionally nonblocking properties for
twister networks, we introduce the N -modulo distance defined
below.

Definition 9 The N -modulo distance dN (i, j) between two
integers i and j is defined as

dN (i, j) = min [(i− j) mod N, (j − i) mod N ] . (9)

The distance can be alternatively defined as

dN (i, j) = min [|i− j| mod N,−|i− j| mod N ] . (10)

One can easily see that the two definitions above are equiv-
alent. In the special case that 0 ≤ i, j ≤ N − 1, (10) can be
rewritten as

dN (i, j) = min[|i− j|, N − |i− j|]. (11)

To gain more intuition on the N -modulo distance, let us
place all the input nodes (and output nodes) of a twister
network on a circle as shown in Fig. 3(b). Then for 0 ≤
i, j ≤ N − 1, the N -modulo distance dN (i, j) is the length
of the shorter arc between nodes i and j on the circle of
circumference N .

One can easily verify the following properties for the N -
modulo distance. To simplify the notation, we say that i =N j
if i mod N equals j mod N .

Property 10 Let i, j and k be all integers.
(i) (Nonnegativity) dN (i, j) ≥ 0.

(ii) dN (i, j) = 0 if and only if i =N j.
(iii) (Symmetry) dN (i, j) = dN (j, i).
(iv) (Triangle Inequality) dN (i, j) ≤ dN (i, k) + dN (k, j).
(v) (Translation Invariance) dN (i, j) = dN (i + k, j + k).

(vi) dN (i, j) = dN (−i,−j).
(vii) dN (i, j) = dN (i, k) if j =N k.

(viii) dN (i, j) = dN (k, `) if i + k =N j + `.

In the following theorem, we show a conditionally non-
blocking property for a twister network. The proof of Theorem
11 is given in Appendix A.

Theorem 11 Consider an N × N (r,d)-twister network with
the M -vectors r and d satisfying the assumption in (A2). Let
N = rMdM =

∏M
k=1 rk and γ = min2≤k≤M−1 rk. If the

connection matrix has the property that

dN (o1, o2) ≤ γdN (i1, i2) (12)

for arbitrary input/output pairs (i1, o1) and (i2, o2), then the
routing paths specified by the generalized C-transform in (6)
are link-disjoint and the connection matrix is thus feasible.

Since (A2) is a stronger assumption than (A1), we know
from Theorem 7 that the N × N (r,d)-twister network
considered in this theorem is routable. Also, as there are∏M

k=1 rk = N distinct paths from an input node to the N
output nodes in this twister network, the routing path for
each input/output pair (i, o) is unique and it is specified by
the generalized C-transform in (6). Note that under (A2), we
have dk = rk−1dk−1 =

∏k−1
`=1 r` for all 2 ≤ k ≤ M . The

generalized C-transform in this case is simply the generalized
r-ary representation.

V. ROTATOR AND SYMMETRIC TDM SWITCH

As we mentioned in the Introduction, one of the most
important applications of twister networks is to provide in-
cremental update of the number of linecards in the two-stage
load balanced switches [4], [14], [15], [13]. To explain this, we
now introduce two kinds of switches that are commonly used
as the switch fabrics for the two-stage load balanced switches.
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Definition 12 (Rotator) Let P be the N × N circular shift
matrix as defined in (1). An N ×N switch (or switching net-
work) is called a rotator if it can realize the N permutations,
Pn, n = 0, 1, 2, . . . , N − 1.

Note that each pair of the input/output ports (i, o) in the
permutation matrix Pn satisfies o =N (i + n).

Definition 13 (Symmetric TDM Switch) For 0 ≤ n ≤ N−1,
let P̃n be the permutation such that each input/output pair
(i, o) satisfies (i + o) =N n. An N ×N switch (or switching
network) is called a symmetric TDM switch if it can realize
the N permutations, P̃n, n = 0, 1, 2, . . . , N − 1.

Rotators and symmetric TDM switches (also known as
reflectors in [17]) are special classes of conditionally non-
blocking switches. Like banyan networks, they can be easily
constructed by using the two-stage expansion [17], [5]. How-
ever, the problem of using the two-stage expansion is that it
does not provide the flexibility for any number of linecards
[14]. Specifically, an N × N rotator (resp. symmetric TDM
switch) generated by the two-stage expansion cannot be used
as a p×p rotator (resp. symmetric TDM switch) for all p ≤ N .
In this section, we will show that an N × N (r,d)-twister
network satisfying the assumption in (A2) can be used as
both p × p rotators and p × p symmetric TDM switches for
any p ≤ N . This is done by placing all the p linecards (with
each linecard for an input/output pair) evenly among the N
input/output ports of the N ×N (r,d)-twister network.

In the following theorem, we first show that an N × N
twister network can be used as a p × p rotator and a p × p
symmetric TDM switch if the placement of the p linecards
satisfies a certain property. The proof of Theorem 14 is given
in Appendix B.

Theorem 14 Consider an N × N (r,d)-twister network with
the M -vectors r and d satisfying the assumption in (A2) and
N = rMdM =

∏M
k=1 rk. Index the N input/output ports of

the N × N (r,d)-twister network from 0 to N − 1. Suppose
that there are p linecards, indexed from 0 to p−1, and the ith

linecard is placed in the f(i)th input/output port of the N×N
(r,d)-twister network. Without loss of generality, assume that
the mapping f is strictly increasing. Let

x(i) = (f((i + 1) mod p)− f(i)) mod N. (13)

Then, the N ×N (r,d)-twister network can be used as a p×p
rotator and a p× p symmetric TDM switch if

max
0≤j≤p−1

x(j) ≤ γ · min
0≤j≤p−1

x(j) (14)

where γ = min2≤k≤M−1 rk as defined in Theorem 11.

Note that x(i)’s are simply the gaps between the placement
of two consecutive linecards. The intuition of the condition in
(14) is that the maximum gap cannot be larger than γ times
of the minimum gap.

For the special case that N = 2M , in the following corollary
we provide an explicit way to place the linecards.

Corollary 15 Consider the N × N (r,d)-twister network in
Theorem 14. Assume that N = 2M and 2 ≤ p ≤ N . Then
there exists 0 ≤ m ≤ M − 1 such that 2m < p ≤ 2m+1, and
p can be written as 2m + `, where 1 ≤ ` ≤ 2m. Place the
ith linecard in the f(i)th input/output port of the 2M × 2M

(r,d)-twister network, where

f(i) =
{

i · 2M−m−1 , for 0 ≤ i ≤ 2`− 1
(i− `) · 2M−m , for 2` ≤ i ≤ p− 1 . (15)

Then, a 2M × 2M (r,d)-twister network can be used as a
p× p rotator and a p× p symmetric TDM switch for these p
linecards.

Proof: Note that the gap between the placement of two
consecutive linecards is either 2M−m−1 or 2M−m. Thus, we
have that maxj x(j) = 2 minj x(j) and the condition (14) is
thus satisfied because of the assumption that rk ≥ 2 for all k.
The result then follows from Theorem 14.

Consider a 2M × 2M twister network in Corollary 15.
Suppose that there are already p linecards placed by the
method indicated in Corollary 15. As such, it can be used
as a p× p rotator.

Now we show how one can add one more linecard in the
2M × 2M twister network to make it a (p + 1) × (p + 1)
rotator. This will be done without repositioning the existing p
linecards.

As shown in Corollary 15, p can be written as 2m+`, where
1 ≤ ` ≤ 2m. Notice that the first 2` linecards are placed in
the 2M × 2M twister network every 2M−m−1 nodes, and the
rest of them are placed every 2M−m nodes.

If ` < 2m, the additional linecard is placed in the
((2`+1)2M−m−1)th input/output port of the 2M×2M twister
network. That is, the additional linecard is placed in the middle
of the first pair of linecards that are separated by 2M−m nodes.
On the other hand, if ` = 2m, then p = 2m+1. In view of
Corollary 15, all the p linecards are placed evenly (i.e., every
2M−m−1 nodes). Thus, the additional linecard is placed in the
(2M−m−2)th input/output port. Relabel the p + 1 linecards in
the ascending order, and the 2M×2M twister network can now
be used as a (p+1)× (p+1) rotator. This shows that one can
incrementally update the number of linecards in an 2M × 2M

twister network without repositioning the existing linecards.
For example, for an 8×8 twister network, the order of placing
new linecards in the input/output ports is 0,4,2,6,1,3,5,7.

For the 2M × 2M twister network with rk = 2 and
dk = 2k−1 for all 1 ≤ k ≤ M , all the nodes can be
made by 2 × 2 switches (with 2M 1 × 2 switches for the
2M inputs and 2M 2 × 1 switches for the 2M outputs). To
use the twister network as a p× p rotator, we first place the p
linecards according to Corollary 15. For each (mapped) p× p
connection matrix needed for a p× p rotator, we can find the
routing paths according to the routing rule in (6). As such,
all the connection patterns of the 2 × 2 switches in a twister
network can be determined accordingly. Specifically, consider
node (k, j) for some 2 ≤ k ≤ M − 1. That is, the node is
neither an input node nor an output node. If nodes (k − 1, j)
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and (k + 1, j) are connected through node (k, j), we say that
the 2×2 switch for node (k, j) is in the “bar” state and in the
“cross” state otherwise. Also, an input node (0, j) (resp. output
node (M, j)) is said to be in the “bar” state if it connects to
node (1, j) (resp. node (M − 1, j)) and in the “cross” state
otherwise. A switch is said to be in the state “don’t care” if
the connection matrix of the twister network is implemented
no matter which state the switch is in.

We illustrate how one uses an 8 × 8 twister network with
r=(2,2,2) and d=(1,2,4) as a 5 × 5 rotator (see Fig. 5).
According to Corollary 15, the five linecards are placed in
the 0th, 1st, 2nd, 4th and 6th input/output ports of the 8× 8
twister network. The five connection matrices that need to be
implemented are Pn, n = 0, 1, · · · , 4, where P is a 5 × 5
circular shift matrix. In Table I, we show all the states of
nodes in this twister network. The element in the mth row
and nth column represents the states of switches with the same
index m for the connection matrix Pn, where the states are
represented as a sequence of “bar” (b), “cross” (x) and “don’t
care” (z), in the increasing order of their stages (from left to
right). For example, the sequence xzxb in the 0th row and the
1st column of Table I indicates that the 2× 2 switch for node
(0,0) (resp. (1,0), (2,0) and (3,0)) should be set to the cross
(resp. don’t care, cross, bar) state for the 5 × 5 circular shift
matrix P . Moreover, Table II shows all the states of nodes
in this twister network if they are used as a 5× 5 symmetric
TDM switch.

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2

3

4

0
1
2

3

4

Linecard Linecard8x8 Twister Network

Fig. 5. Using an 8 × 8 (r,d)-twister network with r=(2,2,2) and d=(1,2,4)
as a 5× 5 rotator

VI. CONCLUSION

In this paper we studied a class of multistage intercon-
nection networks (MINs), called twister networks, that are
constructed directly by a concatenation of bipartite networks.
We showed there are several distinct properties for twister
networks, including routability in Theorem 7 and conditionally
nonblocking properties in Theorem 11. As an application, we
showed that a twister network with N inputs/outputs can be
used as a p × p rotator and a p × p symmetric TDM switch
for any 2 ≤ p ≤ N . As such, one can use a twister network
as the switch fabric for a two-stage load balanced switch that

Twister 0 1 2 3 4
0 bbbb xzxb bxzx bbxx bxbx
1 bbbb xxbb xzxb xzzx xzzx
2 bbbb bxbb bbxb bxxx xbbx
3 zzzz zzzz zzzz zzzz zbzz
4 bbbb bxxb bbxb xzbx bxbx
5 zzzz zzzz zzzz zxxz zzbz
6 bbbb bxxb xzzx bbxx bxbx
7 zzzz zzzz zbzz zzzz zzzz

TABLE I
STATES OF SWITCHES IN AN 8× 8 (R,D)-TWISTER NETWORK WITH

R = (2, 2, 2) AND D = (1, 2, 4) FOR A 5× 5 ROTATOR.

Twister 0 1 2 3 4
0 bbbb xzzx bxbx bbxx bxxb
1 xzxb xxbb bbbb xzzx xzzx
2 bxxx bbxx bxxb xxbb bbbb
3 zzzz zzzz zzzz zbzz zzzz
4 bxxb bbbb bxbx bbxx xzxb
5 zzzz zzzz zzzz zzbz zxxz
6 xzbx bbxx bxxb bbbb bxzx
7 zbzz zzzz zzzz zzzz zzzz

TABLE II
STATES OF SWITCHES IN AN 8× 8 (R,D)-TWISTER NETWORK WITH

R = (2, 2, 2) AND D = (1, 2, 4) FOR A 5× 5 SYMMETRIC TDM SWITCH.

is capable of providing incremental update of the number of
linecards.

There are several interesting developments of twister net-
works that are not reported here due to space limitation.
(i) Here we only considered link-disjoint routing paths for
connection matrices in twister networks. In fact, we have
developed results for node-disjoint (or known as crosstalk-
free) paths as in [6]. Note that the 2M × 2M twister network
in Corollary 15 can be used as a 2M×2M crosstalk-free rotator
[17].
(ii) We have defined an (r,d)-banyan network directly by
a concatenation of bipartite networks. Unlike the classical
banyan network, an (r,d)-banyan network only uses 1 × 2
switches for its input nodes and 2× 1 switches for its output
nodes. Our preliminary result shows that such an (r,d)-banyan
network can also be used as a rotator and a symmetric TDM
switch with an arbitrary number of linecards.

APPENDIX A

In this appendix, we prove Theorem 11.
We prove the theorem by contradiction. Suppose that the

routing paths of the pair of input/output ports (i1, o1) and
(i2, o2) share a link between stages j− 1 and j. Note that the
shared link cannot be a link connected to an input node or
an output node as otherwise we would have either i1 = i2 or
o1 = o2 that contradicts to the assumption that a connection
matrix is a sub-permutation matrix. Thus, we know that 2 ≤
j ≤ M−1. As these two routing paths must traverse the same
nodes at stage j − 1 and j, we have from the routing rule in
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(7) that

i1 +
n∑

k=1

Ig
k (x1)dk =N i2 +

n∑

k=1

Ig
k (x2)dk. (16)

for both n = j − 1 and j. In view of Property 10(viii) of the
N -modulo distance, we have that

dN (i1, i2) = dN

(
j−1∑

k=1

Ig
k (x1)dk,

j−1∑

k=1

Ig
k (x2)dk

)
. (17)

Since N = rMdM ≥ 2dM and dk = rk−1dk−1 in (A2) for
2 ≤ k ≤ M ,

∣∣∣∣∣
j−1∑

k=1

Ig
k (x1)dk −

j−1∑

k=1

Ig
k (x2)dk

∣∣∣∣∣

≤
j−1∑

k=1

|Ig
k (x1)− Ig

k (x2)| dk ≤
j−1∑

k=1

(rk − 1)dk

= dj − 1 < dM ≤ N/2. (18)

From (17), (18) and the definition of the N -modulo distance
in (10), we have that

dN (i1, i2) = dN

(
j−1∑

k=1

Ig
k (x1)dk,

j−1∑

k=1

Ig
k (x2)dk

)

≤
∣∣∣∣∣
j−1∑

k=1

Ig
k (x1)dk −

j−1∑

k=1

Ig
k (x2)dk

∣∣∣∣∣ ≤ dj − 1. (19)

Since
(
i +

∑M
k=1 Ig

k (x)dk

)
=N o in (8) for each input/output

pair (i, o) in an (r,d)-twister network, (16) can be rewritten as

o1 −
M∑

k=n+1

Ig
k (x1)dk =N o2 −

M∑

k=n+1

Ig
k (x2)dk (20)

for both n = j−1 and j. Also, from (20) and Property 10(vi)
and (viii), we have that

dN (o1, o2) = dN




M∑

k=j+1

Ig
k (x1)dk,

M∑

k=j+1

Ig
k (x2)dk


 .

Similar to (18), we also have
∣∣∣∣∣∣

M∑

k=j+1

Ig
k (x1)dk −

M∑

k=j+1

Ig
k (x2)dk

∣∣∣∣∣∣

≤
M∑

k=j+1

(rk − 1)dk = N − dj+1. (21)

On the other hand, we have from (A2) that
∣∣∣∣∣∣

M∑

k=j+1

Ig
k (x1)dk −

M∑

k=j+1

Ig
k (x2)dk

∣∣∣∣∣∣

= dj+1

∣∣∣∣∣∣

M∑

k=j+1

(Ig
k (x1)− Ig

k (x2))
k−1∏

`=j+1

r`

∣∣∣∣∣∣
, (22)

where by convention we let
∏k−1

`=j+1 r` = 1 for k = j + 1.
Notice that

∑M
k=j+1(I

g
k (x1) − Ig

k (x2))
∏k−1

`=j+1 r` cannot be
zero as otherwise we have o1 = o2 from (22) and (20). Thus,
|∑M

k=j+1(I
g
k (x1)− Ig

k (x2))
∏k−1

`=j+1 r`| is greater or equal to
one, and∣∣∣∣∣∣

M∑

k=j+1

Ig
k (x1)dk −

M∑

k=j+1

Ig
k (x2)dk

∣∣∣∣∣∣
≥ dj+1.

In conjunction with (21),

dN (o1, o2) = dN




M∑

k=j+1

Ig
k (x1)dk,

M∑

k=j+1

Ig
k (x2)dk




≥ dj+1. (23)

From (19) and (23), it then follows that

dN (o1, o2) ≥ dj+1 = rjdj > rjdN (i1, i2), (24)

which contradicts to the assumption in (12).

APPENDIX B

In this appendix, we prove Theorem 14.
Let P be the p× p circular shit matrix. For the connection

matrix Pn in a p× p rotator, the output port o for input i can
be written as o = (i + n) mod p, n = 0, 1, 2, · · · , p− 1. The
space delay for the mapped input/output pair (f(i1), f(o1))
and (f(i2), f(o2)) are x1 = (f(o1)−f(i1)) mod N and x2 =
(f(o2)− f(i2)) mod N , respectively. In view of Theorem 11,
it suffices to show that

dN (f(o1), f(o2)) ≤ γdN (f(i1), f(i2)) (25)

for any mapped input/output pair (f(i1), f(o1)) and
(f(i2), f(o2)) for each 0 ≤ n ≤ p− 1 in a p× p rotator.

Without loss of generality, we assume that i2 > i1 and thus
f(i2) > f(i1). Clearly, we have from (13) that

f(i2)− f(i1) =
i2−1∑

i=i1

x(i).

We first show that f(o2)−f(o1) can be represented in a similar
form as follows:

f(o2)− f(o1) =N

i2−1∑

i=i1

x(i + n). (26)

Note that x(i) can be equivalently written as follows:

x(i) = (f((i + 1) mod p)− f(i mod p)) mod N. (27)

As such, x(i) = x(j) if i =p j. Then one can easily verify that∑k+p−1
i=k x(i) = N , for all k, as x(i)’s are the gaps between

two consecutive linecards.
Now, we consider three cases.

Case (i) If 0 ≤ i1 +n < i2 +n ≤ p− 1, then o2 = i2 +n and
o1 = i1 + n. Thus,

f(o2)− f(o1) =
o2−1∑

i=o1

x(i) =
i2−1∑

i=i1

x(i + n).
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Case (ii) If i1 + n ≤ p − 1 and p ≤ i2 + n ≤ i1 + p, then
o2 = i2 + n− p and o1 = i1 + n. Thus, we have that f(o2)−
f(o1) =N N − (f(i1 + n) − f(i2 + n − p)). Notice that
N =

∑k+p−1
i=k x(i) for arbitrary integer k, and thus

f(o2)− f(o1) =N

i2+n−1∑

i=i2+n−p

x(i)−
i1+n−1∑

i=i2+n−p

x(i)

=
i2−1∑

i=i1

x(i + n).

Case (iii) If p ≤ i1+n < i2+n ≤ 2p−1, then o2 = i2+n−p
and o1 = i1 + n− p. Thus,

f(o2)− f(o1) = f(i2 + n− p)− f(i1 + n− p)

=
i2+n−p−1∑

i=i1+n−p

x(i) =
i2−1∑

i=i1

x(i + n).

Hence, (26) holds in all the three cases. It then follows from
(14) that

f(o2)− f(o1) = N

i2−1∑

i=i1

x(i + n) ≤
i2−1∑

i=i1

max
j

x(j)

≤ γ

i2−1∑

i=i1

min
j

x(j) ≤ γ

i2−1∑

i=i1

x(i)

= γ(f(i2)− f(i1)). (28)

Following a similar procedure, one can also easily show

N − (f(i2)− f(i1)) =
i1+p−1∑

i=i2

x(i), and

N − (f(o1)− f(o2)) = N

i1+p−1∑

i=i2

x(i + n).

Thus,

N − (f(o1)− f(o2)) =N

i1+p−1∑

i=i2

x(i + n)

≤ γ

i1+p−1∑

i=i2

x(i) = γ(N − (f(i2)− f(i1))). (29)

From (28) and (29), it follows that

dN (f(o1), f(o2))
= min[(f(o2)− f(o1)) mod N,

(N − (f(o2)− f(o1))) mod N ]
≤ γ min [(f(i2)− f(i1)), (N − (f(i2)− f(i1)))]
= γdN (f(i1), f(i2)).

This shows (25) and we complete the proof for a p×p rotator.
For a p× p symmetric TDM switch, we have for any fixed

0 ≤ n ≤ p − 1 that (i1 + o1) =p (i2 + o2) =p n for
any input/output pairs (i1, o1) and (i2, o2). Without loss of
generality, we also assume that i2 > i1 and thus f(i2) > f(i1).
Let ñ = n − i1 − i2. By considering the three cases, (i)

0 ≤ i1 < i2 ≤ n ( ii) n + 1 ≤ i1 < i2 ≤ p − 1 and (iii)
0 ≤ i1 ≤ n and n + 1 ≤ i2 ≤ p − 1, one can show that
f(i2)− f(i1) =

∑i2−1
i=i1

x(i) and

f(o1)− f(o2) =N

i2−1∑

i=i1

x(i + ñ) (30)

by using similar procedures as in the proof for a rotator. Notice
that (30) has the same form as (26) except that the positions
of o1 and o2 are interchanged. Hence, according to the
definition in (10), the condition in (25) is also satisfied for any
mapped input/output pair (f(i1), f(o1)) and (f(i2), f(o2))
of a symmetric TDM switch if the mapping f satisfies the
condition in (14).
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