
Cheng-Shang Chang and Duan-Shin Lee

Principles, Architectures and
Mathematical Theories of High
Performance Packet Switches

ALL RIGHTS RESERVED

Feb. 2006

2

Preface

Due to the recent advances in optical transmission technologies, the
transmission speed of optical links is much faster than the switching
speed of current electronic Internet routers. The challenge is then to
find switch architectures that scale with the transmission speed of fiber
optics. There are two approaches for this: (i) the electronic approach
and (ii) the optical approach. The electronic approach is to use parallel
electronic devices to acquire the needed speedup for fiber optics. On
the other hand, the optical approach is to explore the possibility of
building intelligent logic control directly with optical devices. It is the
intent of this book to introduce recent advances in switch architectures
from both the electronic approach and the optical approach.

In this book, we will first give a detailed review of existing switch
architectures in Chapter 2, including both the output-buffered switches
and input-buffered switches that are currently used in most Internet
routers. Output-buffered switches, though ideal in the mathematical
sense, suffer from the memory accessing speed problem. As such, its
speed is in general limited by the memory accessing speed of the state-
of-the-art memory technology. To acquire the needed speedup, parallel
buffers are needed. Input-buffered switches are built for that purpose.
However, as there are parallel input buffers, coordination of of parallel
buffers results in a problem of finding “good” matchings. It seems
that the matching problem was solved by two great mathematicians,
G. Birkhoff [17] and J. von Neumann [164], long before it became a
problem in input-buffered switches. The Birkhoff-von Neumann switch,
an input-buffered switch that implements the algorithm developed by
Birkhoff and von Neumann, achieves the ideal 100% throughput for
all admissible traffic.

The load-balanced Birkhoff-von Neumann switches in Chapter 3
eliminate the need for finding “good” matchings in input-buffered
switches. They are, therefore, much more scalable than input-buffered

4

switches. The idea of the load-balanced Birkhoff-von Neumann switches
is quite simple. In such a switch, parallel buffers are placed between
two switch fabrics. The first switch fabric performs load balancing so
that the traffic coming to the parallel buffers is uniform, and thus can
be easily switched by the second switch fabric. As there are multi-
ple routing paths through the load-balanced Birkhoff-von Neumann
switches, packets in such switches may be delivered out of sequence.
In Chapter 3, we shall introduce several variants in the literature that
address the out-of-sequence problem in such switches.

Chapter 4 is a short chapter. There we introduce the concept of
quasi-circuit switching. Traditionally, circuit switching is used for qual-
ity of service, while packet switching is used for bandwidth sharing.
Quasi-circuit switching is a concept that falls in between packet switch-
ing and circuit switching, and thus can be viewed as a performance
compromise between packet switching and circuit switching. The ad-
vantage of quasi-circuit switching is that quasi-circuit switches can
be built with less complexity by using the load-balanced Birkhoff-von
Neumann switches.

In Chapter 5, we introduce the optical approach. The key prob-
lem with optical packet switches is the lack of inexpensive memory.
We start from an optical memory cell that is capable of storing one
fixed-size packet. Then we use that as a basic building block to con-
struct various optical queues, including time slot interchanges, First-
In-First-Out (FIFO) multiplexers, FIFO queues, linear compressors,
non-overtaking delay lines, and priority queues. The most interest-
ing part of such a development is its connection to classical switching
theory. For instance, linear compressors are connected to banyan net-
works, and non-overtaking delay lines and FIFO queues are connected
to Benes networks.

This book is the result of courses developed in packet switch archi-
tectures at National Tsing Hua University. The material in this book
can serve as a basis for a semester-long graduate level course that cov-
ers all the chapters in this book. Readers are recommended to take
an undergraduate course in computer networks as a prerequisite. Also,
for some of the mathematical theories in the book, it might be help-
ful to have some knowledge of linear algebra (matrices), differential
equations, discrete math (graphs) and elementary probability.

Several chapters of this book were rewritten from papers jointly
coauthored with our colleagues and students in the last seven years.

5

For this, we gratefully thank Wen-Jyh Chen, Yi-Ting Chen, Jay
Cheng, Ching-Te Chiu, Hsien-Chen Chiu, Chih-Chieh Chou, Hsiang-
Yi Huang, Yi-Shean Jou, Issac Keslassy, Ching-Ming Lien, Nick McK-
eown, Ying-Ju Shih, Chih-Ying Tu, Chao-Kai Tu, Chao-Lin Yu, and
Chi-Yao Yue. We give special thanks to Jay Cheng and Anne Bouillard
for carefully reviewing an earlier draft and Yu-Hao Hsu for setting up
the Web site

http://gibbs.ee.nthu.edu.tw/COM5353.htm

that contains slides and solutions for several sets of problems in the
book. We are also grateful to the National Science Council and the
Ministry of Education, Taiwan, R.O.C., for support of much of the
work under the Program for Promoting Academic Excellence of Uni-
versities NSC 94-2752-E-007-002-PAE, and the National Innovative
Communication Education Program.

Hsinchu, Feb. 2006 Cheng-Shang Chang and Duan-Shin Lee

6

Table of Contents

1. Introduction . 1
1.1 The Internet . 1
1.2 IP routers . 3
1.3 Switch fabrics . 5
1.4 Circuit switching, packet switching, and quasi-circuit

switching . 8
1.5 Optical packet switches . 9

2. Basic Architectures and Principles of Packet Switches 11
2.1 Output-buffered switches . 12

2.1.1 Shared memory switch and shared medium switch 12
2.1.2 Lindley equation . 13
2.1.3 Average queue length . 16
2.1.4 Little’s formula . 19

2.2 Input-buffered switches . 22
2.2.1 Fundamental limits on achievable rates of input-

buffered switches . 22
2.2.2 Head-of-line blocking . 25
2.2.3 Virtual output queueing . 27
2.2.4 Round-robin matching . 30
2.2.5 SLIP . 32

2.3 Birkhoff-von Neumann switches . 35
2.3.1 The decomposition algorithm 35
2.3.2 The on-line scheduling algorithm 40
2.3.3 Rate guarantees . 42
2.3.4 Framing . 48
2.3.5 Maximum weighted matching algorithm 53

2.4 Three-stage constructions of switch fabrics 57
2.4.1 Clos networks . 58
2.4.2 Rearrangeable networks . 60

8 Table of Contents

2.4.3 Benes networks . 68
2.5 Two-stage constructions of switch fabrics 71

2.5.1 The X2 construction . 72
2.5.2 Banyan networks . 74
2.5.3 CU nonblocking switches . 76
2.5.4 Bitonic sorters and Batcher sorting networks 81
2.5.5 Batcher-banyan networks and three-phase switches 85
2.5.6 Concentrators . 89
2.5.7 Mirror image of two-stage constructions 91

2.6 Exact emulation . 93
2.6.1 Crosspoint buffers . 93
2.6.2 Parallel buffers . 94
2.6.3 Combined input output queueing 95

2.7 Knockout switches . 99
2.7.1 The Knockout principle . 99
2.7.2 L-to-1 multiplexer . 101
2.7.3 Fast Knockout concentrator 104

2.8 Notes . 107

3. Load Balanced Birkhoff-von Neumann switches 127
3.1 Load balanced Birkhoff-von Neumann switches: one-

stage buffering . 128
3.1.1 The switch architecture . 130
3.1.2 Ergodicity . 135
3.1.3 Uniform i.i.d. traffic model . 138
3.1.4 Uniform bursty traffic model 140
3.1.5 Simulation . 143
3.1.6 Further reduction of the requirement of the mem-

ory speed . 146
3.2 Switch fabrics in the load-balanced Birkhoff-von Neu-

mann switches . 147
3.2.1 Construction by the banyan network 148
3.2.2 Recursive construction of the symmetric TDM

switches . 149
3.3 Load balanced Birkhoff-von Neumann switches: multi-

stage buffering . 153
3.3.1 The FCFS output-buffered switch 156
3.3.2 The load-balancing buffer . 158
3.3.3 The central buffer under FCFS 161

Table of Contents 9

3.3.4 The resequencing-and-output buffer 164
3.3.5 The EDF scheme . 167
3.3.6 The Full Ordered Frames First scheme 169

3.4 Guaranteed rate services with the earliest eligible time
first policy . 171
3.4.1 Maximum time to depart from the second switch

fabric . 174
3.4.2 Maximum time to depart from the whole switch . 177

3.5 Frame based schemes . 180
3.5.1 Regulated inputs . 185
3.5.2 Input-buffered switches with head-of-line blocking 187

3.6 Mailbox switches . 191
3.6.1 Generic mailbox switch . 192
3.6.2 Mailbox switch with cell indexes 194
3.6.3 Mailbox switch with a limited number of forward

tries . 195
3.6.4 Mailbox switch with limited numbers of forward

and backward tries . 196
3.6.5 Exact analysis for the throughput with δ = 0 197
3.6.6 Exact analysis for the throughput with δ = ∞ . . . 198
3.6.7 Approximation for the throughput with 0 < δ <∞201
3.6.8 Simulation Study . 204

3.7 Finite central buffers . 211
3.7.1 Sizing the central buffers . 212
3.7.2 Round-robin policy for multiple VOQs at input

buffers . 215
3.7.3 Non-ergodic mode . 218
3.7.4 The effect of randomness for the non-ergodic mode219

3.8 Notes . 223

4. Quasi-circuit switching and quasi-circuit switches . . . 235
4.1 Quasi-circuit switching . 236

4.1.1 Definitions and basic properties 236
4.1.2 Networks of quasi-circuit switches 242

4.2 Recursive construction of quasi-circuit switches 244
4.2.1 Clos quasi-circuit switches . 244
4.2.2 Benes quasi-circuit switches 249

4.3 Lossy quasi-circuit switches . 252

10 Table of Contents

4.3.1 Statistical multiplexing gain in high speed switch-
ing . 252

4.3.2 Inferring QoS via the average link utilization 256
4.4 Notes . 259

5. Optical packet switches . 265
5.1 Optical memory cells and SDL elements 265
5.2 Time slot interchange . 269

5.2.1 Optical time slot interchange by serial/parallel
conversion . 269

5.2.2 Optical Clos time slot interchange 271
5.2.3 Optical Benes time slot interchange 273

5.3 2-to-1 buffered multiplexers with switched delay lines . . 279
5.3.1 Prioritized concentrator . 282
5.3.2 Recursive construction . 283
5.3.3 Inductive proof of Theorem 5.3.4 289

5.4 N -to-1 buffered multiplexers with switched delay lines . 293
5.4.1 Prioritized concentrator . 296
5.4.2 Recursive construction of N -to-1 multiplexers . . . 297
5.4.3 Self-routing optical multiplexers 303
5.4.4 Proof of Theorem 5.4.5 . 305

5.5 FIFO multiplexers with variable length bursts 311
5.5.1 Cell contiguity problem. 312
5.5.2 The overall multiplexer architecture 314
5.5.3 The cell scheduling algorithm 316
5.5.4 Delay bound . 323

5.6 FIFO queues . 328
5.6.1 A naive construction of FIFO queues with optical

memory cells . 330
5.6.2 The main idea of the construction 331
5.6.3 Three-stage constructions . 332
5.6.4 Extensions of FIFO queues 338
5.6.5 Proof of Theorem 5.6.2 . 339

5.7 Building optical queues from classical switching theory . 344
5.7.1 Flexible delay lines, non-overtaking delay lines

and Linear compressors . 345
5.7.2 Mirror image and linear decompressor 351
5.7.3 A two-stage construction of a linear compressor . 352

Table of Contents 11

5.7.4 A three-stage construction of a non-overtaking
delay line . 357

5.7.5 A three-stage construction of a flexible delay line 362
5.7.6 Constructions of flexible delay lines by Cantor

Networks . 365
5.8 Priority Queues . 369

5.8.1 Complementary Priority Queues 372
5.8.2 Constructions of Complementary Priority Queues 375

5.9 Notes . 377

References . 391

Index . 401

1. Introduction

1.1 The Internet

The whole world is connected via the Internet. The Internet has a lay-
ered structure and every layer has its specific objectives and functions
(see Figure 1.1). When a person clicks a button to access a web page
from the Internet, it evokes a sequence of operations that need to be
carried out accurately. First, the web browser, e.g., Microsoft Internet
Explorer, passes the web address to the Hyper Text Transfer Proto-
col (HTTP). Then HTTP evokes the Transmission Control Protocol
(TCP) to connect the local host to the sever that contains the web
page. TCP then sends and transmits Internet Protocol (IP) packets
between the local host and the server. IP packets that contains the
IP addresses of the local host and the server are routed through the
Internet via several IP routers. Between two successive IP routers, IP
packets are usually carried by a lower layer protocol, such as Ethernet
or token ring. If the maximum packet size of the lower layer protocol
is smaller than the size of an IP packet, then the IP packet needs to
be further fragmented into several independent IP packets that fit the
size of the packet of the lower layer protocol.

Every layer of protocol has its specific objective and its specific
message format. For example, HTTP is in charge of setting up a con-
nection between the local host and the server that handles html files.
As it is impossible to set up a direct HTTP connection through the
Internet, HTTP has to ask for its lower layer protocol, i.e., TCP, to do
the job. To do this, HTTP has to specify how it communicates with
TCP. Specifically, port 80 of TCP is reserved for HTTP so that any
TCP segment with port 80 is forwarded to HTTP. HTTP then con-
verts TCP segments into html files and forward it to the upper layer
browser. Similarly, TCP cannot set up a TCP connection directly be-
tween the local host and the server, and it has to use IP. TCP, as its
name suggests, also uses a window flow control mechanism that pre-

2 1. Introduction

Local host� ServerRouter�

Router�

Router�

Internet�

HTTP�

TCP�

IP�

Ether�

HTTP�

TCP�

IP�

Ether�

IP�

Ether�

IP�

Ether�

IP�

Ether�

Fig. 1.1. An illustrating example of the Internet

vents both the Internet and the server into a congestion state. The
main objective of IP is to route IP packets to the right place. Theo-
retically, every computer that connects to the Internet is assigned a
unique IP address. In every IP packet, both the IP addresses of the
local host and the server are added so that IP routers can use them to
route packets. In addition to the IP addresses, the information of its
upper layer protocol is also included in every IP packet (in this case,
it is TCP). By so doing, an IP packet can be forwarded to the correct
upper layer protocol at the right sever.

There are still mysteries that need to be resolved:

(i) How does the local host find out the IP address of the server via
its web address?

(ii) How does an IP router route packets by the IP address?
(iii) Even when an IP router finds out the IP address of the next hop

router, how does an IP router find out the physical address of the
next hop router, e.g., the Ethernet address?

The first question is resolved by adding a network of Domain Name
Servers (DNS) into the Internet. The network of DNS is a hierarchical
network that is built upon the Internet. When the local host is not
aware of the IP address of a web address, it will send a request to
its local DNS server. If its DNS server cannot resolve the problem,
the DNS server will send a request to its upper layer DNS server and
resolve the problem in an iterative and recursive manner.

1.2 IP routers 3

The third problem is resolved by introducing the Address Resolu-
tion Protocol (ARP). When an IP router does not have the physical
address of the next hop router, it broadcasts a request for the physical
address of the next hop router through its local area network, e.g., the
Ethernet. The request contains both the physical address and the IP
address of the router that sends out the request, and the IP address of
the next hop router. By examining the IP address, the next hop router
realizes that the request is addressed to it and it needs to send a reply
that contains its physical address to the router that sends the request.

The second problem is much more complicated than the other two
and it will be addressed in the next section.

1.2 IP routers

The main objective of an IP router is to route IP packets according
to the IP address. An IP router usually contains several input ports
and output ports. To route a packet from an input port to an output
port, an IP router must contain a table that maps every IP address to
the output port that links to the next hop router. The protocol that
creates such a table is called a routing protocol and the table created
is thus called a routing table. There are several routing protocols that
can be used for routing (see e.g., [138, 103]), and these protocols are
usually implemented as a piece of software in an IP router. Sometimes,
a routing table is further converted into a forwarding table that is easier
to map an IP address to the output port of its next hop router. The
operation that forwards an IP packet from an input port to an output
port is then called forwarding.

Forwarding consists of two steps: (i) table lookup: it finds the ap-
propriate output port, and (ii) message copying: it copies packets from
input ports to output ports. Table lookup can be carried out in a dis-
tributed manner. Thus, for high speed routers, a forwarding table is
stored in every input port. When a packet is received from an input
port, its output port can be found directly from the forwarding ta-
ble. This can be done in parallel at every input port with affecting
each other. However, message copying is much more difficult to do in
parallel. This will be further discussed in the next section.

To perform routing and forwarding, an IP router is usually imple-
mented by the following three components (see Figure 1.2):

4 1. Introduction

Forwarding �

table�

Segmentation �

buffer�

Reassembly �

buffer�

Line Card�

Forwarding �
table�

Segmentation �
buffer�

Reassembly �

buffer�

Line Card�

Forwarding �

table�

Segmentation �

buffer�

Reassembly �

buffer�

Line Card�

Forwarding �

table�

Segmentation �

buffer�

Reassembly �

buffer�

Line Card�

Routing �
software�

Switch fabric�

Fig. 1.2. An IP router

(i) A routing software: the routing software implements the routing
protocol that creates the routing table and the associated forward-
ing table.

(ii) Line cards: a line card is associated with an input port and an
output port. Every line card contains a forwarding table. When
an IP packet is received from the input port in the line card, the
destination IP address on the packet is used in the forwarding table
to find out the appropriate output port. The IP packet is converted
(and sometimes segmented) into the packet format used in the
switch fabric. The packet is then sent through the switch fabric to
the appropriate output port. When a packet is received from the
switch fabric, the packet is buffered (and sometimes reassembled)
and then sent out from the output port in the line card.

(iii) Switch fabric: the switch fabric performs message copying. It
copies packets from input ports to output ports. Sometimes, mul-
tiple switch fabrics are installed in an IP router for the sake of
reliability and speedup.

The bottleneck of an IP router is mostly in the switch fabric. Sup-
pose that an IP router has N line cards (N input/output ports) and
each line card is running at rate R bits/sec. The rate R is called the
line rate (or line speed) of an IP router. The rate (or speed) of an
IP router is generally referred to as the aggregated rate of all the line
cards, i.e., N × R bits/sec. However, there is a catch for this. As the

1.3 Switch fabrics 5

switch fabric might be a bottleneck, not all the packets can be routed
to the output ports successfully when each input port is running at the
full rate R. A notion, called the throughput of an IP router, is defined
to be the percentage of packets that are successfully delivered to out-
put ports for a certain traffic coming to inputs ports with rate R. Not
all commercially available IP routers yield 100% throughput for all
kinds of traffic. As such, it might be very misleading if one compares
the performance of IP routers by simply looking at their aggregated
rates.

One might wonder why it is not called an IP switch. Switches and
routers are basically the same. Traditionally, switches are used for
circuit switching networks, such as telephone networks, that provide
connection oriented services. On the other hand, routers are used for
packet switching networks that provide connectionless services. How-
ever, the line becomes blur as more and more circuit switching net-
works and packet switching networks are integrated. Recently, switches
are used more often than routers. For instance, a layer x switch implies
a switch that uses layer x protocol for packet routing. In particular, a
layer 2 switch is an Ethernet switch, a layer 4 switch is a switch that
uses TCP for routing, and a layer 7 switch is a switch that uses web
contents for routing.

1.3 Switch fabrics

Switch fabric�
N�

Input ports� Output ports

Fig. 1.3. A switch fabric

6 1. Introduction

As mentioned in the previous section, the main objective of a switch
fabric is to copy packets from input ports to output ports (see Figure
1.3). This will be addressed in details in Chapter 2. The easiest way
to do this is to use a common shared memory for the switch fabric. A
switch fabric (or simply a switch) that uses a common shared memory
is known to be the shared memory switch architecture. Suppose that
the incoming IP packets are segmented into packets with the same
size at the line cards. Then one can partition time into time slots
so that a packet (for the switch fabric) can be transmitted within a
time slot from a line card. If there are N input ports and N output
ports for the switch fabric, then within a time slot N packets have to
be written into the common shared memory and read out from the
common shared memory. If packets arriving at every input port is at
the rate of R bits/sec, then in order to guarantee successful delivery of
packets the common shared memory needs to be operated at the rate of
2NR bits/sec (as there are N write operations and N read operations
within a time slot). Clearly, the main problem of the shared memory
switch architecture is scalability. It does not scale when the number of
input ports N is large.

Input ports� Output ports�

1�

2�

3�

4�

1�

2�

3�

4�

Fig. 1.4. Parallel transmissions

To cope with the scalability problem, parallel (and simultaneous)
transmissions from input ports and output ports must be used (see
Figure 1.4). However, as an input port (resp. output port) is allowed
to transmit (resp. receive) a packet in a time slot, these parallel trans-
missions need to be coordinated so that every input port is connected
to at most one output port and vice versa. Such a connection pattern

1.3 Switch fabrics 7

is known as a matching since one may view input ports as men and
output ports as women. In Section 2.2, we will address several schemes
that find matchings between input ports and output ports.

Coordinating parallel transmission takes efforts. There are two ma-
jor overheads of doing this:

(i) Communication overhead: information needs to be exchanged among
input/output ports for finding a matching.

(ii) Computation overhead: it takes time to compute a matching.

For a switch fabric with a large number of input ports, the commu-
nication overhead could be as large as transmitting the packet itself.
This also results in the scalability problem.

Input ports� Output ports�

1�

2�

3�

4�

1�

2�

3�

4�

Intermediate ports�

Fig. 1.5. A two-stage switch fabric

To solve the coordination problem for parallel transmissions, one
may use a pre-determined schedule of parallel transmissions. However,
a pre-determined schedule may not fit the traffic demand at the input
ports. The idea is then to alter the traffic demand so that it fits the
pre-determined schedule. This requires adding another switch fabric
to form a two-stage switch fabric as shown in Figure 1.5. The first
stage performs load balancing that distributes packets evenly to the
intermediate ports. By so doing, the traffic demand coming to the in-
termediate ports is uniform in spite of the traffic demand at the input
ports may be non-uniform. As the traffic demand coming to the inter-
mediate ports is uniform, packets can be evenly distributed to output
ports via the switch fabric at the second stage. Switch architectures
like this are called load balanced Birkhoff-von Neumann switches and
they will be addressed in details in Chapter 3.

8 1. Introduction

1.4 Circuit switching, packet switching, and
quasi-circuit switching

The Internet is a packet-switched network. On the other hand, tele-
phone networks are based on circuit switching. In a circuit-switched
network, resources, including bandwidth and buffers, are reserved
along a path for the duration of communication. As such, quality of
service (QoS) is easily guaranteed. However, as resources are reserved
for dedicated use, resources are not used efficiently in circuit-switched
networks. On the other hand, as there is no resource reservation in
packet-switched networks, resources could be used more efficiently in
packet-switched networks. However, it is much more difficult to provide
QoS in packet-switched networks.

Providing QoS in the Internet in general requires implementing sev-
eral mechanisms, such as traffic policing, packet scheduling and admis-
sion control (see e.g., [138, 103]). There are several theoretical frame-
works developed in the literature for providing QoS. Among them,
the network calculus developed by R. L. Cruz [53] (and later general-
ized in [26, 104, 2]) is the most popular one. It is shown in [132] that
deterministic QoS can be guaranteed by implementing weighted fair
queueing in routers. Such a framework was later proposed in the IETF
RSVP/Intserv architecture [149]. For a complete introduction of the
network calculus, we refer to the books [27, 105].

It would be nice to have QoS in a high speed IP router without im-
plementing complicated mechanisms needed in the network calculus.
For this, we introduce the concept of quasi-circuit switching in Chap-
ter 4. Quasi-circuit switching is to find compromises between circuit
switching and packet switching. The idea is not completely new and in
fact it is a generalization and an abstraction of the stop-and-go queue-
ing proposed by Golestani [67, 68]. As in [67, 68], time in a quasi-circuit
switched network is partitioned into frames. Flows entering a quasi-
circuit switched network are rate controlled so that the number of bits
of each flow in every frame is always bounded. Via appropriate ad-
mission control of flows entering a quasi-circuit switched network, the
links in the network never exceed their capacities, i.e., a quasi-circuit
switched network is a congestion-free network like a circuit-switched
network.

In circuit switching, traffic is completely isolated. On the other
hand, traffic is completely mixed in packet switching. Quasi-circuit
switching uses frames to isolate traffic. As such, it can be viewed as

1.5 Optical packet switches 9

circuit switching at the time scale of frames. Thus, it can still provide
some guarantees of quality of services at the frame level. At the same
time, quasi-circuit switching allows packets to be multiplexed within a
frame. Thus, it can achieve statistical multiplexing gain within a frame.
The concept of quasi-circuit switching is equivalent to the statistical
line grouping in the circuit switching context (see e.g., [111]) and is
known as the duration limited statistical multiplexing in [68].

1.5 Optical packet switches

Most of current IP routers use electronic memory. However, as the
technology for fiber optics advances, the access speed of electronic
memory is much slower than the transmission speed of fiber optics. As
the links connecting IP routers are in general based on fiber optics,
optical signals have to be converted into electric signals in IP routers.
Such a conversion is very costly and that drives people to think whether
IP packets can be directly switched in the domain of light.

As mentioned in Section 1.2, forwarding consists of two steps: (i)
table lookup and (ii) message copying. To solve the problem of ta-
ble lookup, traffic needs to be aggregated into flows. By so doing, a
much shorter address than an IP address could be used. The short ad-
dress is generally referred to as a label and it requires a much smaller
forwarding table than the IP forwarding table. The technology that
uses labels for switching is known as label switching (see e.g., [10]).
However, abstracting the label from an optical packet for table lookup
might still be too difficult to do. An idea is to send the label through
a separate electronic network before the optical packet is transmitted.
By so doing, table lookup is done in the electronic domain and it still
has time to reserve the resource for the incoming optical packet. The
technology based on such an idea is generally referred to as optical
burst switching (see e.g., [160, 171]).

For message copying, one still needs to deliver an optical packet
from an input port to an output port without colliding with other
optical packets. For this, one still needs optical memory. Unlike elec-
tronic devices, it is very difficult to build memory using pure optical
components. However, as it takes time for light to propagate, one may
“store” light (and the information contained in the light) by circuiting
the light in a fiber delay line and “release” the light when the informa-
tion is retrieved. By so doing, one may use optical switches and fiber

10 1. Introduction

delay lines to build an optical memory. An optical device built by op-
tical switches and fiber delay lines is then called a Switched Delay line
(SDL) element.

The main difficulty of using SDL elements to build optical device is
the control of the optical switches. One has to release the light at the
right time to the right place. In general, the decision is made based on
the “state” of SDL elements which indicates whether light is stored in
a particular section of a fiber delay line. To build a large memory, one
has to use long fiber delay lines and this results in a huge number of
states. Finding the right control for such an SDL element becomes a
very complicated combinatoric problem.

Fortunately, there are certain types of memory, including time slot
interchanges, and multiplexers with First In First Out (FIFO) queues,
that can be recursively constructed by the SDL elements. The detailed
constructions will be addressed in Chapter 5. These constructions can
then be used for building optical packet switches.

2. Basic Architectures and Principles of Packet
Switches

A switch is a network element with multiple input ports and output
ports. We call a switch with M input ports and N output ports an
M × N switch. The main objective of a switch is to transfer packets
from an input port to one or more output ports. To achieve this, a
switch has the following two basic functions: (i) table lookup: it finds
the appropriate output port for a packet, and (ii) message copying:
it copies packets from input ports to output ports. The first function
is usually implemented by a routing table, and the second function is
usually implemented by a switch fabric (with buffers). Readers inter-
ested in IPv4 table lookup may find implementable algorithms in P.
Gupta, S. Lin and N. McKeown [70] and N.-F. Huang and S. M. Zhao
[74]

The main objective of this chapter is to discuss switch architectures
that perform message copying. For the ease of presentation, we assume
that packets are of the same size and that all the input/output
links are of the same speed. Moreover, time is slotted into
fixed and identical intervals (slots) so that a packet can be
transmitted within a time slot at any input/output link.

The contents of this chapter can be broadly classified into three
topics:

– switch architectures, location of buffers and scheduling of packets;
– design of switch fabrics;
– exact emulation and approximation of output-buffered switches.

The first topic contains discussion on output-buffered, input-buffered
and Birkhoff-von Neumann switches. For the second topic, we present
three-stage constructions and two-stage constructions of switch fabrics
in Section 2.4 and Section 2.5. The third topic is presented in Section
2.6 and Section 2.7.

12 2. Basic Architectures and Principles of Packet Switches

2.1 Output-buffered switches

2.1.1 Shared memory switch and shared medium switch

The first architecture is called a shared memory switch. For such a
switch (see Figure 2.1), packets from all input ports are read into a
common shared memory. A central controller then writes all those
packets to the destined output ports according to an address lookup
table. All the read/write operations have to be done within a time slot.
For an N ×N shared memory switch, there are N write operations for
the N input ports and N read operations for the N output ports per
time slot. Thus, its memory access speed must be at least 2N × link
speed. As such, a shared memory switch is not scalable if the number
of input/output ports is large.

Example 2.1.1. The memory access time for the current DRAM is
roughly 10 ns (nano second). For a packet of 64 bytes (512 bits),
the memory access speed of a shared memory switch is roughly 51.2
Gbits/sec. If the line speed is 2.48 Gbits/sec (OC48), then a shared
memory switch can support up to 10 input/output ports.

MEM�
N�

Input� Output�

Fig. 2.1. A shared memory switch

The second one is a shared medium switch, most commonly known
as a shared bus switch (see Figure 2.2). This kind of switch also requires
a central controller to ensure that only one packet is transferred on the
shared bus at any moment. Within each time slot, the central controller
transmits a packet from each input in a round-robin manner onto the
bus. Each output port listens to the bus all the time and accepts the

2.1 Output-buffered switches 13

packet that is destined for it. For an N × N shared medium switch,
the central controller needs to transmit N packet within a time slot.
Thus, the memory access speed of an N × N shared medium switch
must be at least N × link speed, which is one half of that for a shared
memory switch. As a shared memory switch, a shared medium switch
is not scalable if the number of input/output ports is large.

MEM�in�
out�

MEM�in�
out�

MEM�in�
out�

MEM�in�
out�

Fig. 2.2. A shared medium switch

Both the shared memory switch and the shared medium switch
are called output-buffered switches. This is because an output port
can transmit at most one packet within a time slot and there might
be multiple packets that arrive at the same output port at the same
time slot. When this happens, one needs buffers to solve such output
conflicts. As such, there is a queue for each output port (even though
they might share the same memory block).

2.1.2 Lindley equation

To perform mathematical analysis for an N × N output-buffered
switch, we consider the following discrete-time queueing system. Let
ai(t), i = 1, 2, . . . , N , be the number of packets that arrive at the tth

time slot and are destined to the ith output port. Also, let qi(t) be the
number of packets stored in the ith output buffer at the end of the tth

time slot. Then we have the following recursive equation:

14 2. Basic Architectures and Principles of Packet Switches

qi(t+ 1) = (qi(t) + ai(t+ 1) − 1)+, (2.1)

where x+ = max(0, x). Equation (2.1) is intuitively clear as there is a
departing packet as long as there are packets to be transmitted from
the ith output port. When this happens, the number of packets left at
time t+ 1 is one less than the sum of the number of packets stored at
time t and the number of packets that arrive at time t+ 1.

The equation in (2.1) is generally known as the Lindley equation
[114] for a discrete-time queue. A discrete-time queue that satisfies the
Lindley equation in (2.1) is also called a work conserving link (with
capacity 1) in [27]. The Lindley equation can be recursively expanded
to derive the following representation for qi(t).

Lemma 2.1.2. Suppose that qi(0) = 0.

(i) Let Ai(t) =
∑t

s=1 ai(s) be the cumulative number of packets that
arrive by time t and are destined to the ith output port. Then

qi(t) = max
0≤s≤t

[Ai(t) −Ai(s) − (t− s)].

(ii) Let Bi(t) = Ai(t)− qi(t) be the cumulative number of packets that
depart by time t from this queue. Then

Bi(t) = min
0≤s≤t

[Ai(s) + (t− s)].

The proof for Lemma 2.1.2 is left as an easy exercise for the readers
in Problem 1.

The next question is whether there is a steady state random vari-
able q(∞) for {q(t), t ≥ 1} as t → ∞. To answer this question, we
need to introduce the concept of stationarity and ergodicity. A stochas-
tic sequence {X(t), t ≥ 1} is stationary if its joint distribution is in-
variant with respect to time shift, i.e., for any time shift s and any
k-dimensional joint distribution,

P(X(1) ≤ x1,X(2) ≤ x2, . . . ,X(k) ≤ xk)
= P((X(1 + s) ≤ x1,X(2 + s) ≤ x2, . . . ,X(k + s) ≤ xk).

(2.2)

A stationary sequence {X(t), t ≥ 1} is ergodic if its long run average
is the same as its ensemble average, i.e., for any function f with k
variables

2.1 Output-buffered switches 15

lim
t→∞

1
t

t−1∑
s=0

f
(
X(1 + s),X(2 + s), . . . X(k + s)

)

= E
[
f
(
X(1),X(2), . . . ,X(k)

)]
, a.s., (2.3)

where a.s. stands for “almost surely” and it means the convergence
is almost surely true for every sample path of {X(t), t ≥ 1} (those
sample paths that do not converge have probability 0). In particular,
an ergodic sequence satisfies the following strong law of large number

lim
t→∞

1
t

t∑
s=1

X(s) = E[X(1)], a.s. (2.4)

Clearly, if the sequence {X(t), t ≥ 1} is a sequence of independent and
identically distributed (i.i.d.) random variables (r.v.’s), then {X(t), t ≥
1} is ergodic according to the strong laws of large numbers for i.i.d.
r.v’s. However, not every stationary sequence is ergodic as shown in
the following example.

Example 2.1.3. Consider a sequence of i.i.d. Bernoulli r.v.’s {X(t), t ≥
1} with parameter 1/2, i.e., for all t

P(X(t) = 0) = P(X(t) = 1) =
1
2
.

Let Y (t) = X(1)+X(t) for all t. Clearly, {Y (t), t ≥ 1} is still stationary
with the mean rate E[Y (1)] = 1. However, it is not ergodic as

lim
t→∞

1
t

t∑
s=1

Y (s) = X(1) + E[X(1)] = X(1) +
1
2
�= 1, a.s.

In fact, {Y (t), t ≥ 1} can be decomposed as two ergodic sequences,
one with X(1) = 0 and the other with X(1) = 1.

The following theorem shows that there is a steady state random
variable q(∞).

Theorem 2.1.4. (Loynes [116]) Suppose that {ai(t), t ≥ 1} is sta-
tionary and ergodic with mean ρ, i.e.,

lim
t→∞

Ai(t)
t

= Eai(1) = ρ, a.s.

If ρ < 1, then qi(t) converges to a steady state random variable qi(∞).

16 2. Basic Architectures and Principles of Packet Switches

The result in Theorem 2.1.4 is known as the Loynes construction
[116]. Details of the proof for such a construction can be found in
[11, 27]. For an outline of the proof of Theorem 2.1.4, see Problems 2
and 3.

Note that there are two conditions in Theorem 2.1.4: (i) traffic
characterization for the input, i.e., stationarity and ergodicity and (ii)
the rate condition ρ < 1. The rate condition is intuitively clear as one
must have the arrival rate ρ smaller than the departure rate 1. Other-
wise, the queue goes to ∞ when the arrival rate exceeds the departure
rate. The hard part is when the arrival rate is equal to the departure
rate, and it would depend on how variable the input is. As such, for
the engineering purpose, it is preferred that one keeps the arrival rate
strictly smaller than the departure rate. The need of ergodicity is also
clear. If the input is not ergodic, it may be decomposed as two or more
ergodic sequences. One of them may have the arrival rate larger than
the departure rate, while the expected arrival rate (over all the sample
paths of the stochastic sequence) is smaller than the departure rate.
The condition of stationarity may be weakened a little bit. It can be re-
placed by a stable sequence. A stable sequence is a stochastic sequence
that becomes stationary when t → ∞. For instance, if we consider
two discrete-time queues in tandem. The output of the first queue is
the input of the second queue. If we start the system from an empty
system, then the input to the second queue is not stationary. However,
it could be stable if the first queue satisfies the condition in Theorem
2.1.4. In fact, the stochastic sequence {qi(t), t ≥ 0} in Theorem 2.1.4
can further be shown to be a stable and ergodic sequence. As such, one
can further conclude the existence of a steady state random variable
for the second queue if the condition in Theorem 2.1.4 is also satisfied
for the second queue.

2.1.3 Average queue length

In the following proposition, we derive the average queue length for
an output-buffered switch subject to independent and identically dis-
tributed input traffic.

Proposition 2.1.5. Suppose that {ai(t), t = 1, 2, . . .} is a sequence of
independent and identically distributed (i.i.d.) random variables with
mean ρ and variance σ2. If ρ < 1, then as t → ∞, qi(t) converges in
distribution to a steady random variable with mean σ2+ρ2−ρ

2(1−ρ) .

2.1 Output-buffered switches 17

Note that ρ is the average arrival rate to the ith output buffer.
Proposition 2.1.5 shows that the mean (expected) queue length re-
mains bounded as long as ρ < 1 (and σ2 < ∞). Such a property is
known as the 100% throughput property for output-buffered switches.
Proof. From Theorem 2.1.4, we know that the steady state random
variable exists. Now we derive the expected queue length of the steady
state random variable. Let X(t) = qi(t) + ai(t + 1). From (2.1), it
follows that

X(t+ 1) = (X(t) − 1)+ + ai(t+ 2). (2.5)

Rewrite (2.5) as follows:

X(t+ 1) = (X(t) − 1)+1{X(t) > 0}
+(X(t) − 1)+1{X(t) = 0} + ai(t+ 2), (2.6)

where 1{E} is the indicator random variable with value 1 if the event E
is true and 0 otherwise. Note that (X(t)−1)+1{X(t) = 0} is simply 0.
Also, since X(t) is a nonnegative and integer valued random variable,

(X(t) − 1)+1{X(t) > 0} = (X(t) − 1)1{X(t) > 0}.
Thus, we have from (2.6) that

X(t+ 1) = (X(t) − 1)1{X(t) > 0} + ai(t+ 2). (2.7)

Taking expectations on both sides of (2.7) yields

E[X(t+ 1)] = E[(X(t) − 1)1{X(t) > 0}] + ρ. (2.8)

Note that

E(X(t) − 1)1{X(t) > 0}
= EX(t)1{X(t) > 0} − E1{X(t) > 0}
= EX(t) − P(X(t) > 0). (2.9)

As t → ∞, EX(t) will be the same as EX(t + 1). It then follows from
(2.8) that P(X(t) > 0) converges to ρ as t→ ∞, i.e.,

lim
t→∞P(X(t) > 0) = ρ.

Now we square both sides of (2.7) to derive

X(t+ 1)2 = (X(t) − 1)21{X(t) > 0}
+ 2(X(t) − 1)1{X(t) > 0}ai(t+ 2) + ai(t+ 2)2.

(2.10)

18 2. Basic Architectures and Principles of Packet Switches

Since ai(t)’s are i.i.d., ai(t + 2) is independent of X(t) (which is a
function of ai(s), s ≤ t + 1). Taking expectations on both sides of
(2.10) yields

EX(t+ 1)2

= EX(t)2 − 2EX(t) + E1{X(t) > 0}
+2EX(t)Eai(t+ 2)
−2E1{X(t) > 0}Eai(t+ 2) + Eai(t+ 2)2

= EX(t)2 − 2EX(t) + P(X(t) > 0) + 2ρEX(t)
−2ρP(X(t) > 0) + σ2 + ρ2. (2.11)

As t → ∞, EX(t)2 will be the same as EX(t + 1)2. As P(X(t) > 0)
converges to ρ, we then have from (2.11) that

lim
t→∞EX(t) =

1
2
σ2 + ρ− ρ2

1 − ρ
. (2.12)

Recall that X(t) = qi(t) + ai(t+ 1). Thus,

lim
t→∞Eqi(t) =

1
2
σ2 + ρ− ρ2

1 − ρ
− ρ

=
1
2
σ2 + ρ2 − ρ

1 − ρ
. (2.13)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

rho

E
xp

ec
te

d
qu

eu
e

le
ng

th

Fig. 2.3. The expected queue length as a function of the mean arrival rate

2.1 Output-buffered switches 19

Example 2.1.6. (Output buffered switch with Poisson inputs)
Suppose that ai(t)’s are i.i.d. Poisson random variables with mean ρ.
For a Poisson random variable, its variance is the same as its mean,
i.e., σ2 = ρ. Thus,

lim
t→∞Eqi(t) =

1
2

ρ2

1 − ρ
. (2.14)

In Figure 2.3, we plot (2.14). It shows that the expect queue length
remains bounded when ρ < 1. Also, it approaches to ∞ when ρ→ 1.

2.1.4 Little’s formula

We have derived the expected queue length for the discrete-time queue
in (2.1) when the arrivals form a sequence of i.i.d. random variables.
In this section, we will show how one uses Little’s formula to derive
the expected packet delay from the expected queue length.

A queueing system is generally referred to as a system that has
customers arriving and departing. Little’s formula [115] is a general
formula that holds for most queueing systems. To explain Little’s for-
mula, consider a particular queueing system. Let A(t) be the number
of customers that arrive at the queueing system by time t, D(t) be the
number of customers that depart from the queueing system by time t,
and q(t) be the number of customers in the queueing system at time
t. If q(0) = 0, then clearly we have

q(t) = A(t) −D(t).

The delay of a customer is the time difference between its arrival and
its departure, i.e., the amount of time a customer stays in the queueing
system. Let d(n) be the delay of the nth customer. Suppose that the
followings hold for the queueing system:

lim
t→∞

1
t

∫ t

0
q(s)ds = L, a.s., (2.15)

lim
n→∞

1
n

n∑
m=1

d(m) = W, a.s., (2.16)

and

lim
t→∞

A(t)
t

= lim
t→∞

D(t)
t

= λ, a.s., (2.17)

20 2. Basic Architectures and Principles of Packet Switches

for some constants L, W and λ. Note that L is the time average of
queue length, W is the time average of customer delay, and λ is the
average arrival rate and average departure rate. Then these three quan-
tities are related by Little’s formula as follows:

L = λW. (2.18)

The proof of Little’s formula is based on a very simple sample path
argument. Without loss of generality, assume that the queueing system
is started from an empty system, i.e., q(0) = 0. Also, we assume that
the arrival rate is nonzero, i.e., λ > 0. Let qn(t) be the indicator
random variable such that qn(t) = 1 if the nth customer is in the
queueing system at time t and qn(t) = 0 otherwise. Thus, for all s ≤ t,
q(s) is simply the sum of all the customers in the queueing system at
time s, i.e.,

q(s) =
A(t)∑
n=1

qn(s). (2.19)

If the nth customer departs before time t, then
∫ t
0 qn(s)ds is exactly the

amount of time that the nth customer stays in the queueing system,
i.e., ∫ t

0
qn(s)ds = d(n). (2.20)

If the nth customer departs after time t, then we still have∫ t

0
qn(s)ds ≤ d(n). (2.21)

As D(t) ≤ A(t), we also have for all s ≤ t

q(s) ≥
D(t)∑
n=1

qn(s). (2.22)

From (2.19) and (2.21), it follows that

∫ t

0
q(s)ds ≤

A(t)∑
n=1

d(n). (2.23)

On the other hand, we have from (2.22) and (2.20) that

∫ t

0
q(s)ds ≥

D(t)∑
n=1

d(n). (2.24)

2.2 Input-buffered switches 21

Using the two inequalities in (2.23) and (2.24) yields

lim
t→∞

D(t)
t

lim
t→∞

1
D(t)

D(t)∑
n=1

d(n)

≤ lim
t→∞

1
t

∫ t

0
q(s)ds

≤ lim
t→∞

A(t)
t

lim
t→∞

1
A(t)

A(t)∑
n=1

d(n) (2.25)

From (2.17) and λ > 0, we know that

lim
t→∞A(t) = lim

t→∞D(t) = ∞, a.s.

Using (2.15)-(2.17) in (2.25) yields the desired Little’s formula.
As a direct application of Little’s formula and Proposition 2.1.5,

we derive the average packet delay for an output-buffered switch with
i.i.d. arrivals in the following proposition.

Proposition 2.1.7. For an output-buffered switch, let di(n) be the
packet delay for the nth packet arriving at the ith output buffer. Suppose
that the arrival process {ai(t), t = 1, 2, . . .} is a sequence of independent
and identically distributed (i.i.d.) random variables with mean ρ and
variance σ2. If ρ < 1, then

lim
n→∞

1
n

n∑
m=1

di(m) =
σ2 + ρ2 − ρ

2ρ(1 − ρ)
, a.s.

Unlike the stochastic sequence {qi(t), t ≥ 0}, the sequence of ran-
dom variables {di(n), n ≥ 1} may not converge to a steady state
random variable di(∞). For instance, consider the arrival process
{ai(t), t ≥ 1} with P(ai(t) = 2) = 0.3 and P(ai(t) = 0) = 0.7. Then
the rate condition in Theorem 2.1.4 is satisfied, and qi(t) converges to
a steady state random variable qi(∞). However, this is not the case
for the stochastic sequence {di(n), n ≥ 1}. As packets arrive in pairs,
obviously we have di(2n) = di(2n− 1) + 1 under the First Come First
Serve (FCFS) policy. As such, there is no steady state random variable
for {di(n), n ≥ 1}. In view of this, the average packet delay is in form
of time average as shown in Proposition 2.1.7.

22 2. Basic Architectures and Principles of Packet Switches

MEM�in�
out�

MEM�in�
out�

MEM�in�
out�

MEM�in�
out�

Fig. 2.4. Adding parallel buses to a shared medium switch

2.2 Input-buffered switches

To solve the memory access speed problem, one can simply add more
parallel buses to the shared medium (bus) switch to allow parallel
read/write operations (see Figure 2.4). For an N ×N switch, at most
N parallel buses are needed as there are at most N packets transmit-
ting at the same time. By so doing, the memory access speed only
needs to match the link speed, i.e., an input port selects a bus to
transmit a packet within a time slot and an output port selects the
appropriate bus to receive a packet within a time slot. However, there
are limitations for these parallel read/write operations. As an input
port can transmit at most a packet within a time slot and an output
port can receive at most a packet within a time slot, all these par-
allel read/write operations are limited to distinct input-output pairs
(see Figure 2.5). In the case that two or more input ports would like
to transmit a packet to a particular output port, only one of them is
allowed to do so and the rest of them need to buffer their packets at
the input ports. Thus, there is a queue at each input port and such
a switch architecture is called an input-buffered switch in Figure 2.6.
Also, as it has the connection patterns that can be represented by a
crossbar, it is also known as a crossbar switch.

2.2.1 Fundamental limits on achievable rates of
input-buffered switches

The constraints on the parallel read/write operations limit the rates
that can be achieved by input-buffered switches. To see this, consider
the following N × N matrix P (t) = (Pi,j(t)) that represents the con-
nection pattern of an N ×N input-buffered switch at time t: Pi,j(t) is

2.2 Input-buffered switches 23

1�

2�

3�

4�

1� 2� 3� 4�

Fig. 2.5. A connection pattern of a crossbar switch

Switch�
fabric�

N�

1�1�

N�

Fig. 2.6. An input-buffered switch

24 2. Basic Architectures and Principles of Packet Switches

set to 1 if the ith input port is transmitting a packet to the jth output
port at the tth time slot, and 0 otherwise. Such a matrix is called a
connection matrix. The limitations imposed on the parallel read/write
operations are equivalent to that the connection matrix P (t) must
be a sub-permutation matrix, i.e., there is at most a 1 in each row
or column. For example, the connection pattern in Figure 2.5 can be
represented by the following permutation matrix⎡

⎢⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎥⎦ .

Define ri,j as the long run average rate from the ith input port to
the jth output port, i.e.,

ri,j = lim
t→∞

1
t

t∑
s=1

Pi,j(s), a.s. (2.26)

(Note that the long run average rate is the same as the expected rate
if the sequence is stationary and ergodic.) Let R = (ri,j) be the rate
matrix that contains ri,j’s as its elements. As P (t) is a sub-permutation
matrix (there is at most a 1 in each column), for all j = 1, 2, . . . , N ,

N∑
i=1

ri,j =
N∑

i=1

lim
t→∞

1
t

t∑
s=1

Pi,j(s)

= lim
t→∞

1
t

t∑
s=1

N∑
i=1

Pi,j(s)

≤ 1. (2.27)

Similarly, one also has
N∑

j=1

ri,j ≤ 1, i = 1, 2, . . . , N. (2.28)

The two conditions in (2.27) and (2.28), known as “no overbook-
ing” conditions in A. Hung, G. Kesidis and N. McKeown [79], are
intuitively clear as they simply state that neither the total rate to an
output port nor the total rate coming out from an input port can be
larger than 1. The no overbooking conditions set the limits on the rates
that can be achieved by input-buffered switches. The question is then
whether any rate matrix is achievable if the no overbooking conditions

2.2 Input-buffered switches 25

are satisfied. We will show in the next section this may not be true
due to the effect of head-of-line blocking.

2.2.2 Head-of-line blocking

Input-buffered switches may suffer from the head-of-line (HOL) block-
ing problem and that results in degradation in throughput. HOL block-
ing occurs under the following situation: for an input-buffered switch
with each input maintaining a single First In First Out (FIFO) queue,
if there are multiple input queues with their head-of-line packets (the
first packets in the FIFO queues) destined for the same output port
in a time slot, only one of them can be transferred and the others
are blocked. For those blocked queues, the packets queued behind the
head-of-line packets and destined for available output ports are also
blocked.

Example 2.2.1. (Head-of-line blocking) For example, consider
the 3 × 3 input-buffered switch in Figure 2.7. The FIFO queue at
input 1 has two packets: the first one is destined to output 1 and the
second one is destined to output 2. The FIFO queue at input 2 has
two packets destined to output 1. The FIFO queue at input 3 has two
packets: the first one is destined to output 1 and the second one is
destined to output 3. As all the head-of-line packets are all destined
to output 1, only one of them can get through. Suppose that the first
packet at input 2 is selected. In this case, the second packet at input 1
and the second packet at input 3 are blocked by the packets ahead of
them. The throughput in the case is only 33%. However, if we allow the
second packet at input 1 and the second packet at input 3 to take over
the packets ahead of them, then we can have three packets transmitted
at the same time and the throughput will be 100%!

As shown in Example 2.2.1, head-of-line blocking decreases the
throughput. For an input-buffered switch with a large number of
input ports, i.e., N >> 1, the maximum throughput is limited by
2 − √

2 ≈ 58.6% (under a uniform traffic assumption) [92]. To see
this, consider an N ×N input-buffered switch with each buffer being
operated under the FIFO policy. To find the maximum throughput,
assume there are already infinite many packets queued at the input
buffers. As such, there are exactly N HOL packets. Also, assume that

26 2. Basic Architectures and Principles of Packet Switches

Switch�

1�2�

1�1�

3� 1�

2�

3�

1�

blocked packet�

blocked packet�

Fig. 2.7. Head-of line blocking

a packet chooses its destination uniformly and independently. Since the
traffic is uniform, it suffices to look at a particular output port due to
symmetry. Let X(t) be the number of HOL packets that are destined
to output port 1 at time t. As there are exactly N HOL packets at
any time t, we then have from symmetry that

E(X(t)) = 1. (2.29)

Let a(t) be the number of packets that become HOL packets and
choose output port 1 as their destination at time t. As there is at most
one packet that can be transmitted to output port 1, we then have

X(t+ 1) = (X(t) − 1)+ + a(t). (2.30)

As shown in the proof of Proposition 2.1.5, we have

lim
t→∞P(X(t) > 0) = ρ, (2.31)

lim
t→∞EX(t) =

1
2
σ2 + ρ− ρ2

1 − ρ
, (2.32)

where ρ and σ2 are the mean and the variance of a(t). Note that ρ is
also the maximum throughput that we would like to find out under
the assumption of infinite many packets queued at the input ports.

Finally, note that a(t) is a (random) sum of Bernoulli random vari-
ables as every packet chooses its destination uniformly and indepen-
dently. Thus, a(t) converges to a Poisson random variable with mean
ρ when N → ∞. Recall that the variance of a Poisson random variable
is the same as its mean. We then have from (2.29) and (2.32) that

1
2

2ρ− ρ2

1 − ρ
= 1. (2.33)

As 0 ≤ ρ ≤ 1, we have from (2.33) that ρ = 2 −√
2.

2.2 Input-buffered switches 27

2.2.3 Virtual output queueing

Switch�

N�

1�1�

N�

Fig. 2.8. Virtual output queueing

One quick way to solve the HOL blocking problem is known as the
virtual output queueing (VOQ) technique. The VOQ technique (see
Figure 2.8) maintains a separate queue for each output port at each
input port, instead of having a single FIFO queue shared by all output
ports at each input port. For instance, for an N×N switch, there areN
queues at each input port and this is tantamount to a total number of
N2 queues at the input ports. Now we have (at most) N2 HOL packets
and we need to choose (at most) N of them to transmit through the
switch fabric at any time slot. These HOL packets need to be chosen
under the following two constraints: (i) no more than one packets can
be from the same input port, and (ii) no more than one packets can
be sent to the same output port.

IN� OUT�

1�

2�

3�

4�

1�

2�

3�

4�

IN� OUT�

1�

2�

3�

4�

1�

2�

3�

4�

Fig. 2.9. A bipartite graph (left) and a matching of the bipartite graph (right)

Such a problem can be formulated as a bipartite matching problem.
Recall that a bipartite graph G = (V,E) (see Figure 2.9) is a graph
in which the vertex set V is partitioned into two sets IN and OUT

28 2. Basic Architectures and Principles of Packet Switches

such that every edge in E has one end in IN and the other in OUT .
A matching in a bipartite graph is a set of edges of G such that no of
them have a vertex in common. In our setting, the set IN contains N
vertices with each vertex representing an input port. Similarly, the set
OUT also contains N vertices with each vertex representing an output
port. If the jth VOQ at the ith input port is not empty, then we set
an edge from the ith vertex from the IN set to the jth vertex in the
OUT set. The choice of the HOL packets is then equivalent to finding
a matching in the corresponding bipartite graph.

To gain the intuition of a matching in a bipartite graph, one may
consider the set IN as a set of men and the set OUT as a set of women.
An edge between a man and a woman indicates that the man and the
woman are fond of each other and eligible for a marriage. A matching
is then to find a set of marriages (edges) such that a man is allowed
to marry a woman and vice versa. We will further classify matchings
as follows:

(i) A maximal matching is a matching that no more edges can be
added.

(ii) A maximum matching is a matching that has the largest number
of edges among all matchings.

(iii) A perfect matching is a matching that contains all the vertices in
the bipartite graph.

Note that not every bipartite graph has a perfect matching. For exam-
ple, the bipartite graph in Figure 2.9 does not have a perfect match-
ing. On other hand, a bipartite graph may have more than one per-
fect matching. A perfect matching is always a maximum matching
in a bipartite graph, and a maximum matching is always a maximal
matching.

As indicated in [122], a good matching algorithm needs to have the
following four properties:

(i) High throughput: ideally, once the no overbooking conditions in
(2.27) and (2.28) are satisfied, then the expected queue length of
each VOQ should be finite.

(ii) Starvation free: it is not desirable to have a non-empty queue to
remain unserved indefinitely.

(iii) Fast: the computational complexity of finding the matching should
be low.

2.2 Input-buffered switches 29

(iv) Simple to implement: there should be an easy way to implement
the algorithm, preferably in hardware.

In [6], a simple algorithm, called Parallel Iterative Matching (PIM),
was proposed. There are three steps in each iteration:

Step 1. Request. Each unmatched input sends a request to every out-
put for which it has a non-empty VOQ.

Step 2. Grant. If an unmatched output receives any requests, it grants
to one by randomly selecting a request uniformly.

Step 3. Accept. If an input receives a grant, it accepts one by ran-
domly selecting a grant uniformly.

Example 2.2.2. (Parallel Iterative Matching) For example, con-
sider the bipartite graph in Figure 2.9. Step 1 will send out requests
as shown in Figure 2.10. In Step 2, output 1 grants input 2, output
2 grants input 1, output 3 grants input 2, and output 4 grants input
3. Finally, in Step 3, input 1 accepts the grant from output 2, input 2
accepts the grant from output 1, and input 3 accepts the grant from
output 4.

IN� OUT�

1�

2�

3�

4�

1�

2�

3�

4�

IN� OUT�

1�

2�

3�

4�

1�

2�

3�

4�

IN� OUT�

1�

2�

3�

4�

1�

2�

3�

4�

Request� Grant� Accept�

Fig. 2.10. A PIM iteration

Note that PIM uses randomness for arbitration. It also uses ran-
domness to avoid starvation. As it can be carried out in parallel, it is
also fast. By iterating the three steps above, PIM attempts to reach a

30 2. Basic Architectures and Principles of Packet Switches

maximal matching, where no more edges can be added (in Figure 2.10,
it reaches a maximal matching in one iteration). However, as pointed
out in [122], it is not easy to implement randomness in high speed.

2.2.4 Round-robin matching

One simple way to avoid using random arbitration is to use round-
robin matching (RRM). To do this, each input and each output keeps
a pointer and the pointer rotates clockwise as described below.

Step 1. Request. Each unmatched input sends a request to every out-
put for which it has a non-empty VOQ.

Step 2. Grant. If an unmatched output receives any requests from
the inputs, it grants to the one that is closest to its pointer. The
pointer at that output is incremented clockwise to one location
beyond the granted input.

Step 3. Accept. If an input receives a grant, it accepts the one that
is closest to its pointer. The pointer at that input is incremented
clockwise to one location beyond the accepted output.

Note that there is no randomness in RRM and it is considerably
simpler than PIM in the hardware design. However, as there is no
randomness in RRM, the pointers in the RRM might become deter-
ministic and periodic if all the VOQs are non-empty. As a result, the
pointers in RRM are synchronized and RRM might be trapped in a
bad mode with low throughput. Such a problem is known as the syn-
chronization of grant pointers in [122]. We illustrate the problem by
the following example in [122].

RRM�
1�2�

1�2�

1�2�

1�2�

1�

1�
2�

t�t+1�t+2�

1�
2�

2�

t+3�

Fig. 2.11. The input traffic to a 2 × 2 RRM switch with one iteration

Example 2.2.3. (Synchronization of grant pointers in RRM)
Consider a 2 × 2 switch that uses the round-robin matching with one

2.2 Input-buffered switches 31

iteration (see Figure 2.11). At time t−1, both the first input buffer and
the second input buffer have two packets destined to output ports 1
and 2. At time t, a packet destined to output port 1 arrives at the first
buffer and the second buffer. At time t + 1, another packet destined
to output port 2 arrives at the first buffer and the second buffer. The
input pattern then repeats itself from time t + 2 onward as shown in
Figure 2.11.

Now suppose all the pointers (at both the inputs and the outputs)
are pointing at 1 at time t (see Figure 2.12). At the first step input 1
sends requests to output 1 and output 2, and input 2 sends requests to
output 1 and output 2. As the pointer of output 1 is at 1, it grants input
1 at the second step and advances its pointer to input 2. Similarly,
output 2 also grants input 1 at the second step and advances its pointer
to input 2. Now input 1 receives grants from output 1 and output 2.
As the pointer of input 1 is at 1, it accepts output 1 at the third step
and advances its pointer to output 2.

Request�

t�

1�a�

2�
a� 2�

g�

1�g�
1�2�

Grant�

Accept�

1�2�

1�2�

1�2�

Request�

t+1�

1�a�

2�
a�

2�g�

1�
g�

1�2�

Grant�

Accept�

1�2�

1�2�

1�2�

Request�

t+3�

1�a�

2�a�
2�g�

1�g�
1�2�

Grant�

Accept�

1�2�

1�2�

1�2�

Request�

t+2�

2�a� 2�g�

1�g�

Grant�

Accept�

1�2�

1�2�

1�2�

1�a�1�2�

Fig. 2.12. An illustrating example for synchronization of grant pointers in a RRM
switch with one iteration

At time t+1, both inputs still send requests to both outputs at the
first step. As both the pointers of output 1 and output 2 are pointing
at input 2, both outputs grant input 2 and advance their pointers to
input 1 at the second step. At the third step, input 2 accepts output
1 and advance its pointer to output 2.

32 2. Basic Architectures and Principles of Packet Switches

Following the same argument, it is easy to see that input 1 accepts
output 2 at time t + 2, input 2 accepts output 2 at time t + 3. The
connection patterns are then repeated every four time slots. As there is
only one matched input-output pair for each time slot, the throughput
is 50% in this example.

2.2.5 SLIP

To solve the pointer synchronization problem in RRM, McKeown [122]
proposed the SLIP algorithm by not moving the grant pointers unless
the grant is accepted. The second step in RRM is modified as follows:

Step 2. Grant. If an unmatched output receives any requests from
the inputs, it grants to the one that is closest to its pointer. The
pointer at that output is incremented clockwise to one location
beyond the granted input if and only if the grant is accepted in
Step 3.

The intuition that SLIP can solve the pointer synchronization prob-
lem in RRM is that SLIP introduces additional “randomness” on the
movement of the grant pointers. Note that if the incoming traffic is
random, then the event that an output after sending out an grant is
accepted becomes a random event. As such, the grant pointers are less
likely to be synchronized. Moreover, as its round-robin nature, SLIP
will behave like a TDM system under heavy load for the uniform traffic
in Example 2.2.3.

As in PIM, the above three steps can be carried out iteratively. The
n-SLIP algorithm will be used to indicate that n SLIP iterations are
carried out.

Even though SLIP has the desired four properties for the uniform
traffic, it is still possible for SLIP to be trapped in a bad mode if
the traffic is heavy, bursty and non-uniform. This is due to the fact
that the event that an output after sending out an grant is accepted
could become deterministic and periodic if the incoming traffic is not
“random.” We illustrate this by the following example in [34].

Example 2.2.4. (A bad mode of SLIP) Consider a 3 × 3 SLIP
switch with the periodic input traffic shown in Figure 2.13. At time
t−1, the first (resp. second, third) input buffer has two packets destined

2.2 Input-buffered switches 33

SLIP�

2�3�

3�1�

2� 1�

2�3�

3�1�

1�2�

2�

3�

1�

2�

t�t+1�t+2�

3�

1�
3�

1�

2�

t+3�

Fig. 2.13. The input traffic to a 3 × 3 SLIP switch

to output ports 2 and 3 (resp. 3 and 1, 1 and 2). At time t, a packet
destined to output port 2 (resp. 3, 1) arrives at the first (resp. second,
third) buffer. At time t+ 1, another packet destined to output port 3
(resp. 1, 2) arrives at the first (resp. second, third) buffer. The input
pattern then repeats itself from time t+ 2 onward as shown in Figure
2.13.

Now suppose all the pointers (at both the inputs and the outputs)
are pointing at 1 at time t. As shown in Figure 2.14, at the first step
input 1 sends requests to output 2 and output 3, input 2 sends requests
to output 1 and output 3, and input 3 sends requests to output 1 and
output 2. Note that output 1 receives requests from input 2 and input
3. As the pointer of output 1 is at 1, it grants input 2 at the second
step. Similarly, output 2 grants input 1 and output 3 grants input 1 at
the second step. Now input 1 receives grants from output 2 and output
3. As the pointer of input 1 is at 1, it accepts output 2 at the third
step. Both pointers of input 1 and output 2 need to be updated. The
pointer of input 1 is moved to 3 (a1 in Figure 2.14) and the pointer
of output 2 is moved to 2 (g2 in Figure 2.14). Similarly, as input 2
receives the only grant from output 1, it accepts output 1 at the third
step. Now the pointer of input 2 is moved to 2 (a2 in Figure 2.14)
and the pointer of output 1 is moved to 3 (g1 in Figure 2.14). It is
clear that we already have a maximal matching and there is no need
to run further SLIP iterations at time t. For this input traffic, readers
can easily check that the SLIP algorithm (with as many iterations as
possible) produces the connection patterns as shown in Figure 2.14.
Note that all the pointers at t + 2 and t + 5 are the same and they
yield the same connection pattern. As a result, SLIP is trapped in a
periodical sequence of connection patterns and all these connection
patterns can send two packets per time slot. Thus, the throughput in
this example is only 66.667%, instead of 100% in an output-buffered

34 2. Basic Architectures and Principles of Packet Switches

1�
2�

3�

1�
2�

3�

Request�

Grant�

Accept�

1�
2�

3� 1�
2�

3�

Request�

Grant�

Accept�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

Request�

Grant�

Accept�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

Request�

Grant�

Accept�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

Request�

Grant�

Accept�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

Request�

Grant�

Accept�

t� t+1�

t+2� t+3�

t+4� t+5�

1�
a�

3�
a�

2�
a�

1�
g�

2�
g�

3�
g�

3�
g�

2�
g�

1�
g�1�

a�

2�
a�

3�
a�

3�
a�

2�
a�

1�
a� 1�

g�

3�
g�

2�
g�

1�
g�

2�
g�

3�
g�3�

a� 2�
a�

1�
a�

3�
g�

2�
g�

1�
g�

1�
g�

2�
g�

3�
g�

3�
a�

2�
a�

1�
a�

1�
a�

2�
a�

3�
a�

1�
2�

3�

1�
2�

3� 1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3�

1�
2�

3� 1�
2�

3�

Fig. 2.14. An illustrating example of a bad mode in a SLIP switch

2.3 Birkhoff-von Neumann switches 35

switch. For SLIP to get out of the trap, the traffic needs to be changed,
and this might take a long time when the traffic is heavy and bursty.

2.3 Birkhoff-von Neumann switches

Both PIM and SLIP fail to provide 100% throughput for non-uniform
traffic under the no overbooking conditions in (2.27) and (2.28). In
this section, we show that if the rates ri,j’s are known, then one can
achieve 100% throughput for all non-uniform traffic in input-buffered
crossbar switches (equipped with VOQs). The idea, first proposed in
C.-S. Chang, W.-J. Chen and H.-Y. Huang [28], is to use the capacity
decomposition approach by Birkhoff [17] and von Neumann [164]. To
explain the idea, let R = (ri,j) be the rate matrix with ri,j being the
rate requested by the traffic from input i to output j for an N × N
input-buffered crossbar switch. Then under the no overbooking con-
ditions in (2.27) and (2.28), there exists a set of positive numbers φk

and permutation matrices Pk, k = 1, . . . ,K for some K ≤ N2−2N+2
that satisfies

R ≤
K∑

k=1

φkPk, and (2.34)

K∑
k=1

φk = 1. (2.35)

Such a decomposition may be obtained off-line and it only needs
to be recomputed when the requested rates change. Once we obtain
such a decomposition, we can simply schedule the connection pattern
Pk proportional to its weight φk, k = 1, . . . ,K. One on-line scheduling
algorithm to do this is the Packetized Generalized Processor Sharing
(PGPS) algorithm in Parekh and Gallager [132] (or the Weighted Fair
Queueing (WFQ) in Demers, Keshav, and Shenkar [58]).

2.3.1 The decomposition algorithm

In this section, we describe the Birkhoff-von Neumann algorithm to
obtain the decomposition in (2.34).

36 2. Basic Architectures and Principles of Packet Switches

A nonnegative matrix R = (ri,j) that satisfies the conditions in
(2.27) and (2.28) is known to be doubly substochastic (see e.g., Mar-
shall and Olkin [120] for further properties of such matrices). If, fur-
thermore, both inequalities in (2.27) and (2.28) are equalities, then
the matrix R = (ri,j) is called doubly stochastic. The decomposition
basically consists of two steps: (i) it first finds a doubly stochastic ma-
trix that is not smaller than the original rate matrix, and (ii) it then
finds a decomposition for the doubly stochastic matrix obtained from
the first step. The first step is based on the following result by von
Neumann.

Proposition 2.3.1. (von Neumann [164]) If a matrix R = (ri,j)
is doubly substochastic, then there exists a doubly stochastic matrix
R̃ = (r̃i,j) such that

ri,j ≤ r̃i,j, ∀i, j.
This can be constructed by the following algorithm.

Algorithm 1:

(i) If the sum of all the elements in R is less than N , then there exists
an element (i, j) such that

∑
n ri,n < 1 and

∑
m rm,j < 1.

(ii) Let ε = 1 − max[
∑

n ri,n,
∑

m rm,j]. Add ε to the element in the
(i, j)th position to obtain a new matrix R1. Then in R1, the number
of row sums and column sums that are strictly smaller than 1 is
at least one less than that in R.

(iii) Repeat this procedure until the sum of all the elements is equal
to N . In this case, we derive a doubly stochastic matrix.

Clearly, the above algorithm will be ended after at most 2N − 1 steps
as the last step will make one row sum and one column sum to 1.
As the matrix is N × N , the computational complexity of finding an
element (i, j) with

∑
n ri,n < 1 and

∑
m rm,j < 1 is O(N2). Thus, the

computational complexity of Algorithm 1 is O(N3).

Example 2.3.2. (von Neumann algorithm) Consider the follow-
ing doubly substochastic matrix

R =

⎡
⎢⎣ 0.3 0.2 0.1

0.3 0.1 0.4
0.1 0.5 0.2

⎤
⎥⎦ .

2.3 Birkhoff-von Neumann switches 37

We show how one uses the above algorithm to convert it into a doubly
stochastic matrix. Note that the row sum that includes r1,1 is 0.6 and
the column sum that includes r1,1 is 0.7. Thus, we can add 0.3 to r1,1

and yields the following substochastic matrix⎡
⎢⎣ 0.6 0.2 0.1

0.3 0.1 0.4
0.1 0.5 0.2

⎤
⎥⎦ .

By so doing, now the column sum of the first column is 1. Repeating
the same steps by adding 0.1 to the (1, 2)th element yields

⎡
⎢⎣ 0.6 0.3 0.1

0.3 0.1 0.4
0.1 0.5 0.2

⎤
⎥⎦ .

Now the row sum of the first row is 1. Similarly, operating on the
element at the (2, 2)th element to have

⎡
⎢⎣ 0.6 0.3 0.1

0.3 0.2 0.4
0.1 0.5 0.2

⎤
⎥⎦ .

Operating on the element at the (2, 3)th element to have
⎡
⎢⎣ 0.6 0.3 0.1

0.3 0.2 0.5
0.1 0.5 0.2

⎤
⎥⎦ .

Finally, operating on the element at the (3, 3)th element to yield the
following doubly stochastic matrix

R̃ =

⎡
⎢⎣ 0.6 0.3 0.1

0.3 0.2 0.5
0.1 0.5 0.4

⎤
⎥⎦ .

Note that the last step makes both the row sum of the third row and
the column sum of the third column equal to 1.

The second step is based on Birkhoff’s result on doubly stochastic
matrices [17].

38 2. Basic Architectures and Principles of Packet Switches

Proposition 2.3.3. (Birkhoff [17]) For a doubly stochastic matrix
R̃, there exists a set of positive numbers φk and permutation matrices
Pk such that

R̃ =
∑
k

φkPk.

Let e be the column vector with all its elements being 1. As R̃ is
doubly stochastic,

e = R̃e =
∑
k

φk(Pke) = (
∑
k

φk)e.

This shows that∑
k

φk = 1. (2.36)

Basically, Proposition 2.3.3 says that doubly stochastic matrices are
within the convex hull of the permutation matrices.

In the following, we present an algorithm to obtain the set of posi-
tive numbers φk and permutation matrices Pk. As indicated in Mar-
shall and Olkin [120], the algorithm was originated by Dulmage and
Halperin [60]. We note that the same algorithm was rediscovered by
Inukai [85] for the time slot assignment problem in a satellite-switched
time-division multiple access (SS/TDMA) system.
Algorithm 2:

(i) For a doubly stochastic matrix R̃, let (i1, i2, . . . , iN) be a permuta-
tion of (1, 2, . . . , N) such that

∏N
k=1 r̃k,ik > 0. The existence of such

a permutation for a doubly stochastic matrix is given by Mirsky
[125], pp. 185 and Berge [15], pp. 105 (see Problem 10 for a proof
by the Hall theorem [71]).

(ii) Let P1 be the permutation matrix corresponding to (i1, i2, . . . , iN),
and φ1 = min1≤k≤N [r̃k,ik]. Define the matrix R1 by

R1 = R̃− φ1P1.

(iii) If φ1 = 1, then
R1e = R̃e− P1e = 0,

where 0 is the column vector with all its elements being zero. In
this case, the matrix R1 is the zero matrix as all the row sums are
zero. Thus, we have completed the representation.

2.3 Birkhoff-von Neumann switches 39

(iv) If φ1 < 1, then the matrix 1
1−φ1

R1 is doubly stochastic and we
can continue the decomposition from (i).

As each iteration reduces at least one element to zero, it is easy to
see that the algorithm will be stopped by at most N2−N+1 steps (the
last one will reduce N elements to zero). In fact, as shown in [120] and
references therein, the algorithm will be stopped by at mostN2−2N+2
steps. The number N2−2N+2 cannot be reduced by a smaller number
for the worse case. The main computation complexity of Algorithm 2 is
to find a permutation (i1, i2, . . . , iN) such that

∏N
k=1 r̃k,ik > 0. This can

be done by converting the matrix R̃ into a 0-1 valued adjacency matrix
of a bipartite graph and finding a maximum matching in that bipartite
graph (note that a maximum matching is one of the largest maximal
matchings in terms of the number of edges in the matching). In this
case, a maximum matching is ensured to be perfect, i.e., every vertex is
associated with exactly one edge. It is known (see e.g., Papadimitriou
and Steiglitz [131], Theorem 10.2) that the computational complexity
for the bipartite matching problem is O(N3) via the alternating path
algorithm, and can be improved to O(N2.5) via mapping the problem
to the maximum flow problem. Thus, the computational complexity
of Algorithm 2 is O(N4.5).

Example 2.3.4. (Birkhoff decomposition) Consider the doubly
stochastic matrix

R̃ =

⎡
⎢⎣ 0.6 0.3 0.1

0.3 0.2 0.5
0.1 0.5 0.4

⎤
⎥⎦

obtained in Example 2.3.2. For such a matrix, the (identity) permuta-
tion (1, 2, 3) contains all positive elements (with r̃1,1 = 0.6, r̃2,2 = 0.2
and r̃3,3 = 0.4). The smallest element of these three is r̃2,2. Thus, we
have

R1 =

⎡
⎢⎣ 0.4 0.3 0.1

0.3 0 0.5
0.1 0.5 0.2

⎤
⎥⎦ = R̃− 0.2

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

⎤
⎥⎦ .

Now R1 has one less zero elements than R̃. Moreover, 1
1−0.2R1 is still

a doubly stochastic matrix. As the permutation (1, 3, 2) contains all
positive elements in R1, following the same procedure yields

40 2. Basic Architectures and Principles of Packet Switches

R2 =

⎡
⎢⎣ 0 0.3 0.1

0.3 0 0.1
0.1 0.1 0.2

⎤
⎥⎦ = R1 − 0.4

⎡
⎢⎣ 1 0 0

0 0 1
0 1 0

⎤
⎥⎦ .

Now R2 has one less zero elements than R1 and two less zero elements
than R̃. Following the same procedure, the readers should be able to
show that

R̃ = 0.2

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

⎤
⎥⎦+ 0.4

⎡
⎢⎣ 1 0 0

0 0 1
0 1 0

⎤
⎥⎦+ 0.2

⎡
⎢⎣ 0 1 0

1 0 0
0 0 1

⎤
⎥⎦

+0.1

⎡
⎢⎣ 0 1 0

0 0 1
1 0 0

⎤
⎥⎦+ 0.1

⎡
⎢⎣ 0 0 1

1 0 0
0 1 0

⎤
⎥⎦ .

Thus, we then have for the Birkhoff decomposition that φ1 = 0.2,
φ2 = 0.4, φ3 = 0.2, φ4 = 0.1 and φ5 = 0.1, and

P1 =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

⎤
⎥⎦ , P2 =

⎡
⎢⎣ 1 0 0

0 0 1
0 1 0

⎤
⎥⎦ , P3 =

⎡
⎢⎣ 0 1 0

1 0 0
0 0 1

⎤
⎥⎦

P4 =

⎡
⎢⎣ 0 1 0

0 0 1
1 0 0

⎤
⎥⎦ , P5 =

⎡
⎢⎣ 0 0 1

1 0 0
0 1 0

⎤
⎥⎦ .

2.3.2 The on-line scheduling algorithm

In this section, we present the on-line scheduling algorithm used in the
Birkhoff-von Neumann switch. From the constructions in Algorithms
1 and 2, we can find a set of positive numbers φk and permutation
matrices Pk, k = 1, . . . ,K for some K ≤ N2 − 2N + 2 that satisfies

R ≤
K∑

k=1

φkPk, and (2.37)

K∑
k=1

φk = 1. (2.38)

In view of (2.37) and (2.38), the amount of time that the crossbar
switch sets its connection pattern according to the permutation ma-
trix Pk should be proportional to φk. As time is slotted, we can use

2.3 Birkhoff-von Neumann switches 41

the Packetized Generalized Processor Sharing (PGPS) algorithm in
Parekh and Gallager [132] (or the Weighted Fair Queueing (WFQ) in
Demers, Keshav, and Shenkar [58]) to approximate the scheme.
Algorithm 3:

(i) Assign a class of tokens for each permutation matrix Pk, k =
1, . . . ,K.

(ii) At time 0, generate a token for each class. Assign the virtual fin-
ishing time of the first class k token by

F 1
k =

1
φk
.

Sort these K tokens in an increasing order of the virtual finishing
times.

(iii) The switch serves the tokens in an increasing order of the virtual
finishing times. Once a class k token is served in a time slot, the
switch sets its connection pattern according to the permutation
matrix Pk for that time slot.

(iv) After the (� − 1)th class k token is served, the switch generates
the �th class k token and assign the virtual finishing time by

F �
k = F �−1

k +
1
φk
.

Insert the newly generated token in the sorted token list and repeat
the algorithm from (iii).

Note that Algorithm 3 is in fact a special case of PGPS. It corre-
sponds to the case that there is an infinite number of packets at time
0 for PGPS. As the algorithm generates a new token of the same class
after a token is served, there are exactly K classes of tokens in the
sorted token list. Since the tokens are always backlogged, there is no
need to keep track of the virtual finishing time. Thus, Algorithm 3 is
independent of the buffer contents at any time.

The complexity of Algorithm 3 is to insert every new token into
the sorted token list. As there are K tokens in the sorted list and
K ≤ N2 − 2N + 2, the computational complexity of Algorithm 3
is O(logN2). Since it takes N log2N bits to describe a permutation
matrix and there are O(N2) permutation matrices needed to be stored
in Algorithm 3, the memory complexity of Algorithm 3 is O(N3 logN).

42 2. Basic Architectures and Principles of Packet Switches

Example 2.3.5. (Packetized Generalized Processor Sharing
(PGPS)) Consider the decomposition in Example 2.3.4. Let

V (t) = (V1(t), V2(t), V3(t), V4(t), V5(t))

with Vk(t), k = 1, 2, 3, 4, 5, be the virtual finishing time of the class k
token at time t. At time 0, Vk(0) = 1/φk. Since φ1 = 0.2, φ2 = 0.4,
φ3 = 0.2, φ4 = 0.1 and φ5 = 0.1, we have V (0) = (5, 2.5, 5, 10, 10).
The smallest virtual finishing time is 2.5, which is the virtual finishing
time of the class 2 token. We then schedule at time 1 the permutation
matrix P2 and increase the virtual finishing time of class 2 token from
2.5 to 5. Now V (1) = (5, 5, 5, 10, 10). The minimum virtual finishing
time is 5 and there are three of them. For ease of our presentation, we
break the tie by choosing the one with the smallest index. Thus, we
choose the class 1 token and schedule P1 at time 2. Now increase the
virtual finishing time of class 1 token from 5 to 10. This leads to V (2) =
(10, 5, 5, 10, 10). The emulation results for the first 10 time slots are
summarized in Table 2.1. Note that the assignment of the permutation
matrices repeats every 10 slots (as V (10) = V (0)+(10, 10, 10, 10, 10)).
Moreover, in every 10 time slots, there are two time slots for P1, four
time slots for P2, two times slots for P3, one time slot for P4, and one
time slot for P5. Thus, the proportional amount of time that Pk is
scheduled is exactly φk.

In Figure 2.15, we show the time line for the tokens generated up to
t = 20. To provide more intuition for Algorithm 3, one may think that
the tokens for each class are generated periodically in advance along
the time line. The algorithm simply sorts the tokens according to their
generating time and sets up the corresponding connection patterns as
shown in Figure 2.15.

2.3.3 Rate guarantees

Example 2.3.5 shows that the Birkhoff-von Neumann switch is capable
of providing rate guarantees. We will formalize this in Theorem 2.3.6
below. Let Ci,j(t) be the cumulative number of slots that are assigned
to the traffic from input i to output j by time t. Also, let pk,i,j be the
element at the (i, j) position of the permutation matrix Pk obtained
from Algorithm 2. Note that pk,i,j only takes values 0 and 1. Define
Ei,j = {k : pk,i,j = 1} to be the subset of {1, 2, . . . ,K} such that for

2.3 Birkhoff-von Neumann switches 43

Table 2.1. Emulation of the on-line scheduling algorithm

time slot virtual time permutation

0 (5,2.5,5,10,10)

1 (5,5,5,10,10) P2

2 (10,5,5,10,10) P1

3 (10,7.5,5,10,10) P2

4 (10,7.5,10,10,10) P3

5 (10,10,10,10,10) P2

6 (15,10,10,10,10) P1

7 (15,12.5,10,10,10) P2

8 (15,12.5,15,10,10) P3

9 (15,12.5,15,20,10) P4

10 (15,12.5,15,20,20) P5

P�1�1/0.2=5�

P�2�1/0.4=2.5�

P�3� 1/0.2=5�

P�4�1/0.1=10�

P�5�1/0.1=10�

1�

2�

3�

4�

5� 11�

12�

13�

14�

15�

Time slot�

P�2�P�1� P�2�P�3�P�2� P�2�P�1� P�2�P�3�P�2�P�1�P�2�P�3�P�4�P�5� P�1�P�2�P�3�P�4�P�5�

6�

7�

8�

9�

10�

16�

17�

18�

19�

20�

Fig. 2.15. The time like for the tokens generated up to t = 20 in Example 2.3.5

44 2. Basic Architectures and Principles of Packet Switches

all k in Ei,j, the permutation matrix Pk has a nonzero element at the
(i, j) position. In other words, Ei,j contains the set of permutation
matrices that allow input i to transmit a packet to output j.

Theorem 2.3.6. For any rate matrix R = (ri,j) that satisfies (2.27)
and (2.28), Algorithms 1,2 and 3 generates a scheduling policy that
guarantees∑

k∈Ei,j

φk(t−s)−si,j ≤ Ci,j(t)−Ci,j(s) ≤
∑

k∈Ei,j

φk(t−s)+si,j,(2.39)

where

si,j = min[K, |Ei,j | +
∑

k∈Ei,j

φk(K − 1)], (2.40)

and |Ei,j| is the number of elements in the set Ei,j.

Note that K, the number of permutation matrices in (2.34), and
φk’s are the parameters obtained from Algorithm 2. As K ≤ N2 −
2N + 2 in Algorithm 2, we have si,j ≤ N2 − 2N + 2. Also, we have
from (2.37) that

∑
k∈Ei,j

φk =
K∑

k=1

φkpk,i,j ≥ ri,j. (2.41)

This in turn implies

Ci,j(t) − Ci,j(s) ≥ ri,j(t− s) −N2 + 2N − 2, (2.42)

for all i, j, and s ≤ t. Ideally, we would like to achieve fluid type of
rate guarantees, i.e.,

Ci,j(t) −Ci,j(s) = ri,j(t− s).

However, this is unlikely as ri,j(t − s) may not be an integer. The
constant N2 − 2N + 2 is the difference between the rate guarantees in
the Birkhoff-von Neumann switch and the ideal rate guarantees. Note
that the constant is independent of the rate matrix r.

We will need the following lemma for the proof of Theorem 2.3.6.
Let τ �

k be the index of the time slot that the �th class k token is served,
and Dk(t) be the cumulative number of class k tokens served by time
t. These two quantities are related via the following inversion formula

Dk(t) = sup{� : τ �
k ≤ t}, (2.43)

i.e., Dk(t) = �∗ if �∗ is the largest � such that τ �
k ≤ t.

2.3 Birkhoff-von Neumann switches 45

Lemma 2.3.7. For all k = 1, . . . ,K,

φkt� ≤ Dk(t) ≤
φk(t+K − 1)�, (2.44)

where
x� is floor function of x, i.e., the largest integer that is less
than or equal to x.

Using the inequality x− 1 <
x� ≤ x, one has

φkt− 1 < Dk(t) ≤ φk(t+K − 1). (2.45)

Proof. As Algorithm 3 serves the tokens in an increasing order of
the virtual finishing times, in the worst case the �th class k token is
served after all the tokens with virtual finishing times not greater than
F �

k are served. Note from (iv) in Algorithm 3 that the class k token is
generated every 1/φk unit of time. Thus, we have

F �
k = �/φk.

The number of class k tokens that have virtual finishing times not
greater than F �

k is simply �. On the other hand, the number of class j
tokens (with j �= k) that have virtual finishing times not greater than
F �

k is

F
�
k
1
φj

� =
φjF
�
k�.

Thus, the total number of tokens that have virtual finishing times not
greater than F �

k is

�+
∑
j �=k

(�φj)/φk�. (2.46)

As the algorithm serves a token per time slot, we have

τ �
k ≤ �+

∑
j �=k

(�φj)/φk�

≤ �+
∑
j �=k

(�φj)/φk = �/φk = F �
k ,

where we use the fact that
x� ≤ x in the second inequality. Thus,
every token is served not later than its virtual finishing time.

Now we show that for all k = 1, . . . ,K,

Dk(t) ≥
φkt�.
To see this, note from Algorithm 3 that the number of class k tokens
that have virtual finishing times not greater than t is

46 2. Basic Architectures and Principles of Packet Switches

φkt�.
All these class k tokens are served not later than their virtual finishing
times and thus they are served not later than t.

We prove the second inequality in (2.44) by contradiction. Suppose
that for some k and some t,

Dk(t) >
φk(t+K − 1)�.
As Dk(t) is an integer, this is equivalent to

Dk(t) ≥
φk(t+K − 1)� + 1.

From the inversion formula in (2.43), the
φk(t +K − 1)� + 1th class
k token must be served not later than t, i.e.,

τ
�φk(t+K−1)	+1
k ≤ t.

As the algorithm serves the tokens in an increasing order of their vir-
tual finishing times, those tokens with virtual finishing times less than
F

�φk(t+K−1)	+1
k must also be served not later than t. From the strict

inequality
x� + 1 > x, it follows the number of class k tokens served
not later than t is strictly larger than φk(t+K − 1). Also,

F
�φk(t+K−1)	+1
k = (
φk(t+K − 1)� + 1)/φk > t+K − 1.

Note that the number of class j tokens (j �= k) with virtual finishing
time not greater than t+K − 1 is

(t+K − 1)φj�,
and these tokens are also served not later than t as their virtual fin-
ishing times are strictly smaller than F

�φk(t+K−1)	+1
k . Thus, the total

number of tokens served not later than t is strictly larger than

φk(t+K − 1) +
∑
j �=k

(t+K − 1)φj�.

Since there are exactly t tokens served by time t, we have

t > φk(t+K − 1) +
∑
j �=k

(t+K − 1)φj�

> φk(t+K − 1) +
∑
j �=k

((t+K − 1)φj − 1)

= t,

2.3 Birkhoff-von Neumann switches 47

and we reach a contradiction.

Proof. (Theorem 2.3.6) We first prove the lower bound in (2.39).
Note that

Ci,j(t) =
∑

k∈Ei,j

Dk(t).

Thus, it suffices to show that∑
k∈Ei,j

Dk(t) −
∑

k∈Ei,j

Dk(s) ≥ (
∑

k∈Ei,j

φk)(t− s) −K, (2.47)

and that ∑
k∈Ei,j

Dk(t) −
∑

k∈Ei,j

Dk(s)

≥ (
∑

k∈Ei,j

φk)(t− s) − |Ei,j| −
∑

k∈Ei,j

φk(K − 1). (2.48)

We now show (2.47). As exactly one token is served in a time slot,
K∑

k=1

Dk(t) = t, ∀t. (2.49)

Thus, we have from (2.49) and the lower bound in (2.45) that∑
k∈Ei,j

Dk(t) = t−
∑

k �∈Ei,j

Dk(t) ≤
∑

k∈Ei,j

φkt+(K−|Ei,j |), ∀t.(2.50)

Using the lower bound in (2.45) and (2.50) yields∑
k∈Ei,j

Dk(t) −
∑

k∈Ei,j

Dk(s)

≥
∑

k∈Ei,j

(φkt− 1) −
∑

k∈Ei,j

φks− (K − |Ei,j |)

=
∑

k∈Ei,j

φk(t− s) −K.

To see (2.48), note from the lower bound and the upper bound in
(2.45) that∑

k∈Ei,j

Dk(t) −
∑

k∈Ei,j

Dk(s)

≥
∑

k∈Ei,j

(φkt− 1) −
∑

k∈Ei,j

(φk(s+K − 1))

=
∑

k∈Ei,j

φk(t− s) − |Ei,j| −
∑

k∈Ei,j

φk(K − 1).

48 2. Basic Architectures and Principles of Packet Switches

To prove the upper bound in (2.39), we simply interchange the
upper bound and the lower bound used for s and t in the proof for the
lower bound in (2.39).

2.3.4 Framing

In this section, we consider a special case of the Birkhoff-von Neumann
switch. We assume that there is an integer f so that the matrix fR̃
contains all integer-valued elements. Under such an assumption, there
are several important properties as shown in Lemma 2.3.8.

Lemma 2.3.8. For a doubly stochastic matrix R̃, suppose there is an
integer f so that the matrix fR̃ contains all integer-valued elements.

(i) Algorithm 2 is stopped by at most f steps.
(ii) fR̃ can be written as a sum of f permutation matrices.
(iii) Algorithm 3 is periodic with period f .

Proof. (i) The first property can be argued by induction. Note that
if f = 1, then the doubly stochastic matrix R̃ must be a permutation
matrix, and (i) is trivially satisfied. Suppose that (i) holds for any in-
teger that is smaller than f as the induction hypothesis. Also, suppose
that we have from Step (ii) in Algorithm 2 that R1 = R̃ − φ1P1 for
some φ1 > 0 and some permutation matrix P1. As φ1 is one of the
nonzero elements in R̃ and fR̃ is an integer-valued matrix, fφ1 is a
positive integer. Since R1 = R̃− φ1P1, we have

(f − fφ1)(
1

1 − φ1
R1) = fR̃− fφ1P1. (2.51)

Note that both matrices on the right side of (2.51) are matrices with
integer-valued elements. Thus, for φ1 < 1, the matrix

(f − fφ1)(
1

1 − φ1
R1)

is a matrix with all integer-valued elements. Since fφ1 is an integer
not less than 1, we have from the induction hypothesis that Algorithm
2 will take at most another f − 1 steps to decompose (1

1−φ1
R1). Thus,

Algorithm 2 will be stopped by at most f steps for the decomposition
of R̃.

2.3 Birkhoff-von Neumann switches 49

(ii) The second property also follows from induction. The case for
f = 1 is trivial as R̃ is a permutation matrix. Suppose that (ii) holds
for any integer that is smaller than f as the induction hypothesis.
From the induction hypothesis, the integer-valued matrix

(f − fφ1)(
1

1 − φ1
R1) = fR1

can be written as a sum of f − fφ1 permutation matrices. As fR̃ =
fφ1P1 + fR1, fR̃ can then be written as the sum of f permutation
matrices.

(iii) As fR̃ can be written as a sum of f permutation matrices, R̃
can be written as a sum of f permutation matrices with a common
weight 1/f . Thus, Algorithm 3 is periodic with period f .

Example 2.3.9. (Framed Birkhoff-von Neumann switch) For
instance, consider the matrix R̃ in Example 2.3.4. Note that 10R̃ con-
tains all integer-value elements. Moreover,

10R̃ = 2P1 + 4P2 + 2P3 + P4 + P5

is the sum of 10 permutation matrices. As shown in the emulation in
Example 2.3.5, Algorithm 3 is periodic with period 10.

As Algorithm 3 is periodic with period f , there is no need to run
Algorithm 3 any more. We may simply store all the f permutation
matrices in the memory (if f is not too large). This results in a framing
structure used in [79, 108].

Framing structure has its own advantages and disadvantages. Its
main disadvantage is the granularity problem. The rate assigned to an
input-output pair must be an integer multiple of line speed/f (in our
examples the line speed is normalized to 1), where f is the frame size
(the number of slots in a frame). To achieve finer granularity, one has to
increase the frame size f . However, this also increases the complexity
of the switch as the switch has to memorize all the f permutation
matrices.

The main advantage of the framing structure is the incremental
assignment property. To see this, consider the rate matrix

50 2. Basic Architectures and Principles of Packet Switches

R =

⎡
⎢⎣ 0.3 0.2 0.1

0.3 0.1 0.4
0.1 0.5 0.2

⎤
⎥⎦ .

in Example 2.3.2. As explained in Example 2.3.9, we can provide rate
guarantees for the rate matrix R by using a framing structure with
f = 10. Note that we increase some rates in R in order to convert
R into the doubly stochastic matrix R̃ during Algorithm 1. Now we
can deduct these back after the Birkhoff decomposition in Algorithm
2. This implies that we can use sub-permutation matrices to provide
rate guarantees instead of the permutation matrices in Example 2.3.9.
Specifically, we can use the following 10 sub-permutation matrices to
guarantees the rates in R

P̃1 =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

⎤
⎥⎦ , P̃2 =

⎡
⎢⎣ 1 0 0

0 0 0
0 0 1

⎤
⎥⎦ , P̃3 =

⎡
⎢⎣ 1 0 0

0 0 1
0 1 0

⎤
⎥⎦ ,

P̃4 =

⎡
⎢⎣ 0 0 0

0 0 1
0 1 0

⎤
⎥⎦ , P̃5 =

⎡
⎢⎣ 0 0 0

0 0 1
0 1 0

⎤
⎥⎦ , P̃6 =

⎡
⎢⎣ 0 0 0

0 0 1
0 1 0

⎤
⎥⎦ ,

P̃7 =

⎡
⎢⎣ 0 1 0

1 0 0
0 0 0

⎤
⎥⎦ , P̃8 =

⎡
⎢⎣ 0 1 0

1 0 0
0 0 0

⎤
⎥⎦ , P̃9 =

⎡
⎢⎣ 0 0 0

0 0 0
1 0 0

⎤
⎥⎦ ,

P̃10 =

⎡
⎢⎣ 0 0 1

1 0 0
0 1 0

⎤
⎥⎦ . (2.52)

Note that P̃1 and P̃2 are the sub-permutation matrices from P1, P̃3,
P̃4, P̃5 and P̃6 are the sub-permutation matrices from P2, P̃7 and P̃8

are the sub-permutation matrices from P3, P̃9 is the sub-permutation
matrix from P4, and P̃10 is the sub-permutation matrix from P5. Also,

10∑
k=1

P̃k =

⎡
⎢⎣ 3 2 1

3 1 4
1 5 2

⎤
⎥⎦ = 10R.

Now suppose that we would like to increase the rate r2,2 from 0.l
to 0.2. For this, we can simply change P̃2 to⎡

⎢⎣ 1 0 0
0 1 0
0 0 1

⎤
⎥⎦ .

2.3 Birkhoff-von Neumann switches 51

However, if we would like to increase the rate r3,1 from 0.1 to 0.2. (the
rate matrix is still doubly substochastic), we cannot add this directly
to one of the P̃k’s. One might wonder whether one needs to carry
out the Birkhoff-von Neumann decomposition again to find out all the
sub-permutation matrices needed to guarantee the rates. Fortunately,
there is a much easier way to do this, called the Slepian-Duguid algo-
rithm [151, 59] (see also Section 2.4.2 and the book by Hui [76] for its
applications on rearrangeable networks).

First, we need a more compact representation for the f sub-
permutation matrices, called Paull’s matrix in [135, 76]. Paull’s matrix
is the N × N matrix H with Hi,j being the set of indices of the sub-
permutation matrices in which the (i, j)th element is 1, i.e.,

Hi,j = {k : p̃k,i,j = 1},

where p̃k,i,j is the (i, j)th element of P̃k. For example, Paull’s matrix
for the 10 sub-permutation matrices P̃i, i = 1, 2, . . . , 10, is

H =

⎡
⎢⎣ {1, 2, 3} {7, 8} {10}

{7, 8, 10} {1} {3, 4, 5, 6}
{9} {3, 4, 5, 6, 10} {1, 2}

⎤
⎥⎦ . (2.53)

Let |Hi,j| be the number of elements in Hi,j and |H| be the matrix
that contains |Hi,j| in its (i, j)th element. Since |Hi,j| = fri,j, we have

|H| = fR. (2.54)

Thus, Paull’s matrix H contains the decomposition of the sub-
permutation matrices for the matrix fR.

Now we introduce the Slepian-Duguid algorithm for incremental
assignment. Suppose that we would like to increase the rate ri,j by
1/f (the minimum rate granularity) and such an increase does not
violate the no overbooking conditions in (2.27) and (2.28). There are
only two cases that can happen.

Case 1 There exists an index that is not found in row i and column j
of H.

Case 2 There exists an index c in row i that is not found in column j,
and an index d in column j that is not found in row i.

To see this, note from (2.54) and the no overbooking conditions in
(2.27) and (2.28) that

52 2. Basic Architectures and Principles of Packet Switches

N∑
j=1

|Hi,j| < f (2.55)

and
N∑

i=1

|Hi,j| < f. (2.56)

These two are strict inequalities as H is Paull’s matrix before we in-
crease the rate. Let H1 be the union of the sets Hi,j, j = 1, 2, . . . , N ,
and H2 be the union of the sets Hi,j, i = 1, 2, . . . , N . Clearly, H1 is
the set that contains all the indices in row i, and H2 is the set that
contains all the indices in column j. If Case 1 does not happen, then
the union of H1 and H2 equals to {1, 2, . . . , f}. In view of (2.55), H2

cannot be a subset of H1 (otherwise the union of H1 and H2 has less
than f indices). Similarly, from (2.56), it follows that H1 cannot be a
subset of H2. Thus, there exists an index c in row i that is not found
in column j, and an index d in column j that is not found in row i.

Slepian-Duguid algorithm:

(i) If Case 1 happens, then we can simply place the unfound index in
Hi,j.

(ii) In Case 2, we look at the row where d appears in column j to see
whether the index c appears in that row. If such a c is found, we
then check the column of that c to see whether d can be found.
Continue the process alternatively until we cannot find a c or d.
Now we place d in Hi,j. Replace all c with d and all d with c for
all c, d found in the process (see Figure 2.16).

Note that there are at most 2N − 2 columns and rows (excluding
row i and column j) that can be visited by the process in the Slepian-
Duguid algorithm. Thus, the algorithm will be ended by at most 2N−2
steps. Also, only the sub-permutation matrices P̃c and P̃d need to be
changed.

Example 2.3.10. (The Slepian-Duguid algorithm) Suppose that
we would like to increase the rate r3,1 from 0.1 to 0.2 for the rate ma-
trix R in Example 2.3.2. With Paull’s matrix in (2.53), we cannot find
an index that is not in row 3 and column 1. However, index 4 in H3,2

is in row 3, but not in column 1. Index 7 in H2,1 is column 1, but not
in row 3. So we check row 2 to see whether index 4 can be found in

2.3 Birkhoff-von Neumann switches 53

i�

j�

c�

d�c�

d� c�

d�

i�

j�

c�

c�d�

c� d�

c�

d�

Fig. 2.16. Search and replace in the Slepian-Duguid algorithm

row 2. Since H2,3 contains index 4, we need to continue the process
and check whether index 7 can be found in column 3. As index 7 is
not in column 3, the process stops. Now we add index 7 to H3,1 and
the modified H3,1 is {7, 9}. Replace index 7 in H2,1 by index 4 and
the modified H2,1 is {4, 8, 10}. Replace index 4 in H2,3 by index 7 and
the modified H2,3 is {3, 5, 6, 7}. Only P̃4 and P̃7 are changed. They are
now

P̃4 =

⎡
⎢⎣ 0 0 0

1 0 0
0 1 0

⎤
⎥⎦ , P̃7 =

⎡
⎢⎣ 0 1 0

0 0 1
1 0 0

⎤
⎥⎦ .

2.3.5 Maximum weighted matching algorithm

There are other scheduling algorithms that achieve 100% throughput
as the Birkhoff-von Neumann switch. In this section, we briefly discuss
the Longest Queue First (LQF) policy in the paper by McKeown,
Anantharam and Walrand [123] and the paper by Dai and Prabhakar
[56]. As in PIM and SLIP, the LQF policy establishes the bipartite
graph by assigning a link from the ith input to the jth output if the jth

VOQ of the ith input is non-empty. In addition to this, it also assigns a
weight to each link. The weight of a link is the number of packets stored
in the corresponding VOQ of that link. Thus, a longer queue carries
a larger weight. The LQF policy then schedules the sub-permutation
matrix (matching) that yields the maximum sum of weights.

54 2. Basic Architectures and Principles of Packet Switches

To be precise, let qi,j(t) be the number of packets stored in the jth

VOQ of the ith input at time t for an N × N switch. Formulate the
following optimization problem:

Maximize
N∑

i=1

N∑
j=1

pi,jqi,j(t)

Subject to
N∑

j=1

pi,j ≤ 1, i = 1, 2, . . . , N,

N∑
i=1

pi,j ≤ 1, j = 1, 2, . . . , N,

pi,j ∈ {0, 1}, i, j = 1, 2, . . . , N. (2.57)

The constraints above are equivalent to that P = (pi,j) is a sub-
permutation matrix. The LQF policy schedules the sub-permutation
matrix that achieves the maximum in the optimization problem.

The optimization problem in (2.57) is known as the maximum
weighted matching algorithm. As stated in [123], the complexity of
solving the maximum weighted matching problem is O(N3 logN).
Since the maximum weighted matching problem needs to be solved
every time slot, it is in general too complicated to be implemented in
high speed switches.

Example 2.3.11. (Maximum weighted matching) Consider a
4 × 4 input-buffered switch. Suppose that

(qi,j(t)) =

⎡
⎢⎢⎢⎣

3 4 0 0
5 0 2 2
0 0 0 3
0 1 0 1

⎤
⎥⎥⎥⎦ .

In Figure 2.17, we show the associated weighted bipartite graph and
its maximum weighted matching. The maximum of the optimization
problem is achieved when

P =

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦ .

2.3 Birkhoff-von Neumann switches 55

IN� OUT�

Maximum weighted�
matching�

1�

2�

3�

4�

1�

2�

3�

4�

4�

5�

3�

IN� OUT�

1�

2�

3�

4�

1�

2�

3�

4�

Weighted bipartite graph�

3�
4�

5�
2�

2�
3�

1�

1�

Fig. 2.17. A weighted bipartite graph and its maximum weighted matching

Here we provide an intuitive argument for the reason why the
weighted matching algorithm provides 100% throughput under the
no overbooking conditions. The formal proofs can be found in [56].
Consider the case that the time slot is extremely small so that one
can view the system as a continuous-time fluid model. The input rate
from the ith input port to the jth output port is a constant ri,j. Let
P (t) = (pi,j(t)) be the sub-permutation matrix scheduled at time t by
the maximum weighted matching algorithm. In the fluid model, pi,j(t)
is the output rate of the jth VOQ at the ith input port at time t. Thus,
instead of having the Lindley recursion in the discrete-time model, we
have in the continuous-time fluid model the following differential equa-
tion:

q′i,j(t) = ri,j − pi,j(t), qi,j(t) > 0. (2.58)

Let

V (t) =
N∑

i=1

N∑
j=1

1
2
(qi,j(t))2. (2.59)

The function V (t) is known as the Liapunov function in [56]. Note that
Liapunov function is nonnegative and convex in qi,j(t)’s. Thus, it has
a global minimum at qi,j(t) = 0 for all i, j. Moreover, if the Liapunov
function V (t) is bounded, then all the qi,j(t)’s are also bounded. The
idea is then to show that the Liapunov function V (t) is always de-
creasing in time so that it cannot grow unbounded. Note from (2.58)
that

56 2. Basic Architectures and Principles of Packet Switches

V ′(t) =
N∑

i=1

N∑
j=1

qi,j(t)q′i,j(t)

=
N∑

i=1

N∑
j=1

qi,j(t)ri,j −
N∑

i=1

N∑
j=1

qi,j(t)pi,j(t). (2.60)

As we assume that the rate matrix R = (ri,j) satisfies the no overbook-
ing conditions in (2.27) and (2.28), it then follows from the Birkhoff-
von Neumann decomposition that

R ≤
K∑

k=1

φkPk,

for some positive φk (with
∑K

k=1 φk = 1) and permutation matrices
Pk = (pk,i,j). Thus,

N∑
i=1

N∑
j=1

qi,j(t)ri,j ≤
N∑

i=1

N∑
j=1

qi,j(t)
K∑

k=1

φkpk,i,j

=
K∑

k=1

φk[
N∑

i=1

N∑
j=1

qi,j(t)pk,i,j]

≤ max
1≤k≤K

[
N∑

i=1

N∑
j=1

qi,j(t)pk,i,j]

≤
N∑

i=1

N∑
j=1

qi,j(t)pi,j(t),

as P (t) = (pi,j(t)) is chosen to maximize the weighted sum among
all the sub-permutation matrices. From (2.60), we have V ′(t) ≤ 0. As
such, V (t) cannot grow unbounded (in fact, V (t) = 0 for all t if we
start from V (0) = 0). So are qi,j(t)’s.

Instead of finding the maximum weight matching, one can simply
find a maximal matching, as in PIM and (iterated) SLIP. However,
as shown in Example 2.2.4, the throughput for a maximal matching
algorithm is not 100% in general. An interesting result, as formally
proved in [56], is that the throughput for maximal matching algorithms
is at least 50%. To see the intuition behind this, suppose that

N∑
j=1

ri,j ≤ 1
2
, i = 1, 2, . . . , N, (2.61)

2.4 Three-stage constructions of switch fabrics 57

N∑
i=1

ri,j ≤ 1
2
, j = 1, 2, . . . , N. (2.62)

Let P (t) = (pi,j(t)) be the sub-permutation matrix scheduled at time
t under a maximal matching algorithm. Clearly, (2.58) still holds. Now
consider the Liapunov function

Ṽ (t) =
N∑

i=1

N∑
j=1

N∑
k=1

[qi,k(t) + qk,j(t)]. (2.63)

Note that

Ṽ ′(t) =
N∑

i=1

N∑
j=1

N∑
k=1

[q′i,k(t) + q′k,j(t)]

=
N∑

i=1

N∑
j=1

N∑
k=1

[ri,k − pi,k(t) + rk,j − pk,j(t)]

≤
N∑

i=1

N∑
j=1

[1
2

+
1
2
−

N∑
k=1

pi,k(t) −
N∑

k=1

pk,j(t)
]
. (2.64)

Note that if qi,j(t) > 0, then a maximal matching ensures that there is
at least one edge connected to either input port i or output port j (as
otherwise we can simply connect input i to output j and the matching
would not be maximal). Thus, if qi,j(t) > 0,

N∑
k=1

pi,k(t) +
N∑

k=1

pk,j(t) ≥ 1.

From (2.64), we have Ṽ ′(t) ≤ 0 if qi,j(t) > 0 for all i, j. Thus, Ṽ (t)
cannot be unbounded. So are qi,j(t)’s.

2.4 Three-stage constructions of switch fabrics

As shown in Figure 2.5, the number of cross points in anN×N crossbar
switch fabric is N2, which may not scale for switches with a large
number of input/output ports. The idea is to build a large crossbar
switch fabric by connecting smaller crossbar switch fabrics. This has
been extensively studied in the area of circuit switching (see e.g., [14,
76, 147, 84, 111]). In circuit switching, a crossbar switch fabric allows
connections to be established in an incremental manner, i.e., a new

58 2. Basic Architectures and Principles of Packet Switches

connection (from a free input to a free output) can be added without
affecting existing connections. A switch fabric with such a property
is known as a strictly nonblocking (or simply nonblocking) switch. In
Section 2.4.1, we will show how one builds nonblocking switches using
three-stage constructions.

A weaker concept of nonblocking is rearrangeable nonblocking. A
new connection (from a free input to a free output) can be added by
altering the routes of existing connections. Switch fabrics with such
a property are called rearrangeable nonblocking switches (or simply
rearrangeable switches). As new connections can be added from free
inputs to free outputs, a rearrangeable nonblocking switch realizes all
the connection patterns that correspond to sub-permutations. In Sec-
tion 2.4.2, we will introduce three-stage rearrangeable networks and
their algorithms for setting up new connections.

2.4.1 Clos networks

In Figure 2.18, we show a three-stage Clos network. The first stage
consists of r1 m1 × r2 switches. Every one of the r2 outputs from
a switch at the first stage is connected to an input of the r2 r1 × r3
switches at the second stage. Every one of the r3 outputs from a switch
at the second stage is connected to an input of the r3 r2 ×n3 switches
at the third stage. In this three-stage switch, there are r1 ×m1 inputs
and r3 × n3 outputs.

Theorem 2.4.1. (Clos [51]) Suppose that every switch inside the
three-stage Clos network is nonblocking. If r2 ≥ m1 + n3 − 1, then
the three-stage Clos network in Figure 2.18 is also nonblocking.

Proof. To show that the three-stage Clos network is nonblocking, we
need to show that there is a non-conflicting path from a free input
to a free output. Note that there are exactly r2 paths from an input
to an output (with each path passing through a switch at the second
stage). Thus, if we would like to connect a free input of switch a at
the first stage to a free output of switch b at the third stage, then we
must find a switch at the second stage that is not being used by the
other m1 − 1 inputs of switch a and the other n3 − 1 outputs of switch
b. The worst case is when the other m1 − 1 inputs of switch a and the
other n3−1 outputs of switch b all use different switches at the second
stage. When this happens, there are m1 + n3 − 2 conflicting switches

2.4 Three-stage constructions of switch fabrics 59

1
2

m
r

×

1
2

m
r

×

1
3

r
r

×

1
3

r
r

×

2
3

r
n

×

2
3

r
n

×

2
r
 s
w
ic
h
e
s

3
r
 s
w
ic

1
m

2
r

1 r

1
 r

s
w
ic
h
e
s

60 2. Basic Architectures and Principles of Packet Switches

at the second stage. As r2 ≥ m1 + n3 − 1, there is always a free one
at the second stage and one can connect a free input to a free output
without conflicting other existing connections.

…

…

…
…

…
…

…
…

a

b

1m 11 −m

13 −n

11 −m

13 −n

1

1

3n

Fig. 2.19. The worst case of a nonblocking Clos network

Consider the special case that m1 = n3 = r1 = r3 = n and r2 =
2n− 1. From Theorem 2.4.1, it is a nonblocking n2 × n2 switch. Note
that the switches at first stage are all n×(2n−1). Thus, every n inputs
are expanded into 2n−1 inputs at the second stage. The “expanding”
factor is then (2n− 1)/n = 2 − 1/n. Such a factor is also the speedup
factor needed for exact emulation in Section 2.6.2.

The complexity of the three-stage Clos network is considerably
smaller than that of a crossbar switch fabric. To see this, note that
the number of cross points for this special case is

(n× (2n− 1)) × n+ (n× n)× (2n− 1) + ((2n− 1) × n)× n = O(n3),

which is smaller than O(n4) for an n2 × n2 crossbar switch fabric.

2.4.2 Rearrangeable networks

A special case of the three-stage Clos network is when m1 = r2 = n3 =
m and r1 = r3 = k as shown in Figure 2.20. Let N = m× k. Thus, the
three-stage network in Figure 2.20 is an N ×N switch fabric.

2.4 Three-stage constructions of switch fabrics 61

k
 s
w
itc
h
e
s

m
 s
w
itc
h
e
s

k
 s
w
itc
h
e
s

m
 ×

m

m
 ×

m

m
 ×

m

k
 ×
k

k
 ×
k

m
 ×

m

Fig. 2.20. A three-stage rearrangeable network

62 2. Basic Architectures and Principles of Packet Switches

Theorem 2.4.2. Suppose that every switch inside the three-stage con-
struction in Figure 2.20 is rearrangeable nonblocking, i.e., each m×m
(resp. k×k) switch realizes all the m×m (resp. k×k) sub-permutation
matrices. Then the three-stage network in Figure 2.20 is also rear-
rangeable nonblocking, i.e., it realizes all the N × N sub-permutation
matrices. Equivalently, one can find non-conflicting paths from all
inputs to all outputs as long as the connection pattern is a sub-
permutation matrix.

Proof. We give a constructive proof for this. Number the switches
at the first stage from 1 to k. Do the same for the switches at the
third stage. As such, we can use the (i, �)th input, i = 1, 2, . . . , k, � =
1, 2, . . . ,m, to denote the �th input of the ith switch at the first stage.
Similarly, we use the (j, �)th output, j = 1, 2, . . . , k, � = 1, 2, . . . ,m,
to denote the �th output of the jth switch at the third stage. We use
the indicator variables p(i,�1),(j,�2), i, j = 1, 2 . . . , k, �1, �2 = 1, 2, . . . ,m,
to represent a connection pattern between the N inputs and the N
outputs, i.e., we set p(i,�1),(j,�2) = 1 if there is a connection from the
(i, �1)th input to the (j, �2)th output and 0 otherwise.

Now we show how one finds non-conflicting paths between the N
inputs and the N outputs. For i, j = 1, 2, . . . , k, let

qi,j =
m∑

�1=1

m∑
�2=1

p(i,�1),(j,�2). (2.65)

The quantity qi,j represents the number of paths required from the ith

switch at the first stage to the jth switch at the third stage. Note that
the number of paths from the ith switch at the first stage cannot be
larger than the number of its inputs. Thus,

k∑
j=1

qi,j ≤ m, i = 1, 2, . . . , k. (2.66)

Similarly, the number of paths to the jth switch at the third stage
cannot be larger than the number of its outputs. Thus,

k∑
i=1

qi,j ≤ m, j = 1, 2, . . . , k. (2.67)

These two conditions are similar to the no overbooking conditions
in (2.27) and (2.28). From Lemma 2.3.8(ii) (the Birkhoff-von Neu-
mann decomposition for an integer-valued matrix), it follows that the

2.4 Three-stage constructions of switch fabrics 63

k × k matrix Q = (qi,j) can be decomposed as the sum of m k × k
sub-permutation matrices, P̃1, P̃2, . . . , P̃m. By setting the connection
patterns of the m k × k switches at the second stage with these m
sub-permutation matrices, we then have enough number of paths from
any switch at the first stage to any stage at the third stage. For in-
stance, if the (i, j)th element of some sub-permutation matrix P̃m0 is
1, then a connection from the (i, �1)th input to the (j, �2)th output can
be routed through the m0

th switch at the second stage.

Example 2.4.3. (Rearrangeable networks) Consider a three-
stage network in Figure 2.20 with m = 10 and k = 3. Suppose that

Q =

⎡
⎢⎣ 3 2 1

3 1 4
1 5 2

⎤
⎥⎦ .

Then we can represent Q as the sum of the 10 sub-permutation ma-
trices in (2.52) and use them as the connection patterns for the 10
switches at the second stage. The three paths require from the first
switch at the first stage to the first switch at the third stage can be
routed through the first, the second and the third switches at the sec-
ond stage.

Note that the implementation complexity of the three-stage net-
work in Figure 2.20 is much smaller than the nonblocking three-stage
network in Theorem 2.4.1. However, finding the paths between the
inputs and the outputs is much more difficult than that in Theorem
2.4.1. More importantly, if one would like to add one more connec-
tion, one does not need to re-route existing paths in the nonblocking
three-stage network in Theorem 2.4.1. However, it might require car-
rying out another decomposition in Theorem 2.4.2 and thus re-routing
existing paths. As such, the three-stage Clos networks in Figure 2.20
are called rearrangeable networks. An efficient algorithm that does re-
routing existing paths is the Slepian-Duguid algorithm described in
Section 2.3.4.

Example 2.4.4. (The Slepian-Duguid algorithm for rearrange-
able networks) Continue from Example 2.4.3. Suppose that we

64 2. Basic Architectures and Principles of Packet Switches

would like to add another connection from the 3rd switch at the first
stage to the 1st switch at the third stage. This problem is equivalent
to the rate increase problem in Example 2.3.10. The Slepian-Duguid
algorithm in Example 2.3.10 shows that two existing connections need
to be rearranged. One connection from the 2nd switch at the first stage
to the 1st switch at the third stage is moved from the 7th switch at
the second stage to the 4th switch at the second stage. The other con-
nection from the 2nd switch at the first stage to the 3rd switch at the
third stage is moved from the 4th switch at the second stage to the
7th switch at the second stage.

Instead of using the Birkhoff-von Neumann decomposition, here
we introduce a more efficient method, called the Lee-Hwang-Capinelli
algorithm [106, 84], for finding the sub-permutation matrices in the
central stage in Figure 2.20. For this, we need to extend the k × k
Paull matrix to a k ×m specification matrix that explicitly specifies
every sub-permutation in the Paull matrix. In the k×m specification
matrix, the �th column represents the sub-permutation for the �th sub-
permutation matrix. For instance, the specification matrix for the 10
sub-permutation matrices in (2.52) is⎡

⎢⎣ 1 1 1 − − − 2 2 − 3
2 − 3 3 3 3 1 1 − 1
3 3 2 2 2 2 − − 1 2

⎤
⎥⎦ .

In this specification matrix, the fourth column represents the sub-
permutation

1
→ −
2
→ 3
3
→ 2

and the sub-permutation matrix

P̃4 =

⎡
⎢⎣ 0 0 0

0 0 1
0 1 0

⎤
⎥⎦ .

The Lee-Hwang-Capinelli algorithm:

(i) As defined in (2.65), let qi,j be the number of paths required from
the ith switch at the first stage to the jth switch at the third switch.
In [84], the integer-valued k×k matrix Q = (qi,j) is called the frame

2.4 Three-stage constructions of switch fabrics 65

matrix. As shown in the proof of Theorem 2.4.2, all the row sums
and column sums are bounded by m. As such, one can use the von
Neumann algorithm to convert the frame matrix Q to a matrix
Q̃ = (q̃i,j) so that all the row sums and column sums in the matrix
Q̃ are equal to m.

(ii) From the matrix Q̃, construct an initial k×m specification matrix
H = (hi,�) by arbitrarily assigning j to the entries of the ith row of
H for q̃i,j times, j = 1, 2 . . . , k. As every column sum of Q̃ is m, the
total number of j’s in the initial specification matrix is also m for
all j = 1, . . . , k. Also, as the assignment is arbitrary, the columns
of the initial specification matrix may not be permutations. The
objective of the algorithm is then to carry out a sequence of pair-
wise interchanges (swaps) of two assignments so that every column
of the specification matrix is a permutation. For this, a column is
called j-excessive if it contains more than one j, and j-deficient if
it contains no j. An element j is called balanced if no j-excessive
column exists. Note that when j is balanced, there is also no j-
deficient column as the number of j’s in the specification matrix is
equal to m, the number of columns in the specification matrix.

(iii) Find the smallest j such that a j-excessive column �1 and a j-
deficient column �2 exist. Suppose that hi,�1 = j and hi,�2 = x (for
some row i). Pairwise interchange these two elements on the same
row, i.e., set hi,�1 = x and hi,�2 = j. If j < x, then go back to (iii).

(iv) Suppose j > x. From (iii), we know that x is balanced before
the pairwise interchange. However, after the pairwise interchange,
column �1 becomes x-excessive and column �2 become x-deficient.
Thus, there exists a row i1 �= i such that hi1,�1 = x. Suppose that
hi1,�2 = y. Pairwise interchange these two elements on row i1, i.e.,
set hi1,�1 = y and hi1,�2 = x. If j < y, then go back to (iii). If j > y,
then (iv) has to be repeated as y is now not balanced. Since x, y,
... are all distinct, the number of pairwise interchanges in (iv) is at
most j until we find an element z > j. When we find an element
z > j, we then go back to (iii).

(v) Deduct the assignments added from the von Neumann algorithm
so that the columns of the specification matrix H contains sub-
permutations needed for the frame matrix Q.

To compute the complexity of this algorithm, note that for each
j-excessive column in (iii), it takes at most j pairwise interchanges.
As the number of j-excessive columns is bounded by m, the number

66 2. Basic Architectures and Principles of Packet Switches

of pairwise interchanges needed for j to be balanced is bounded by
mj. Summing up j = 1, 2, . . . , k shows that the complexity of this
algorithm is O(mk2) = O(Nk), where N = mk is the total number of
inputs of the N ×N three stage switch.

Example 2.4.5. (The Lee-Hwang-Capinelli algorithm) As in
Example 2.4.3, we consider a three-stage network in Figure 2.20 with
m = 10 and k = 3. Suppose that

Q =

⎡
⎢⎣ 3 2 1

3 1 4
1 5 2

⎤
⎥⎦ .

From the von Neumann algorithm (see Example 2.3.2), we have

Q̃ =

⎡
⎢⎣ 6 3 1

3 2 5
1 5 4

⎤
⎥⎦ .

Thus, we need to assign six 1’s, three 2’s, and a 1 in the first row of
the initial specification matrix. The trivial way to do this is[

1 1 1 1 1 1 2 2 2 3
]
.

For the second row, there should be three 1’s, two 2’s and five 3’s, and
it can be chosen as follows:[

2 2 3 3 3 3 3 1 1 1
]
.

For the third row, there should be a 1, five 2’s and four 3’s, and it can
be chosen as follows:[

1 2 2 2 2 2 3 3 3 3
]
.

This yields the following initial specification matrix

H =

⎡
⎢⎣ 1 1 1 1 1 1 2 2 2 3

2 2 3 3 3 3 3 1 1 1
1 2 2 2 2 2 3 3 3 3

⎤
⎥⎦ .

Now the first column is 1-excessive and the 7th column is 1-deficient.
Thus, we pairwise interchange these two element (according to (iii))
and yield

2.4 Three-stage constructions of switch fabrics 67

H =

⎡
⎢⎣ 2 1 1 1 1 1 1 2 2 3

2 2 3 3 3 3 3 1 1 1
1 2 2 2 2 2 3 3 3 3

⎤
⎥⎦ .

Up to this point, the element 1 is balanced. The next smallest ele-
ment that has not been balanced is 2. Note that the first column is
2-excessive and the 7th column is 2-deficient. Thus, we pairwise inter-
change these two element (according to (iii)) and yield

H =

⎡
⎢⎣ 1 1 1 1 1 1 2 2 2 3

2 2 3 3 3 3 3 1 1 1
1 2 2 2 2 2 3 3 3 3

⎤
⎥⎦ .

From (iv), we know that 1 is not balanced any more, and we find
another 1 in the third row of the first column. We then interchange
that with the 3 in the third row of the 7th column. This yields

H =

⎡
⎢⎣ 1 1 1 1 1 1 2 2 2 3

2 2 3 3 3 3 3 1 1 1
3 2 2 2 2 2 1 3 3 3

⎤
⎥⎦ .

Now we go back to (iii) and find the second column is 2-excessive and
the 10th column is 2-deficient. We then pairwise interchange the two
elements in the third row and this leads to

H =

⎡
⎢⎣ 1 1 1 1 1 1 2 2 2 3

2 2 3 3 3 3 3 1 1 1
3 3 2 2 2 2 1 3 3 2

⎤
⎥⎦ .

Now every column of H is a permutation. Finally, we deduct the ele-
ments added from the von Neumann algorithm to derive the following
specification matrix

H =

⎡
⎢⎣ 1 1 1 − − − − 2 2 3

2 − 3 3 3 3 − 1 1 1
3 3 2 2 2 2 1 − − 2

⎤
⎥⎦ .

This corresponds to the 10 sub-permutation matrices in (2.52) (with
the indexes renumbered).

68 2. Basic Architectures and Principles of Packet Switches

2
N

2
N

N N

2 2
×

N N

2 2
×2 2×

2 2× 2 2×

2 2×

Fig. 2.21. Recursive construction of the Benes network

2.4.3 Benes networks

One interesting case of the rearrangeable networks is when N is a
power of 2. In this case, one can construct a rearrangeable network by
using 2× 2 switches. In Figure 2.21, one first constructs a three-stage
Clos network with 2 × 2 switches at the first stage and the last stage.
The second stage consists of two N

2 × N
2 switches. As N is a power

of 2, each of the two N
2 × N

2 switches in Figure 2.21 can be further
implemented by a three-stage Clos network with 2× 2 switches at the
first stage and the last stage, and two N

4 × N
4 switches at the second

stage. One can expand the N
4 × N

4 switches recursively and we obtain
a multi-stage switch with all 2×2 switches. Such a switch architecture
is known as the Benes network. In Figure 2.22, we show an 8 × 8
Benes network. For an N ×N Benes network, the number of stages is
2 log2N − 1 and the number of 2 × 2 switches is N log2N − N

2 .
The multi-stage Benes network is a very efficient design in terms

of hardware complexity. To see this, note that for an N × N switch
to realize all the permutation matrices, the minimum number of 2× 2
switches needed for an N × N switch is log2(N !) (as there are N !
permutation matrices). From the Stirling formula, i.e.,

N ! ≈ NN+1/2e−N
√

2π,

it follows that the minimum number of 2 × 2 switches needed is
O(N log2N) and the Benes network achieves the same order of com-
plexity. On the other hand, finding the connection patterns of the 2×2

2.4 Three-stage constructions of switch fabrics 69

1st stage 2nd stage 3rd stage

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

4th stage 5th stage

Fig. 2.22. An 8 × 8 Benes network

switches becomes difficult. As the Benes network is constructed recur-
sively from the three-stage Clos network, the Birkhoff-von Neumann
decomposition used for finding the connection patterns also needs to
be carried out recursively.

Example 2.4.6. (Connection patterns in a Benes network)
Consider the 8 × 8 Benes network in Figure 2.22. Number the in-
put/output ports from 1 to 8. Number the switches at each stage from
1 to 4. Suppose that we would like to connect the ith input to the
(9 − i)th output, i = 1, 2, . . . , 8. This is equivalent to realizing the
following 8 × 8 permutation matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 | 0 0 | 0 0 | 0 1
0 0 | 0 0 | 0 0 | 1 0
− − − − − − − − − − −
0 0 | 0 0 | 0 1 | 0 0
0 0 | 0 0 | 1 0 | 0 0
− − − − − − − − − − −
0 0 | 0 1 | 0 0 | 0 0
0 0 | 1 0 | 0 0 | 0 0
− − − − − − − − − − −
0 1 | 0 0 | 0 0 | 0 0
1 0 | 0 0 | 0 0 | 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.68)

in the 8 × 8 Benes network via finding the connection patterns for all
the 2 × 2 switches. We say a 2 × 2 switch is set to the “bar” state if

70 2. Basic Architectures and Principles of Packet Switches

its upper input is connected to its upper output and its lower input is
connected to its lower output. On the other hand, a 2× 2 switch is set
to the “cross” state if its upper input is connected to its lower output
and its lower input is connected to its upper output.

By viewing the 2nd stage, the 3rd stage and the 4th stage as two
4×4 rearrangeable networks, we then have a three stage rearrangeable
network. Let Q = (qi,j) with qi,j being the number of paths from
the ith switch at the first stage to the jth switch at the 5th stage,
i, j = 1, 2, 3, 4. Note that qi,j’s can be found by counting the number
of 1’s in each 2 × 2 sub-matrix in (2.68). Thus, we have

Q =

⎡
⎢⎢⎢⎣

0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦ .

From the trivial Birkhoff-von Neumann decomposition above, we know
that we need to realize the following 4 × 4 permutation for both the
4×4 rearrangeable networks (formed by the switches at the 2nd stage,
the 3rd stage and the 4th stage),⎡

⎢⎢⎢⎢⎢⎣

0 0 | 0 1
0 0 | 1 0
− − − − −
0 1 | 0 0
1 0 | 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (2.69)

In view of the permutation in (2.69), we can now set the connection
patterns for the 2×2 switches at the first stage and the 5th stage. Since
we would like to connect input 1 to output 8 and input 2 to output 7,
we can simply route input 1 via the upper 4×4 rearrangeable network
and input 2 via the lower 4×4 rearrangeable network. As such, we set
the first switch at the first stage to the “bar” state and the 4th switch
at the 5th stage to the “cross” state. In fact, we can simply set all the
2 switches at the 1st stage to the “bar” state and all the 2×2 switches
at the 5th stage to the “cross” state to realize the 8 × 8 permutation
matrix in (2.68) (note that one alternative is to set all the 2 switches

2.5 Two-stage constructions of switch fabrics 71

at the 1st stage to the “cross” state and all the 2 × 2 switches at the
5th stage to the “bar” state).

It remains to find the connection patterns for the 2 × 2 switches
at the 2nd stage, the 3rd stage and the 4th stage. As both the 4 × 4
rearrangeable networks realize the same 4 × 4 permutation matrix in
(2.69), we only need to consider the upper 4×4 rearrangeable network.
Let Q̂ = (q̂i,j) with q̂i,j being the number of paths from the ith switch
at the 2nd stage to the jth switch at the 4th stage, i, j = 1, 2. As
before, q̂i,j’s can be found by counting the number of 1’s in each 2× 2
sub-matrix in (2.69). Thus, we have

Q̂ =

[
0 2
2 0

]
=

[
0 1
1 0

]
+

[
0 1
1 0

]
.

Thus, the first and the second 2× 2 switches at the 3rd stage need
to realize the permutation matrix[

0 1
1 0

]

and they are set to the “cross” state. Similarly, the third and the 4th

2× 2 switches at the 3rd stage are set to the “cross” state. As argued
for the 8×8 case, we can simply set all the 2 switches at the 2nd stage
to the “bar” state and all the 2 × 2 switches at the 4th stage to the
“cross” state to realize the 4×4 permutation matrix in (2.69) (another
alternative is to set all the 2 switches at the 2nd stage to the “cross”
state and all the 2 × 2 switches at the 4th stage to the “bar” state).
In Figure 2.23, we show all the connection patterns in the 8× 8 Benes
network for this example.

2.5 Two-stage constructions of switch fabrics

We have shown that the three-stage rearrangeable networks are ca-
pable of realizing all the permutations (and sub-permutations). If one
only uses two-stage construction, it is intuitive that one can only real-
ize a certain subset of permutations. The objective of this section is to
introduce certain subsets of permutations that can be realized by two-
stage construction. A very good reference for the theory of two-stage
constructions is Li’s book [111].

72 2. Basic Architectures and Principles of Packet Switches

1st�
stage�

2nd stage� 3rd stage� 4th stage� 5th stage�

1�
2�

3�
4�

8�
7�

6�
5�

8�

7�

6�
5�

1�
2�

3�
4�

1�

2�

3�

4�

8�

7�

6�

5�

1�

3�

5�

7�

8�

6�

4�

2�

5�

1�

7�

3�

4�

8�

2�

6�

7�

5�

3�

4�

2�

1�

6�

8�

Fig. 2.23. Connection patterns in the 8 × 8 Benes network for Example 2.4.6

2.5.1 The X2 construction

First, we give a brief overview on the two-stage construction. Suppose
that N = pq. As shown in Figure 2.24, the first stage consists of p q×q
switches (indexed from 1, 2, . . . , p) and the second stage consists of q
p× p switches (indexed from 1, 2, . . . , q). These two stages of switches
are connected by the perfect shuffle, i.e., the �th output of the kth

switch at the first stage is connected to the kth input of the �th switch
at the second stage. Also, index the N inputs and outputs from 1 to
N . The N inputs of the N ×N switch are connected to the inputs of
the switches at the first stage by the perfect shuffle. To be precise, let

�(i) =
 i− 1
p

� + 1, (2.70)

and

k(i) = i− (�(i) − 1) ∗ p. (2.71)

Note that for i = 1, 2, . . . , N , �(i) is an integer between 1 and q and
k(i) is an integer between 1 and p. The ith input of the N×N switch is
connected to the �(i)th input of the k(i)th switch at the first stage. Also,
we note that the jth output of the N ×N switch is the k(j)th output
of the �(j)th switch at the second stage. Such a two-stage construction
is known as the X2 construction in [111] as it is a concatenation of a
shuffle exchange (X) and a two-stage network (2).

2.5 Two-stage constructions of switch fabrics 73

q q p p

q q p p

1

2

3

N

1

2

3

N

Fig. 2.24. A two-stage (X2) construction of an N × N switch

i� (k(i),l(i))� (k(i),l(j))� (l(j),k(i))� j�

Shuffle �

exchange�

Shuffle �

exchange�

1st stage �

switching �

2nd stage

switching

Fig. 2.25. Unique routing path in a two-stage (X2) construction of an N × N
switch

74 2. Basic Architectures and Principles of Packet Switches

One key property of the two stage construction is the unique rout-
ing path property. For instance, suppose that we would like to con-
nect the ith input to the jth output (see Figure 2.25). Via the shuffle
exchange, the ith input is connected to the �(i)th input of the k(i)th

switch at the first stage (denoted by (k(i), �(i)) in Figure 2.25). The
k(i)th switch at the first stage then connects its �(i)th input to its
�(j)th output (denoted by (k(i), �(j)) in Figure 2.25). Via the shuf-
fle exchange between the two stages of switches, the �(j)th output of
the k(i)th switch at the first stage is connected to the k(i)th input of
the �(j)th switch at the second stage (denoted by (�(j), k(i)) in Figure
2.25). The �(j)th switch at the second stage then connects its k(i)th in-
put to its k(j)th output, which is exactly the jth output of the switch.

2.5.2 Banyan networks

Like the Benes networks, the banyan networks are also constructed by
2 × 2 switches.

2
N

N N

2 2
×

N N

2 2
×

2 2×

2 2×

Fig. 2.26. Recursive construction of an N × N banyan network

Banyan networks are constructed recursively as follows:

(i) A 2 × 2 switch is a 2 × 2 banyan network.
(ii) The N ×N banyan network is constructed by the X2 construction

with q = 2 and p = N/2 (see Figure 2.26).

2.5 Two-stage constructions of switch fabrics 75

In Figure 2.27, we show an 8 × 8 banyan network. By recursively
expanding the N ×N banyan network, one can show that the number
of stages is log2N and the number of 2 × 2 switches is N

2 log2N .
From the unique routing path property of the X2 construction,

the banyan networks has the self-routing property that finds the con-
nection patterns of the 2 × 2 switches in a very simple manner. To
illustrate the self-routing property of the banyan network, we number
both the inputs and the outputs from 0, 1, . . . , N − 1, with the binary
representation. Thus, each output is represented by log2N bits. To
send a packet to an output (from any input), we simply follow the
binary representation by taking the upper (resp. lower) output at the
kth stage if the kth most significant bit is 0 (resp. 1). For instance,
suppose that we would like to send a packet from input 0 to output
3 (with the binary representation 011) in Figure 2.27. As the dotted
path shown in Figure 2.27, we take the upper output at the first stage
as the most significant bit of the output is 0. We then take the lower
outputs at both the second stage and the third stage as the last two
bits are 1. The packet is then sent to the desired output.

000�
001�

010�
011�

100�
101�

110�
111�

000�
001�

010�
011�

100�
101�

110�
111�

Fig. 2.27. An 8 × 8 banyan network

The problem of the banyan network is that it does not realize all
the sub-permutation matrices. There might be internal conflicts for
paths to different outputs. For instance, if input 4 (with binary repre-
sentation 100) would also like to send a packet to output 0 (with the
binary representation 000), then it will conflict with the path for the
packet from input 0 to output 3 at the upper output of the first stage.

76 2. Basic Architectures and Principles of Packet Switches

A sufficient condition for the banyan networks to be free of inter-
nal conflicts is known as the monotone and consecutive condition (see
the shuffle exchange network in Problems 21 and 22 for a proof). Call
an input active if it has a packet to send. The consecutive condition
ensures that there is no gap between two active inputs. The monotone
condition says that the output addresses of the packets in the consec-
utive active inputs are non-decreasing. A more general result will be
introduced in the next section of CU nonblocking switches.

2.5.3 CU nonblocking switches

As illustrated in the previous section, the banyan networks (and the
X2 construction) cannot realize all the permutations. In this sec-
tion, we show that the X2 construction can be used for construct-
ing switches that realize all the circular unimodal (CU) permutations.
Such switches are called CU nonblocking switches.

Definition 2.5.1. (i) A permutation π : {1, 2, . . . , N}
→ {1, 2, . . . , N}
is called a circular shift if there exists an integer 1 ≤ m ≤ N such
that

π(i) =

{
i+m if i+m ≤ N
i+m−N otherwise

.

(ii) A permutation π : {1, 2, . . . , N}
→ {1, 2, . . . , N} is called circular
unimodal (CU) if there exists a circular shift permutation σ such
that π(σ(i)) is unimodal in σ(i), i.e., there exists an i∗ such that
π(σ(i)) is increasing in σ(i) for σ(i) ≤ σ(i∗) and decreasing in σ(i)
for σ(i) ≥ σ(i∗).

(iii) An N ×N switch is called CU nonblocking if it can realize all the
N ×N CU permutations.

Example 2.5.2. (Circular unimodal permutation) Consider the
following permutation π : {1, 2, . . . , 20}
→ {1, 2, . . . , 20}(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
8 6 4 2 1 3 5 7 9 13 16 19 20 18 17 15 14 12 11 10

)
.

Note that π(5) = 1, π(6) = 3, . . . , π(13) = 20. Thus, π is increasing
from 5 to 13. On the other hand, π(13) = 20, π(14) = 18, . . . , π(20) =
10, π(1) = 8, . . . , π(4) = 2, π(5) = 1, and π is (circular) decreasing
from 13 to 5. Thus, we can choose the circular shift σ with

2.5 Two-stage constructions of switch fabrics 77

σ(i) =

{
i+ 4 if i+ 4 ≤ 20
i+ 4 − 20 otherwise

.

By so doing, we have σ(1) = 5 and σ(9) = 13. This implies that π(σ(i))
is increasing from σ(1) to σ(9) and it is decreasing from σ(9) to σ(20).

There are several facts for the circular unimodal permutations.

(i) Let π−1 be the inverse mapping of a circular unimodal permutation
π. Then π is (circular) increasing from π−1(1) to π−1(N) and (cir-
cular) decreasing from π−1(N) to π−1(1). In other words, in every
circular unimodal permutation there is a unique minimum and a
unique maximum that divides the permutation into two (circular)
monotone segments. This is also the easiest way to verify whether
a permutation is a circular unimodal permutation. For instance, in
Example 2.5.2, one has π−1(1) = 5 and π−1(20) = 13.

(ii) Once π(i)’s are known for all i in the (circular) increasing segment,
then the rest of π(i) can be uniquely determined. For instance,
suppose that all the values of π in Example 2.5.2 for i = 5 to 13
are specified as in Example 2.5.2. From the fact that the rest of
π(i) forms a decreasing sequence, we know that π(14) must be 18
as 18 is the largest number that have not been specified. Following
the same argument yields π(15) = 17.

One of the most important theorems of the two-stage construction
is that it preserves the property of CU nonblocking as stated in the
following theorem.

Theorem 2.5.3. Consider the two-stage construction in Figure 2.24,
i.e., the X2 construction. If all the q× q switches at the first stage and
the p × p switches at the second stage are CU nonblocking, then the
constructed N ×N switch is also CU nonblocking.

The outline for the proof of Theorem 2.5.3 will be given in Problem
26.

Example 2.5.4. (Two-stage construction for a circular uni-
modal permutation) In Figure 2.28, we show how one constructs
a 20 × 20 CU nonblocking switch by using the X2 construction. For
this example, we have N = 20 and p = 4 and q = 5. As such, there
are four 5× 5 switches at the first stage and five 4× 4 switches at the

78 2. Basic Architectures and Principles of Packet Switches

second stage. According to Theorem 2.5.3, the 20 × 20 switch is CU
nonblocking if all the four 5× 5 switches at the first stage and the five
4 × 4 switches at the second stage are CU nonblocking.

To gain more intuition on Theorem 2.5.3, let us consider the circular
unimodal permutation in Example 2.5.2. From the unique routing path
property of the X2 construction, we illustrate in Figure 2.28 all the
paths from the inputs to the outputs. For instance, as π(1) = 8, the
first input is connected to the first input of the first 5 × 5 switch (at
the first stage). The first 5 × 5 switch connects its first input to the
second output. Its second output is then connected to the first input of
the second 4× 4 switch (at the second stage). The second 4× 4 switch
then connects its first input to the fourth output.

Let πij be the connection pattern (permutation) realized at the jth

switch of the ith stage. From Figure 2.28, it is easy to see that the
connection pattern of the first 5 × 5 switch at the first stage is

π11 =

(
1 2 3 4 5
2 1 3 5 4

)
,

which is a 5 × 5 circular unimodal permutation. Similarly, one can
verify that all the connection patterns for the rest three switches at
the first stage are

π12 =

(
1 2 3 4 5
2 1 4 5 3

)
,

π13 =

(
1 2 3 4 5
1 2 4 5 3

)
,

and

π14 =

(
1 2 3 4 5
1 2 5 4 3

)
.

Also, the connection patterns for the five 4× 4 switches at the second
stage are

π21 =

(
1 2 3 4
1 3 4 2

)
,

π22 =

(
1 2 3 4
4 2 1 3

)
,

2.5 Two-stage constructions of switch fabrics 79

5 5

5 5

5 5

5 5

4 4

4 4

4 4

4 4

4 4

1

2

4

3

5

6

8

7

9

10

12

11

13

14

16

15

17

18

20

19

5

4

3

6

7

2

1

8

9

20

18

19

10

17

11

16

15

14

13

12

5

6

4

3

1

2

8

7

9

18

20

19

17

10

16

11

13

14

12

15

1

5

13

9

17

2

6

14

10

18

3

7

15

11

19

4

8

16

12

20

5

1

17

9

13

6

2

10

18

14

3

7

11

19

15

4

8

16

20

12

1

2

4

3

5

6

8

7

9

10

12

11

13

14

16

15

17

18

20

19

Fig. 2.28. An example for a CU nonblocking switch

80 2. Basic Architectures and Principles of Packet Switches

π23 =

(
1 2 3 4
1 4 3 2

)
,

π24 =

(
1 2 3 4
2 1 4 3

)
,

and

π25 =

(
1 2 3 4
4 2 1 3

)
,

It is left to the readers to verify that all the connection patterns in the
5×5 switches at the first stage are 5×5 circular unimodal permutations
and all the connection patterns in the 4×4 switches at the second stage
are 4 × 4 circular unimodal permutations.

A CU nonblocking switch can realize all the circular unimodal per-
mutations. As such, it can also realize the set of sub-permutations that
satisfy the monotone consecutive condition (as stated in the banyan
network), i.e.,

(i) the active inputs are consecutive, and
(ii) the mapping between active inputs and outputs is monotonically

increasing.

To see this, note that once a sub-permutation that satisfies the mono-
tone consecutive condition is specified, there is a unique way to extend
this sub-permutation to a circular unimodal permutation (as com-
mented in (ii) for circular unimodal permutations).

A switch that realizes all the sub-permutations that satisfy the
monotone consecutive condition is known as a linear decompressor in
[111]. If the monotone condition in (ii) is replaced from “increasing”
to “decreasing,” a switch that realizes all the sub-permutations that
satisfy the modified monotone consecutive condition is known as an up-
turned linear decompressor in [111]. Clearly, a CU nonblocking switch
is both a linear decompressor and an upturned linear decompressor.

As mentioned in Section 2.5.2, a banyan network can realize all
the sub-permutations that satisfy the monotone consecutive condition.
Thus, a banyan network is a linear decompressor. To see this, note that
an N ×N banyan network is constructed by recursively expanding the
X2 construction with q = 2 and p = N/2. By so doing, it can be built
using only 2 × 2 switches. Thus, the banyan network is in fact a CU
nonblocking switch. However, there are several ways for carrying out

2.5 Two-stage constructions of switch fabrics 81

*�

*�

*�

2�

2�

2�

2�

*�

*�

2�2�

*�

2� 2�

Fig. 2.29. Binary trees for the recursive expansions of 16

the recursive expansion. For instance, if N = 16, then one can first use
the X2 construction with q = 2 and p = 8. One then further expands
the two 8 × 8 switches with q = 2 and p = 4. Finally, one expands
the four 4 × 4 switches with q = 2 and p = 2. Such an expansion can
be denoted by the following notation that indicates the order of the
expansion

16 = 2 ∗ 8 = 2 ∗ (2 ∗ 4) = 2 ∗ (2 ∗ (2 ∗ 2)).

Another way of doing the expansion is

16 = 4 ∗ 4 = (2 ∗ 2) ∗ (2 ∗ 2).

Viewing each multiplication as a binary operator, one can represent
both the expressions as binary trees (see Figure 2.29). It is clear that
the tree obtained by the second expansion (the right one in Figure
2.29) is a more balanced one. It is shown in Theorem 4.1.18 in [111]
that all these expansions are topologically equivalent (as they are all
CU nonblocking switches) and known as the banyan-type networks
(that realize all the circular unimodal permutations). The difference is
that a more balanced expansion yields a better VLSI design in terms
of layout complexity.

2.5.4 Bitonic sorters and Batcher sorting networks

A bitonic list with length N is a list that is monotonically increasing
to some k and then monotonically decreasing to N . To be precise, a
bitonic list a = (a1, a2, . . . , aN) is a list that satisfies a1 ≤ a2 ≤ . . . ≤ ak

and ak ≥ ak+1 ≥ . . . aN for some 1 ≤ k ≤ N . A circular bitonic
list is a list that can be turned into a bitonic list by circular shift-
ing. For instance, (a3, a4, . . . , aN , a1, a2) is a circular bitonic list when
(a1, a2, . . . , aN) is a bitonic list. A bitonic sorter is a device that can

82 2. Basic Architectures and Principles of Packet Switches

sort any circular bitonic list into a monotonically increasing or de-
creasing sequence. Specifically, a bitonic down (resp. up) sorter can
sort any circular bitonic list into an increasing (resp. decreasing) se-
quence. One interesting observation is that every circular bitonic
list is associated with a circular unimodal permutation. For
instance, consider a list a = (a1, a2, . . . , aN−1, aN). Let R(ai) be the
rank of ai among these N elements, i.e., R(ai) = N if ai is the largest
element, R(ai) = N − 1 if ai is the second largest element, ..., and
R(ai) = 1 if ai is the smallest element. If the list a is a circular bitonic
list, then the permutation

π =

(
1 2 . . . N − 1 N

R(a1) R(a2) . . . R(aN−1) R(aN)

)
.

is a circular unimodal permutation (note that one needs to break ties
in the way so that the relative order can be preserved). This suggests
that one can use CU nonblocking switches for bitonic sorters.

4×4 bitonic down sorter

4×4 bitonic down sorter

8×8 bitonic down sorter

Fig. 2.30. An 8 × 8 bitonic down sorter

As described in the previous section, one way to construct a large
CU nonblocking switch is to use the X2 construction and expand such

2.5 Two-stage constructions of switch fabrics 83

a construction recursively. Following the X2 construction, one can con-
struct an N ×N bitonic sorter recursively as follows:

(i) A down (resp. up) sorter sorts a list into a monotonically increasing
(resp. decreasing) list. A 2 × 2 down (resp. up) sorter is a 2 × 2
bitonic down (resp. up) sorter.

(ii) The N ×N bitonic down (resp. up) sorter is constructed by cas-
cading N/2 2×2 down (resp. up) sorters at the first stage and two
N
2 × N

2 bitonic down sorters at the second stage. The N inputs
are connected to N/2 2 × 2 down sorters by a shuffle exchange.
The upper (resp. lower) output of the kth 2× 2 down sorter at the
first stage is connected to the kth input of the upper (resp. lower)
N
2 × N

2 bitonic down sorter, k = 1, . . . , N/2.

In Figure 2.30, we show how one constructs an 8 × 8 bitonic down
sorter via the X2 construction.

Now view each 2× 2 down sorter as a 2× 2 switch. Then the above
construction corresponds to an N ×N CU nonblocking switch. As de-
scribed above, every circular bitonic list a = (a1, a2, . . . , aN) can be
mapped to a circular unimodal permutation by using the rank func-
tion R(·). By so doing, input i is connected to output R(ai) for all
i = 1, 2, . . . , N . As the rank function yields a circular unimodal permu-
tation, such a connection pattern can be realized by the corresponding
CU nonblocking switch. From the unique routing path property (cf.
the routing in a banyan network), it then follows that the outputs
of the bitonic down sorter are the results of the rank function R(ai),
i = 1, 2, . . . , N . As such, the bitonic down sorter can sort any circular
bitonic list into a monotonically increasing sequence. This is stated as
the Batcher sorting theorem in the following.

Theorem 2.5.5. (Batcher sorting theorem [13]) An N×N bitonic
down sorter can sort a circular bitonic list into a monotonically in-
creasing list.

Instead of using the results from the CU nonblocking switches, a
direct proof for the Batcher sorting theorem is given in Problems 24
and 25 by using the unique cross over property of a circular bitonic
list.

Now we show how one uses the Batcher sorting theorem to con-
struct a Batcher sorting network that can sort any list into a mono-
tonically increasing list. A Batcher sorting network can be constructed
recursively as follows:

84 2. Basic Architectures and Principles of Packet Switches

1

2

3

N

1

2

3

N

N N
 Batcher

2 2
 down sorting

 network

×

N N
 Batcher

2 2
 up sorting

 network

×

N N bitonic

down sorter

×

Fig. 2.31. Recursive construction of N × N Batcher down sorting network

(i) A 2 × 2 down (resp. up) sorter is a 2 × 2 Batcher down (resp. up)
sorting network.

(ii) The N ×N Batcher down sorting network consists of two stages
(see Figure 2.31). The first stage consists of two N

2 × N
2 Batcher

sorting networks. The upper one is a down sorting network, while
the lower one is an up sorting network. The second stage is an
N × N bitonic down sorter. The N/2 outputs of the down (resp.
up) sorting network are connected to the upper (resp. lower) N/2
inputs of the N ×N bitonic down sorter.

Use the Batcher sorting theorem, we known that the outputs from the
two N

2 × N
2 Batcher sorting networks form a bitonic list. As a bitonic

list is special case of circular bitonic list, it can be sorted by the N×N
bitonic sorter. This shows that the Batcher sorting network can sort
any list into a monotonically increasing list.

Example 2.5.6. (Batcher sorting network) In Figure 2.32, we
show how one constructs an 8 × 8 Batcher down sorting network by
recursively expanding the construction above. As shown in Figure 2.32,
there are six active inputs. The value at each input is the destined

2.5 Two-stage constructions of switch fabrics 85

z

4

1

7

2

5

6

4

1

2

7

5

6

4

1

2

6

7

5

4

1

7

6

5

2

1

7

6

4

5

2

1

5

4

2

7

6

6

7

4

5

2

1

2×2 bitonic

sorter 4×4 bitonic sorter 8×8 bitonic sorter

Fig. 2.32. An 8 × 8 Batcher down sorting network

output port number of the packet at that input. The values of the
idle inputs are assigned with ∞. As shown in Figure 2.32, the 2 × 2
switches with an up arrow are the 2 × 2 up sorters and those with
a down arrow are the 2 × 2 down sorters. For instance, the first four
outputs of the first stage are two monotone sequences: the first two
are increasing, and the last two are decreasing. These two monotone
sequences, each with length 2, are merged into the upper 4× 4 bitonic
sorter and thus generate an increasing sequence of length 4. Similarly,
the lower 4×4 bitonic sorter generates a decreasing sequence of length
4. These two monotone sequence are then merged into the 8×8 bitonic
sorter to generate an increasing sequence of length 8. Note that the
outputs from the Batcher sorting network satisfy the monotone and
consecutive condition needed for the banyan network.

2.5.5 Batcher-banyan networks and three-phase switches

We have shown that the banyan network can realize all the sub-
permutations that satisfy the monotone and consecutive condition.
To generate monotone and consecutive inputs, one can add a Batcher
sorting network [13] in front of the banyan network. Such a network

86 2. Basic Architectures and Principles of Packet Switches

is called the Batcher-banyan network and it can realize all the sub-
permutation matrices. Unlike the Benes network, finding routing paths
in the Batcher-banyan network is easy. In the first stage of the Batcher
sorting network, the output addresses are being compared at each 2×2
sorter. In the second stage of the banyan network, the output addresses
are used for self routing at each 2 × 2 switch. However, the hardware
complexity of the Batcher-banyan network is higher than that of the
Benes network. To see this, note that an N ×N bitonic sorter consists
of log2N stages. Thus, the number of stages in an N × N Batcher
sorting network is

log2 N∑
k=1

k =
1
2

log2N(log2N + 1),

and the number of 2 × 2 switches needed is

N

4
log2N(log2N + 1).

Adding the number of 2×2 switches in the N×N banyan network, one
can show that the number of 2 × 2 switches needed for the Batcher-
banyan network is

N

4
log2N(3 + log2N),

which is O(N(log2N)2).
We have shown that a switch fabric implemented by a Batcher-

banyan network is capable of realizing all the sub-permutations. Now
we introduce the so-called three phase switch [76] that also uses
the Batcher-banyan network for output conflict resolution (finding
a matching). Consider an N × N switch with its switch fabric im-
plemented by a Batcher-banyan network. Suppose that for all i =
1, , 2, . . . , N , there are two feedback paths connected to the ith input
of the switch: the first one is from the ith output of the Batcher sorting
network, and the second one is from the ith output of the switch.

The three phases are as follows:

(i) Request and Purge. Each input sends a request that contains the
information of its input address and the desired output address.
The Batcher sorting network then sorts these requests according to
the output addresses of these requests. After the Batcher sorting
network, requests with the same output addresses appear at adja-
cent outputs. Thus, requests that conflict with each other can be

2.5 Two-stage constructions of switch fabrics 87

easily purged by comparing the output addresses of the requests
appeared at adjacent outputs of the Batcher sorting network.

(ii) Acknowledgement. Those un-purged requests (at the outputs of
the Batcher sorting network) are forwarded to the inputs of the
switch via the first feedback path. Suppose that the ith input of
the switch receives an un-purged request that is sent from the jth

input of the switch (via the first feedback path). The ith input then
sends an acknowledgement through the Batcher-banyan network
to the jth output. The jth output of the switch then relays the
acknowledgement via the second feedback path to the jth input of
the switch.

(iii) Packet transmission. Once an input receives an acknowledgement,
it then sends a packet to the desired output.

Example 2.5.7. In Figure 2.33, we depict how the three-phase switch
works. In this example, Input 1 (I1) would like to send a packet to Out-
put 2 (O2), Input 2 (I2) would like to send a packet to Output 3 (O3),
Input 3 (I3) would like to send a packet to Output 2 (O2), and In-
put 4 (I4) would like to send a packet to Output 1 (O1). In the first
phase, these four inputs send requests that contain the information of
the input addresses and the output addresses. At the second output
and the third output of the Batcher sorting network, one finds that
these two adjacent requests have the same output address and one of
them (the request from I3) is purged. Via the feedback paths from the
outputs of the Batcher sorting network to the inputs of the switch,
those un-purged requests are relayed back to the inputs. In the sec-
ond phase, those un-purged requests are sent back to their inputs as
acknowledgements. The input address at a request is now used for the
output address of the acknowledgment. In this example, Input 1 sends
an acknowledgement to Output 4, Input 2 sends an acknowledgement
to Output 1, and Input 4 sends an acknowledgement to Output 2. Via
the feedback paths from the outputs of the switch to the inputs of the
switch, acknowledgements are relayed to the inputs that sent requests.
In this example, Inputs 1,2 and 4 received acknowledgments. Up to
this point, output conflicts have been resolved (and a matching has
been found). Thus, in the third phase, Inputs 1,2 and 4 send packets
to their outputs.

88 2. Basic Architectures and Principles of Packet Switches

Batcher�
sorting�
network�

Banyan�
network�

I1� O2�

I1� O2�I2� O3�

I2� O3�

I3� O2� I3� O2�

I4� O1�

I4� O1�

(i) Request and purge�

Batcher�
sorting�
network�

Banyan�
network�

I4� O1�

I1� O2�

I2� O3� I4� O1�

I1� O2�

I2� O3�

Batcher�
sorting�
network�

Banyan�
network�

Pk� O2�

Pk� O3� Pk� O2�

Pk� O3�

Pk� O1�

(ii) Acknowledgement�

(iii) Packet transmission�

Pk� O1�

Fig. 2.33. An illustration for the three-phase switch

2.5 Two-stage constructions of switch fabrics 89

Like PIM or SLIP, phases 1 and 2 can be carried out iteratively to
reach a maximal matching between inputs and outputs. Also, as each
unacknowledged input sends only one request to the switch fabric,
there is no need for the acceptance step in PIM and SLIP.

2.5.6 Concentrators

An N ×N down sorter is an N ×N switch that can sort any input list
into a monotonically increasing list. For instance, an N × N Batcher
sorting network described in Section 2.5.4 is an N × N sorter. An
M -to-N concentrator is an M × N switch that selects the N largest
elements from the M inputs. Certainly, one can implement an M -to-N
concentrator by an M ×M sorter. Here we show a way to implement
an M -to-N concentrator without the full complexity of a sorter.

4×4 Batcher down
sorting network

4×4 Batcher up
sorting network

z

4

1

7

2

5

6

4

1

2

7

5

6

3

1

2

6

7

5

3

1

7

6

5

2

7

6

8

8

8

8

8

3

4

4

3

5

Fig. 2.34. An 8-to-4 concentrator

The key observation is that a bitonic down sorter can sort a circular
bitonic list into a monotonically increasing list. As stated in the pre-
vious section, an N ×N bitonic sorter can be recursively constructed
using the X2 construction with N/2 2 × 2 down sorters at the first

90 2. Basic Architectures and Principles of Packet Switches

stage and two N
2 × N

2 bitonic down sorters at the second stage. Note
that there is no link between these two N

2 × N
2 bitonic down sorters.

Since the output of the N × N bitonic sorter is a monotonically in-
creasing list, the inputs to the lower N

2 × N
2 bitonic down sorter

must be the larger half of the N inputs. A direct proof of such a
statement is given in Problem 24.

Suppose that M is an even number and M/2 ≥ N . Analogous to
the way that we construct a Batcher sorting network, we can construct
an M -to-N concentrator as follows:

(i) The M -to-N concentrator consists of two stages. The first stage
consists of two M

2 × M
2 Batcher sorting networks. The upper one

is a down sorting network, while the lower one is an up sorting
network.

(ii) Select theN largest outputs from each of these two M
2 ×M

2 Batcher
sorting networks to form a bitonic list with length 2N . Now connect
these 2N elements to N 2× 2 down sorters via a shuffle exchange.
As these N 2 × 2 down sorters are in fact the first stage of a
2N × 2N bitonic sorter, the larger outputs of these N 2× 2 down
sorters are then the N largest elements among the M inputs of the
concentrator.

In Figure 2.34, we show an 8-to-4 concentrator via the construction
described above. One can see from Figure 2.34 that the 8 outputs from
the two Batcher sorting networks form a bitonic list with length 8. The
four largest elements, i.e., 7, 5, 6, 8, appear at the four outputs of the
concentrator. Note that the relative order of these four largest elements
are irrelevant to the objective of the concentrator.

One of the most important applications of a concentrator, as its
name suggests, is for traffic concentration. For an active input, we may
mark a bit 1 in a packet header. On the other hand, the bit is set to 0
if an input is idle. By sorting this bit, an M -to-N concentrator selects
N active inputs among M inputs. Note that if there are more than
N active inputs, an M -to-N concentrator in general does not specify
which N active inputs should be selected. In Definition 5.3.3, we will
define a prioritized concentrator that specifies the priority order for
the selection of active inputs.

For the purpose of traffic concentration, an M -to-N concentrator
constructed in this section can be further simplified (if N << M/2). In
Section 2.7.3, we will introduce a fast knockout algorithm that greatly
simplifies the design of traffic concentration.

2.5 Two-stage constructions of switch fabrics 91

2.5.7 Mirror image of two-stage constructions

A mirror image of a switch is a switch with the inputs (resp. outputs)
that are the outputs (resp. inputs) of the original switch. In this sec-
tion, we consider the mirror image of the X2 construction. As shown
in Figure 2.35, the mirror image of the X2 construction is now a 2X
construction, i.e., two stages of switches (2) followed by a shuffle ex-
change (X). The X2 construction is used for realizing all the circular
unimodal permutations. Clearly, the 2X construction, having the in-
puts and outputs interchanged, can now be used for realizing all the
inverse circular unimodal permutations. To be precise, a permutation
is called an inverse circular unimodal permutation if its inverse per-
mutation is a circular unimodal permutation. In other words, for an
inverse circular unimodal permutation, if we circularly shift the out-
puts (for some k), then the inputs becomes a unimodal list.

Example 2.5.8. (Inverse circular unimodal permutation) Con-
sider the following permutation π : {1, 2, . . . , 20}
→ {1, 2, . . . , 20}(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 4 6 3 7 2 8 1 9 20 19 18 10 17 16 11 15 14 12 13

)
.

Rewriting the permutation in the order of the outputs yields(
8 6 4 2 1 3 5 7 9 13 16 19 20 18 17 15 14 12 11 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

)
.

This is exactly the inverse permutation of the circular unimodal per-
mutation in Example 2.5.2. Thus, the permutation π in this example
is indeed an inverse circular unimodal permutation.

As discussed in Section 2.5.3, there are several facts for the inverse
circular unimodal permutations.

(i) Let π−1 be the inverse mapping of an inverse circular unimodal
permutation π. Then π−1 is (circular) increasing from π(1) to π(N)
and (circular) decreasing from π(N) to π(1).

(ii) Once π−1(i)’s are known for all i in the (circular) increasing seg-
ment, then the rest of π−1(i) can be uniquely determined.

An N ×N switch is called UC nonblocking if it can realize all the
N ×N inverse circular unimodal permutations. Clearly, if a switch is
CU nonblocking, then its mirror image is UC nonblocking. As the 2X
construction is the mirror image of the X2 construction, one has the
following theorem from Theorem 2.5.3.

92 2. Basic Architectures and Principles of Packet Switches

1

2

3

N

1

2

3

N

q qp p

q qp p

Fig. 2.35. The 2X construction

Theorem 2.5.9. Consider the two-stage construction in Figure 2.35,
i.e., the 2X construction. If all the p×p switches at the first stage and
the q × q switches at the second stage are UC nonblocking, then the
constructed N ×N switch is also UC nonblocking.

Both the terms CU nonblocking and UC nonblocking were intro-
duced in [111]. The letter C stands for “circular” and the letter U
stands for “unimodal.” Also, the first (resp. second) letter corresponds
to the operation or property of the inputs (resp. outputs). Thus, CU
can be interpreted as follows: if we perform circular shift for the in-
puts, the outputs become unimodal. Similarly, UC means the other
way around. That is, if we perform circular shift for the outputs, the
inputs become unimodal.

A UC nonblocking switch can realize all the inverse circular uni-
modal permutations. As such, it can also realize the set of sub-
permutations that satisfy the inverse monotone consecutive condition,
i.e.,

(i) the active outputs are consecutive, and
(ii) the mapping between active inputs and outputs is monotonically

increasing.

A switch that realizes all the sub-permutations that satisfy the in-
verse monotone consecutive condition is known as a linear compressor
in [111]. If the monotone condition in (ii) is replaced from “increasing”

2.6 Exact emulation 93

to “decreasing”, a switch that realizes all the sub-permutations that
satisfy the modified inverse monotone consecutive condition is known
as an upturned linear compressor in [111]. As commented for linear de-
compressors, there is one-to-one mapping between a sub-permutation
that satisfies the inverse monotone consecutive condition and an in-
verse circular unimodal permutation. Thus, a UC nonblocking switch
is both a linear compressor and an upturned linear compressor.

2.6 Exact emulation

In this section, we will address switch architectures that yield exactly
the same departure processes as those from the corresponding output-
buffered switches. Such switch architectures are called exact emulation
of output-buffered switches. In other words, if one considers a switch
as a black box, then one cannot tell whether the switch is based on
the output-buffered architecture by only looking at the inputs and the
outputs.

2.6.1 Crosspoint buffers

Fig. 2.36. A crossbar switch with crosspoint buffers for exact emulation of an
N × N output-buffered switch

In Figure 2.36, we consider a crossbar switch. There are separate
buffers at the crosspoints. For an N×N switch, the number of separate

94 2. Basic Architectures and Principles of Packet Switches

buffers is N2. As the VOQs of an input-buffered switch, each buffer
at a crosspoint stores packets from one input to one output. Call the
(i, j)th buffer for the buffer at the crosspoint of the ith input and the
jth output. When a packet destined for the jth output arrives at the
ith input, it is placed in the (i, j)th buffer. If the departure time of that
packet from the corresponding output-buffered switch is known, one
can simply transmit the packet to the jth output at its departure time
from the (i, j)th buffer. Clearly, one can achieve exact emulation of an
output-buffered switch by this architecture.

As pointed out in the survey paper by Ahmadi and Denzel [3],
the architecture based on crosspoint buffers does not scale for a large
number of input/output ports because of the square growth. It is only
good either for small switches, or as basic architecture for the building
blocks of modular multi-stage switches. In the next section, we will
show a parallel buffer architecture that reduces the number of buffers
from N2 to 2N − 1.

2.6.2 Parallel buffers

N×(2N-1) crossbar (2N-1)×N crossbar

Central buffers

1

2

2N-1

2

1

N

2

1

N

Fig. 2.37. A switch architecture with parallel buffers for exact emulation of an
N × N output-buffered switch

In Figure 2.37, we show the parallel-buffered switch architecture.
Such a switch architecture was previously addressed in the paper by
Wai and Kumar [165] and the paper by Iyer, Awadallah and McKeown
[86]. The first stage is an N × (2N − 1) crossbar switch fabric and the
second stage is an (2N−1)×N crossbar switch fabric. There are 2N−1
central buffers (parallel buffers) between these two switch fabrics.

Suppose that the departure time of a packet from the corresponding
output-buffered switch is known when the packet arrives at the input.
Consider a packet p that arrives at time ta and departs at time td from

2.6 Exact emulation 95

the corresponding output-buffered switch. At time ta, we can switch
packet p (via the first crossbar) to one of the central buffers that does
not have a packet to send at time td. When time reaches td, we can
then switch packet p (via the second crossbar) to its output and we
have an exact match of the departure time. The magic number 2N −1
makes sure that we can always find one of the central buffers that does
not have a packet to send at time td. This is because there are at most
N − 1 packets that will depart at time td from the other N − 1 output
ports (output conflicts) and there are at most N−1 packets that arrive
at time ta from the other N − 1 input ports (input conflicts). In the
worst case, all these 2N − 2 packets use distinguished central buffers.
As there are 2N − 1 center buffers, there is always a free one (without
any conflicts)! The argument above is completely parallel to that used
in the three-stage nonblocking Clos networks (see Section 2.4.1). The
ratio of the number of buffers to the number of input/output ports is
2− 1/N . Such a factor may be regarded as the speedup factor needed
for exact emulation.

2.6.3 Combined input output queueing

Another alternative is called the Combined Input Output Queueing
(CIOQ) switch in Figure 2.38. In the CIOQ architecture, there is only
one N ×N crossbar switch fabric. Also, there are buffers at both the
inputs and outputs. As in the previous approach, one needs internal
speedup. A speedup factor of S indicates that the crossbar switch
fabric is capable of transmitting S packets per slot time. It is shown in
[50, 153] that a speedup factor of 2 − 1/N is necessary and sufficient
for exact emulation of FCFS output-buffered switches. For the ease
of presentation, we follow the development in [50] by using a speedup
factor of 2.

As in the previous approach, assume that the departure time of a
packet from the corresponding output-buffered switch is known when
the packet arrives at the input. The basic idea of the CIOQ switch
is then to move packets from input buffers to output buffers
before their desired departure times. To achieve this, each in-
put port maintains a priority list of the packets in its buffer at each
time slot. The relative order between two packets stays the same with
respect to time. An arriving packet is inserted into the input prior-
ity list according to a critical packet first policy that will be specified
later. Each output port also maintains a priority list of the packets

96 2. Basic Architectures and Principles of Packet Switches

N×N crossbar with a
speedup factor of 2

1

2

N

1

2

N

Fig. 2.38. Combined Input Output Queueing switch architecture

in all the input buffers and destined to it. The priority list at an out-
put is ordered by the packet departure times from the corresponding
output-buffered switch. The connection pattern for the crossbar is set
by finding a stable matching between the input ports and the output
ports (note that there are two connection patterns per time slot as the
speedup factor is 2).

Definition 2.6.1. (Stable matching) A matching of input ports to
the output ports is said to be stable if for each packet waiting in an
input buffer, one of the following holds:

(i) The packet is part of the matching (the packet is transmitted from
its input to its output).

(ii) Another packet that is ahead of the packet in its input priority list
is part of the matching.

(iii) Another packet that is ahead of the packet in its output priority
list is part of the matching.

A direct consequence from the stable matching conditions is that
a packet is part of the matching if it is on the top of both the input
priority list and the output priority list. The conditions for a stable
matching can be achieved by the Gale-Shapley algorithm for the stable
marriage problem. The basic Gale-Shapely algorithm goes as follows:
The Gale-Shapely algorithm

Step 1. Request. Each unmatched output that has not been rejected
by all the inputs sends a request to the input of the next packet in
its priority list that has not rejected it.

Step 2. Grant. Each input grants the request to the output that is the
highest one in its priority list. Reject all the other (and previous)
requests.

2.6 Exact emulation 97

Step 3. Iterations. Repeat from Step 1 until there is no unmatched
output that has not been rejected by all the inputs.

In Step 2 it might happen that an input granted some output before
and receives a request from another output higher in its priority list.
When this happens, the output higher in its priority list is granted,
and the output that is granted before is rejected and becomes un-
matched. The complexity of the Gale-Shapely algorithm is O(N2).
Readers might like to compare the stable matching algorithm with the
maximal matching algorithm such as PIM and SLIP. The complexity
of finding a maximal matching is only O(N), which is simpler than that
for finding a stable matching. As shown in Section 2.3.5, the maximal
matching algorithm achieves 50% throughput. With a speedup factor
of 2, it can reach 100% throughput. However, it does not guarantee
exact emulation of the output-buffered switch as the CIOQ switch.

1�

2�

N�

1�

2�

N�

output cushsion=2�

Insert the packet so that its�
input thread=2�

Fig. 2.39. An illustrating example for the critical packet first policy

Now we specify the critical packet first policy used for the insertion
of an arriving packet into the input priority list. Define the output cush-
ion of a packet by the number of packets waiting in its output buffer
with smaller desired departure times. Also, define the input thread by
the number of packets ahead of the packet in the input priority list (the
input thread of a packet is zero once it is moved to the output buffer).

98 2. Basic Architectures and Principles of Packet Switches

The slackness of a packet is defined to be the difference between its
output cushion and its input thread. There are two cases to insert
an arriving packet in the input priority list. If the output cushion of
an arriving packet is smaller than the number of packets in its input
buffer when the packet arrives, the packet is inserted in the input pri-
ority list so that its slackness is zero. For instance, as shown in Figure
2.39, a packet that arrives at input 1 and is destined to output 1 has
output cushion 2. The packet is then placed in its input priority list so
that its input thread is 2. By so doing, its slackness is 0. On the other
hand, if the output cushion of an arriving packet is not smaller than
the number of packets in its input buffer, then the arriving packet is
placed at the end of the input priority list. In either case, the slackness
is nonnegative when a packet arrives.

Now we show that the stable matching algorithm in the CIOQ
switch with a speedup factor of 2 achieves exact emulation. The first
observation is that the slackness of a packet waiting at an input buffer
is non-decreasing in time. To see this, consider a particular packet p
at an input buffer. As there is at most one packet arrival to the input
buffer of packet p in a time slot, the input thread of packet p can
be increased by at most one. Similarly, there is at most one packet
departure from the output port of packet p in a time slot, the output
cushion of packet p can be decreased by at most 1. However, as there
are two stable matchings in a time slot, conditions (ii) and (iii) ensure
that the slackness will be increased by (at least) 2 from these two stable
matchings (if the packet is not transferred to the output). Thus, the
slackness of a packet waiting at an input buffer is non-decreasing in
time. As the slackness of a packet is nonnegative when it arrives, we
know that the slackness of a packet is always nonnegative.

Suppose that the CIOQ switch achieves exact emulation up to time
t−1 as the induction hypothesis. Consider a packet p that departs from
the corresponding output-buffered switch at time t. Packet p is either
in its input buffer or its output buffer of the CIOQ switch. If it is
in the output buffer, it may depart on time. Thus, we only need to
consider the case that packet p is still in the input buffer. Since the
CIOQ switch achieves exact emulation up to time t−1, all the packets
ahead of packet p in its output priority list must have departed by time
t − 1. Thus, the output cushion of packet p must be zero. Since the
slackness of a packet is always nonnegative, the input thread of packet
p is also zero. As such, packet p is on the top of both the input priority

2.7 Knockout switches 99

list and the output priority list. The stable matching algorithm then
guarantees that packet p is part of the matching and it is transferred
from its input to its output at time t.

2.7 Knockout switches

The Knockout switch in [170, 93] is a clever approximation of an
output-buffered switch. As shown in Figure 2.40, the N×N Knockout
switch consists of N broadcast buses (with each input having its own
bus) and N bus interfaces (with each output having its own bus inter-
face). At each time slot, each input can transmit at most one packet
onto its own bus. Through the bus interface, each output selects the
packets destined to it and sends them out one by one from the output
link. Within a time slot, there might be N packets arriving at a bus
interface. As there is at most one packet departing from a bus inter-
face within a time slot, buffering is required at each bus interface. If we
would like to achieve exact emulation of an output-buffered switch, a
speedup factor of N is required for the buffer at each interface (cf. the
shared medium switch in Figure 2.2). However, if we are only inter-
ested in obtaining a good approximation of an output-buffered switch,
we may not need to speed up N times.

1

2

N

N�
inputs

N�
broadcast
buses

1 2 N

Bus
interface

Fig. 2.40. The Knockout Switch architecture

2.7.1 The Knockout principle

In Figure 2.41, we show the clever design of the bus interface of the
Knockout switch. The bus interface consists of three parts. The first
one is the packet filter that receives the packet destined to the output

100 2. Basic Architectures and Principles of Packet Switches

and discards others. The second one is a concentrator that only selects
at most L packets from the packets destined to the output. The last
one is a buffered L-to-1 multiplexer.

Concentrator�

1� 2� 3� 4� 5� N�

1� 2� L�

Packet�
filters�

Output�

Multiplexer�

Inputs�

Fig. 2.41. The bus interface in the Knockout Switch

As there are only L outputs for the N inputs at the concentrator,
packets could be lost at the concentrator if there are more than L
packets destined to a given output at the same time slot. The famous
Knockout principle is that the parameter L of the concentrator could
be chosen (independent of the size of switch N) so that packets lost
at the concentrator would not be a concern. The intuition behind this
goes as follows: for a stable output-buffered switch, the expected num-
ber of packet to a given output is at most 1. Thus, the probability that
there are more than L >> 1 packets to a given output at the same
time is very small.

To illustrate the Knockout principle, consider the uniform i.i.d. traf-
fic model. With probability ρ, assume that a packet arrives at each
input for every time slot. This is independent of everything else. The
destination of an arriving packet is chosen uniformly among the N
output ports. This is also independent of everything else. Denote by

2.7 Knockout switches 101

pk the probability that there are k packets destined to a given output.
As the number of arrivals to a given output at a time slot is the sum
of N Bernoulli r.v.’s with parameter ρ/N , we then have

pk =
N !

k!(N − k)!
(
ρ

N
)k(1 − ρ

N
)N−k. (2.72)

It follows that the probability of a packet being dropped in a concen-
trator with N inputs and L outputs is

ploss =
the expected number of losses in a time slot

the expected number of arrivals in a time slot

=
1
ρ

N∑
k=L+1

(k − L)pk. (2.73)

When N → ∞, the sum of N Bernoulli r.v.’s with parameter ρ/N
converges to a Poisson r.v. with mean ρ. Thus,

lim
N→∞

pk = e−ρρ
k

k!
. (2.74)

Replacing (2.74) in (2.73) yields

lim
N→∞

ploss =
1
ρ

∞∑
k=L+1

(k − L)
e−ρρk

k!

= (1 − L

ρ
)(1 −

L∑
k=0

e−ρρk

k!
) +

e−ρρL

L!
. (2.75)

Using (2.75), one can show that ploss is at the order of 10−9 when
L = 11. Thus, when N is large, one can choose L large enough such
that packet lost at the concentrator would not be a concern.

2.7.2 L-to-1 multiplexer

Within a time slot, the L-to-1 multiplexer might receive up to L pack-
ets. As there is at most one packet that can depart from the multiplexer
within a time slot, buffering is needed. If one implements the L-to-1
multiplexer by a shared memory switch in Figure 2.1, then one might
need a speedup factor of L + 1 for such an implementation. In the
Knockout switch, the required speedup is achieved by a clever design
that uses parallel buffers.

To explain the design of the multiplexer, we first introduce a well
known queueing result. Consider a system with parallel queues as

102 2. Basic Architectures and Principles of Packet Switches

Fig. 2.42. A system with parallel queues

shown in Figure 2.42. Suppose that we operate the system as follows: a
customer that arrives at the system joins the shortest queue (the queue
with the least number of customers), and the server after completing
the service of a customer always chooses a customer from the longest
queue (the queue with the largest number of customers). By so doing,
these parallel queues are kept in the most balance state, i.e., at any
time the difference between the number of customers in the longest
queue and the number of customers in the shortest queue is at most
1. If the service time of all the customers are all identical, then the
longest queue service policy and the shortest queue dispatching pol-
icy are simply the round robin policy. Moreover, as the system always
serves the longest queue, the customer with the longest waiting time
is served. Thus, the system with parallel queues behaves as if it were
a single FIFO queue with a shared buffer.

In Figure 2.43, we show the design of the L-to-1 multiplexer in the
Knockout switch. The design consists of a shifter and L parallel buffers.
We number the L inputs and the L parallel buffers from 0, 1, . . . , L−1.
As in Figure 2.42, the multiplexer keeps two pointers: O(t) for the
longest queue at time t, and I(t) for the shortest queue at time t.
Within each time slot, a packet is removed from the longest queue. As
all the packets have the same size,

O(t+ 1) = O(t) + 1 modL,

i.e., the pointer for the longest queue moves in a round robin fashion.
Without loss of generality, one may consider packets arriving at the
multiplexer in the order of their input numbers (even though they
arrive at the same time slot). The shifter is an L× L crossbar switch
fabric. The connection pattern of the shifter is set in the way that the

2.7 Knockout switches 103

Shifter�

0� 1� L-1�

0� 1� L-1�

Output�

Inputs�

Fig. 2.43. The L-to-1 multiplexer in the Knockout switch

packet at input 0 is distributed to the shortest queue, the packet at
input 1 is distributed to the second shortest queue, and so forth. To be
precise, suppose that there are k packets arriving at the multiplexer
at time t. The pointer for the shortest queue is updated as follows:

I(t+ 1) = I(t) + k modL.

The connection pattern is set to P I(t), where P is the L× L circular-
shift matrix, i.e., Pi,j = 1 when j = i+1modL and Pi,j = 0 otherwise.

Example 2.7.1. (Shifter) Consider the case that L = 4. The
circular-shift matrix for this case is

P =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎥⎦ .

As shown in Figure 2.44, suppose I(t) = 0 and there are three packet
arrivals at time t. Then P I(t) is the identity matrix and these three
packets are distributed to buffer 0, buffer 1, and buffer 2, respectively.
Now I(t+ 1) is updated to 3 and

P 3 =

⎡
⎢⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎥⎦ .

104 2. Basic Architectures and Principles of Packet Switches

0� 0�1�1�

0� 1�0�1�

Shifter at time t+1�

Inputs�
2� 3�1�0�

1� 0�1�1�

1� 0�1�1�

Shifter at time t�

Fig. 2.44. An illustration of the shifter function

If there are two packet arrivals at time t + 1, then these two packets
are distributed to buffer 3 and buffer 0, respectively. Also,

I(t+ 2) = I(t+ 1) + 2 mod 4 = 1.

2.7.3 Fast Knockout concentrator

In Section 2.5.6, we have already introduced a method to construct an
N -to-L concentrator. The first stage of such a construction consists of
two N

2 ×N
2 sorters. The L largest elements of these two sorters are then

selected to form a bitonic list with length 2L. The L largest elements
among the N inputs can then be obtained by feeding the bitonic list
with length 2L to L 2 × 2 down sorters at the second stage.

In the case that L << N/2, using N
2 × N

2 sorters to find the sorted
L largest elements may not be a good idea. Here we introduce a fast
Knockout algorithm that finds the sorted L largest elements among
N/2 inputs. Our presentation of the fast Knockout algorithm here
follows the notions of state vectors used in [112, 111].

The objective of the fast Knockout algorithm is to find the sorted L
largest elements among 2k elements. Such a network element is called a
2k-to-L concentrator/sorter. For this, one defines a j-element in a set as
an element that is known to be smaller than at least j other elements in

2.7 Knockout switches 105

that set. For a partially sorted set S, let xj be the number of j-elements
in S. Then S can be represented by a state vector (x0, x1, . . . , xL−1).

(i) Initially, every element is a 0-element. Thus, there are 2k sets with
the state vector (1, 0, . . . , 0).

(ii) (Fast Knockout stages) Let S1 and S2 be two disjoint sets with
the same state vector (x0, x1, . . . , xL−1). Pair every j-element in S1

with another j-element in S2 and feed them to a 2×2 sorter. After
the comparison of a j-element pair, the winner remains
as a j-element and the loser becomes a 2j + 1-element. If
2j + 1 ≥ L, this element is discarded as it cannot be one of the L
largest elements. This leads to a new partially sorted set S1 ∪ S2

with the following state vector

(x0, x0 + x1, x2, x1 + x3, x4, x2 + x5, . . . , x2i, xi + x2i+1, . . .).

For instance, after the first fast Knockout stage, there are 2k−1 sets
with the state vector (1, 1, 0, . . . , 0).

(iii) (Knockout stages) After k fast Knockout stages, one obtains a
single partially sorted set. Suppose that the state vector of this
partially sorted set is (x0, x1, . . . , xL−1). Split the set into two dis-
joint sets S1 and S2 such that S1 has the state vector

(
x0/2�,
x1/2�, . . .
xL−1/2�)
and S2 has the state vector

(�x0/2�, �x1/2�, . . . , �xL−1/2�).
Note that �x� is the ceiling function that returns an integer not
smaller than x and
x� is the floor function that returns an in-
teger not larger than x. Pair every j-element in S1 with another
j-element in S2 and feed them to a 2×2 sorter. After the compar-
ison of a j-element pair, the winner remains as a j-element
and the loser becomes a j + 1-element. If j + 1 ≥ L, this el-
ement is discarded as it cannot be one of the L largest elements.
This leads to a new partially sorted set S1 ∪ S2 with the following
state vector

(�x0/2�,
x0/2� + �x1/2�, . . . ,
xj−1/2� + �xj/2�,
. . . ,
xL−2/2� + �xL−1/2�).

Repeat this step until the state vector becomes (1, 1, . . . , 1).

106 2. Basic Architectures and Principles of Packet Switches

The difference between the fast Knockout stages and the Knockout
stages is the transitive law. In a fast Knockout stage, one can apply the
transitive law to infer that the loser in a j-element comparison becomes
a 2j + 1-element (since the two sets being compared are disjoint).
However, in a Knockout stage, one can only infer that the loser in a
j-element comparison becomes a j + 1-element. This is because there
is no way to know whether the two sets that contain elements larger
than these two j-elements are disjoint. In case that one would like to
design an M -to-L concetrator/sorter with M not being a power of 2,
one can always use the Knockout stages to achieve the objective as
originally presented in the Knockout switches [170, 93].

D�

D�

D�

1�

D�

2�

D�

D�

3�

D�

D�

4�

D�

Outputs�

D�

Inputs�

D�

Fig. 2.45. The 8-to-4 fast Knockout concentrator/sorter

In Figure 2.45, we show the 8-to-4 fast Knockout concentrator/sorter.
The first three stages are the fast Knockout stages and the last four
stages are the Knockout stages. In Figure 2.45, each shaded box with
2 inputs and 2 outputs is a 2 × 2 sorter and each box with a single
input and a single output is a delay element that synchronizes the tim-
ing for packets being compared. Initially, there are 8 disjoint sets with

2.8 Notes 107

the state vector (1, 0, 0, 0). After the first stage, there are 4 disjoint
sets with the state vector (1, 1, 0, 0). After the second stage, there are
2 disjoint sets with the state vector (1, 2, 0, 1). After the third stage,
there is a single set with the state vector (1, 3, 0, 3). Note that in each
of the fast Knockout stages, one needs four 2 × 2 sorters.

Now we are in the Knockout stage. Split the set with the state
vector (1, 3, 0, 3) into two sets with the state vectors (0, 1, 0, 1) and
(1, 2, 0, 2). For this stage, one needs two 2× 2 sorters. After the fourth
stage, we end up with the set with the state vector (1, 2, 1, 2). Now split
this set into two sets with the state vectors (0, 1, 0, 1) and (1, 1, 1, 1).
For this stage, one still needs two 2 × 2 sorters. After the fifth stage,
we end up with the set with the state vector (1, 1, 2, 1). Split this set
into two sets with the state vector (0, 0, 1, 0) and (1, 1, 1, 1). For this
stage, one only needs one 2 × 2 sorter. After the sixth stage, we have
the set with the state vector (1, 1, 1, 2). Finally, split this set into two
sets with the state vector (0, 0, 0, 1) and (1, 1, 1, 1). For this stage, one
still needs one 2 × 2 sorter. After the seventh stage, we have reached
the state vector (1, 1, 1, 1).

2.8 Notes

The study of switching theory starts from circuit switching and then
evolves into packet switching. The focus of circuit switching is to build
nonblocking switches that can set up or tear down a connection in any
manner. C. Clos (1953) proposed the three-stage network in [51] that
sets up the first step to reduce the complexity of a crossbar switch
fabric. A special case of the Clos network is the rearrangeable network
that realizes all the sub-permutations. Unlike nonblocking switch, a re-
arrangeable network cannot set up a connection without affecting the
existing connections. A. M. Duguid (1959) published the rearrange-
ment theorem in [59]. Such a theorem was also prove by D. Slepian
(1952) in an unpublished progress report [151]. The matrix represen-
tation of a network state was introduced by M. C. Paull (1962) in
[135] that greatly eases the presentation of the Slepian-Duguid algo-
rithm for the three-stage rearrangeable networks. V. E. Benes made
the connecting network popular in his book [14] by recursively expand-
ing the three-stage rearrangeable networks. Finding the routing paths
in the three-stage rearrangeable networks (and Benes networks) by
the framed Birkhoff-von Neumann decomposition was first introduced

108 2. Basic Architectures and Principles of Packet Switches

by T. Inukai [85] (for time slot assignments in satellite switches). The
most efficient algorithm for finding the routing paths in the three-stage
rearrangeable networks was proposed by H. Y. Lee, F. K. Hwang and
J. Capinelli in [106]. See also the book by F. K. Hwang (pp. 63-66,
[84]) for the history for developing the routing algorithms. Our de-
velopment for the two-stage construction of switch fabrics follows the
book by S.-Y. R. Li [111], in particular the CU nonblocking switches.
All this two-stage construction theory seems to be rooted from the
work by K. E. Batcher for bitonic sorting networks [13]. The mono-
tone and consecutive condition for banyan networks was due to A.
Huang and S. Knauer [73]. The use of the Batcher-banyan network for
output conflict resolution in the three phase switches was introduced
by J. Y. Hui and E. Arthurs [77, 76].

Note that there are several issues in circuit switching that we did
not address in this chapter:

(i) The search of the minimum complexity switch fabrics: it is known
that the complexity of an N × N nonblocking switch is bounded
below by O(N logN). By carefully expanding the three-stage
nonblocking Clos network, it is known that the best complex-
ity of such an expansion is O(N(logN)2.44) (see e.g., pp. 245-
248, [111]). In Problem 20, we introduce the Cantor network [21]
with the complexity 4N(log2N)2. Using the concept of expanders
[139, 119, 12, 64], it is known that there exists a nonblocking switch
with O(N logN) complexity (see e.g., pp. 250-253, [111]). Though
there exists a nonblocking switch with O(N logN) complexity,
finding the routing paths of such a switch becomes extremely dif-
ficult. For sorting networks, it is shown in [5] that there exists a
sorting network with O(N logN) complexity. The complexity of
such a network is asymptotically smaller than that of the Batcher
sorting network. As commented in [111], the leading constant of
the O(N logN) complexity is extremely large and thus makes it
infeasible for practical applications.

(ii) Wide sense nonblocking switches: Nonblocking switches allow a
connection to set up or tear down in any manner. A wide sense non-
blocking switch, a weaker version of a nonblocking switch, realizes
all the sub-permutations by a specific routing algorithm of set-
ting up connections (without affecting any existing connections).
As such, the complexity of wide sense nonblocking switches should
be between that of nonblocking switches and that of rearrangeable

Notes 109

networks. There have been a lot of works reported in the literature
for wide sense nonblocking switches. See e.g., the book by V. E.
Benes [14], the book by F. K. Hwang [84] and the book by S.-Y.
R. Li [111].

(iii) Equivalence of multistage interconnection networks: as discussed
in Section 2.5, there are several ways for recursive two-stage expan-
sion of an N×N switch when N is a power of 2. As such, there are
several ways to interconnect log2N stages of 2 × 2 switches (with
N/2 switches in each stage) and this results in different names
of multistage interconnection networks, such as banyan networks,
omega networks, baseline networks, and shuffle exchange networks.
All these interconnection networks, though appeared to be differ-
ent, are in fact topologically equivalent (after rearrangements of
the 2 × 2 switches). See e.g., [167, 168, 1, 16]. A recent algebraic
approach for establishing the equivalence of these network is shown
in the book by S.-Y. R. Li [111].

(iv) Multicasting and copy networks: in this chapter, we only consider
switch fabrics that realize sub-permutations. This is also known as
point-to-point connections. In the multicasting setting, an input
is allowed to connect to multiple outputs at the same time. For
this, one needs a copy network that forks a connection to multiple
outputs (see e.g. [107]). See also the books [76, 84, 111] for more
discussions on this.

(v) Traffic theory: traditionally, Markov processes are used for analyz-
ing circuit switching systems. In the book by Benes [14], he also
introduced a thermodynamic theory that established the connec-
tion between statistical mechanics and traffic theory for connecting
networks. Such a theory is further extended in the book by J. Y.
Hui [76] via the large deviation principles. Further developments
along this line for circuit switching can be found in [66, 41]. Large
deviation principles are also used in dimensioning the size of buffers
and capacities in packet switching systems. A theory, known as the
theory of effective bandwidths, was developed in the early 90’s (see
e.g., [94, 25, 166, 62] and the book [27] for more references). Read-
ers interested in the large deviation principles may consult the
following books: A. Shwartz and A. Weiss [150] for communica-
tion and computing, J. Bucklew [19] for engineering, R. Ellis [61]
for statistical mechanics, and A. Dembo and O. Zeitouni [57] for
mathematical theory.

110 2. Basic Architectures and Principles of Packet Switches

With the advances of electronic memory in both the accessing speed
and the density, packet switching systems become more cost effec-
tive than circuit switching systems. The simplest packet switch archi-
tecture is the shared memory switch. As addressed in this chapter,
such a switch architecture does not scale and one has to resort to
switches with parallel buffers. However, input-buffered switches with
FIFO queue suffered from the head-of-line blocking problem and it was
shown by M. J. Karol, M. G. Hluchyj, and S. P. Morgan [92] that such
a switch architecture only has 58% throughput. To solve the head-
of-line blocking problem, virtual output queueing is needed and this
creates the matching problem between inputs and outputs. Parallel
Iterative Matching (PIM) and Round-robin Matching (RRM) are two
commonly used matching algorithms introduced in [6]. However, PIM
needs random arbitration and that is expensive to build. On the other
hand, RRM suffers from the pointer synchronization problem and may
be trapped in a bad mode that yields very low throughput. To solve
these two problems, N. Mckeown [121] proposed the SLIP algorithm.
Though the SLIP algorithm performs very well for most of the traffic
generated in [121], it is shown by C.-S. Chang, D.-S. Lee and Y.-S. Jou
in [34] that there is still a bad mode in SLIP. Other popular match-
ing algorithms include Dual Round Robin Matching (DRRM) by Y.
Li, S. Panwar and H. J. Chao [113] (see Problem 8) and wave front
arbitration by Y. Tamir and H. C. Chi [155] (see Problem 9).

N. McKeown, V. Anantharam and J. Walrand proved that 100%
throughput can be achieved in an input-buffered switch by the max-
imum weighted matching in [123]. See also [124] for a more practical
algorithm. The use of the Birkhoff-von Neumann decomposition for
further providing rate guarantees in an input-buffered switch was intro-
duced by C.-S. Chang, W.-J. Chen and H.-Y. Huang in [28]. See also
[7, 100] for improvements. Framed Birkhoff-von Neumann decomposi-
tion for packet switching can also be found in [6, 108, 79, 110]. Other
methods for providing rate guarantees in an input-buffered switch were
reported in [152, 45, 102].

Combined Input Output Queuing (CIOQ) was first introduced by
S.-T. Chuang, A. Goel, N. McKeown and B. Prabhakar in [50] for

exact emulation of an output-buffered switch. See also [153] for an
alternative algorithm of doing this.

Knockout switches were introduced by M. J. Karol and M. G.
Hluchyj in [93] and Y. S. Yeh, M. G. Hluchyj, and A. S. Acampora in

Problems 111

[170]. The fast Knockout algorithm was introduced by S.-Y. R. Li and
C.-M. Lau in [112]. Our development for the fast Knockout algorithm
in this chapter follows that in [111].

For a survey of packet switch architectures before 90’s, we refer to
the survey paper by H. Ahmadi and W. E. Denzel [3]. For a survey
of more recent development of practical switch architectures, we refer
to the book by H. J. Chao, C. H. Lam and E. Oki [43].

Problems

1. Consider the Lindley equation in (2.1)

q(t+ 1) = (q(t) + a(t+ 1) − 1)+.

Suppose that q(0) = 0. Show that

q(t) = max
0≤s≤t

[A(t) −A(s) − (t− s)],

where A(t) =
∑t

s=1 a(s) is the cumulative number of packets that
arrive by time t (for a proof, see e.g. [27], Lemma 1.3.1).

2. Continue from the previous problem. Suppose that {a(t), t ≥ 1}
is stationary, i.e., its joint distribution is invariant to time shift.
Show that {q(t), t ≥ 0} is a sequence of stochastically increasing
random variables, i.e.,

P(q(t) ≥ k) ≤ P(q(t+ 1) ≥ k)

for all k. As such, limt→∞ P(q(t) ≥ k) exists.
3. (Loynes [116]) Continue from the previous problem. Suppose that

{a(t), t ≥ 1} is stationary and ergodic with mean ρ, i.e.,

lim
t→∞

A(t)
t

= Ea(1) = ρ, a.s.

If ρ < 1, show that

lim
k→∞

lim
t→∞P(q(t) ≥ k) = 0.

As such q(t) converges to a steady state random variable.

112 2. Basic Architectures and Principles of Packet Switches

4. (Pollaczek-Khinchin formula) Continue from the previous problem.
Suppose that {a(t), t ≥ 1} is a sequence of independent and iden-
tically distributed random variables with mean ρ < 1. Let Ga(z)
be the moment generating function of a(1), i.e.,

Ga(z) =
∞∑

k=0

P(a(1) = k)zk.

From the previous problem, we know there exists a steady state
random variable q(∞) for the Lindley equation, i.e.,

P(q(∞) = k) = P((q(∞) + a(1) − 1)+ = k),

for all k. Let Gq(z) be the moment generating function of q(∞),
i.e.,

Gq(z) =
∞∑

k=0

P(q(∞) = k)zk.

Show that
Gq(z) = (1 − ρ)(z − 1)/(z −Ga(z)).

Use this moment generating function to show Proposition 2.1.5.
5. Instead of using the VOQ technique for the head-of-line blocking

problem in input-buffered switches, one partial solution is to al-
low multiple head-of-line packets for each input port. This can be
done either by looking into the first k packets in the single input
queue (window policy) or by keeping k input queues at each input
port. Use the analysis in Section 2.2.2 to show that the maximum
throughput is k + 1 − √

k2 + 1 if there are k head-of-line packets
at each input port (see e.g., [101, 157]). Hint: replace (2.29) by
E(X(t)) = k.

6. Continue from the previous problem. Suppose that every blocked
head-of-line packet is randomly replaced by another packet in the
queue. Show that the maximum throughput is 1 − e−k. In partic-
ular, if k = 1, then the maximum throughput is 1 − e−1 ≈ 0.63,
which is higher than 0.58 in the original setting. Hint: X(t) (the
number of HOL packets that are destined for output port 1 at time
t) converges to a Poisson random variable with mean k.

7. The maximum matching algorithm is the algorithm that finds the
maximum number of matched links in a bipartite graph. Show by
a counterexample that the maximum matching algorithm does not
provide 100% throughput for non-uniform traffic.

Problems 113

8. A simpler matching algorithm than SLIP is called the Dual Round
Robin Matching (DRRM) in [113]. As in SLIP, there is a pointer
associated with each input and output. The DRRM algorithm con-
sists of the following two steps:
Step 1. Request. Each input sends a request to the output that

has a non-empty VOQ and is closest to its pointer. The pointer
at that input is incremented clockwise to one location beyond
the requested output if and only if the request is granted in
Step 2.

Step 2. Grant. If an output receives any requests from the inputs,
it grants to the one that is closest to its pointer. The pointer
at that output is incremented clockwise to one location beyond
the granted input.

As each input in DRRM only sends at most one request, there is
no need to carry out the third step in SLIP. Show that DRRM
achieves 100% throughput if all the VOQs have infinite numbers
of packets. (Hint: it suffices to show that all the pointers will be
desynchronized after a fixed number of time slots for any initial
state of the pointers)

1�

2�

3�

4�

1� 2� 3� 4�

i+j=2� i+j=3� i+j=4�

Fig. 2.46. Wave front arbitration for an 4 × 4 crossbar switch

114 2. Basic Architectures and Principles of Packet Switches

9. (Wave front arbitration) Another way to find a maximal matching
in an input-buffered switch is called the wave front arbitration (see
e.g., [155]). Let Z = (zi,j) be the N ×N matrix with zi,j = 1 if the
jth VOQ at the ith input is nonempty and zi,j = 0 otherwise. Then
finding a matching is to find a sub-permutation matrix P = (pi,j)
such that pi,j ≤ zi,j . The idea of the wave front arbitration is to
find the sub-permutation matrix for the elements pi,j with identical
i+ j.
Step 1. Initially, set xi,j = yi,j = 1 for all i, j.
Step 2. For i + j = 2, . . . , 2N (see Figure 2.46), set pi,j = 1 if

zi,j = xi,j = yi,j = 1 and pi,j = 0 otherwise. If pi,j = 1, set
xi+1,j = 0 and yi,j+1 = 0. If xi,j = 0, set xi+1,j = 0. If yi,j = 0,
set yi,j+1 = 0.

Note that once xi,j is set to 0, then xk,j = 0 for all k > i. Similarly,
once yi,j is set to 0, then yi,k = 0 for all k > j. By so doing, the
variable xi,j (resp. yi,j) serves as an indicator whether there is a
conflict in the same row (resp. column). Thus, if pi,j is set to 1,
then the elements that are either in the same row or in the same
column will not be chosen. As such, the algorithm finds a maximal
matching.
(i) Show that each iteration in Step 2 in the wave front arbitration

can be implemented in parallel.
(ii) Now define

i⊕ j =

{
i+ j, if i+ j ≤ N

i+ j −N, if i+ j > N
.

Replace every “+’ in Step 2 by “⊕”. Show that Step 2 in this
modified wave front arbitration can be completed by doing the
N iterations from i⊕ j = 1 to N . Moreover, each iteration can
also be implemented in parallel.

(iii) Let Pk, k = 1, . . . , N , be the permutation matrix with its
(i, j)th element being 1 if i⊕ j = k and 0 otherwise. Show that
the modified wave front arbitration is in fact a priority match-
ing algorithm, starting from the matching P1 to the matching
PN .

(iv) Give a method to achieve fairness among all the VOQs in the
modified wave front arbitration (Hint: rotating the priorities in
the N permutation matrices P1, . . . , PN).

Problems 115

10. (Hall Theorem [71]) The vertices in a bipartite graph can be par-
titioned into two sets IN and OUT . Let A be a subset of the IN
sets. Define the neighbor of the set A, denoted by N(A), to be
the set of vertices in the OUT set that is connected by an edge
from a vertex in A. Denote by |S| the number of elements in a set
S. The Hall theorem says that there exists a perfect matching if
and only if |N(A)| ≥ |A| for any subset A of the IN set. Use the
Hall theorem to show the existence of a permutation in the first
step of the Birkhoff decomposition (Algorithm 2), i.e., for a dou-
bly stochastic matrix R̃, there exists a permutation (i1, i2, . . . , iN)
such that

∏N
k=1 r̃k,ik > 0. (Hint: map the doubly stochastic matrix

R̃ to a bipartite graph by creating an edge from vertex i in the
IN set to vertex j in the OUT set if r̃i,j > 0. As the matrix R̃ is
doubly stochastic,

|A| =
∑
i∈A

N∑
j=1

r̃i,j =
∑
i∈A

∑
j∈N(A)

r̃i,j

=
∑

j∈N(A)

∑
i∈A

r̃i,j

and ∑
i∈A

r̃i,j ≤ 1.

From this, it follows that |N(A)| ≥ |A|.)
11. One can trade off the number of permutation matrices in the

Birkhoff-von Neumann decomposition with the throughput. Con-
sider an N × N doubly substochastic matrix R = (ri,j). Suppose
that for some integer m

N∑
i=1

ri,j ≤ 1 − 1
m
, j = 1, 2, . . . , N,

and
N∑

j=1

ri,j ≤ 1 − 1
m
, i = 1, 2, . . . , N.

Let R̃ = (r̃i,j) with r̃i,j = �mNri,j�/mN , where �x� is the ceil
function that returns the smallest integer that is not smaller than
x.
(i) Show that R̃ ≥ R and that mNR̃ is an integer-valued matrix.

116 2. Basic Architectures and Principles of Packet Switches

(ii) Show that R̃ is still a doubly substochastic matrix, i.e.,

N∑
i=1

r̃i,j ≤ 1, j = 1, 2, . . . , N,

and
N∑

j=1

r̃i,j ≤ 1, i = 1, 2, . . . , N.

(iii) Use the framed Birkhoff-von Neumann decomposition to show
that the number of matrices for R̃ is at most mN .

12. The number of permutation matrices in the Birkhoff-von Neumann
decomposition is O(N2). This may not scale for a switch with a
large number of input/output ports. A simpler, but less efficient,
algorithm is proposed in [100].
(i) For an N ×N doubly substochastic matrix R = (ri,j), let φ1 =

ri1,j1 be the maximum element of the matrix R.
(ii) For k = 2, . . . , N , find the maximum element rik ,jk

in the
matrix that replaces every element in rows i1, . . . , ik−1 and
columns j1, j2, . . . , jk−1 by 0 in R.

(iii) Let P be the permutation matrix with Pik ,jk
= 1, k =

1, 2, . . . , N . Define the matrix

R1 = (R− φ1P1)+.

(iv) If R1 is not a zero matrix, continue the decomposition from
(i).

Show the following properties for this algorithm.
(i) The algorithm will be stopped by at most 2N − 1 steps.
(ii) The algorithm generates a set of positive numbers φk and per-

mutation matrices Pk, k = 1, . . . ,K, such that

R ≤
∑
k

φkPk.

(Note that K ≤ 2N − 1 from (i)).
(iii) φk ≤ 1/(1 + �k/2�) for all k.
(iv)

∑
k φk ≤ 2 logN + 1.

13. Though the maximum weighted matching algorithm achieves 100%
throughput for a single input-buffered switches, it is shown (see
e.g., [8]) that it does not achieve 100% throughput in a network

Problems 117

of input-buffered switches. Show that if the rate for each flow in
a network of input-buffered switches is known, then the Birkhoff-
von Neumann decomposition can be used in every input-buffered
switch to achieve 100% throughput.

14. Consider the doubly stochastic matrix

R̃ =

⎡
⎢⎣ 0.5 0.2 0.3

0.1 0.3 0.6
0.4 0.5 0.1

⎤
⎥⎦ .

Find a Birkhoff decomposition of R̃.
15. (Framed Birkhoff-von Neumann switch) Consider a 3 × 3 framed

Birkhoff-von Neumann switch with frame size 10. At time t, the
10 sub-permutation matrices are as follows:

P̃1 =

⎡
⎢⎣ 0 1 0

0 0 1
1 0 0

⎤
⎥⎦ , P̃2 =

⎡
⎢⎣ 0 0 0

0 0 1
1 0 0

⎤
⎥⎦ , P̃3 =

⎡
⎢⎣ 1 0 0

0 0 1
0 1 0

⎤
⎥⎦ ,

P̃4 =

⎡
⎢⎣ 1 0 0

0 0 0
0 1 0

⎤
⎥⎦ , P̃5 =

⎡
⎢⎣ 1 0 0

0 0 0
0 1 0

⎤
⎥⎦ , P̃6 =

⎡
⎢⎣ 1 0 0

0 0 0
0 1 0

⎤
⎥⎦ ,

P̃7 =

⎡
⎢⎣ 0 0 1

0 1 0
0 0 0

⎤
⎥⎦ , P̃8 =

⎡
⎢⎣ 0 0 1

0 1 0
0 0 0

⎤
⎥⎦ , P̃9 =

⎡
⎢⎣ 0 0 0

0 0 0
0 0 1

⎤
⎥⎦ ,

P̃10 =

⎡
⎢⎣ 0 0 1

1 0 0
0 1 0

⎤
⎥⎦ .

a) Find Paull’s matrix to represent the 10 sub-permutation ma-
trices.

b) Suppose that we would like to increase one unit of rate from
input 3 to output 3. Use the Slepian-Duguid algorithm to find
Paull’s matrix to represent the 10 sub-permutation matrices
after the rate has been increased.

16. In Figure 2.47, we show a three-stage 9× 9 rearrangeable network.
Consider the following permutation

π =

(
1 2 3 4 5 6 7 8 9
4 5 9 7 8 6 1 2 3

)
.

118 2. Basic Architectures and Principles of Packet Switches

1�

2�

3�

4�

5�

6�

7�

8�

9�

1�

2�

3�

4�

5�

6�

7�

8�

9�

Fig. 2.47. A 9 × 9 switch

a) Use the Birkhoff-von Neumann decomposition to find all the
connection patterns in the 9 3 × 3 switches that realizes π.
(Hint: you need to decompose the frame matrix.)

b) Use the Lee-Hwang-Capinelli algorithm to find all the connec-
tion patterns in the 9 3× 3 switches that realizes π. (Hint: you
need to convert the frame matrix into a specification matrix.)

17. In Figure 2.48, we show the connection patterns of a three-stage
9 × 9 rearrangeable network for the following sub-permutation(

1 2 3 4 5 6 7 8 9
4 − 9 − 8 6 1 2 3

)
.

a) Name the three switches in the second stage from the top to
the bottom: switch a, switch b and switch c. Write down the
Paull matrix that represents the three connection patterns for
the three switches in the second stage.

b) From the Paull matrix, use the Slepian-Duguid algorithm to
find all the connection patterns in the 9 3 × 3 switches that
realizes the following sub-permutation(

1 2 3 4 5 6 7 8 9
4 7 9 − 8 6 1 2 3

)
.

Problems 119

1�

2�

3�

4�

5�

6�

7�

8�

9�

1�

2�

3�

4�

5�

6�

7�

8�

9�

Fig. 2.48. The connection patterns in a 9 × 9 switch

18. For an N × N Benes network, show that the number of 2 × 2
switches is N log2N − N

2 (Hint: let N = 2k and establish the
recursive equation B(k) = 2k + 2B(k − 1) with B(1) = 1).

19. As in Example 2.4.6, find a feasible set of connection patterns in
the 8 × 8 Benes network for the following permutation matrix:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

20. It is known that anN×N Benes network is a rearrangeable network
that realizes all the permutations. However, it is not a nonblocking
network. To construct a nonblocking network, one may use parallel
Benes networks as shown in Figure 2.49. Such a construction is
known as the Cantor network [21]. In Figure 2.49, there are m
N × N Benes networks. Each input is connected to one of the N
inputs in every Benes network via a 1×m switch and each output
is connected to one of the N outputs in every Benes network via
an m× 1 switch. In fact, a Cantor network is a special case of the

120 2. Basic Architectures and Principles of Packet Switches

Fig. 2.49. The Cantor network

three stage Clos network with the switches in the middle stage
replaced by the Benes networks.
(i) Let Z(k) be the number of 2 × 2 switches at the kth stage of

the m Benes networks that are reachable by an input in the
Cantor network. Clearly, Z(1) = m. Show that

Z(k) = 2Z(k − 1) − 2k−2.

(ii) Use the above recursive equation to show that

Z(log2N) =
1
2
Nm− 1

4
(log2N − 1)N.

(iii) Note that there are Nm/2 2×2 switches at the log2N
th stage

of the m Benes networks. As the Cantor network is symmetric,
the number of 2 × 2 switches at the log2N

th stage that are
reachable by an output is also Z(log2N). Use this to show
that the Cantor network is nonblocking if m > log2N − 1.
(Hint: there must exist a 2× 2 switch at the central stage that
is reachable from both the input and the output if

Z(log2N) + Z(log2N) >
Nm

2
.)

(iv) From (iii), it follows that m = log2N suffices to ensure that
the Cantor network is nonblocking. Show that the complexity
of such a Cantor network is O(N(log2N)2).

21. (Shuffle exchange network [73]) There are several networks that
are topologically equivalent to banyan networks. One of them is
the shuffle exchange network. As the banyan network, an N × N

Problems 121

000�
001�

010�
011�

100�
101�

110�
111�

000�
001�

010�
011�

100�
101�

110�
111�

00�

01�

10�

11�

00�

01�

10�

11�

00�

01�

10�

11�

000�

001�

010�

011�

100�

101�

110�

111�

000�

001�

010�

011�

100�

101�

110�

111�

000�

001�

010�

011�

100�

101�

110�

111�

Fig. 2.50. An 8 × 8 shuffle exchange network

shuffle exchange network consists of log2N stages. Each stage con-
sists of N/2 2 × 2 switches. In each stage, the upper N/2 inputs
are connected to the upper links of the N/2 2×2 switches, and the
lower N/2 inputs are connected to the lower links of the N/2 2× 2
switches. In Figure 2.50, we show an 8×8 shuffle exchange network.
As the shuffle exchange network is topologically equivalent to the
banyan network, it also has the self routing property. If we index
each output by its binary representation, then a packet destined
for a particular output takes the upper (resp. lower) output at the
kth stage if the kth most significant bit of its binary representation
is 0 (resp. 1). Number each switch at each stage from 0 to N/2− 1
with the binary representation. Number the upper (lower) output
link of a switch by appending a 0 (resp. 1) to the binary repre-
sentation of the switch. Consider a packet from input i to output
j. Let n = log2N and i1i2 . . . in (resp. j1j2 . . . jn) be the binary
representation of i (resp. j). Show that the packet is routed to link
ik+1 . . . inj1 . . . jk at the output of the kth stage, k = 1, 2, . . . , n.

22. Continue from the previous problem. Consider another packet from
input i′ to output j′. Let i′1i′2 . . . i′n (resp. j′1j′2 . . . j′n) be the binary
representation of i′ (resp. j′). Suppose that i′ > i, j′ > j, and
j′ − j ≥ i′ − i. Show that these two packets do not share the
same link. As a result, as long as the monotone and consecutive
condition is satisfied, there is no conflict in the shuffle exchange
network. (Hint: prove by contradiction. Suppose both packets share
the same output link at the kth stage for some k. Then

122 2. Basic Architectures and Principles of Packet Switches

ik+1 . . . inj1 . . . jk = i′k+1 . . . i
′
nj

′
1 . . . j

′
k.

As i′ > i, it follows that i′− i ≥ 2n−k. On the other hand, we have
j′ − j < 2n−k. This then implies i′ − i > j′ − j and we reach a
contradiction.)

23. Merge-sort algorithm is a sequential algorithm that sorts a list
into a monotonically increasing list. It uses a divide and conquer
strategy as follows:
Algorithm Merge-sort
Input: An list a = (a1, a2, . . . , aN).
Procedure Sort:
Sort(a)=Merge(Sort((a1, . . . , aN/2)),Sort((aN/2+1, . . . , aN))).
Procedure Merge:
Merge((a1, . . . , am),(b1, . . . , bk))
=(a1, Merge((a2, . . . , am),(b1, . . . , bk))) if a1 ≤ b1,
=(b1, Merge((a1, . . . , am),(b2, . . . , bk))) if a1 > b1.
Show that the complexity of this algorithm is O(N log2N).

24. Recall that a bitonic list with length N is a list that is monoton-
ically increasing to some k and then monotonically decreasing to
N .
a) (Unique cross over property) Consider a circular bitonic list

b = (b1, b2, . . . , bN). Break this circular bitonic list into two
equal halves (b1, . . . , bN/2) and (bN/2+1, . . . , bN). Without loss
of generality, assume that b1 > bN/2+1. Show that there exists a
unique k such that bi > bN/2+i for all 1 ≤ i ≤ k and bi < bN/2+i

for all k < i ≤ N/2.
b) (H-theorem) Let bMi = max(bi, bN/2+i) for i = 1, . . . , N/2,

and bmi = min(bi, bN/2+i) for i = 1, . . . , N/2. Show that both
bM = (bM1 , . . . , b

M
N/2) and bm = (bm1 , . . . , b

m
N/2) are circular

bitonic lists. Moreover, the largest element in bm is not larger
than the smallest element in bM .

25. (Batcher sorting theorem [13]) Use the results in the previous prob-
lem to show Theorem 2.5.5. (Hint: prove by induction. The N/2
2×2 down sorters at the first stage breaks the input circular bitonic
list into two equal halves, bM and bm. As both bM and bm are cir-
cular bitonic lists, they can be sorted by the two N

2 × N
2 bitonic

down sorters at the second stage.)
26. (Outline of the proof for Theorem 2.5.3) To prove Theorem 2.5.3,

one needs to show that given an N×N circular unimodal permuta-
tion π, the connection pattern realized (by the unique routing path

Problems 123

property) at every switch inside the X2 construction is a circular
unimodal permutation. For this, one first dissects the permutation
π into two parts: the increasing part and the decreasing part. For
instance, for the permutation π in Example 2.5.2, the increasing
part is (

5 6 7 8 9 10 11 12 13
1 3 5 7 9 13 16 19 20

)
.

and the decreasing part is(
14 15 16 17 18 19 20 1 2 3 4
18 17 15 14 12 11 10 8 6 4 2

)
.

Further partition the increasing part into consecutive segments
IS1, IS2, . . . , ISq so that ISm (which may be null) contains the
outputs in {(m− 1)p+1, . . . ,mp}. For instance, in Example 2.5.2,
one has p = 4, q = 5, and

IS1 =

(
5 6
1 3

)
, IS2 =

(
7 8
5 7

)
, IS3 =

(
9
9

)
,

IS4 =

(
10 11
13 16

)
, IS5 =

(
12 13
19 20

)
.

Similarly, partition the decreasing part into consecutive segments
DS1,DS2, . . . ,DSq so that DSm (which may be null) contains the
outputs in {(m− 1)p+1, . . . ,mp}. For instance, in Example 2.5.2,
one has

DS1 =

(
3 4
4 2

)
, DS2 =

(
1 2
8 6

)
, DS3 =

(
18 19 20
12 11 10

)
,

DS4 =

(
16 17
15 14

)
, DS5 =

(
14 15
18 17

)
.

(i) Show that for all m = 1, 2, . . . , q, the set ISm ∪ ISm−1 ∪ . . . ∪
IS1 ∪ DS1 ∪ . . . ∪ DSm−1 ∪ DSm is a cyclically consecutive
segment on which the circular unimodal mapping π induces a
circular unimodal mapping.

(ii) Show that the set ISm∪ISm−1∪. . .∪IS1∪DS1∪. . .∪DSm−1∪
DSm represents m inputs on every switch at the first stage.

124 2. Basic Architectures and Principles of Packet Switches

(iii) Show by induction on m that the set ISm ∪DSm represents
exactly one input of every switch at the first stage. This shows
that there is no conflicting path inside the two-stage construc-
tion.

(iv) Note that a subset of the circular unimodal permutation π is
also a circular unimodal mapping. Use this property to show
that the connection pattern for every switch at the first stage
is a circular unimodal permutation.

(v) Use the property derived in (i) to show (by induction on m)
that the connection pattern for every switch at the second stage
is a circular unimodal permutation.

27. An N×N switch is called a compressor if it realizes the set of sub-
permutations that satisfy the following two conditions: (i) there
exists a circular shift such that the active outputs are consecutive,
and (ii) the mapping between active inputs and outputs is mono-
tonically increasing after the circular shift. Show that an N × N
UC nonblocking switch is also a compressor.

D�

1� 2� 3� 4�
Outputs�

Inputs�

D�

D�

D�

D� D�

D�

D�

D� D�

D�

D�

D�

D�D�

1� 2� 3� 4�
Outputs�

Inputs�

D�

D�

D�

D� D�

D�

D�

D� D�

D�

D�

D�

D�

Fig. 2.51. The 8-to-4 Knockout concentrator/sorter

28. (Compressor theorem ([111], pp. 104)) Continue from the previous
problem. Consider the two-stage construction in Figure 2.35, i.e.,
the 2X construction. If all the p× p switches at the first stage and

Problems 125

the q × q switches at the second stage are compressors, then the
constructed N ×N switch is also a compressor.

29. Continue from the previous problem. Show that the L-to-1 mul-
tiplexer in the Knockout switch in Figure 2.43. is indeed a 2X
construction of a compressor ([111], pp. 105). (Hint: the L × L
shifter is a compressor in space and the L parallel buffers served
in a round robin fashion is a compressor in time.)

30. Continue from the previous problem. Show that the L× L shifter
can be implemented by log2 L stages of L/2 2 × 2 switches. (Hint:
use the 2X construction recursively for the compressor.)

31. Consider the L-to-1 multiplexer in the Knockout switch (see Figure
2.43). Suppose that L = 5 and the switch is empty at time 0.
Furthermore, there are 3 arrivals at time 1, 4 arrivals at time 2, 2
arrivals at time 3, ... Find the connection pattern of the shifter at
time 3. Note that the shifter is a 5 × 5 switch.

32. Design an 8-to-4 Knockout concentrator/sorter without using the
fast Knockout stages (see Figure 2.51).

126 2. Basic Architectures and Principles of Packet Switches

3. Load Balanced Birkhoff-von Neumann
switches

As described in Chapter 2, the problem of shared memory switches
(and shared medium switches) is the limitation of the memory access
speed. To gain the needed speedup, input-buffered switches use paral-
lel buffers at the inputs. As such, they are known to be more scalable
than shared memory switches. However, synchronized parallel trans-
missions among parallel input buffers in every time slot require careful
coordination to avoid conflicts. Thus, finding a scalable method (and
architecture) for conflict resolution becomes the fundamental design
problem of input-buffered switches.

Traditionally, conflict resolution is solved by finding a matching
between inputs and outputs per time slot (see e.g., [92, 6, 155, 121,
123, 124, 56, 113]). Two steps are needed for finding a matching.

(i) Communication overhead: one has to gather the information of the
buffers at the inputs.

(ii) Computation overhead: based on the gathered information, one
then applies a certain algorithm to find a matching.

Most of the works in the literature pay more attention to reducing the
computation overhead by finding scalable matching algorithms, e.g.,
wavefront arbitration in [155], PIM in [6], SLIP in [121], and DRRM
in [113]. However, in our view, it is the communication overhead that
makes matching per time slot difficult to scale. To see this, suppose
that there are N inputs/outputs and each input implements N virtual
output queues (VOQ). If we use a single bit to indicate whether a
VOQ is empty, then we have to transmit N bits from each input (to
a central arbiter or to an output) in every time slot. For instance,
transmitting such N bit information in PIM and SLIP is implemented
by an independent circuit that sends out parallel requests. Suppose
that the packet size is chosen to be 64 bytes. Then building a switch
with more than 512 inputs/outputs will have more communication
overhead than transmitting the data itself.

128 3. Load Balanced Birkhoff-von Neumann switches

To reduce the communication overhead, one approach is to gather
the long term statistics of the VOQs, e.g., the average arrival rates,
and then use such information to find a sequence of pre-determined
connection patterns (see e.g., [6, 108, 79, 28, 29, 7]). Most of the works
along this line are based on the well-known Birkhoff-von Neumann
algorithm [17, 164] that decomposes a doubly substochastic matrix
into a convex combination of (sub)permutation matrices. For an N ×
N switch, the computation complexity for the Birkhoff-von Neumann
decomposition is O(N4.5) and the number of permutation matrices
produced by the decomposition is O(N2) (see e.g., [28, 29]). The need
for storing the O(N2) number of permutation matrices in the Birkhoff-
von Neumann switch makes it difficult to scale for a large N . Even
though there are decomposition methods that reduce the number of
permutation matrices (see e.g., [100]), they in general do not have
good throughput. For instance, the throughput in [100] is O(1/ logN)
and it tends to 0 when N is large. Another problem of using long
term statistics is that the switch does not adapt too well to traffic
fluctuation.

It would be ideal if there is a switch architecture that yields good
throughput without the need for gathering traffic information (no com-
munication overhead) and computing connection patterns (no com-
putation overhead). In this chapter, we will introduce some recent
works on the load balanced Birkhoff-von Neumann switches (see e.g.,
[34, 35, 98, 40, 36]) that shed some light along this direction.

3.1 Load balanced Birkhoff-von Neumann switches:
one-stage buffering

As described in Section 2.3, the Birkhoff-von Neumann switch requires
the information of the arrival rate of each input-output pair in order
to achieve 100% throughput. Another problem of such a switch is that
the number of permutation matrices deduced from the Birkhoff-von
Neumann decomposition algorithm is O(N2), which may not scale for
switches with a large number of input/output ports. To cope with
these problems, in this section we introduce the switch architecture
proposed in [34].

The main idea in [34] is that the Birkhoff-von Neumann
decomposition is easy if the incoming traffic is uniform.

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 129

Why don’t we add something in front of the Birkhoff-
von Neumann switch so that the traffic coming to the
Birkhoff-von Neumann switch is uniform?

The switch architecture in [34] consists of two-stage switching fab-
rics and one-stage buffering. The first stage performs load balanc-
ing, while the second stage is a Birkhoff-von Neumann input-buffered
switch that performs switching for load balanced traffic. Such a switch
is called the load balanced Birkhoff-von Neumann switch in [34]. The
switch has the following advantages:

(i) Scalability: the on-line complexity of the scheduling algorithm in
the switch is O(1).

(ii) Low hardware complexity: only two crossbar switch fabrics and
buffers between them are required. Neither internal speedup nor
rate estimation is needed in the switch.

(iii) 100% throughput: under a mild technical condition on the input
traffic, the load balanced Birkhoff-von Neumann switch achieves
100% throughput as an output-buffered switch for both unicast
and multicast traffic with fan-out splitting.

(iv) Low average delay in heavy load and bursty traffic: when input
traffic is bursty, load balancing is very effective in reducing de-
lay, and the average delay of the load balanced Birkhoff-von Neu-
mann switch is proven to converge to that of an output-buffered
switch under heavy load. Also, by simulations, it is shown that load
balancing is more effective than the conflict resolution algorithm,
SLIP, in heavy load.

(v) Efficient buffer usage: when both the load balanced Birkhoff-von
Neumann switch and the corresponding output-buffered switch are
allocated with the same finite amount of buffer at each port, the
packet loss probability in the load balanced Birkhoff-von Neumann
switch is much smaller than that in an output-buffered switch when
the buffer is large.

The main drawback of the switch is that FIFO might be violated
for packets from the same input. One quick fix is to add a resequencing
buffer at the output port. However, this increases the complexity of
the hardware design. How to perform resequencing efficiently will be
addressed in Section 3.3.

130 3. Load Balanced Birkhoff-von Neumann switches

3.1.1 The switch architecture

The load balanced Birkhoff-von Neumann switch consists of two stages
(see Figure 3.1). The first stage performs load balancing and the sec-
ond stage performs switching. The second stage is a framed Birkhoff-
von Neumann switch with the frame size being equal to the number
of input/output ports. To be precise, suppose that the number of in-
put/output ports isN . As the frame size isN , there areN permutation
matrices, P1, P2, . . . , PN , that need to be defined. For this, we choose
any N permutation matrices such that

P1 + P2 + . . . + PN = e, (3.1)

where e is an N ×N matrix with all its elements being 1. By so doing,
each input-output pair is assigned a time slot in every frame. Thus,
the allocated rate for each input-output pair is exactly 1

N . This implies
that 100% throughput can be achieved if the input traffic to the second
stage is uniform, which is exactly what we would like to do at the first
stage.

�

��������	

�� �
�����

������

�

�

�

����	���������

Fig. 3.1. The switch architecture

One way to find N permutation matrices that satisfy (3.1) is to use
a one-cycle permutation matrix. An N ×N permutation matrix P is
called an one-cycle permutation matrix if for all i, N is the smallest
integer such that PN

i,i = 1. Note that for a permutation matrix P , there
is a corresponding permutation π : {1, 2, . . . , N}
→ {1, 2, . . . , N} with
π(i) = j if Pi,j = 1. Define π(2) to be the composite mapping π ◦ π
and π(k) = π(k−1) ◦ π, k > 1. A permutation matrix P is a one-cycle
permutation matrix if the corresponding permutation is also a one-
cycle permutation, i.e., N is the smallest integer such that π(N)(i) = i
for all i.

For a one-cycle permutation matrix P , we may define Pk = P k,
k = 1, 2, . . . , N and the N matrices generated this way satisfy (3.1).

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 131

Example 3.1.1. (One-cycle permutation matrix) A typical one-
cycle permutation matrix is the circular-shift matrix with Pi,j = 1
when j = (i mod N) + 1, and Pi,j = 0 otherwise. If we use the
circular-shift matrix in the second stage of a 4 × 4 switch, we then
have

P1 = P =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎥⎦ , P2 = P 2 =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎥⎦ ,

P3 = P 3 =

⎡
⎢⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎥⎦ , P4 = P 4 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ .

Clearly, we have

P1 + P2 + P3 + P4 =

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎦ .

Note that the corresponding permutation for P is

π =

(
1 2 3 4
2 3 4 1

)
.

Example 3.1.2. (Two-cycle permutation matrix) To provide
more intuition on the one-cycle permutation matrix, consider the fol-
lowing permutation matrix

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

The corresponding permutation for P is

π =

(
1 2 3 4 5
2 1 4 5 3

)
.

132 3. Load Balanced Birkhoff-von Neumann switches

It is clear that π can be decomposed as the following two cycles(
1 2
2 1

)
,

(
3 4 5
4 5 3

)
.

Example 3.1.3. (Symmetric Time Division Multiplexing (TDM)
switch) In this example, we introduce another method to generate
N permutation matrices that satisfy (3.1). For k = 1, . . . , N , let Pk be
the permutation matrix with its (i, j)th element being 1 if

(i+ j) mod N = (k + 1) mod N

and 0 otherwise. For instance, for N = 4, we have

P1 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎥⎦ , P2 =

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎥⎦ ,

P3 =

⎡
⎢⎢⎢⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦ , P4 =

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎦ .

Clearly, we still have

P1 + P2 + P3 + P4 =

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎦ .

Note that all the N permutation matrices generated this way are sym-
metric, i.e., the inverse permutations are themselves! Switch fabrics
that use these N permutation matrices are called symmetric time di-
vision multiplexing switches and they will be addressed further in Sec-
tion 3.2.2.

Now we show how load balancing is performed at the first stage.
The first stage is an unbuffered crossbar switch. Packets arriving at
the first stage at time t are switched instantly to the second stage
according to the connection pattern set up at the crossbar switch. To

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 133

be precise, let a(t) = (ai,j(t)) be the N × N traffic matrix at time
t, where ai,j(t) is the number of packet arriving at the ith input port
and destined to the jth output port at time t. As there is at most one
packet arriving at an input port per time slot, ai,j(t)’s are indicator
variables. Also, let P1(t) be the N × N permutation matrix assigned
at time t at the first stage and b(t) = (bi,j(t)) be the N × N traffic
matrix entering the second stage, where bi,j(t) is the number of packet
arriving at the ith input port of the second stage and destined to the
jth output port at time t. Then we have

b(t) = P T
1 (t)a(t), (3.2)

where P T
1 (t) is the transpose of P1(t).

a�(t)� b�(t)�

1�

3�

3�

2�

2�

1�

3�

3�

Fig. 3.2. Load balancing at the first stage

Example 3.1.4. As shown in Figure 3.2, suppose that at time t there
is a packet arriving at input 1 and the packet is destined for output 1.
At the same time, a packet destined for output 3 arrives at input 2, a
packet destined for output 3 arrives at input 3, and a packet destined
for output 2 arrives at input 4. Thus,

a(t) =

⎡
⎢⎢⎢⎣

1 0 0 0
0 0 1 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎥⎦ .

The connection pattern at the first switch is the circular-shift matrix
P in Example 3.1.1, i.e.,

134 3. Load Balanced Birkhoff-von Neumann switches

P (t) = P =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎥⎦ .

As shown in Figure 3.2, a packet destined for output 2 (resp. 1,3,3)
arriving input 1 (resp. 2,3,4) of the second stage. Thus,

b(t) =

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0

⎤
⎥⎥⎥⎦ .

It is easy to verify that (3.2) indeed holds.

To perform load balancing, we simply set up the permutation ma-
trices P1(t) periodically as what we do in the second stage. Thus, the
connection patterns at the first stage also have a framing structure with
frame size N , and the N permutation matrices in each frame satisfy
(3.1). Also, the connection patterns at the first stage are independent
of the traffic coming to the switch.

Let R = (ri,j) be the rate matrix of a(t). From the no overbooking
conditions, we know that R is a doubly substochastic matrix, i.e., all
the row sums and column sums of R are less than or equal to 1. As
the N permutation matrices in each frame satisfy (3.1), we also have

N∑
s=1

P T
1 (s) = e.

Thus, the long run average of P T
1 (t) is the same as its mean and it is

equal to 1
N e, i.e.,

lim
t→∞

1
t

t∑
s=1

P T
1 (s) =

1
N

N∑
s=1

P T
1 (s) = EP T

1 (t) =
1
N

e, a.s. (3.3)

Since P1(t) is independent of the arrivals,

E[b(t)] = E[P T
1 (t)a(t)] = E[P T

1 (t)]E[a(t)] =
1
N

e R.

As R is a doubly substochastic matrix, we then have

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 135

Eb(t) ≤ 1
N

e. (3.4)

Thus, the traffic entering the second stage is “uniform” in the sense
that the rate between any input-output pair at the second stage is
bounded above by 1/N . As the allocated rate for any input-output
pair at the second stage is exactly 1/N , we then guarantee to have
100% throughput for the load balanced Birkhoff-von Neumann switch
under the no overbooking conditions (the formal proof can be found
in [34]).

It is worth pointing out that the inequality in (3.4) only requires the
column sums of the rate matrix R are not greater than 1. This implies
that the result for 100% throughput also holds for multicast traffic
if fan-out splitting (packet duplication) is done at the buffer between
the two stages. Further discussions along this line will be addressed in
details in Section 3.3.

One of the main advantages of the two-stage load balanced Birkhoff-
von Neumann switch is the reduction of complexity. In comparison
with the original Birkhoff-von Neumann input-buffered switch, there is
no need for rate estimation in the load balanced Birkhoff-von Neumann
switch. As a result, there is also no need to perform the Birkhoff-
von Neumann capacity decomposition. For the number of permutation
matrices needed in the switch, the complexity is reduced from O(N2)
to O(N). Also, the on-line computational complexity for the scheduling
algorithm is reduced from O(logN) to O(1) as the scheduling policy
is now simply periodic. With all the reduction of complexity, the load
balanced Birkhoff-von Neumann switch still has good performance,
including 100% throughput.

3.1.2 Ergodicity

We note that there is a catch in the intuitive argument in the previous
section for the result of 100% throughput. The sequence {b(t), t ≥ 1}
may not be ergodic at all. Before we explain this, we first review the
concept of ergodicity in the following example.

Example 3.1.5. (Permutation and ergodicity) As described in
Section 2.1.2, a stochastic sequence {X(n), n ≥ 1} is stationary if its
joint distribution is invariant with respect to time shift, i.e., for any
time shift m and any k-dimensional joint distribution,

136 3. Load Balanced Birkhoff-von Neumann switches

P(X(1) ≤ x1,X(2) ≤ x2, . . . ,X(k) ≤ xk)
= P((X(1 +m) ≤ x1,X(2 +m) ≤ x2, . . . ,X(k +m) ≤ xk).

(3.5)

A stationary sequence {X(n), n ≥ 1} is ergodic if its long run average
is the same as its ensemble average, i.e., for any function f with k
variables

lim
n→∞

1
n

n−1∑
m=0

f
(
X(1 +m),X(2 +m), . . . X(k +m)

)

= E
[
f
(
X(1),X(2), . . . ,X(k)

)]
, a.s. (3.6)

Consider an N ×N permutation matrix P and its associated per-
mutation π. Recall that π(i) = j if Pi,j = 1. Let X(1) be a uniform
random variable over {1, 2, . . . , N}. Define the stochastic sequence
{X(n), n ≥ 1} recursively as follows:

X(n+ 1) = π(X(n)). (3.7)

Let μ(n) be the N -vector that represents the probability mass function
of X(n). As X(1) is uniform, we have for all i = 1, 2, . . . , N ,

P(X(1) = i) =
1
N
.

Thus,

μ(1) = (
1
N
,

1
N
, . . . ,

1
N

). (3.8)

In view of the recursive construction in (3.7), it is easy to see that

μ(n+ 1) = μ(n)P. (3.9)

From (3.8), it then follows that for all n,

μ(n) = (
1
N
,

1
N
, . . . ,

1
N

), (3.10)

and the stochastic sequence {X(n), n ≥ 1} is stationary.
If P is a one-cycle permutation matrix, it is easy to see that

lim
n→∞

1
n

n∑
m=1

X(m) =
1
N

N∑
m=1

X(m)

=
1
N

N∑
m=1

m =
N + 1

2
= E[X(1)].

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 137

One can further verify that {X(n), n ≥ 1} is ergodic if P is a one-cycle
permutation matrix.

On the other hand, suppose that P is the two-cycle permutation
matrix in Example 3.1.2. Then

lim
n→∞

1
n

n∑
m=1

X(m) =

{
3
2 , if X(1) = 1 or 2
4, if X(1) = 3, 4, or 5

.

The stochastic sequence {X(n), n ≥ 1} is not ergodic and it can be
decomposed as two ergodic sequences.

Readers who are familiar with Markov chain may realize that the
stochastic sequence {X(n), n ≥ 1} generated this way is in fact a
Markov chain with the probability transition matrix P (see [129]). A
Markov chain is ergodic if it is irreducible, i.e., it cannot be decomposed
as two or more separate Markov chains.

To ensure that the sequence {b(t), t ≥ 1} is ergodic, it is shown in
[34] that one needs the sequence {a(t), t ≥ 1} to be weakly mixing,
a stronger technical condition than ergodicity. Both weak mixing and
ergodicity are basically measures of how fast a stochastic sequence loses
memory (see e.g., Petersen [137] and Nadkarni [127] for more details).
In the following example, we show that if the weakly mixing condition
is not satisfied, then 100% throughput cannot be guaranteed.

Example 3.1.6. (Weak mixing and ergodicity) To see the reason
that we need the weak mixing condition, consider the case with N = 2.
In this case, the only one-cycle permutation is

P =

[
0 1
1 0

]
.

Consider the periodic sequence P (t) = P t′ with t′ = t mod 2. Let
P1(t) = P (t+U1) and a(t) = z(t)P (t+ Ũ1), where U1 and Ũ1 are two
independent Bernoulli random variables with P(U1 = 0) = P(U1 =
1) = P(Ũ1 = 0) = P(Ũ1 = 1) = 1/2, and {z(t), t ≥ 1} is a sequence of
i.i.d. Bernoulli random variables with P(z(1) = 1) = 0.9 and P(z(1) =
0) = 0.1. Thus, we have the doubly substochastic rate matrix

R = E[a(t)] = E[z(t)]E[P (t + Ũ1)] =

[
0.45 0.45
0.45 0.45

]
,

138 3. Load Balanced Birkhoff-von Neumann switches

and the no overbooking conditions are satisfied.
Though both {P1(t), t ≥ 1} and {a(t), t ≥ 1} constructed this way

are ergodic, the process {b(t) = P T
1 (t)a(t), t ≥ 1} is not ergodic. This

can be easily seen from the fact that it can be decomposed as two
ergodic sequences. When U1 �= Ũ1, we have b(t) = z(t)P for all t. On
the other hand, when U1 = Ũ1, we have b(t) = z(t)P 2 for all t (note
that P 2 is simply the identity matrix). For the case that b(t) = z(t)P ,
the rate matrix entering the second stage is[

0 0.9
0.9 0

]
.

For the other case, the rate matrix entering the second stage is[
0.9 0
0 0.9

]
.

In either case, the buffer at each input port of the second stage goes
to infinity as t→ ∞ when {b(t), t ≥ 1} is fed into second stage.

The intuition behind this example is that load balancing at the
first stage cannot be achieved if the input traffic is synchronized with
the scheduled permutation matrices. To fix this problem, one can use
a randomization approach [161, 126] and choose P1(t) randomly from
P1, P2, . . . , PN for every t. However, as pointed out in [122], it is not
easy to implement randomness in high speed. Moreover, randomization
increases variance and hence results in poorer performance than a
deterministic round-robin approach (see e.g., [154]).

3.1.3 Uniform i.i.d. traffic model

To carry out the analysis for more specific performance measures, such
as average queue length and average delay, we need to have a more
specific model for the input. In this section, we consider a uniform i.i.d.
traffic model. With probability ρ, a packet arrives at each input (of
the first stage) for every time slot. This is independent of everything
else. The destination of an arriving packet is chosen uniformly among
the N output ports. This is also independent of everything else. Based
on this traffic model, we make the following two observations:

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 139

(i) Load balancing at the first stage has no effect at all (as the traf-
fic is already balanced). To be precise, {b(t), t ≥ 1} has the same
joint distribution as {a(t), t ≥ 1}. Moreover, {bi,j(t), t ≥ 1} and
{ai,j(t), t ≥ 1} for all i and j are sequences of i.i.d. Bernoulli ran-
dom variables with mean ρ

N .
(ii) Let qi,j(t) be the number of packets in the jth VOQ of the ith input

of the second stage at time t. As the traffic is uniform, qi,j(t)’s are
all identically distributed.

Without loss of generality, let us look at the recursive equation
for q1,1(t). Note from (i) that the arrival sequence to q1,1 is simply a
sequence of i.i.d. Bernoulli random variables with mean ρ

N . Let T be
a time that input 1 of the second stage is connected to output 1. As
such a connection happens every N time slots, q1,1 is not served during
[T + 1, T +N − 1]. We then have

q1,1(T + s) = q1,1(T) +
s∑

k=1

b1,1(T + k), s = 1, . . . , N − 1,

(3.11)

q1,1(T +N) = (q1,1(T) +
N∑

k=1

b1,1(T + k) − 1)+. (3.12)

Note that (3.12) has the same form as the Lindley recursion in
(2.1). As b1,1(t)’s are i.i.d. Bernoulli random variables with mean ρ/N ,
one can easily compute that

E[
N∑

k=1

b1,1(T + k)] = ρ, (3.13)

Var[
N∑

k=1

b1,1(T + k)] = ρ− ρ2

N
. (3.14)

In the steady state, we have from Proposition 2.1.5 (with σ2 in (3.14))
that

Eq1,1(T) =
N − 1
N

ρ2

2(1 − ρ)
. (3.15)

From (3.11), it follows that

Eq1,1(T + s) = Eq1,1(T) + s
ρ

N
, s = 1, . . . , N − 1. (3.16)

This then implies that in the steady state

140 3. Load Balanced Birkhoff-von Neumann switches

Eq1,1(∞) =
1
N

N−1∑
s=0

Eq1,1(T + s) =
N − 1
N

ρ

2(1 − ρ)
. (3.17)

Let d̄1 be the average delay for a packet. As the average arrival rate
to q1,1 is ρ

N , we have from Little’s formula that

d̄1 =
Eq1,1(∞)

ρ
N

=
N − 1

2(1 − ρ)
. (3.18)

To compare the performance with the corresponding output-buffered
switch, let qo

1(t) be the number of packets at the buffer of the first out-
put port at time t. As in (2.1), the corresponding Lindley equation
is

qo
1(t+ 1) = (qo

1(t) +
N∑

i=1

ai,1(t+ 1) − 1)+. (3.19)

Note that (3.19) and (3.12) are stochastically identical as both
{bi,j(t), t ≥ 1} and {ai,j(t), t ≥ 1} are sequences of i.i.d. Bernoulli
random variables with mean ρ

N . This then implies that

Eqo
1(∞) = Eq1,1(T) =

N − 1
N

ρ2

2(1 − ρ)
.

Let d̄o
1 be the average delay for a packet in the corresponding output-

buffered switch. As the arrival rate to an output port in the output-
buffered switch is ρ, once again we have from Little’s formula that

d̄o
1 =

Eqo
1(∞)
ρ

=
N − 1
N

ρ

2(1 − ρ)
. (3.20)

This shows that
d̄o
1

d̄1
=

ρ

N
, (3.21)

and the performance of the load balanced Birkhoff-von Neumann
switch is poor compared with that of an output-buffered switch. This
is not surprising as load balancing has no effect at all for this traffic
model.

3.1.4 Uniform bursty traffic model

In this section, we consider the following uniform bursty traffic model.
Packets come as a burst of length N , which is exactly the same as

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 141

the number of input/output ports. Packets within the same burst are
destined to the same output. For every N time slots, the probability
that there is a burst arriving at a particular input port (of the first
stage) is ρ, and the probability that there are no packet arrivals in these
N slots is 1−ρ. This is independent of everything else. The destination
of the N packets within that burst is chosen uniformly among the N
output ports. This is also independent of everything else. Based on
this traffic model, we also make the following two observations:

(i) In contrast to the uniform i.i.d. traffic model in the previous section,
load balancing achieves perfect burst reduction in this model (see
Figure 3.3). The N packets within a burst are distributed evenly to
the input ports at the second stage. In this model, {bi,j(t), t ≥ 1}
for all i and j are still sequences of i.i.d. Bernoulli random variables
with mean ρ

N .
(ii) As the traffic is uniform, qi,j(t)’s are still identically distributed.

�4��4��4���4�
1� 1� 1� 1�

2� 2� 2� 2�

Load-balancing�

1� 2��4�
1� 2�

��
��

4�

2�

�
4� 1�

�4� 1� 2�

Birkhoff-von�
Neumann�

switch�

t�t+1�t+2�t+3� t�t+1�t+2�t+3�

Fig. 3.3. Burst reduction in the uniform bursty traffic model

Without loss of generality, let us also look at the recursive equation
for q1,1(t). As the arrival sequence to q1,1 is still a sequence of i.i.d.
Bernoulli random variables with mean ρ

N , the whole analysis is the
same as that in the uniform i.i.d. traffic model, and we conclude that
the average delay for a packet in this model, denoted by d̄2, is the same
as that in the uniform i.i.d. traffic model, i.e.,

d̄2 =
N − 1

2(1 − ρ)
. (3.22)

Now we do the performance analysis for the corresponding output-
buffered switch. As packets come as a burst of length N , we have
a(Nt + 1) = a(Nt + 2) = . . . = a(Nt + N) for all t. Note from the
Lindley recursion in (3.19) that for s = 1, . . . , N ,

142 3. Load Balanced Birkhoff-von Neumann switches

qo
1(Nt+ s) = max[qo

1(Nt) + s
N∑

i=1

ai,1(Nt+ 1) − s, 0]. (3.23)

In particular, for s = N , we have

qo
1(N(t+ 1))

N
= max[

qo
1(Nt)
N

+
N∑

i=1

ai,1(Nt+ 1) − 1, 0]. (3.24)

This recursion is stochastically identical to that in (3.12). It then fol-
lows from (3.15) that (in the steady state)

Eqo
1(Nt) =

(N − 1)ρ2

2(1 − ρ)
. (3.25)

Now we show that Eqo
1(Nt+ s) = Eqo

1(Nt) for s = 1, . . . , N − 1. To
simplify the notation, let

Z =
N∑

i=1

ai,1(Nt+ 1).

As packets come as a burst of length N , the random variable qo
1(Nt)

only takes values on integer multiples of N . This implies that for s =
1, . . . , N , qo

1(Nt + s) = qo
1(Nt) + sZ − s if qo

1(Nt) > 0 or Z > 0, and
qo
1(Nt+ s) = 0 otherwise. Let 1{E} be the indicator random variable

for an event E . Then we can rewrite this as follows:

qo
1(Nt+ s) = (qo

1(Nt)+ sZ− s)(1−1{qo
1(Nt) = 0, Z = 0}).(3.26)

Taking expectations on both sides of (3.26) yields

Eqo
1(Nt+s) = Eqo

1(Nt)+sEZ−s+sP(qo
1(Nt) = 0, Z = 0),(3.27)

where we use the identity

E[(qo
1(Nt) + sZ)1{qo

1(Nt) = 0, Z = 0}] = 0.

When s = N , we have from Eqo
1(Nt+N) = Eqo(Nt) and (3.27) that

EZ = 1 − P(qo
1(Nt) = 0, Z = 0). (3.28)

Replacing (3.28) in (3.27) yields Eqo
1(Nt + s) = Eqo

1(Nt) for all s =
1, . . . , N − 1. This then implies that in the steady state

Eqo
1(∞) = Eqo

1(Nt) =
(N − 1)ρ2

2(1 − ρ)
. (3.29)

Let d̄o
2 be the average delay for a packet in the corresponding output-

buffered switch. Once again, we have from Little’s formula that

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 143

d̄o
2 =

(N − 1)ρ
2(1 − ρ)

. (3.30)

For this traffic model, we have that

d̄o
2

d̄2
= ρ. (3.31)

This shows that the delay in this traffic model converges to that of an
output-buffered switch when ρ→ 1.

The results for the average delay of these two traffic models are
summarized in Table 3.1.

Delay Output-buffered Load balanced

I.i.d. N−1
N

ρ
2(1−ρ)

(N−1)
2(1−ρ)

Bursty (N−1)ρ
2(1−ρ)

N−1
2(1−ρ)

Table 3.1. Average delay for output-buffered switches and load balanced Birkhoff-
von Neumann switches

3.1.5 Simulation

In this section, we present various simulation results in [34] to support
the observations and conclusions derived in the previous section. Since
the real traffic is bursty (see e.g., [109]), it is reasonable to perform
the simulations on bursty traffic. In all the simulations, the switch size
is 16 × 16, i.e., N = 16. The uniform bursty traffic model in Section
3.1.4 is used in the first experiment. The simulation results for the av-
erage delay are shown in Figure 3.4 for the load balanced Birkhoff-von
Neumann switch, the output-buffered switch, the Birkhoff-von Neu-
mann switch, and the 4-SLIP, respectively. In the simulations for the
Birkhoff-von Neumann switch, it is assumed that the arrival rates are
known and no dynamic rate estimation and adjustment is performed.
These simulation results are obtained with 99% confidence intervals.
As expected, the simulation results of the output-buffered switch and
the load balanced Birkhoff-von Neumann switch match perfectly with
the theoretical results in (3.22) and (3.30). In comparison with the
original Birkhoff-von Neumann switch, load balancing is very effective
in reducing the average delay. In light load (ρ ≤ 0.4), conflict resolution
is very effective and the 4-SLIP performs much better than the load

144 3. Load Balanced Birkhoff-von Neumann switches

balanced Birkhoff-von Neumann switches. However, as load increases,
load balancing is much more effective than conflict resolution. From
the simulations, the load balanced Birkhoff-von Neumann switches
performs much better than the 4-SLIP in heavy load (ρ ≥ 0.7). To
verify this observation, the simulations in the second experiment are
run with random burst length instead. As in the uniform bursty traf-
fic model, packets come as a burst. However, the burst lengths are
chosen independently according to the following (truncated) Pareto
distribution:

P(A burst has length i) =
c

i2.5
, i = 1, . . . , 10000,

where c = (
∑10000

i=1 1/i2.5)−1 is the normalization constant. In this
experiment, the average burst length is 1.932, which is considerably
smaller than 16, the fixed burst length in the first experiment. How-
ever, we still see the same effect in Figure 3.5. The intuition behind this
is that the dominating effect on the average delay is the heavy tail of
the burst length distribution (see e.g., [48, 89]). For a large burst, load
balancing is quite effective in burst reduction and thus yields better
performance. On the other hand, 4-SLIP does not perform well when
the traffic is heavy and bursty since SLIP might get trapped in “bad
modes” as described in Example 2.2.4.

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

A
ve

ra
ge

 D
el

ay

Output-buffered Load Balanced Birkhoff-von Neumann
Birkhoff-von Neumann 4-SLIP

ρ

Fig. 3.4. Average delay under the uniform bursty traffic model

In the third experiment, we address the effect of buffer usage. The
same amount of buffer is allocated to each port in the load balanced

3.1 Load balanced Birkhoff-von Neumann switches: one-stage buffering 145

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

A
ve

ra
ge

 D
el

ay

Output-buffered Load Balanced Birkhoff-von Neumann
Birkhoff-von Neumann 4-SLIP

ρ

Fig. 3.5. Average delay under the uniform Pareto traffic model

Birkhoff-von Neumann switch and the output-buffered switch (without
sharing with other ports). The simulations are run under the uniform
bursty traffic model with the arrival rate ρ = 0.8 in both switches. The
simulation results for packet loss probabilities are shown in Figure 3.6.
This experiment shows that the load balanced Birkhoff-von Neumann
switch has a much smaller packet loss probability than that in the
corresponding output-buffered switch when the buffer is large. Further
theoretical justification based on the theory of effective bandwidth can
be found in [34].

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230

Buffer Size

P
ac

ke
t L

os
s

P
ro

ba
bi

lit
y

Output-buffered
Load Balanced Birkhoff-von Neumann
Theoretical Value of Output-buffered
Theroretical Value of Load Balanced Birkhoff-von Neumann

Fig. 3.6. Packet lost probability under uniform bursty traffic (switch size N = 16,
arrival rate ρ = 0.8)

146 3. Load Balanced Birkhoff-von Neumann switches

3.1.6 Further reduction of the requirement of the memory
speed

The memories in the N × N load balanced Birkhoff-von Neumann
switch need to perform a write operation (from an input port) and
a read operation (to an output port) per time slot. Thus, the mem-
ory speed is only needed to be twice as large as the line speed. In
this section, we introduce a refined architecture for the N × N load
balanced Birkhoff-von Neumann switch such that the memory speed
is F/2 times slower than the line speed. For this, we first consider
an FN × FN load balanced Birkhoff-von Neumann switch in Figure
3.7. Among the FN input/output ports, only the first N input/output
ports are active. The rest of input/output ports are idle, i.e., no packets
are transmitted for the input/output ports from Port N + 1 to Port
FN . As the connection patterns in both switch fabrics are periodic
with period FN and there are only N active input/output ports, a
VOQ buffer between the two switch fabrics only needs to read/write a
packet every F time slots. Based on this, the memory speed for VOQs
need not be comparable with the line speed and can be slowed down
to 2/F of the line speed.

FN�

1�

FN�

1�

Crossbar� Crossbar�VOQ�

N�

N+1� N+1�

N�

Fig. 3.7. An FN×FN load balanced Birkhoff-von Neumann switch with idle ports

We have illustrated how one uses an FN × FN load balanced
Birkhoff-von Neumann switch for an N × N switch with memories
running at 2/F of the line speed. The next step is to simplify the de-
sign of the two FN ×FN crossbar switch fabrics. As there are only N
active ports in both switch fabrics, the first switch fabric can be im-
plemented by an N × FN switch fabric and the second switch fabric
can be implemented by an FN × N switch fabric. One way to im-
plement an N × FN switch fabric is the concatenation of an N × N
switch fabric and N 1 × F demultiplexers in Figure 3.8. In order to

3.2 Switch fabrics in the load-balanced Birkhoff-von Neumann switches 147

distribute packets in a round-robin fashion to the FN VOQs, the con-
nection patterns of the N demultiplexers are changed in a round-robin
fashion every time slot. The connection patterns of the N ×N switch
fabric are changed in the same manner as the N × N load balanced
Birkhoff-von Neumann switch except it is now changed every F time
slots. Similarly, an N × FN switch fabric can be implemented by the
concatenation of N F × 1 multiplexers and an N ×N switch fabric. A
complete architecture of the refined N ×N switch is shown in Figure
3.9.

N�

1�

NxN Crossbar�
Demultiplexer�

1�

F�

N(F-1)+1�

NF�

Fig. 3.8. An implementation of an N × FN switch fabric

N�

1�

N�

1�
VOQ�

VOQ�

VOQ�

VOQ�

Crossbar� Crossbar�
Demux� Mux�

FN�

1�

F�

Fig. 3.9. A complete architecture of the refined N × N switch

3.2 Switch fabrics in the load-balanced Birkhoff-von
Neumann switches

The load balanced Birkhoff-von Neumann switch requires two N ×N
crossbar switches. This may not be scalable for large N . In this section

148 3. Load Balanced Birkhoff-von Neumann switches

we show that the crossbars in the load balanced Birkhoff-von Neumann
switch can be implemented with O(logN) complexity.

The key observation is that we do not need to realize
all the permutation matrices in the two crossbars. The
connection patterns in the load balanced Birkhoff-von
Neumann switch are periodic with period N . Thus,
we only need to realize the N permutation matrices
P1, P2, . . . , PN such that

∑N
i=1 Pi is an N ×N matrix with

all the elements being 1.

3.2.1 Construction by the banyan network

1st stage� 2nd stage� 3rd stage�
Toggle every�

time slot�
Toggle every two�

time slots�
Toggle every four�

time slots�

Fig. 3.10. An illustrating example for implementing the 8×8 crossbars in the load
balanced Birkhoff-von Neumann switch

The easiest way to constructN permutation matrices P1, P2, . . . , PN

such that
∑N

i=1 Pi is an N × N matrix with all the elements being 1
is to use the banyan network. In Figure 3.10, we illustrate how one
implements an 8 × 8 crossbar in the load balanced Birkhoff-von Neu-
mann switch by the banyan network with 2 × 2 switches. The banyan
network is slightly different from the standard construction in Section
2.5.2. It does not have the shuffle exchange in the front of the stan-
dard construction. Note that there are only two connection patterns
in a 2 × 2 switch. In Figure 3.10, we set the connection patterns at

3.2 Switch fabrics in the load-balanced Birkhoff-von Neumann switches 149

the first stage to toggle every time slot, the connection patterns at the
second stage to toggle every two time slots, and the connection pat-
terns at the third stage to toggle every four time slots. By so doing, the
connection patterns repeat themselves every 8 time slots and we have
all the connection patterns needed for the load balanced Birkhoff-von
Neumann switch. This can be easily extended to the case with N = 2n

for some integer n. In the general case, the connection patterns at the
nth stage are set to toggle every 2n−1 time slots. As the number of 2×2
switches needed for the N ×N banyan network is only (N log2N)/2,
we can build the crossbars in the load balanced Birkhoff-von Neumann
switch with O(logN) complexity.

Another interesting observation is that the two-stage switching fab-
rics can be implemented by a single optical switch fabric with micro-
mirrors (Keslassy and McKeown [98]). This is because light is bi-
directional and the connection patterns at the two stages are identical.
Such an implementation is called the folded version of the load bal-
anced Birkhoff-von Neumann switch.

3.2.2 Recursive construction of the symmetric TDM
switches

Among all the sequences of connection patterns that could be used
in the load balanced Birkhoff-von Neumann switches, the following
sequence of symmetric connection patterns is of particular importance.
During the tth time slot, input port i is connected to the output port
j if

(i+ j) mod N = (t+ 1) mod N. (3.32)

In particular, at t = 1, we have input port 1 connected to output
port 1, input port 2 connected to output port N , . . ., and input port
N connected to output port 2. Clearly, such connection patterns are
periodic with periodN . Moreover, each input port is connected to each
of the N output ports exactly once in every N time slot. Specifically,
input port i is connected to output port 1 at time i, output port 2
at time i + 1, . . ., output port N at time i + N − 1. Also, we note
from (3.32) that such connection patterns are symmetric, i.e., input
port i and output port j are connected if and only if input port j
and output port i are connected. As such, we call a switch fabric
that implements the connection patterns in (3.32) a symmetric Time

150 3. Load Balanced Birkhoff-von Neumann switches

Division Multiplexing (TDM) switch (as introduced in Example 3.1.3).
Note that one can solve j in (3.32) by the following function

j = h(i, t) =
(
(t− i) mod N

)
+ 1. (3.33)

Thus, during the tth time slot the ith input port is connected to the
h(i, t)th output port of these two crossbar switch fabrics.

q q p p

q q p p

1

2

3

N

1

2

3

N

Fig. 3.11. A two-stage construction of an N × N symmetric TDM switch

In this section, we show that an N×N symmetric TDM switch can
be easily constructed with O(N logN) complexity. To do this, we first
show in Figure 3.11 a two-stage construction of an N ×N symmetric
TDM switch (with N = pq). As the X2 construction in Section 2.5.1,
the first stage consists of p q × q symmetric TDM switches (indexed
from 1, 2, . . . , p) and the second stage consists of q p × p symmetric
TDM switches (indexed from 1, 2, . . . , q). These two stages of switches
are connected by the perfect shuffle, i.e., the �th output of the kth

switch at the first stage is connected to the kth input of the �th switch
at the second stage. Also, index the N inputs and outputs from 1 to
N . The N inputs of the N ×N switch are connected to the inputs of
the switches at the first stage by the perfect shuffle. To be precise, let

�(i) =
 i− 1
p

� + 1, (3.34)

and

3.2 Switch fabrics in the load-balanced Birkhoff-von Neumann switches 151

k(i) = i− (�(i) − 1) ∗ p. (3.35)

Note that for i = 1, 2, . . . , N , �(i) is an integer between 1 and q and
k(i) is an integer between 1 and p. Then the ith input of the N × N
switch is connected to the �(i)th input of the k(i)th switch at the first
stage. Also, we note that the jth output of the N × N switch is the
k(j)th output of the �(j)th switch at the second stage.

The symmetric TDM switches at these two stages are operated
at different time scales. The connection patterns of the symmet-
ric TDM switches at the second stage are changed every time slot.
However, the connection patterns of the symmetric TDM switches
at the first stage are changed every frame with each frame contain-
ing p time slots. To be specific, we define the mth frame of the kth

switch at the first stage in Figure 3.11 to be the set of time slots
{(m−1)p+k, (m−1)p+k+1, . . . ,mp+k−1}. Then every symmetric
TDM switch at the first stage is operated according to its own frames.
Note that the p symmetric TDM switches at the first stage do not
change their connection patterns at the same time as the mth frames
of these switches contain different sets of time slots.

Lemma 3.2.1. The two-stage construction in Figure 3.11 is an N×N
symmetric TDM switch.

Proof. In order for the N×N switch to be a symmetric TDM switch,
we need to show that the ith input port is connected to the jth output
at time t when

(i+ j) mod N = (t+ 1) mod N. (3.36)

From the topology in Figure 3.11, we know there is a unique routing
path from an input of the N × N switch to an output of the N × N
switch. To be precise, the ith input is connected to the �(i)th input of
the k(i)th switch at the first stage. Also, the �(j)th output of the k(i)th

switch at the first stage is connected to the k(i)th input of the �(j)th

switch at the second stage. Note that the jth output of the N × N
switch is the k(j)th output of the �(j)th switch at the second stage.
Thus, in order for the ith input of the N ×N switch to be connected
to the jth output of the N ×N switch at time t, one must have

(i) the �(i)th input of the k(i)th switch at the first stage is connected
to its �(j)th output at time t, and

(ii) the k(i)th input of the �(j)th switch at the second stage is con-
nected to its k(j)th output at time t.

152 3. Load Balanced Birkhoff-von Neumann switches

As the switches at the first stage are q × q symmetric TDM switches
that change their connection patterns every frame, we have from (i)
that t must be in the mth frame of the k(i)th switch at the first stage,
where m satisfies

(�(i) + �(j)) mod q = (m+ 1) mod q. (3.37)

From (3.37), it follows that for some integer m2

(�(i) − 1) + (�(j) − 1) = (m− 1) +m2q. (3.38)

Similarly, as the switches at the second stage are p × p symmetric
TDM switches that change their connection patterns every time slot,
we have from (ii) that

(k(i) + k(j)) mod p = (t+ 1) mod p. (3.39)

Since t is in the mth frame of the k(i)th switch, t is one of the p time
slots {(m− 1)p + k(i), (m − 1)p + k(i) + 1, . . . ,mp+ k(i) − 1}. Thus,
we have from (3.39) that

t = (m− 1)p + k(i) + k(j) − 1. (3.40)

Note from (3.35), (3.38) and (3.40) that

(i+ j) mod N

=
(
(�(i) − 1)p+ k(i) + (�(j) − 1)p + k(j)

)
mod N

=
(
(m− 1)p +m2pq + k(i) + k(j)

)
mod N

= (t+ 1 +m2N) mod N
= (t+ 1) mod N. (3.41)

Note that a 2 × 2 switch only has two connection patterns and it
is a symmetric TDM switch if it alternates its two connection pat-
terns every time slot. If N is a power of 2, then one can recursively
expand the two-stage construction by 2 × 2 switches. The number of
2 × 2 switches needed for an N × N symmetric TDM switch is then
N
2 log2N . This shows that one can build an N × N symmetric TDM
switch with O(N logN) complexity. In Figure 3.12, we show an 8 × 8
symmetric TDM switch that uses the recursive construction. The eight
connection patterns of each 2×2 switch are represented by a sequence
of 8 characters in “b” and “x”, where “b” denotes the bar connection

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 153

b� b� x� x� b� b� x� x�

(1,1)�
1�

2�

3�

4�

5�

6�

7�

8�

b� x� b� x� b� x� b� x�

b� x� b� x� b� x� b� x�x� b� b� x� x� b� b� x�

(1,2)�

(2,1)�

(2,2)�

b� b� x� x� b� b� x� x�

(1,3)�

b� x� b� x� b� x� b� x�

b� x� b� x� b� x� b� x�x� b� b� x� x� b� b� x�

(1,4)�

(2,3)�

(2,4)�

1�

2�

3�

4�

5�

6�

7�

8�

b� b� b� b� x� x� x� x�

x� b� b� b� b� x� x� x�

x� x� b� b� b� b� x� x�

x� x� x� b� b� b� b� x�

(3,1)�

(3,2)�

(3,3)�

(3,4)�

Fig. 3.12. An 8 × 8 symmetric TDM switch via 2 × 2 switches

and “x” denotes the cross connection of a 2×2 switch. To find out the
connection patterns of the 2× 2 switches in the general case, we index
the stage from left to right by 1, 2, ..., log2N , and index the switch in
each stage from top to bottom by 1, 2, ..., N/2 as in Figure 3.12. Then
the connection pattern of the mth switch at the �th stage at time t is
determined by the function ψ(�,m, t):

ψ(�,m, t) =
(t− φ(�,m)) mod 2�

2�−1
�, (3.42)

where

φ(�,m) = ((m− 1) mod 2�−1) + 1. (3.43)

We set the bar connection pattern if ψ(�,m, t) = 0, and the cross
connection pattern if ψ(�,m, t) = 1.

3.3 Load balanced Birkhoff-von Neumann switches:
multi-stage buffering

The main objective of this section is to show that one can build a load
balanced Birkhoff-von Neumann switch that has comparable perfor-
mance to the ideal output-buffered switch. This is done by addressing

154 3. Load Balanced Birkhoff-von Neumann switches

the out-of-sequence problem in the load balanced Birkhoff-von Neu-
mann switch with one-stage buffering. One quick fix for the out-of-
sequence problem is to add a resequencing-and-output buffer after the
second stage. However, as packets are distributed according to their
arrival times at the first stage, there is no guarantee on the size of the
resequencing-and-output buffer to prevent packet losses. For this, one
needs to distributed packets in a more even manner.

First, we introduce the concept of flows. A (point-to-point) flow is
a stream of packets that has a common input and a common output.
In this section, we consider a more general traffic model with multi-
casting flows. A multicasting flow is a stream of packets that has one
common input and a set of common outputs. Instead of distributing
packets according to their arrival times, packets are now distributed
according to their flows. This is done by adding a flow splitter and a
load-balancing buffer in front of the first stage (see Figure 3.13). For
an N ×N switch, the load-balancing buffer at each input port of the
first stage consists of N virtual output queues (VOQ) destined for the
N output ports of that stage. Packets from the same flow are split in
the round-robin fashion to the N virtual output queues and scheduled
under the First Come First Served (FCFS) policy. By so doing, load
balancing can be achieved for each flow as packets from the same flow
are split almost evenly to the input ports of the second stage. More
importantly, we will show that the delay and the buffer size of the
load-balancing buffer can be bounded by constants that only depend
on the size of the switch and the number of flows.

N�

1�

N�

1�

Resequencing-and-output�
buffer�

Load-balancing buffer�

Flow splitter�

First stage� Second stage�l�i�A�,�
1�

,�,� j�l�i�A� 1�
,�j�i�q� 2�

,�k�j�q� 2�
,�k�j�B�

1�
,�,� j�l�i�B�

Jitter�
control�

Central buffer�

FCFS�

Fig. 3.13. The load balanced switch with multi-stage buffering under FCFS

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 155

Once we are able to bound the delay through the first stage, we
can add a jitter control mechanism in the VOQs in front of the second
stage (see Figure 3.13) to reconstruct the original traffic pattern. The
jitter control mechanism delays every packet to its maximum delay. By
so doing, every packet experiences the same delay before entering the
buffer at an input port of the second stage. Thus, the traffic entering
the VOQs (the central buffers) in front of the second stage is merely
a time-shifted version of the original traffic. As in the load-balancing
buffer, the scheduling policies in the VOQs in front of the second stage
are FCFS, and the buffer size of these VOQs are assumed to be infinite
so that no packets are lost inside the switch. Moreover, fan-out split-
ting (for multicasting flows) is done at these VOQs. i.e., packets with
multiple outputs are duplicated at the central buffers. The intuition
for this is that traffic load can be balanced at the central buffers.

The resequencing-and-output buffer after the second stage (see Fig-
ure 3.13) not only performs resequencing to keep packets in sequence,
but also stores packets waiting for transmission from the output links.
With jitter control at the central buffers, we will illustrate that the size
of the resequencing-and-output buffer is also bounded. More impor-
tantly, the end-to-end delay through the multi-stage switch is bounded
above by the sum of the delay from the corresponding FCFS output-
buffered switch and a constant that only depends on the size of the
switch and the number of multicasting flows supported by the switch.

The switch architecture in Figure 3.13 is called the load balanced
Birkhoff-von Neumann switch with multi-stage buffering in [35]. We
now summarize its key differences from the load balanced switch with
one stage buffering in Section 3.1.

(i) Packets are now distributed according to their flows, not their ar-
rival times in Section 3.1. For this, buffering is required at the first
stage.

(ii) A jitter control mechanism is added in front of the central buffer
to reconstruct the original traffic pattern.

(iii) Resequencing-and-output buffers are added after the second stage
to ensure that packets depart in order.

Now we introduce some notations needed for our presentation. We
consider an N × N switch with multicasting flows under the FCFS
scheduling policy. Let Li be the number of multicasting flows through
the ith input port. Denote by Ai,�(t) the cumulative number of packet

156 3. Load Balanced Birkhoff-von Neumann switches

arrivals by time t from the �th multicasting flow at the ith input port,
i = 1, . . . , N , � = 1, . . . , Li. Also, let Si,� be the set of outputs of
that flow, S∗(k) = {(i, �) : k ∈ Si,�} be the set of multicasting flows
through the kth output, and Mk = |S∗(k)| be the number of multicas-
ting flows through the kth output port. Define Lmax = max1≤i≤N Li

as the maximum number of multicasting flow through an input port
and Mmax = max1≤k≤N Mk as the maximum number of multicasting
flow through an output port.

The key results of the load-balanced Birkhoff-von Neumann switch
with multi-stage buffering are summarized in the following theorem.
The proof of Theorem 3.3.1 will be shown in Section 3.3.2-Section
3.3.4.

Theorem 3.3.1. Suppose that all the buffers are empty at time 0.
Then the following results hold for FCFS scheme with the jitter control
mechanism (described in Section 3.3.3).

(i) The end-to-end delay for a packet through the load balanced Birkhoff-
von Neumann switch with multi-stage buffering is bounded above
by the sum of the delay through the corresponding FCFS output-
buffered switch and (N − 1)Lmax + NMmax, where Lmax (resp.
Mmax) is the maximum number of flows at an input (resp. out-
put) port.

(ii) The load-balancing buffer at an input port of the first stage is
bounded above by NLmax.

(iii) The delay through the load-balancing buffer at an input port of
the first stage is bounded above by (N − 1)Lmax.

(iv) The resequencing-and-output buffer at an output port of the second
stage is bounded above by NMmax.

3.3.1 The FCFS output-buffered switch

In order to compare the performance of the multi-stage switch with
that of an output-buffered switch, we first establish some results for
the FCFS output-buffered switch.

Now consider feeding these multicasting flows to an N ×N output-
buffered switch under the FCFS policy (see Figure 3.14). Assume that
there is an infinite buffer at each output port and that all the buffers
are empty at time 0. Let Ao

k(t) be the cumulative number of arrivals
at the kth output buffer by time t, qo

k(t) be the number of packets at

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 157

the kth output buffer at time t, and Bo
k(t) be the cumulative number

of departures at the kth output buffer by time t. Note that

Ao
k(t) =

∑
(i,�)∈S∗(k)

Ai,�(t) (3.44)

is the superposition of the multicasting flows through the kth output.
From the Lindley equation in (2.1), it follows that

qo
k(t+ 1) = (qo

k(t) + ao
k(t+ 1) − 1)+, (3.45)

where ao
k(t) = Ao

k(t) − Ao
k(t − 1) is the number of arrivals at the kth

output buffer at time t. Since we start from an empty system, i.e.,
qo
k(0) = 0, we have from Lemma 2.1.2 that

qo
k(t) = max

0≤s≤t
[Ao

k(t) −Ao
k(s) − (t− s)]. (3.46)

Moreover,

Bo
k(t) = Ao

k(t) − qo
k(t) = min

0≤s≤t
[Ao

k(s) + (t− s)]. (3.47)

Since there is at most one packet coming out from an input port per
time slot, the number of packet arrivals to output k per time slot is
bounded above by Mk, the number of flows through output k. Thus,
under the FCFS scheduling policy, packets that arrive at the kth buffer
at time t will depart between t + qo

k(t) −Mk + 1 and t + qo
k(t). Also,

note from (3.47) that

Bo
k(t) −Bo

k(s) ≤ t− s, for all s ≤ t, (3.48)

as there is at most one packet coming out from an output port per
time slot.

1�
0�
k�B� 0�

,�l�i�B�0�
k�A�l�i�A�,�

0�
k�q�

FCFS�

Fig. 3.14. The FCFS output-buffered switch with multicasting flows

158 3. Load Balanced Birkhoff-von Neumann switches

3.3.2 The load-balancing buffer

In this section, we derive bounds for the load-balancing buffer in front
of the first stage. Recall that the load-balancing buffer at each input
port of the first stage consists of N virtual output queues (VOQ)
destined for the N output ports of that stage. Packets from the same
flow are split in the round-robin fashion to the N virtual output queues
and scheduled under the FCFS policy. Without loss of generality, we
may assume that the first packet of a flow is always assigned to the
first VOQ. To be precise, let A1

i,�,j(t) be the cumulative number of
Ai,�-flow packets that are split into the jth VOQ at the ith input port
of the first stage by time t. Then

A1
i,�,j(t) = �Ai,�(t) − j + 1

N
�, j = 1, . . . , N, (3.49)

and

Ai,�(t) =
N∑

j=1

A1
i,�,j(t), (3.50)

where �x� (resp.
x�) is the ceiling (resp. floor) function of x. The
ceiling function �x� is the smallest integer that is not smaller than x,
and the floor function
x� is the largest integer that is not larger than
x.

1�
,�j�i�B� 1�

,�,� j�l�i�B�1�
,�j�i�A�

1�
,�,� j�l�i�A�

1�
,�j�i�q�

FCFS�

1�
,�j�i�C�

Fig. 3.15. The jth VOQ at the ith input port of the first stage

Now consider the jth VOQ at the ith input port of the first stage (see
Figure 3.15). Let A1

i,j(t) be the cumulative number of arrivals by time
t to this queue, C1

i,j(t) be its cumulative number of time slots assigned
to this queue by time t, q1i,j(t) be the number of packets queued at
time t, and B1

i,j(t) be the cumulative number of departures by time t
from this queue. Note that

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 159

A1
i,j(t) =

Li∑
�=1

A1
i,�,j(t). (3.51)

For such a queue, we have the following Lindley equation

q1i,j(t+ 1) = (q1i,j(t) + a1
i,j(t+ 1) − c1i,j(t+ 1))+, (3.52)

where a1
i,j(t) = A1

i,j(t) − A1
i,j(t − 1) is the number of arrivals to the

queue at time t and c1i,j(t) = C1
i,j(t)−C1

i,j(t− 1) is the number of slot
assigned to the queue at time t. Since we start from an empty queue,
one has the following representation (cf. (3.46))

q1i,j(t) = max
0≤s≤t

[A1
i,j(t) −A1

i,j(s) − (C1
i,j(t) − C1

i,j(s))]. (3.53)

Moreover,

B1
i,j(t) = min

0≤s≤t
[A1

i,j(s) + C1
i,j(t) −C1

i,j(s)]. (3.54)

In Lemma 3.3.2, we show that both the queue length and the delay
at the load-balancing buffer can be bounded by finite constants.

Lemma 3.3.2. (i) The maximum queue length of the jth VOQ at the
ith input port of the first stage is bounded above by Li, i.e.,

q1i,j(t) ≤ Li, for all t. (3.55)

(ii) The maximum delay for a packet to depart the jth VOQ at the ith

input port of the first stage is bounded above by (N − 1)Li.

For the proof of Lemma 3.3.2, we need to introduce the following
properties for the ceiling function and the floor function. Its proof is
left as an exercise for the readers.

Proposition 3.3.3. (Properties of the ceiling and floor functions)

(i) �a+ b� ≤ �a� + �b� ≤ �a+ b� + 1.
(ii)
a+ b� ≥
a� +
b�.
(iii) �a� ≤
a� + 1.
(iv) For an integer a, and N > 0,

� a
N

� =
a+ (N − 1)
N

�.

160 3. Load Balanced Birkhoff-von Neumann switches

Proof. (Lemma 3.3.2) (i) Note from (3.51) and (3.49) that

A1
i,j(t) −A1

i,j(s) =
Li∑
�=1

(
A1

i,�,j(t) −A1
i,�,j(s)

)

=
Li∑
�=1

(
�Ai,�(t) − j + 1

N
� − �Ai,�(s) − j + 1

N
�
)
.

Applying the first inequality in Proposition 3.3.3 (i) yields

A1
i,j(t) −A1

i,j(s) ≤
Li∑
�=1

�Ai,�(t) −Ai,�(s)
N

�. (3.56)

Since the connection patterns at the first stage are periodic with period
N for N permutation matrices satisfying (3.1), we have

C1
i,j(t) − C1

i,j(s) ≥
t− s

N
�. (3.57)

Observe that
∑Li

�=1 (Ai,�(t) − Ai,�(s)) is the number of packet arrivals
at the ith input port during the interval of length t− s. As there is at
most one packet arrival at an input port per time slot, we have

Li∑
�=1

(Ai,�(t) −Ai,�(s)) ≤ t− s. (3.58)

In conjunction with (3.57),

C1
i,j(t) −C1

i,j(s) ≥

∑Li

�=1(Ai,�(t) −Ai,�(s))
N

�

≥
Li∑
�=1

Ai,�(t) −Ai,�(s)
N

�, (3.59)

where we use Proposition 3.3.3 (ii) in the last inequality. From (3.53),
(3.56), (3.59), and Proposition 3.3.3 (iii),

q1i,j(t) ≤ max
0≤s≤t

[Li∑
�=1

(
�Ai,�(t) −Ai,�(s)

N
� −
Ai,�(t) −Ai,�(s)

N
�
)]

≤ Li.

(ii) Since the scheduling policy at this queue is FCFS, it suffices to
show that

B1
i,j(t+ (N − 1)Li) ≥ A1

i,j(t).

Note from (3.54) that

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 161

B1
i,j(t+(N−1)Li)−A1

i,j(t)

= min
0≤s≤t+(N−1)Li

[A1
i,j(s)−A1

i,j(t)+C
1
i,j(t+(N−1)Li)−C1

i,j(s)]

= min
[

min
0≤s≤t

[C1
i,j(t+(N−1)Li)−C1

i,j(s)−(A1
i,j(t)−A1

i,j(s))],

min
t+1≤s≤t+(N−1)Li

[C1
i,j(t+ (N − 1)Li) − C1

i,j(s) − (A1
i,j(t) −A1

i,j(s))]
]
.

All the terms in the second minimum are clearly nonnegative as
both A1

i,j(t) and C1
i,j(t) are non-decreasing in t. On the other hand, for

0 ≤ s ≤ t, we have from (3.57), (3.58), (3.56) and Proposition 3.3.3
(ii), (iv) that

C1
i,j(t+(N−1)Li)−C1

i,j(s)−(A1
i,j(t)−A1

i,j(s))

≥
t+ (N − 1)Li − s

N
�−(A1

i,j(t)−A1
i,j(s))

≥

∑Li

�=1(Ai,�(t) −Ai,�(s)) + (N − 1)Li

N
�−

Li∑
�=1

�Ai,�(t) −Ai,�(s)
N

�

=

∑Li

�=1(Ai,�(t) −Ai,�(s) + (N − 1))
N

�−
Li∑

�=1

�Ai,�(t) −Ai,�(s)
N

�

≥
Li∑
�=1

(

Ai,�(t) −Ai,�(s) + (N − 1)

N
�−�Ai,�(t) −Ai,�(s)

N
�
)

= 0.

3.3.3 The central buffer under FCFS

From Lemma 3.3.2 in the previous section, we know that the delay
through the first stage is bounded above by d1,max = (N − 1)Lmax. To
reconstruct the original traffic pattern, one may add a jitter control
mechanism in the VOQs in front of the second stage. As the delay
through the load-balancing buffer is bounded above by d1,max, packets
with delay less than d1,max are delayed to d1,max. By so doing, every
packet has the same delay before entering the buffer at an input port
of the second stage. Thus, the traffic entering the VOQs in front of the
second stage is merely a time-shifted version of the original traffic.

162 3. Load Balanced Birkhoff-von Neumann switches

2�
,�k�j�B�1�

,�,� j�l�i�B� 2�
,�k�j�A�

2�
,�k�j�q�

FCFS�

2�
,�k�j�C�

Jitter control�

Fig. 3.16. The kth VOQ at the jth input port of the second stage under FCFS

As in the load-balancing buffer, the scheduling policies in the VOQs
in front of the second stage are FCFS. Moreover, fan-out splitting (for
multicasting flows) is done at these VOQs. Now consider the kth VOQ
at the jth input port of the second stage (see Figure 3.16). Let A2

j,k(t)
be the cumulative number of arrivals by time t to this queue, C2

j,k(t)
be its cumulative number of time slots assigned to this queue by time
t, q2j,k(t) be the number of packets queued at time t, and B2

j,k(t) be
the cumulative number of departures by time t from this queue. Since
every packet has the same delay d1,max through the first stage and
fan-out splitting is done at this stage, we have

A2
j,k(t) =

∑
(i,�)∈S∗(k)

A1
i,�,j(t− d1,max) (3.60)

(Here we use the convention that A1
i,�,j(τ) = 0 for τ < 0). Analogous

to (3.53) and (3.54), one has

q2j,k(t) = max
0≤s≤t

[A2
j,k(t) −A2

j,k(s) − (C2
j,k(t) − C2

j,k(s))], (3.61)

and

B2
j,k(t) = min

0≤s≤t
[A2

j,k(s) + C2
j,k(t) − C2

j,k(s)]. (3.62)

Lemma 3.3.4. For the FCFS scheme,

(i) q2j,k(t) ≤ � qo
k(t−d1,max)

N � +Mk, for all t, and
(ii) B2

j,k(t+ qo
k(t− d1,max) + (N − 1)Mk) ≥ A2

j,k(t), for all t.

Lemma 3.3.4 (i) provides an upper bound for the queue length in
terms of the queue length of the corresponding output-buffered switch.
As the scheduling policy is FCFS, Lemma 3.3.4 (ii) implies that a
packet that arrives at the queue at time t will depart not later than
t+ qo

k(t− d1,max) + (N − 1)Mmax.

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 163

Proof. (i) Note from (3.60), (3.49) and the inequalities in Proposi-
tion 3.3.3 (i) that

A2
j,k(t) −A2

j,k(s)

=
∑

(i,�)∈S∗(k)

(A1
i,�,j(t− d1,max) −A1

i,�,j(s− d1,max))

≤
∑

(i,�)∈S∗(k)

�Ai,�(t− d1,max) −Ai,�(s− d1,max)
N

� (3.63)

≤ �
∑

(i,�)∈S∗(k)(Ai,�(t− d1,max) −Ai,�(s− d1,max))
N

� +Mk − 1.

(3.64)

Observe from (3.44) and (3.46) that∑
(i,�)∈S∗(k)

(Ai,�(t− d1,max) −Ai,�(s− d1,max))

= Ao
k(t− d1,max) −Ao

k(s− d1,max)
≤ qo

k(t− d1,max) + (t− s). (3.65)

Thus,

A2
j,k(t) −A2

j,k(s) ≤ �q
o
k(t− d1,max) + (t− s)

N
� +Mk − 1. (3.66)

Since the connection patterns at the second stage are also periodic
with period N for N permutation matrices satisfying (3.1),

C2
j,k(t) − C2

j,k(s) ≥
t− s

N
�. (3.67)

From (3.66), (3.67), (3.61) and Proposition 3.3.3(i) and (iii), it then
follows that

q2j,k(t) ≤ �q
o
k(t− d1,max)

N
� +Mk.

for all t.
(ii) Let d = qo

k(t− d1,max) + (N − 1)Mk. Note from (3.62) that

B2
j,k(t+ d) −A2

j,k(t)

= min
0≤s≤t+d

[A2
j,k(s) −A2

j,k(t) + C2
i,j(t+ d) − C2

i,j(s)]

= min
[

min
0≤s≤t

[C2
j,k(t+ d) − C2

j,k(s) − (A2
j,k(t) −A2

j,k(s))],

min
t+1≤s≤t+d

[C2
j,k(t+ d) − C2

j,k(s) − (A2
j,k(t) −A2

j,k(s))]
]

164 3. Load Balanced Birkhoff-von Neumann switches

Clearly, all the terms in the second minimum are nonnegative as both
A2

j,k(t) and C2
j,k(t) are nondecreasing in t. On the other hand, for

0 ≤ s ≤ t, we have from (3.63) that

A2
j,k(t) −A2

j,k(s)

≤
∑

(i,�)∈S∗(k)

�Ai,�(t− d1,max) −Ai,�(s − d1,max)
N

�. (3.68)

Also, it follows from (3.67), (3.65), and Proposition 3.3.3 (ii) that

C2
j,k(t+d)−C2

j,k(s) ≥
t+ d− s

N
�

=
q
o
k(t− d1,max) + (t− s) + (N − 1)Mk

N
�

≥

∑

(i,�)∈S∗(k)(Ai,�(t− d1,max) −Ai,�(s− d1,max)) + (N − 1)Mk

N
�

=

∑

(i,�)∈S∗(k)(Ai,�(t− d1,max) −Ai,�(s− d1,max) + (N − 1))
N

�

≥
∑

(i,�)∈S∗(k)

A
2
j,k(t− d1,max) −A2

j,k(s− d1,max) + (N − 1)
N

�.

(3.69)

As in the proof of Lemma 3.3.2, we then have from (3.68), (3.69) and
Proposition 3.3.3 (iv) that

C2
j,k(t+ d) − C2

j,k(s) − (A2
j,k(t) −A2

j,k(s)) ≥ 0.

for 0 ≤ s ≤ t.

3.3.4 The resequencing-and-output buffer

The resequencing-and-output buffer conceptually consists of two (vir-
tual) buffers (see Figure 3.17): (i) the resequencing buffer and (ii) the
output buffer. The objective of the resequencing buffer is to reorder
the packets so that packets of the same flow depart in the same order
as they arrive. After resequencing, packets are stored in the output
buffer waiting for transmission from the output link.

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 165

Let A3
k(t) be the cumulative arrivals by time t to the kth resequenc-

ing buffer, and B3
k(t) be its cumulative departures. Note that B3

k(t)
is also the cumulative arrivals by time t to the kth output buffer. Let
B4

k(t) be the cumulative departures by time t from the kth output
buffer. Clearly, from the input-output relation of an output-buffered
link (cf. (3.47)), we have

B4
k(t) = min

0≤s≤t
[B3

k(s) + (t− s)]. (3.70)

Resequencing�
buffer�

Output buffer�

3�
k�B�

4�
k�B�

2�
,�k�j�B�

3�
k�A�

1�

Fig. 3.17. The resequencing-and-output buffer

Lemma 3.3.5. The following results hold for the FCFS scheme.

(i) A3
k(t) ≤ Bo

k(t− d1,max).
(ii) B3

k(t+ d1,max +NMk) ≥ Bo
k(t).

(iii) B4
k(t) ≥ Bo

k(t− d1,max −NMk).
(iv) The number of packets queued at the kth resequencing-and-output

buffer is bounded above by NMk, i.e.,

A3
k(t) −B4

k(t) ≤ NMk, for all t. (3.71)

Proof. (i) Note that

A3
k(t) =

N∑
j=1

B2
j,k(t).

From (3.62), it follows that

A3
k(t) =

N∑
j=1

min
0≤s≤t

[A2
j,k(s) + C2

j,k(t) − C2
j,k(s)]

≤ min
0≤s≤t

[
N∑

j=1

(A2
j,k(s) + C2

j,k(t) − C2
j,k(s))].

166 3. Load Balanced Birkhoff-von Neumann switches

As the connection patterns at the second stage are periodic with period
N for N permutation matrices satisfying (3.1),

N∑
j=1

C2
j,k(t) = t.

Thus,

A3
k(t) ≤ min

0≤s≤t
[

N∑
j=1

A2
j,k(s) + t− s]. (3.72)

Note from (3.60), (3.50), and (3.44) that for all s
N∑

j=1

A2
j,k(s) =

N∑
j=1

∑
(i,�)∈S∗(k)

A1
i,�,j(s− d1,max)

=
∑

(i,�)∈S∗(k)

Ai,�(s− d1,max)

= Ao
k(s − d1,max).

Using this and (3.47) in (3.72) yields

A3
k(t) ≤ min

0≤s≤t
[Ao

k(s− d1,max) + t− s]

= min
d1,max≤s≤t

[Ao
k(s− d1,max) + t− s]

= min
0≤τ≤t−d1,max

[Ao
k(τ) + t− d1,max − τ]

= Bo
k(t− d1,max)

(ii) Consider a packet that is destined for the kth output port.
Without loss of generality, suppose that this packet arrives at time t
and it is routed through the kth VOQ at jth input port of the second
stage. From Lemma 3.3.2(ii), the packet leaves the first stage not later
than t+ d1,max. After the jitter control, it arrives at the jth input port
of the second stage exactly at t+d1,max. Since FCFS is used in the kth

VOQ at the jth input port of the second stage, we have from Lemma
3.3.4(ii) that the packet leaves the second stage not later than t+qo

k(t)+
(N − 1)Mk + d1,max. As the bound is independent of j, we conclude
that every packet that arrives at the first stage at time t will depart
from the second stage not later than t+ qo

k(t) + (N − 1)Mk + d1,max.
Note from (3.46) that t+ qo

k(t) is non-decreasing in t. Thus, any other
packets that are destined for the kth output port and arrives before t
leave the second stage not later than t+ qo

k(t) + (N − 1)Mk + d1,max.

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 167

This implies the packet (that arrives at the first stage at time t and
destined for the kth output port) leaves the resequencing buffer not
later than t+ qo

k(t) + (N − 1)Mk + d1,max.
On the other hand, since the packet that arrives at time t departs

from the corresponding output-buffered switch between t+qo
k(t)−Mk+

1 and t+qo
k(t), the departure time for a packet to leave the resequencing

buffer is not later than the sum of that from the corresponding output-
buffer switch and d1,max +NMk. This shows that for all t

B3
k(t+ d1,max +NMk) ≥ Bo

k(t).

(iii) From (3.70) and (ii) of this lemma, it follows that

B4
k(t) ≥ min

0≤s≤t
[Bo

k(s− d1,max −NMk) + t− s].

Since Bo
k(t) − Bo

k(s) ≤ t − s in (3.48), the above minimum occurs at
s = t. Thus,

B4
k(t) ≥ Bo

k(t− d1,max −NMk).

(iv) From (i) and (iii) of this lemma and (3.48), it follows that

A3
k(t) −B4

k(t) ≤ Bo
k(t− d1,max) −Bo

k(t− d1,max −NMk)
≤ NMk.

Now we prove the main theorem of this section.
Proof. (Proof of Theorem 3.3.1) (i) This is a direct consequence of
Lemma 3.3.5(iii).

(ii) Since there are N VOQ at each input port, the result then
follows from Lemma 3.3.2(i).

(iii) This is also shown in Lemma 3.3.2(ii).
(iv) It is shown in Lemma 3.3.5(iv).

3.3.5 The EDF scheme

Instead of using a jitter control mechanism in the central buffers, there
is an alternative approach, called the Earliest Deadline First (EDF)
scheme, in [35]. In such a scheme (see Figure 3.18), every packet is

168 3. Load Balanced Birkhoff-von Neumann switches

assigned a deadline that is the departure time from the correspond-
ing FCFS output-buffered switch. Packets are scheduled according to
their deadlines in the central buffers. As there is no need to implement
the jitter control mechanism, average packet delay can be greatly re-
duced. However, as there is no jitter control, one might need a larger
resequencing buffer than that in the FCFS scheme with jitter control.
Since the first stage is the same as that in the FCFS scheme, the delay
and the buffer size are still bounded by (N − 1)Lmax and NLmax re-
spectively. In the following theorem, we summarize the results for the
EDF scheme in [35] without giving the proof.

N�

1�

N�

1�

Resequencing-and-output�
buffer�

Load-balancing buffer�

Flow splitter�

First stage� Second stage�l�i�A�,�
1�

,�,� j�l�i�A� 1�
,�j�i�q� 2�

,�k�j�q� 2�
,�k�j�B�

1�
,�,� j�l�i�B�

Central buffer�

EDF�

Fig. 3.18. The load balanced switch with multi-stage buffering under EDF

Theorem 3.3.6. Suppose that all the buffers are empty at time 0.
Then the following results hold for the EDF scheme.

(i) The end-to-end delay for a packet through our switch with multi-
stage buffering is bounded above by the sum of the delay through
the corresponding FCFS output-buffered switch and (N−1)(Lmax+
Mmax).

(ii) The resequencing-and-output buffer at an output port of the second
stage is bounded above (N − 1)(Lmax +Mmax).

Computing the departure times from the corresponding FCFS
output-buffered switch needs global information of all the inputs. A
simple way is to use the packet arrival times as deadlines. Then the
EDF scheme based on arrival times yields the same departure order
except those packets that arrive at same time. Since there are at most
Mmax packets that can arrive at the same time to an output port of
the corresponding output-buffered switch, the end-to-end delay for a

3.3 Load balanced Birkhoff-von Neumann switches: multi-stage buffering 169

packet through the multi-stage switch using arrival times as deadlines
is bounded above by the sum of the delay through the corresponding
FCFS output-buffered switch and (N − 1)Lmax + NMmax. Also, the
resequencing-and-output buffer at an output port of the second stage
in this case is bounded above (N − 1)Lmax +NMmax.

3.3.6 The Full Ordered Frames First scheme

Both the FCFS scheme and the EDF scheme yield deterministic
bounds on the delay when comparing with an ideal output-buffered
switch. If one does not require a deterministic delay bound to the ideal
output buffer switch, the Full Ordered Frames First (FOFF) scheme
proposed in [99] provides an easy way to achieve 100% throughput
with in-sequence delivery of packets.

Birkhoff-�
von Neumann�

switch�

N�

1�

Load-balancing�

N�

1�

Resequencing-and-
output buffer�

FCFS� FCFS�

Fig. 3.19. The full ordered frames first scheme

The idea of the FOFF scheme is to add Virtual Output Queues
(VOQs) at each input (see Figure 3.19) so that the traffic coming
to the input can be converted into the bursty traffic with fixed burst
length N (as described in Section 3.1.4). Specifically, the FOFF scheme
works as follows:

(i) Each input maintains N FIFO queues, indexed from 1 to N . An
arriving packet destined to the jth output is placed in the jth queue.
For each queue, there is a pointer that keeps track of the central
buffer that the next packet from this queue should be sent to.

(ii) Each input selects an FIFO queue to serve for the next N time
slots. If there is a queue holding more than N packets, it will pick
one of them (in the round-robin fashion) to serve for the next N

170 3. Load Balanced Birkhoff-von Neumann switches

time slots. If there is no such queues, then it will pick a non-empty
queue (in the round-robin fashion) to serve for the next N time
slots. A head-of-line packet from the selected queue is distributed
to the central buffer pointed by the pointer. The pointer is then
advanced by one position (in the modulo N fashion).

Intuitively, one may view every N time slots as a frame. If there is
a queue holding more than N packets, then the whole frame of packets
can be distributed evenly to the central buffers. This is the ideal case.
However, problems arise when no queue has more than N packets. In
this case, a partial frame has to be sent. As such, bandwidth is wasted
as there are empty time slots. Moreover, packets can be out-of-sequence
because of this.

To bound the re-sequencing delay, consider a particular output,
e.g., output 1. There are N VOQs at the central buffers destined to
output 1. As there are at most Mmax flows to every one of the N
VOQs, the difference between the queue length of these N VOQs is
bounded above by Mmax (due to the partial frames from the Mmax

flows). Now suppose a particular packet is placed in one of the N
VOQs at the central buffers at time t. According to the FOFF scheme,
all the packets from the same flow must have been placed in these N
VOQs before t. As it takes every N time slots to connect one of the N
VOQs to output 1, the worst case re-sequencing delay is then bounded
by N times of the difference of the queue length of the N VOQs, i.e.,
NMmax.

The problem of the FOFF scheme, as pointed out by [44], is its large
average packet delay due to the large frame size N . Instead of using
framing, it is suggested in [44] that arbitration be done in every time
slot at every input. For instance, the longest queue first (LQF) scheme
in [44] selects the longest FIFO queue among all the queues that have
the pointer pointing to the connected central buffer. It is shown in [44]
by simulation that the LQF scheme yields almost the same average
delay as the EDF scheme described in the previous section, and it
performs much better than the FOFF scheme.

For the point-to-point flows, the maximum number of flows is N .
This implies that the re-sequencing delay in the FCFS scheme, the
EDF scheme, the FOFF scheme (and the variants in [44]) is O(N2).
In the later development, we will show that there are other solutions
that greatly reduce the re-sequencing delay.

3.4 Guaranteed rate services with the earliest eligible time first policy 171

3.4 Guaranteed rate services with the earliest eligible
time first policy

The main objective of this section is to introduce a scheme for provid-
ing guaranteed rate services in an N ×N load balanced Birkhoff-von
Neumann switch with multicasting flows. This scheme originally pro-
posed in [40] is based on the two-stage switch architecture in Section
3.3. As show in Figure 3.20, the switch architecture consists of two
N ×N crossbar switch fabrics and three stages of buffers. These three
stages of buffers are the load-balancing buffers, the central buffers, and
the output buffers. As described in Section 3.3, the connection patterns
of both crossbar switch fabrics are generated from N permutation ma-
trices that satisfy (3.1). As such, these connection patterns are periodic
with period N and every input is connected to every output exactly
once in every N time slots.

FCFS�

N�

1�

N�

1�

Output buffer�Load-balancing buffer�

Flow splitter�

First stage� Second stage�
1�
,�l�i�A� 1�

,�,� j�l�i�A� 2�
,�k�j�q� 2�

,�k�j�B�

2�
,�,� j�l�i�A�

Jitter�
control�

Central buffer�

FCFS�

Jitter�
control�

1�
,�,� j�l�i�B�

1�

N�

d�1�

d�i,l�(k)+d�1� d�2�

d�i,l�(k)+d�1�+d�2�

d�i,l�(k)+d�1�+d�2�+d�3�

d�3�

1�
,�j�i�q�

Fig. 3.20. A two-stage switch architecture with guaranteed rate services for mul-
ticasting flows

As in Section 3.3, the objective of the first stage is to perform load
balancing. The load-balancing buffer at an input consists of N virtual
output queues (VOQs). Packets in the jth VOQ of the load-balancing
buffer of the ith input will be sent to the jth central buffer. Suppose
that there are Li multicasting flows at the ith input port, i = 1, . . . , N .
Packets that belong to the same multicasting flow are routed to the N
VOQs in a round-robin fashion. Without loss of generality, one may

172 3. Load Balanced Birkhoff-von Neumann switches

assume that the first packet in a flow is always routed to the first VOQ.
To be precise, let Ai,�(t) be the cumulative number of arrivals of the
�th multicasting flow at the ith input by time t, and A1

i,�,j(t) be the
cumulative number of packets from that flow that are routed to the
jth VOQ at the ith input by time t. Then

A1
i,�,j(t) = �Ai,�(t) − j + 1

N
�, j = 1, . . . , N. (3.73)

One key result for such a load-balancing mechanism (shown in Theo-
rem 3.3.1(iii) in Section 3.3) is that the maximum delay for a packet to
depart from the first crossbar switch fabric is bounded above by a con-
stant d1 = (N − 1)Lmax, where Lmax = max1≤i≤N Li is the maximum
number of flows supported at an input.

To provide guaranteed rate services, every packet of a (guaranteed
rate) flow is assigned a targeted departure time that is the departure
time from the corresponding FCFS work conserving link with capacity
equal to the guaranteed rate of the flow. After leaving the first stage, a
packet enters the jitter control stage in front of the central buffer. The
time for a packet to leave the jitter control stage, called the eligible
time of that packet, is set to be the sum of the targeted departure
time and the maximum delay of the first stage (i.e., (N − 1)Lmax). In
the central buffer, packets are scheduled under the FCFS policy. We
note that in implementation one may combine both the jitter control
mechanism and the central buffer by using a single memory block.
By time stamping every packet with its eligible time, the scheduling
policy there is to schedule the first eligible packet. Such a policy is
called the earliest eligible time first policy. Another point is that best
effort service can be provided as background traffic. Flows from best
effort service can be assigned to a low priority queue and they are only
served when there are no packets from guaranteed rate services in the
central buffer.

o�
,�li�B�,�l�i�A�

FCFS�

,�l�i�r�

Fig. 3.21. The (fluid) work conserving link corresponding to the Ai,�-flow

3.4 Guaranteed rate services with the earliest eligible time first policy 173

To be precise, let ri,� be the guaranteed rate of the Ai,�-flow. Now
consider feeding the Ai,�-flow to a fluid work conserving link with ca-
pacity ri,� (see Figure 3.21). Assume that the buffer in the fluid work
conserving link is infinite and empty at time 0. Every packet brings in
one unit of fluid to the fluid work conserving link. Let B̃o

i,�(t) be the
cumulative number of fluid departures at the output by time t. Fol-
lowing the same argument in (3.47) (for a work conserving link with
capacity 1), one knows that

B̃o
i,�(t) = min

0≤s≤t
[Ai,�(s) + ri,�(t− s)]. (3.74)

Ideally, the cumulative number of packet departures for the guaranteed
rate Ai,�-flow by time t should be the integer part of the cumulative
number of fluid departures, i.e.,

Bo
i,�(t) =
B̃o

i,�(t)�. (3.75)

Let di,�(k) be the targeted departure time of the kth packet of the
Ai,�-flow. If the kth packet arrives at time t, then it can be found by
the following inverse mapping (see e.g., [27], Lemma 2.3.20)

di,�(k) = inf
[
τ : τ ≥ t, min

0≤u≤t−1
[Ai,�(u) + ri,�(τ − u)] ≥ k

]
.(3.76)

The eligible time of the kth packet of the Ai,�-flow at the central buffer
is then set to be di,�(k) + (N − 1)Lmax.

For the multicasting flows, fan-out splitting is also performed at
the central buffer. Thus, a packet departing from the jitter control
mechanism is duplicated and distributed to the VOQs corresponding
to its destined outputs. By scheduling the first eligible packet in every
VOQ, we can show that the maximum delay for a packet to depart the
second crossbar switch fabric is bounded. The proof of Lemma 3.4.1 is
shown in Section 3.4.1.

Lemma 3.4.1. Let S∗(k) be the set of flows through the kth output,
and Mk = |S∗(k)| be the number of multicasting flows through the kth

output port. Define Mmax = max1≤k≤N Mk as the maximum number of
multicasting flow through an output port. Suppose that all the buffers
are empty at time 0 and∑

(i,�)∈S∗(k)

ri,� ≤ 1. (3.77)

Then the time for a packet to depart the second crossbar switch fabric
is bounded by the sum of its target departure time and d1 + d2, where
d1 = (N − 1)Lmax and d2 = NMmax.

174 3. Load Balanced Birkhoff-von Neumann switches

After the second crossbar switch fabric, a packet is placed in another
jitter control mechanism. As there is a maximum delay for every packet
to depart the second crossbar switch fabric, the eligible time for a
packet at this jitter control mechanism is set to be the sum of its target
departure time and (N − 1)Lmax + NMmax. Once a packet becomes
eligible, it is placed in the output buffer. The scheduling policy for the
output buffer is also FCFS. As addressed before, one may combine the
jitter control mechanism with the FCFS buffer by using the earliest
eligible packet first policy. The following is the main theorem of this
scheme. The proof of Theorem 3.4.2 is given in Section 3.4.2.

Theorem 3.4.2. Suppose that all the buffers are empty at time 0 and
that the rate condition in (3.77) hold. Then the following results hold.

(i) Every packet of a guaranteed rate flow departs from the switch not
later than the sum of its targeted departure time and d1 + d2 + d3,
where d1 = (N − 1)Lmax, d2 = NMmax and d3 = Mmax − 1.

(ii) The output buffer at an output port of the second stage is bounded
by d2 + d3 = (N + 1)Mmax − 1.

3.4.1 Maximum time to depart from the second switch
fabric

In this section, we prove Lemma 3.4.1. For the proof of Lemma 3.4.1,
we will need to use the following well-known properties for the ceiling
and floor functions.

Proposition 3.4.3. (i) �a+ b� ≤ �a� + �b� ≤ �a+ b� + 1.
(ii)
a+ b� ≥
a� +
b�.
(iii) �a� ≤
a� + 1.
(iv) �a− b� ≥
a� −
b�.
(v) � �a�N � = � a

N � for any positive integer N .

Recall that A1
i,�,j(t) is the cumulative number of the Ai,�-flow pack-

ets that are split into the jth VOQ at the ith input port of the first
stage by time t. Let Di,�,j(t) be the number of the A1

i,�,j-flow packets
that have targeted departure times not greater than t. Note that the
first packet of a flow is always assigned to the first VOQ at the first
stage. As the targeted departure times are simply the departure times
from the ideal FCFS work conserving link with capacity ri,�,

3.4 Guaranteed rate services with the earliest eligible time first policy 175

Di,�,j(t) = �B
o
i,�(t) − j + 1

N
�. (3.78)

Moreover,
N∑

j=1

Di,�,j(t) = Bo
i,�(t). (3.79)

Let A2
i,�,j(t) be the cumulative number of the Ai,�-flow packets at

the jth input port of the second stage by time t. We know that the
maximum delay at the first stage is bounded by

d1 = (N − 1)Lmax. (3.80)

As discussed in Section 3.4, a jitter control stage is added in front of
the VOQs in the second stage (see Figure 3.22) and the eligible time
of a packet is set to be the sum of its targeted departure time and the
maximum delay d1. Thus, we have from (3.78) that

A2
i,�,j(t) = Di,�,j(t− d1)

= �B
o
i,�(t− d1) − j + 1

N
�. (3.81)

.�

.�

.�
}�

A�i,l,j�
2�

A�j,k�
2� . . .�

Central buffer�

FCFS�

Jitter control�
stage�

C�j,k�
2�

B�j,k�
2�

Fig. 3.22. The kth VOQ at the jth central buffer of the second stage

Now consider the kth VOQ at the jth central buffer of the second
stage (see Figure 3.22). Denote by A2

j,k(t) (resp. B2
j,k(t)) the cumulative

number of arrivals (resp. departures) at that VOQ by time t. Then

A2
j,k(t) =

∑
(i,�)∈S∗(k)

A2
i,�,j(t)

=
∑

(i,�)∈S∗(k)

�B
o
i,�(t− d1) − j + 1

N
�. (3.82)

176 3. Load Balanced Birkhoff-von Neumann switches

Now we show that the traffic coming into this VOQ is rate con-
trolled. Note from (3.82) and Proposition 3.4.3(i) that

A2
j,k(t) −A2

j,k(s)

=
∑

(i,�)∈S∗(k)

�B
o
i,�(t− d1) − j + 1

N
� − �B

o
i,�(s− d1) − j + 1

N
�

≤
∑

(i,�)∈S∗(k)

�B
o
i,�(t− d1) −Bo

i,�(s− d1)
N

�. (3.83)

From (3.75), Proposition 3.4.3(iv), and (3.74), it then follows that

Bo
i,�(t− d1) −Bo

i,�(s− d1)

=
B̃o
i,�(t− d1)� −
B̃o

i,�(s − d1)�
≤ �B̃o

i,�(t− d1) − B̃o
i,�(s− d1)�

= � min
0≤τ≤t−d1

[Ai,�(τ) + ri,�(t− τ)]

− min
0≤τ≤s−d1

[Ai,�(τ) + ri,�(s− τ)]�
≤ �ri,�(t− s)�. (3.84)

Replacing this in (3.83) and using Proposition 3.4.3(v) yields

A2
j,k(t) −A2

j,k(s) ≤
∑

(i,�)∈S∗(k)

��ri,�(t− s)�
N

�

=
∑

(i,�)∈S∗(k)

�ri,�(t− s)
N

�. (3.85)

Let C2
j,k(t) be the cumulative number of time slots assigned to this

VOQ by time t. As the link at the second stage is a FCFS work con-
serving link, we have from Lemma 2.1.2 that

B2
j,k(t) = min

0≤s≤t
[A2

j,k(s) + C2
j,k(t) − C2

j,k(s)]. (3.86)

Moreover, as the connection patterns at the second stage are periodic
with period N for N permutation matrices satisfying (3.1),

C2
j,k(t) − C2

j,k(s) ≥
t− s

N
�. (3.87)

In order to prove that the maximum delay for a packet to depart
the second crossbar switch fabric is bounded by the sum of its target
departure time and (N−1)Lmax +NMmax, it suffices to show that the

3.4 Guaranteed rate services with the earliest eligible time first policy 177

maximum delay incurred at the VOQ is bounded above by NMmax,
i.e.,

B2
j,k(t+NMmax) −A2

j,k(t) ≥ 0.

Let d2 = NMmax. Note from (3.86) that

B2
j,k(t+ d2) −A2

j,k(t)

= min
0≤s≤t+d2

[A2
j,k(s) −A2

j,k(t) + C2
j,k(t+ d2) − C2

j,k(s)]

= min
[

min
0≤s≤t

[A2
j,k(s) −A2

j,k(t) + C2
j,k(t+ d2) − C2

j,k(s)],

min
t+1≤s≤t+d2

[A2
j,k(s) −A2

j,k(t) + C2
j,k(t+ d2) − C2

j,k(s)]
]
.

(3.88)

All the terms in the second minimum are clearly nonnegative as both
A2

j,k(t) and C2
j,k(t) are non-decreasing in t. On the other hand, for

0 ≤ s ≤ t, we have from (3.87) and (3.77) that

C2
j,k(t+ d2) − C2

j,k(s) ≥
t− s+ d2

N
�

≥
(
∑

(i,�)∈S∗(k) ri,�(t− s)) +NMk

N
�

=

∑

(i,�)∈S∗(k)(ri,�(t− s) +N)
N

�.
Using (3.85) and Proposition 3.4.3(ii) ,(iii) yields

C2
j,k(t+ d2) − C2

j,k(s) − (A2
j,k(t) −A2

j,k(s))

≥
∑

(i,�)∈S∗(k)

ri,�(t− s) +N

N
� −

∑
(i,�)∈S∗(k)

�ri,�(t− s)
N

�

=
∑

(i,�)∈S∗(k)

(
ri,�(t− s)
N

� + 1) −
∑

(i,�)∈S∗(k)

�ri,�(t− s)
N

�

≥ 0.

3.4.2 Maximum time to depart from the whole switch

In this section, we prove Theorem 3.4.2.
(i) Let B3

k(t) be the cumulative departures by time t to the jitter
control mechanism at the kth output port. Note that B3

k(t) is also
the cumulative arrivals by time t to the kth output buffer. Denote by
B3

i,�(t) the cumulative arrivals of the Ai,�-flow by the time t to the
output buffer. Thus, we have

178 3. Load Balanced Birkhoff-von Neumann switches

B�k�

.�

.�

.�
}�

B�i,l�
3�

B�k�
3� . . .�

Output buffer�

FCFS�

Jitter control�
stage�

1�
4�

3�
k�A�

}�

Fig. 3.23. The output buffer

B3
k(t) =

∑
(i,�)∈S∗(k)

B3
i,�(t). (3.89)

Let B4
k(t) be the cumulative departures by time t from the kth output

buffer. From the representation for Lindley’s equation in Lemma 2.1.2,
it follows that

B4
k(t) = min

0≤s≤t
[B3

k(s) + (t− s)]. (3.90)

As shown in Lemma 3.4.1, the maximum delay for a packet to
depart the second crossbar switch fabric is bounded by the sum of its
target departure time and (N − 1)Lmax + NMmax. The eligible time
for an Ai,�-flow packet is set to be the sum of its target departure time
and (N − 1)Lmax +NMmax. Thus, we have

B3
i,�(t) = Bo

i,�(t− d1 − d2), (3.91)

where d1 = (N −1)Lmax and d2 = NMmax. To show that every packet
of a guaranteed rate flow departs from the switch not later than the
sum of its targeted departure time and (N−1)Lmax+(N+1)Mmax−1,
it suffices to show that there is a bounded delay d3 at the output buffer,
where d3 = Mmax − 1. As the proof for Lemma 3.4.1, we only need to
verify that

B4
k(t+ d3) −B3

k(t) ≥ 0. (3.92)

Note from (3.90) that

B4
k(t+ d3) −B3

k(t)
= min

0≤s≤t+d3

[B3
k(s) −B3

k(t) + (t+ d3 − s)]

= min
[

min
0≤s≤t

[B3
k(s) −B3

k(t) + (t+ d3 − s)],

3.4 Guaranteed rate services with the earliest eligible time first policy 179

min
t+1≤s≤t+d3

[B3
k(s) −B3

k(t) + (t+ d3 − s)
]
. (3.93)

As in the proof of Lemma 3.4.1 in Section 3.4.1, all the terms in
the second minimum are clearly nonnegative. Thus, we only need to
verify the case for 0 ≤ s ≤ t. Using the inequality in (3.84), one can
show from (3.89) and (3.91) that

B3
k(t) −B3

k(s)

=
∑

(i,�)∈S∗(k)

(
Bo

i,�(t− d1 − d2) −Bo
i,�(s− d1 − d2)

)

≤
∑

(i,�)∈S∗(k)

�ri,�(t− s)�. (3.94)

Applying Proposition 3.4.3(i) and the assumption in (3.77) yields

B3
k(t) −B3

k(s)
≤ �

∑
(i,�)∈S∗(k)

ri,�(t− s)� +Mk − 1

≤ (t− s) +Mmax − 1 (3.95)

Thus, all the terms in the first minimum are also nonnegative.
(ii) Let A3

k(t) be the cumulative arrivals by time t to the jitter con-
trol mechanism at the kth output port. Note that there is already a
jitter control mechanism in front of the center buffer. Thus, a packet
cannot arrive at the jitter control mechanism at an output port before
its eligible time set by the jitter control mechanism in front of the cen-
ter buffer. Since the eligible time at the first jitter control mechanism
is the sum of its targeted departure time and (N − 1)Lmax, we then
have

A3
k(t) ≤

∑
(i,�)∈S∗(k)

Bo
i,�(t− d1), (3.96)

where d1 = (N − 1)Lmax. Using (3.96), (3.90), (3.91) and (3.95), the
number of packet stored at the kth output buffer at time t is then
bounded by

A3
k(t) −B4

k(t)
≤

∑
(i,�)∈S∗(k)

Bo
i,�(t− d1)

− min
0≤s≤t

[
∑

(i,�)∈S∗(k)

Bo
i,�(s− d1 − d2) + (t− s)]

180 3. Load Balanced Birkhoff-von Neumann switches

= max
0≤s≤t

[
∑

(i,�)∈S∗(k)

(Bo
i,�(t− d1) −Bo

i,�(s − d1 − d2)) − (t− s)]

≤ max
0≤s≤t

[(t− s+ d2) +Mmax − 1 − (t− s)]

= d2 +Mmax − 1.

3.5 Frame based schemes

The drawback of the previous schemes in Section 3.3 and Section 3.4
is its hardware implementation complexity of their scheduling policies.
The objective of this section is to propose a much simpler scheme that
does not require implementing complicated scheduling. The idea (as
in Keslassy and McKeown [98]) is to use a framed structure so that
resequencing is not needed. The architecture of the scheme is shown
in Figure 3.24.

First stage�

The first parts�

Second stage�

The second parts�

The central buffers�

.�

.�

.�

.�

.�

.�

.

.

.

Fig. 3.24. The architecture for the frame based scheme

To ease our presentation, we shall describe the scheme for fixed size
packets and point-to-point flows. Extensions to variable length packets
and multicasting flows will be left to the readers for an exercise. As
in the two-stage switch in the previous section, there are two N ×N
crossbar switch fabrics and buffers between these two crossbar switch
fabrics. In this scheme, time slots are grouped into fixed size frames.
Each frame has F time slots. Thus, the mth time frame is from time
slot (m− 1)F + 1 to time slot mF (see Figure 3.25).

Unlike the schemes in Section 3.3 and Section 3.4, both switches
now change their connection patterns according to time frames. Specif-
ically, both switches are symmetric TDM switches operated in the time

3.5 Frame based schemes 181

0�F�2F�3F�4F�5F�
...�...�...�...� ...�

the �1st�
time frame�

the �3rd�
time frame�

the �4th�
time frame�

the �5th�
time frame�

...�

...�

t�

the �2nd�
time frame�

Fig. 3.25. The time frame structure

scale of frames, i.e., during the mth time frame, the ith input port is
connected to the h(i,m)th output port of these two crossbar switch
fabrics, where

h(i,m) =
(
(m− i) mod N

)
+ 1. (3.97)

As such, all the packets that arrive at the ith input port during the mth

frame are all routed to the h(i,m)th output port. As the connection
pattern is symmetric, during the mth frame the kth output port is also
connected to the h(k,m)th input port for these two switch fabrics.

There are N central buffers between these two switch fabrics, in-
dexed from 1 to N. Each central buffer consists of two alternating
memory blocks. The buffer size of each memory block is NF , which
is divided into N bins, each with buffer size of F. To ease the pre-
sentation for the operation of these central buffers, we introduce the
concept of superframes. The pth superframe of the ith input port of
the both stages is defined to be the set of time slots in the N time
frames, starting from the ((p− 1)N + i)th frame to the (pN + i− 1)th

frame. Note that the jth time frame in the pth superframe of the ith

input port (of both stages) is the ((p− 1)N + i+ j− 1)th frame. Since
h(i, (p− 1)N + i+ j− 1) = j, it follows that during the jth time frame
in the pth superframe of the ith input port, the ith input port is always
connected to the jth output port. Moreover, the jth time frame in the
pth superframe of the ith input port is also the ith frame in the pth

superframe of the jth input port.
Consider a particular packet that arrives at the ith input port of

the first stage during the jth time frame in the pth superframe of the
ith input port. As just described, the ith input is connected to the jth

output during that frame and the packet is thus sent to the jth central
buffer without delay. As there are two alternating memory blocks in
the jth central buffer, the packet is sent to the second (resp. first)
memory block if p is odd (resp. even). If, furthermore, the packet is
destined for the kth output port, it will be placed in the kth bin of
that memory block. As each bin only has the buffer size F , one might

182 3. Load Balanced Birkhoff-von Neumann switches

wonder whether there is enough buffer space for such an assignment.
We will show in Theorem 3.5.2 that under certain traffic assumptions
there are no packet overflows for such an assignment. For the time
being, reader might simply consider that overflowed packets are lost.

Without loss of generality, let us assume that p is odd and the
packet is placed in the kth bin of the second memory block of the jth

central buffer. During the kth time frame in the (p + 1)th superframe
of the jth input port of the second stage, the jth input port of the
second stage is connected to the kth output of the second stage. As
each frame has F time slots and each bin can hold at most F packets,
during that frame all the packets in the kth bin of the second memory
block of the jth central buffer are transmitted to the kth output of the
second stage.

Example 3.5.1. We illustrate this scheme by a 4×4 switch fabric. In
Figure 3.26, we show the operation for the first stage. We denote by
I(i,m) the set of packets that arrive at the ith input port of the first
stage during the mth time frame, and Is(i, p) the set of packets that
arrive the ith input port of the first stage during the pth superframe of
the ith input port. Note that I(1, 1), I(2, 2), I(3, 3) and I(4, 4) are all
routed to the second memory block of the first central buffer. Each of
the four frames is the first frame in the superframe of its input. Upon
the arrival of each packet in these four frames, it is placed immediately
in the bin that corresponds to its destined output. At the end of the
first superframe of the first input (i.e., the end of the 4th frame), all
the packets in the bins of the second memory block of the first central
buffer are well packed and ready to be transmitted to the second stage.
Similarly, I(1, 2), I(2, 3), I(3, 4) and I(4, 5) are all routed to the second
memory block of the second central buffer, I(1, 3), I(2, 4), I(3, 5) and
I(4, 6) are all routed to the second memory block of the third central
buffer, and I(1, 4), I(2, 5), I(3, 6) and I(4, 7) are all routed to the
second memory block of the fourth central buffer.

In Figure 3.27, we illustrate the operation for the second stage. We
denote by O(j,m) the set of packets that depart from the jth input
port of the second stage during the mth time frame, and Os(j, p) the
set of packets that depart from the jth input port of the second stage
during the pth superframe of the jth input port. Now consider the four
bins at the second memory block of the first central buffer. Since they
are ready at the end of the first superframe of the first input, packets

3.5 Frame based schemes 183

First stage�

I(1,1)�
I(1,2)�

I(1,3)�
I(1,4)�

. . .�

I(2,3)�
I(2,4)�

I(2,5)�
. . .�

I(3,4)�
I(3,5)�

I(3,6)�
. . .�

I(4,5)�
I(4,6)�

I(4,7)�
. . .�

1�
F

�
2F

�
3F

�
4F

�
5F

�
6F

�
7F

�

t�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

the first block of the central buffers�

I�s�(1,1)�

I�s�(2,1)�

I�s�(3,1)�

I�s�(4,1)�

I(2,1)�

I(3,2)�
I(3,1)�

I(4,3)�
I(4,2)�

I(4,1)�

I(2,2)�

I(3,3)�

I(4,4)�

I�s�(2,0)�

I�s�(3,0)�

I�s�(4,0)�
T

he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

the second blok of the central buffers�

p=
1 ,3 , ...�, 2N

-1, ...�

p=
2, 4, �.

.
.
�

, 2N
, ...�

p=
1, 3, �.

.
.
�

, 2N
-1, ...�

p=
2, 4, �.

.
.
�

, 2N
, ...�

Fig. 3.26. The first stage of a 4 × 4 switch fabric

184 3. Load Balanced Birkhoff-von Neumann switches

Second stage�

5F
�

6F
�

7F
�

8F
�

9F
�

10F
�

11F
�

t�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

T
he �1st�
bin�

T
he �2nd�
bin�

T
he �3rd�
bin�

T
he �4th�
bin�

p=
1, 3, �.

.
.
�

, 2N
-1, ...�

p=
2, 4, �.

.
.
�

, 2N
, ...�

p=
1, 3, �.

.
.
�

, 2N
-1, ...�

p=
2, 4, �.

.
.
�

, 2N
, ...�

O
(1,5)�

O
(1,6)�

O
(1,7)�

O
(1,8)�

O
�s�(1,2)�O

(2,6)�
O

(2,7)�
O

(2,8)�
O

(2,9)�

O
�s�(2,2)�O

(3,7)�
O

(3,8)�
O

(3,9)�
O

(3,10)�

O
�s�(3,2)�O

(4,8)�
O

(4,9)�
O

(4,10)�
O

(4,11)�

O
�s�(4,2)�

O
(1,5)

O
(2,6)�

O
(3,7)�

O
(4,8)�

O
(1,6)�

O
(2,7)�

O
(3,8)�

O
(4,9)�

O
(1,7)�

O
(2,8)�

O
(3,9)�

O
(4,10)�

O
(1,8)�

O
(2,9)�

O
(3,10)�

O
(4,11)�

.
.
.
�

.
.

.
.
.
�

.
.
.
�

.
.
.
�

.
.
.
�

.
.
.
�

O
�s�(1,2)�

O
�s�(2,2)�

O
�s�(3,2)�

O
�s�(4,2)�

3.5 Frame based schemes 185

in the first bin are routed to the first output during the first frame of
the second superframe of the first input, i.e., the 5th frame. Similarly,
packets in the second bin are routed to the second output during the
second frame of the second superframe of the first input, i.e., the 6th

frame, packets in the third bin are routed to the third output during
the third frame of the second superframe of the first input, i.e., the 7th

frame, and packets in the fourth bin are routed to the fourth output
during the fourth frame of the second superframe of the first input, i.e.,
the 8th frame. In other words, O(1, 5) contains the packets in the first
bin, O(1, 6) contains the packets in the second bin, O(1, 7) contains
the packets in the third bin, and O(1, 8) contains the packets in the
fourth bin.

The four bins in the second memory block of the second central
buffer are ready at the end of the 5th frame. These four bins are routed
to the first output during the 6th frame, the second output during the
7th frame, the third output during the 8th frame and the fourth output
during the 9th frame. The operation for the other two central buffers
are done in a similar manner as shown in Figure 3.27.

3.5.1 Regulated inputs

In this section, we show that if the input traffic is regulated to satisfy
certain technical conditions, then it is possible to guarantee that no
packets are lost inside the switch.

(A1) Let Ai,k-flow be the flow of packets that arrive at input port i
and are destined for output port k. Suppose that the number of
packets from the Ai,k-flow during a frame is bounded above by
Mi,k, i = 1, 2, . . . , N and k = 1, 2, . . . , N .

(A2)
∑N

k=1Mi,k ≤ F , for i = 1, 2 . . . , N .
(A3)

∑N
i=1Mi,k ≤ F , for k = 1, 2, · · · , N .

(A4) All the buffers are empty at the beginning.

Note that (A2) and (A3) are equivalent to the “no overbooking”
conditions in (2.27) and (2.28).

Theorem 3.5.2. Assume that (A1)-(A4) hold. A packet that arrives
at the ith input and is destined to the kth output during the jth time
frame in the pth superframe of the ith input of the first stage (i.e.,

186 3. Load Balanced Birkhoff-von Neumann switches

the ((p − 1)N + i + j − 1)th time frame) will depart during the kth

time frame in the (p + 1)th superframe of the jth input of the second
stage (i.e., the (pN + j + k− 1)th time frame), for i = 1, 2, · · · , N and
k = 1, 2, · · · , N .

There are several consequences of Theorem 3.5.2.

(i) Even though the central buffer is finite, no packets are lost inside
the switch.

(ii) Packets of the same flow (the same i and k) depart in the FCFS
order. This is trivial for packets of the same flow that arrive within
the same frame. For packets of the same flow that arrive in different
frames, one can see from Theorem 3.5.2 that the departure time
of a packet is increasing in both j and p.

(iii) From Theorem 3.5.2, the maximum delay for all arrivals from the
ith input port to the kth output port through the switch fabric is
bounded by

(pN + j + k − 1)F
−((p− 1)N + i+ j − 1)F + F

= (N + k − i+ 1)F. (3.98)

Thus, the maximum delay for all arrivals from the ith input port
through the switch fabric is bounded by (2N − i + 1)F, which in
turn is bounded above by 2NF.

(iv) In comparison with the framed Birkhoff-von Neumann switch in
Section 2.3.4, the framed Birkhoff-von Neumann switch needs to
know the rate matrix and carries out the Birkhoff-von Neumann
decomposition. Incremental updates in the framed Birkhoff-von
Neumann switch can then be carried out by the Slepian-Duguid
algorithm. None of the above is needed for the framed based scheme
discussed in this section. The drawback of the framed based scheme
discussed in this section is the large packet delay (depending on
the frame size F and the switch size N).

Proof. (Theorem 3.5.2)
From (A1), the number of packets of the Ai,k-flow that arrive during

the jth time frame in the pth superframe of the ith input port of the first
stage (i.e., the ((p−1)N + i+ j−1)th time frame) is bounded by Mi,k.
Without loss of generality, assume that p is odd. The total number of
packets that are placed in the kth bin of the second memory block of

3.5 Frame based schemes 187

the jth central buffer during the pth superframe of the jth input port
of the second stage is not greater than

∑N
i=1Mi,k. From (A3), we know

that
N∑

i=1

Mi,k ≤ F.

Thus, if the kth bin of the second memory block of the jth buffer is
empty at the beginning of the pth superframe of the jth input port
of the second stage, then all of the packets that arrive during this
superframe can be placed in that bin without causing buffer overflow.
During the kth time frame in the (p+ 1)th superframe of the jth input
port of the second stage (i.e., the (pN + j + k − 1)th time frame), all
of packets in that bin are routed to the kth output port of the second
stage. As a result, the kth bin of the second memory block of the jth

buffer is empty again at the beginning of the (p + 2)th superframe of
the jth input port of the second stage! By induction, all packets of the
Ai,k-flow in the jth time frame of the pth superframe of the ith input
port of the first stage (i.e., the ((p−1)N + i+ j−1)th time frame) will
depart during the kth time frame in the (p+1)th superframe of the jth

input of the second stage (i.e., the (pN + j + k− 1)th time frame), for
k = 1, 2, · · · , N and i = 1, 2, · · · , N .

The argument for the case that p is even is similar.

3.5.2 Input-buffered switches with head-of-line blocking

In Section 3.5.1, traffic is regulated in the way so that no packets are
lost inside the switch. In this section, we provide a scheme without
traffic regulation.

The idea is that an input and its corresponding out-
put are usually built on the same line card and the
symmetric connection patterns in the two symmetric
TDM switches set up a feedback path from the central
buffers to an input/output port. As such, once a packet
is lost in a central buffer, the central buffer can notify
the input port that sends the packet and the packet
can be retransmitted in the next frame.

188 3. Load Balanced Birkhoff-von Neumann switches

First stage�

The first block�

Second stage�

The second block�

The central buffers�

.�

.�

.�

.�

.�

.�

.�

.�

.�

Fig. 3.28. The architecture for the frame based scheme with head-of-line blocking

A scheme described above requires adding input buffers at input
ports to hold packets that require retransmitting (see Figure 3.28).
During each frame, (at most) F packets can be transmitted from an
input port to a central buffer. Some of these packets may be placed in
the central buffer successfully and some of them may be dropped due
to buffer overflows. Those dropped packets requires retransmitting in
the next frame and might cause the head-of-line blocking problem as
described in Section 2.2.2.

To find the maximum throughput for such an input-buffered scheme,
we follow the analysis in Section 2.2.2. Assume that there are infinite
number of packets at each input port and each packet selects its output
independently and uniformly. Let q(m) be the number of head-of-line
(HOL) packets that are destined for output port 1 during the mth

frame. As there is at most F packets that can be transmitted to out-
put port 1, we then have the following (modified) Lindley equation:

q(m+ 1) = (q(m) − F)+ + a(m). (3.99)

where a(m) is the number of packets that become HOL packets and
choose output port 1 as their destination during the mth frame. As in
Section 2.2.2, the sequence {a(m),m ≥ 1} can be viewed as a sequence
of independent Poisson random variables with mean ρF , where ρ is the
maximum throughput that we would like to find.

As long as ρ < 1, we know from Theorem 2.1.4 that q(m) converges
in distribution to a unique steady state random variable q(∞) that
satisfies

q(∞) =st (q(∞) − F)+ + a(1), (3.100)

where =st denotes the stochastic identity, i.e., X =st Y if the two
random variables X and Y have the same distribution. The random

3.5 Frame based schemes 189

variable a(1) is a Poisson random variable with mean ρF and it is
independent of q(∞).

On the other hand, as the total number of head-of-line packets in
a frame is NF , we have from symmetry that the expected number of
head-of-line packets destined for output port 1 in a frame is F , i.e.,

Eq(∞) = F. (3.101)

Unfortunately, unlike (2.32), there is no closed form expression for
Eq(∞) in (3.100) (see Problem 10 and Problem 11) for a numerical
procedure to compute the maximum throughput). In the following
lemma, we show a lower bound for the maximum throughput.

Lemma 3.5.3. The maximum throughput ρ that satisfies (3.100) and
(3.101) has the following lower bound:

ρ ≥ 1 − 2√
8F + 1 + 1

. (3.102)

Proof. Let Z = q(∞)−F and Y = a(1)−F . From (3.100), it follows
that

Z =st Z
+ + Y, (3.103)

and Y is independent of Z+. Note that Z = Z+ − Z− (with Z− =
max(0,−Z)). Taking expectation on both sides of (3.103) yields

EZ− = −EY. (3.104)

Also, note that Z2 = (Z+)2 + (Z−)2 as Z+Z− = 0. Thus, squaring
both sides of (3.103) and taking expectation yields

E(Z−)2 = 2EZ+EY + EY 2. (3.105)

As the variance of a random variable is nonnegative, we then have
from (3.105) and (3.104) that

0 ≤ E(Z−)2 − (EZ−)2

= 2EZ+EY + EY 2 − (EZ−)2

= 2EZ+EY + EY 2 − (EY)2

Thus,

EZ+ ≤ −EY 2 − (EY)2

2EY
. (3.106)

As a(1) is a Poisson random variable with mean ρF , we have EY =
ρF − F and EY 2 − (EY)2 = ρF . From (3.103) and (3.106), it then
follows

190 3. Load Balanced Birkhoff-von Neumann switches

Eq(∞) ≤ −EY 2 − (EY)2

2EY
+ EY + F

≤ ρF +
ρ

2(1 − ρ)
. (3.107)

Since Eq(∞) = F in (3.101), it then follows from (3.107) that

2Fρ2 − (1 + 4F)ρ+ 2F ≤ 0. (3.108)

Solving (3.108) yields the lower bound in (3.102).

In addition to the lower bound in Lemma 3.5.3, we provide an
approximation for the maximum throughput when F is large. The
idea is to assume that the distribution of Z(∞) = (q(∞) − F)/

√
F is

approximately normal with zero mean and variance σ2. We can rewrite
(3.100) into

Z(∞) =st (Z(∞))+ +
a(1) − F√

F
. (3.109)

Since Z(∞) is assumed to be normal with zero mean and variance σ2,
we have

E[(Z(∞))+] =
σ√
2π
.

Taking expectation on both sides of (3.109) yields

0 =
σ√
2π

+ (ρ− 1)
√
F. (3.110)

Also, note that

E[((Z(∞))+)2] =
σ2

2
.

Squaring both sides of (3.109) and taking expectation yields

σ2 =
σ2

2
+ (ρ+ F (1 − ρ)2) + 2 ·

√
F

2π
(ρ− 1)σ, (3.111)

where we use the fact that a(1) is a Poisson random variance with
mean ρF and it is independent of Z(∞). Solving (3.110) and (3.111)
for ρ, we have

ρ =
2(π + 1)F + 1 −√4(π + 1)F + 1

2(π + 1)F
(3.112)

σ = (1 − ρ)
√

2πF . (3.113)

3.6 Mailbox switches 191

In Table 3.2, we show that both the lower bound in (3.102) and
the approximation in (3.112) are quite accurate when comparing with
simulations for large F . In our simulations, the size of the switch N is
chosen to be 128.

F Eq. (3.112) Eq.(3.102) simulation (N=128)
1 0.614735 0.500000 0.59
3 0.753705 0.666667 0.74
5 0.803072 0.729844 0.79
7 0.830724 0.766077 0.82

10 0.856217 0.800000 0.85
30 0.914221 0.878965 0.91
60 0.938543 0.912785 0.94
90 0.949528 0.928190 0.95

Table 3.2. Comparison of bounds and approximations with simulation results

3.6 Mailbox switches

Instead of using the frame based schemes to solve the re-sequencing
problem, in this section we introduce another alternative, the mail-
box switches in [36]. The mailbox switch has the same architecture
as the load balanced Birkhoff-von Neumann switch. Instead of using
an arbitrary set of periodic connection patterns generated by a one-
cycle permutation matrix, the key idea in the mailbox switch is to
use the symmetric TDM switches. As an input and its correspond-
ing output are usually built on the same line card, the symmetric
connection patterns set up a feedback path from the central buffers
to an input/output port. Since everything inside the switch is
pre-determined and periodic, the scheduled packet departure
times can then be fed back to inputs to compute the wait-
ing time for the next packet so that packets can depart in
sequence. Thus, the communication overhead incurred by this is the
transmission of the information of the packet departure time, which is
a constant independent of the size of the switch. On the other hand,
the computation overhead incurred by this is the computation of the
waiting time, which also requires only a constant number of opera-
tions. As the frame based scheme in Section 3.5.2, simplicity comes at
the cost of throughput. The throughput of the mailbox switch is no

192 3. Load Balanced Birkhoff-von Neumann switches

longer 100%. Both the theoretical models and simulations show that it
can achieve more than 75% throughput. Theoretical results also show
that a special case of the mailbox switch reduces to the classical head-
of-line blocking switch in Section 2.2.2 that yields 58% throughput. By
allowing limited resequencing delay, a modified version of the mailbox
switch can achieve more than 95% throughput.

3.6.1 Generic mailbox switch

As in the load balanced Birkhoff-von-Neumann switch, the N × N
mailbox switch consists of two N × N crossbar switch fabrics and
buffers between the two crossbar switch fabrics. The buffers between
the two switch fabrics are called mailboxes. There are N mailboxes,
indexed from 1 to N . Each mailbox contains N bins (indexed from
1 to N), and each bin contains F cells (indexed from 1 to F). Each
cell can store exactly one packet. Cells in the ith bin of a mailbox are
used for storing packets that are destined for the ith output port of
the second switch. In addition to these, a First In First Out (FIFO)
queue is added in front of each input port of the first stage.

F� 3� 2� 1�

M�a�i�l�b�o�x�

1�
2�

N�

c�e�l�l�
b�i�n�F�I�F�O�

C�r�o�s�s�b�a�r�C�r�o�s�s�b�a�r�

1�

N� N�

1�

.�

.�

.�

.�

.�

.�

.�

.�

.�

.�.�.�

.�

.�
.�
.�
.�

Fig. 3.29. The switch architecture of the mailbox switch

Both the switch fabrics are symmetric Time Division Multiplexing
(TDM) switches in Section 3.2.2.

Thus, during the tth time slot the ith input port is connected to the
h(i, t)th output port of these two crossbar switch fabrics, where

h(i, t) =
(
(t− i) mod N

)
+ 1. (3.114)

As input port i of the first switch and output port i of the second
switch are on the same line card, the symmetric property then enables
us to establish a bi-directional communication link between a line card
and a mailbox. As we will see later, such a property plays an important
role in keeping packets in sequence.

3.6 Mailbox switches 193

As the connection patterns in the mailbox switch is a special case of
the load-balanced Birkhoff-von Neumann switch with one-stage buffer-
ing [34], one might expect that it also approaches 100% throughput
if we use the FIFO policy for each bin and increase the bin size F to
∞. However, we also suffer from the out-of-sequence problem by doing
this. Packets that have the same input port at the first switch and
the same output port at the second switch may be routed to different
mailboxes and depart in a sequence that is different from the sequence
of their arrivals at the input port of the first switch.

To solve the out-of-sequence problem, one may add a resequencing
buffer and adapt a more careful load balancing mechanism as in the
load balanced Birkhoff-von Neumann switch with multi-stage buffering
[35]. However, such an approach requires complicated scheduling and
jitter control in order to have a bounded resequencing delay. Here we
take a much simpler approach.

The idea is that we do know the packet departure time
once it is placed in a mailbox as the connection pat-
terns are deterministic and periodic. Also, as an input
port of the first switch and the corresponding output
port of the second switch are in general built on the
same line card, the information of packet departure
times can be fed back to the inputs so that packets
can be scheduled in the order of their arrivals.

To be specific, define flow (i, j) as the sequence of packets that
arrives at the ith input port of the first switch and are destined for
the jth output port of the second switch. Let Vi,j(t) be the number of
time slots that a packet of flow (i, j) has to wait once it becomes the
head-of-line (HOL) packet at the FIFO queue of the ith input port of
the first stage at time t. Following the terminology in queueing theory,
we call Vi,j(t) the virtual waiting time of flow (i, j). Now we describe
how the mailbox switch works to keep packets of the same flow in
sequence.

(iA) Retrieving mails: at time t, the ith output port of the second
switch is connected to the h(i, t)th mailbox. The packet in the first
cell of the ith bin is transmitted to the ith output port. Packets in
cells 2, 3, . . . , F of the ith bin are moved forward to cells 1,2,. . . ,
F − 1.

194 3. Load Balanced Birkhoff-von Neumann switches

(iiA) Sending mails: suppose that the HOL packet of the ith input
port of the first switch is from flow (i, j). Note that the ith input
port of the first switch is also connected to the h(i, t)th mailbox.
In order to keep packets in sequence, this HOL packet is placed
in the first empty cell of the jth bin of the h(i, t)th mailbox such
that it will depart not earlier than t+Vi,j(t). If no such empty cell
can be found, the HOL packet is blocked and it remains the HOL
packet of that FIFO queue.

(iiiA) Updating virtual waiting times: all the flows that do not
send mails (packets) at time t decrease their virtual waiting time by
1. This includes flows that have blocked transmissions. To update
the virtual waiting time for flow (i, j), suppose that the HOL packet
is placed in the f th cell of the jth bin of the h(i, t)th mailbox. As
the connection patterns are deterministic and periodic, one can
easily verify that the h(i, t)th mailbox will be connected to the jth

output port of the second switch at t + ((j − i − 1) mod N) + 1.
Thus, the departure time for this packet is simply t+ (f − 1)N +
((j− i−1) mod N)+1. As such, the number of time slots that has
to be waited at t+1 for flow (i, j) is (f−1)N+((j− i−1) mod N)
and we have

Vi,j(t+ 1) = (f − 1)N + ((j − i− 1) mod N). (3.115)

3.6.2 Mailbox switch with cell indexes

In view of (3.115), there is a simple way to represent the virtual waiting
time of a flow. The virtual waiting time Vi,j(t + 1) can be written as
a sum of two components: (f − 1)N and ((j − i − 1) mod N). The
first term is only a function of the cell index f and the second term is
a number between 0 and N − 1. This leads to a much easier way to
implement the mailbox switch. Define fi,j(t) to be the smallest index of
the cell such that the HOL packet will not depart earlier than t+Vi,j(t)
if the HOL packet is placed in that cell. To simplify our representation,
we call fi,j(t) the cell index of Vi,j(t). Now we modify the second and
the third phase as follows:

(iiB) Sending mails: suppose that the HOL packet of the ith input
port of the first switch is from flow (i, j). This HOL packet is
sent to the h(i, t)th mailbox along with fi,j(t). This packet is then
placed in the first empty cell of the jth bin with the cell index
not smaller than fi,j(t). If successful, the index of that cell, say

3.6 Mailbox switches 195

f , is transmitted to the ith output port of the second switch. If
no such empty cell can be found, an error message, say f = 0, is
transmitted to the ith output port of the second switch to indicate
a HOL blocking.

(iiiB) Updating virtual waiting times: in addition to the cell index
of the virtual waiting time fi,j(t), we also keep a counter gi,j(t) for
flow (i, j). If flow (i, j) has a successful transmission of a packet
at time t, then fi,j(t + 1) is set by the index f returned by the
mailbox at time t and gi,j(t+ 1) is reset to N . On the other hand,
if flow (i, j) does not have a successful transmission of a packet
at time t, then fi,j(t + 1) = fi,j(t) and gi,j(t + 1) = gi,j(t) − 1. If
gi,j(t+1) is reduced to 0, then we reset gi,j(t+1) back to N . When
this happens and fi,j(t+ 1) > 1, we decrease fi,j(t+ 1) by 1.

In view of (3.115) and (iiiB), the virtual waiting time Vi,j(t) can be
represented by fi,j(t) and gi,j(t) as follows:

Vi,j(t) = max[(fi,j(t) − 1)N
+((j − i− 1) mod N) − (N − gi,j(t)), 0]. (3.116)

The main advantage of the scheme that uses cell indexes is that there
is no need to transmit the whole information of the virtual waiting
times. Instead, only cell indexes are transmitted. This greatly reduces
the communication overhead needed in the mailbox switch. Also, it is
easier to place a HOL packet in a mailbox by using the cell index of
its virtual waiting time.

3.6.3 Mailbox switch with a limited number of forward tries

Note that the mailbox switch resolves conflict implicitly over time and
space. First, packets are distributed evenly to the N mailboxes via the
symmetric TDM switch at the first stage. Intuitively, one may view
this as conflict resolution over space. Once a packet is transmitted to
a mailbox, the mailbox switch has to find an empty cell with its cell
index not smaller than the cell index of the virtual waiting time of
the packet. As cells in the same bin are ordered in the FIFO manner,
this can be viewed as conflict resolution over time. In the search for
an empty cell to place the packet, there might be several tries until
an empty cell is found. For each unsuccessful try, it may be viewed
as a “collision,” and each collision leads to back off N time slots for
the packet departure time. Such a backoff not only affects the packet

196 3. Load Balanced Birkhoff-von Neumann switches

being placed, but also affects all the subsequent packets that belong
to the same flow because the virtual waiting time of that flow is also
increased by N time slots. If there are many collisions, the increase
of the virtual waiting time will be large and eventually packets will
be distributed over time sparsely. This will result in low throughput
and large delay. To avoid such an event, it might be better to block
the packet by putting a limit on the amount of virtual waiting time
that can be increased for each placement. This leads to the following
modified scheme.

(iiC) Sending mails: let δ be the maximum increment of the cell
index of the virtual waiting time. We only search for an empty cell
from the cell fi,j(t) to the cell min[fi,j(t) + δ, F]. If successful, the
index of that cell, say f , is transmitted to the ith output port of
the second switch. If no such empty cell can be found, an error
message, say f = 0, is transmitted to the ith output port of the
second switch to indicate a HOL blocking.

3.6.4 Mailbox switch with limited numbers of forward and
backward tries

To perform conflict resolution more efficiently over time, we may also
search for an empty cell with a limited number of backward tries. By
so doing, packets in the mailbox switch might be out of sequence. But
resequencing delay is bounded.

(iiD) Sending mails: let δb be the maximum number of backward
tries. We only search for an empty cell from the cell max[fi,j(t) −
δb, 1] to the cell min[fi,j(t) + δ, F]. If successful, the index of that
cell, say f , is transmitted to the ith output port of the second
switch. If no such empty cell can be found, an error message, say
f = 0, is transmitted to the ith output port of the second switch
to indicate a HOL blocking.

(iiiD) Updating virtual waiting times: the case without a success-
ful transmission of a packet is the same as (iiiB). For the case with
a successful transmission of a packet, we have to deal with the fol-
lowing two subcases. If the returned index f is not smaller than
fi,j(t), then it is the same as before. That is, we set fi,j(t+ 1) = f
and reset gi,j(t+1) to N . On the other hand, if the returned index
f is smaller than fi,j(t), then the packet being placed will depart

3.6 Mailbox switches 197

earlier than its previous one. As such, it is treated in the same way
as the case without a successful transmission of a packet.

Note that the resequencing delay in the scheme with backward tries
is bounded by Nδb time slots.

3.6.5 Exact analysis for the throughput with δ = 0

To further explain the mailbox switches, we consider the well-known
uniform i.i.d. traffic model described in Section 3.1.3. We assume that
both the bin size F and the buffers for the FIFO queues at the input
ports of the first switch are infinite. Also, we do not allow backward
tries, i.e., δb = 0.

In this section, we consider the mailbox switch with δ = 0. Since
δ = 0, the cell index of the virtual waiting time will never be increased.
As such, there is no need to keep track of the virtual waiting times
at all! Moreover, even though we assume that F = ∞ in our model,
only the first cell in every bin is used. As such, it can be implemented
with F = 1. Since F = 1, there is no need to transmit and feedback
the cell index of the virtual waiting time. However, we still need to
feedback a single bit information to indicate whether a HOL packet
is successfully placed, i.e., f = 0 for a HOL blocking and f = 1 for a
successful placement.

Our objective of this section is to show that this special case of the
mailbox switch with δ = 0 yields the same throughput as the classical
HOL blocking switch in Section 2.2.2, i.e., it achieves 58% throughput.
In fact, the mailbox switch with δ = 0 can be viewed as a HOL blocking
switch with distributed and pipelined conflict resolution.

As the traffic is uniform, we only need to consider a particular
output port of the second switch, say, the first output. At time t, it is
connected to the h(1, t)th mailbox, and this mailbox is also connected
to the first input port of the first switch. If the first bin of the h(1, t)th

mailbox is occupied at the beginning of the tth time slot, then the
packet is retrieved by the first output port and the first bin becomes
empty at time t. In any event, we know that the first bin of the h(1, t)th

mailbox is empty at time t.
Let Yi(t) = 1 if the HOL packet of the FIFO queue of the ith input

port is destined for the first output port of the second switch at time
t, and Yi(t) = 0 otherwise. Let

198 3. Load Balanced Birkhoff-von Neumann switches

q(t) =
N∑

i=1

Yi(t+ i− 1). (3.117)

As the h(1, t)th mailbox is connected to the first input port at time t,
it will be connected to ith input port at time t + i − 1. Thus, q(t) is
the total number of HOL packets that can be placed in the first bin
of the h(1, t)th mailbox from t to t + N − 1. If q(t) ≥ 1, then there
is exactly one HOL packet that will be placed in the first bin of the
h(1, t)th mailbox as the bin is empty at time t. Those blocked HOL
packets remain the HOL packets and they can be placed in the first
bin of the h(1, t + 1)th mailbox from t+ 1 to t+N . Thus, we have

q(t+ 1) = (q(t) − 1)+ + a(t), (3.118)

where a(t) is the number of packets that becomes the HOL packets
and can be placed in the first bin of the h(1, t + 1)th mailbox from
t+ 1 to t+N . Once we have the recursive equation in (3.118), we can
follow the standard argument to show that the maximum throughput
is 2 −√

2 (see Section 2.2.2).

3.6.6 Exact analysis for the throughput with δ = ∞
In this section, we consider the mailbox switch with δ = ∞. Since
δ = ∞, there is no head-of-line blocking at the FIFO queues. As such,
there is no need to buffer packets at the input ports of the first switch.

Our objective of this section is to show that the mailbox switch
with δ = ∞ achieves 67.5% throughput under the uniform i.i.d. traffic
model. To see this, consider a particular flow, say flow (i, j). Let W (n)
be the virtual waiting time seen by the nth packet of flow (i, j) (upon
its arrival). Let T (n) be the number of time slots between the arrivals
of the nth and n+1th packets of this flow. Note that the virtual waiting
time of a flow is reduced by 1 for every time slot if the flow does not
have a successful transmission. Let S(n) be the increment of the virtual
waiting time after the nth packet is placed in a cell. Then we have the
following Lindley recursion:

W (n+ 1) = (W (n) + S(n) − T (n))+. (3.119)

In order for the virtual waiting times to be stable, we need to have the
rate condition (cf. Theorem 2.1.4)

E[S(n)] < E[T (n)]. (3.120)

3.6 Mailbox switches 199

From the uniform i.i.d. traffic model, it follows that T (n) is a geometric
random variable (r.v.) with parameter ρa/N , i.e.,

P(T (n) = k) = (1 − ρa

N
)k−1ρa

N
, k = 1, 2, . . . (3.121)

Thus,

E[T (n)] =
N

ρa
. (3.122)

To find E[S(n)], note that the increment of the virtual waiting time
consists of two factors: (i) the increment of the cell index and (ii) the
increment of the counter (after being reset to N). The increment of
S(n) due to the second factor is simply (T (n) − 1) mod N . On the
other hand, the increment of the cell index is the number of collisions
encountered when the nth packet of flow(i, j) is placed in the mailbox.
Let B(n) be the number of collisions encountered when the nth packet
of flow(i, j) is placed in the mailbox. Then, we have

E[S(n)] = E[B(n)] ·N + E[T̃ (n)], (3.123)

where
T̃ (n) = (T (n) − 1) mod N.

Recall that T (n) is a geometric r.v. with parameter ρa/N , Thus,
for k = 0, 1, 2, . . . N − 1,

P(T̃ (n) = k) =
(1 − ρa

N)k · (ρa

N)
1 − (1 − ρa

N)N
. (3.124)

When N is large, this implies that

E[T̃ (n)] ≈ (
1 − e−ρa − ρae

−ρa

ρa(1 − e−ρa)
)N. (3.125)

To find E[B(n)], we first find the expected number of “collisions”
that occurs in a time slot at an output port. From symmetry, this is
equivalent to finding the expected number of “collisions” in a cell of
a particular mailbox. Let q̃(k) be the number of packets that are ever
tried to be placed in the kth cell for that particular mailbox. Also, let
ã(k) be the number of packets that are placed to the kth cell as their
first trial. As the Poisson assumption used in the case with δ = 0, we
may assume that ã(k) is a Poisson random variable. As the kth cell
can only hold one packet and the rest of packets have to try the k+1th

cell, we then have the following Lindley recursion:

q̃(k + 1) = (q̃(k) − 1)+ + ã(k + 1). (3.126)

200 3. Load Balanced Birkhoff-von Neumann switches

Note that P(q̃(k) > 0) is the probability that the kth cell is occupied
and hence it equal to the throughout ρd. Using a similar argument to
that in Proposition 2.1.5, we have

P(q̃(k) > 0) = E(ã(k)) = ρd (3.127)

and

E[q̃(k)] =
2ρd − ρ2

d

2(1 − ρd)
. (3.128)

Since the first packet can be placed in the kth cell successfully, the
number of collisions in the kth cell is (q̃(k) − 1)+. Thus, the expected
number of ”collisions” in a time slot is

E[(q̃(k) − 1)+] = E[q̃(k)] − ρd =
ρ2

d

2(1 − ρd)
. (3.129)

As E[B(n)] is the expected number of ”collisions” when a packet is
placed in a cell, it can be computed by the following limit

E[B(n)] = lim
t→∞

Nc(t)
Np(t)

, (3.130)

where Nc(t) is the cumulative number of ”collisions” by time t at an
output port and Np(t) is the cumulative number of departures by time
t at an output port. If the system is ergodic, i.e., the ensemble average
is the same as its time average, then we have from (3.129) and (3.130)
that

E[B(n)] = lim
t→∞

Nc(t)
Np(t)

=
limt→∞

Nc(t)
t

limt→∞
Np(t)

t

=
ρ2

d
2(1−ρd)

ρd

=
ρd

2(1 − ρd)
. (3.131)

From (3.123), (3.125), and (3.131), we have

E[S(n)] =
ρd

2(1 − ρd)
·N + (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
) ·N. (3.132)

When the system is stable, we have ρd = ρa. It then follows from
(3.122) and (3.132) that the inequality in (3.120) can be rewritten as

ρa

2(1 − ρa)
+ (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
) <

1
ρa
. (3.133)

3.6 Mailbox switches 201

The maximum stable throughput can be found to be 0.6748 when the
above inequality becomes an equality.

One interesting phenomenon is that when one increases the arrival
rate ρa beyond the maximum stable throughput 0.6748, the system
becomes unstable and the expected virtual waiting time W (n) is in-
creased to ∞ as n goes to ∞. However, the throughput ρd is also
increased with respect to the arrival rate ρa. To see this, note that for
an unstable system, we have

W (n+ 1) = W (n) + S(n) − T (n) (3.134)

for large n. Thus, the expected interdeparture time between the nth

packet and the n + 1th packet is simply E[S(n)]. As the throughput
of a particular flow ρd/N is simply the inverse of the expected inter-
departure time between two packets of that flow, we then have from
(3.132) that

N

ρd
= E[S(n)] =

ρd

2(1 − ρd)
·N + (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
) ·N. (3.135)

To find the maximum unstable throughput, we solve the above equa-
tion by setting the maximum arrival rate ρa = 1. This yields the
maximum unstable throughput 0.6786. Even though the difference be-
tween the maximum stable throughput and the maximum unstable
throughput is very small, the existence of two types of throughput
in the mailbox switch is quite interesting. Both the maximum stable
throughput and the maximum unstable throughput are found to be
quite close to our simulation in Figure 3.32 for N = 100.

3.6.7 Approximation for the throughput with 0 < δ < ∞
As described in Section 3.6.5, the key factor that limits the throughput
for δ = 0 is the head-of-line (HOL) blocking problem at the input
buffers. On the other hand, as shown in Section 3.6.6, the key factor
that limits the throughput for δ = ∞ is the stability of virtual waiting
times. It is expected that the throughput for the mailbox switch with
0 < δ < ∞ is limited by both the head-of-line blocking problem and
the stability problem of virtual waiting times. Unlike the cases with
δ = 0 and δ = ∞, exact analysis for the finite case with 0 < δ <
∞ is much more difficult. Instead, our objective is to find a simple
approximation formula for the maximum throughput of the mailbox
switch with 0 < δ <∞.

202 3. Load Balanced Birkhoff-von Neumann switches

First, let us consider a FIFO queue, say the ith queue, at the input
port of the first switch. In order to have a stable queue, we need to
make sure that the arrival rate to the queue is smaller than the service
rate of the queue. From the uniform i.i.d. traffic model described in
Section 3.1.3, the arrival rate to the queue is simply ρa. To compute the
service rate, consider a HOL packet of the queue at time t. Suppose the
HOL packet is destined for the jth output port of the second switch.
The HOL packet is blocked only if there is no empty cell among the
cells fi,j(t), fi,j(t) + 1, . . . , fi,j(t) + δ. Let ρd be the throughput of the
mailbox switch. As a packet eventually leaves the mailbox switch once
it is placed in a cell, the throughput ρd is also the probability that
a cell is occupied. To simplify our analysis, we make the following
assumption on the independence of cell occupancy:

(A5) Every cell is occupied independently with probability ρd. This is
independent of everything else.

From (A5), the probability that the HOL packet is blocked is ρδ+1
d .

Thus, the service rate is 1−ρδ+1
d . This leads to the following condition

for the FIFO queue to be stable:

ρa < 1 − ρδ+1
d . (3.136)

Now we consider the cell index of the virtual waiting time for a
particular flow, say flow (i, j). In order for fi,j(t) to be stable, we
need to make sure that the increase rate of fi,j(t) is smaller than the
decrease rate of fi,j(t). To compute the increase rate, note that fi,j(t)
is increased by k for some 0 ≤ k ≤ δ if the following three conditions
hold: (i) the HOL packet at the ith input port of the first switch is
a packet from flow (i, j), (ii) the cells in the jth bin with the indexes
fi,j(t), fi,j(t)+1, . . . , fi,j(t)+k−1 are occupied, and (iii) the cell with
the index fi,j(t)+k is empty. From the uniform i.i.d. traffic model, the
probability that the HOL packet at the ith input port of the first switch
is a packet from flow (i, j) is simply ρa/N . As everything is assumed
to independent in (A5), the probability that fi,j(t) is increased by k is

ρa

N
· ρk

d · (1 − ρd).

Thus, the increase rate of fi,j(t) is

δ∑
k=0

k · ρa

N
· ρk

d · (1 − ρd)

3.6 Mailbox switches 203

=
ρa

N

δρδ+2
d − (δ + 1)ρδ+1

d + ρd

1 − ρd
. (3.137)

To compute the decrease rate, note that fi,j(t) is decreased by 1 if
the following two conditions hold: (i) there is no successful transmission
of a packet from flow (i, j), and (ii) the counter gi,j(t) = 1. The event
that there is no successful transmission of a packet from flow (i, j)
can be decomposed as the union of the two disjoint events: the HOL
packet at the ith input port of the first switch is not a packet from flow
(i, j) or the HOL packet at the ith input port of the first switch is a
blocked packet from flow (i, j). Thus, the probability that there is no
successful transmission of a packet from flow (i, j) is

1 − ρa

N
+
ρa

N
· ρδ+1

d .

To compute the probability that gi,j(t) = 1, we make the following
assumption.

(A6) The counter gi,j(t) is uniformly distributed over {1, 2, . . . , N}.
As such, the probability that gi,j(t) = 1 is simply 1/N . Thus, the
decrease rate of fi,j(t) is

(1 − ρa

N
+
ρa

N
ρδ+1

d)
1
N
. (3.138)

Using (3.137) and (3.138) and letting N → ∞, we have the following
condition for the fi,j(t) to be stable:

ρa
δρδ+2

d − (δ + 1)ρδ+1
d + ρd

1 − ρd
< 1. (3.139)

As the throughput ρd cannot be larger than the arrival rate ρa, it
follows from (3.136) and (3.139) that the throughput ρd is limited by
the following two inequalities:

ρd + ρδ+1
d < 1, (3.140)

ρd
δρδ+2

d − (δ + 1)ρδ+1
d + ρd

1 − ρd
< 1. (3.141)

In Figure 3.30, we use the bound obtained by (3.140) and (3.141)
to plot the maximum throughput as a function of δ. For δ < 5, the
inequality in (3.140) sets the limit on the maximum throughput. On
the other hand, for δ ≥ 5, the inequality in (3.141) sets the limit on
the maximum throughput. From these, it is interesting to see that the

204 3. Load Balanced Birkhoff-von Neumann switches

curve is peaked when δ = 4 and that gives the maximum throughput
of 0.755. The intuition behind this is that if we set δ too small, it is
quite likely that the HOL blocking will become a problem. On the
other hand, if we set δ too large, then packets will be distributed over
time sparsely and that also results in a low throughput. We also note
that when δ → ∞, the mailbox switch has the maximum throughput
0.618, which is higher than 2 −√

2 ≈ 0.58 for the case with δ = 0.

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

δ

Th
ro

ug
hp

ut

(4, 0.75)

0.61

Fig. 3.30. The maximum throughput as a function of δ

3.6.8 Simulation Study

In this section, we perform various simulations to verify our theoreti-
cal results in the previous section. In all our simulations, we consider
100 × 100 mailbox switches, i.e., N = 100. Our first experiment is to
find the maximum throughput of the mailbox switch. To achieve this,
the arrival rate of each input port is set to 1, i.e., a packet arrives at
each input port in every time slot. In Figure 3.31, we plot the simu-
lation results (along with the theoretical results in Section 3.6.7) for
the maximum throughput as a function of δ under the uniform i.i.d.
traffic.

Note that the curve from the simulation results in Figure 3.31 is
similar to that from the theoretical results. Both curves show that the

3.6 Mailbox switches 205

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

δ

Th
ro

ug
hp

ut
(3, 0.82)

0.68

(4, 0.75)

0.61

 ----- Experimental value

Theoretical value

Fig. 3.31. The maximum throughput as a function of δ

throughput can be increased by increasing δ at the beginning, and it
then starts to decrease if δ is increased further. As explained in our
theoretical model, this is because the throughput is limited by the HOL
blocking at the FIFO queues of the first switch when δ is small. On the
other hand, when δ is large, the throughput is limited by the stability
of the virtual waiting times. Thus, the throughput model based on the
stability of the FIFO queues and the virtual waiting times seems to be
valid (at least qualitatively).

We also note that for the case δ = 0 the simulation result shows the
maximum throughput is 0.58 as predicted by our theoretical model in
Section 3.6.5. On the other hand, for the case δ → ∞, the simulation
results show that the mailbox switch has the maximum throughput
0.68, which is quite close to 0.6786 predicted by our theoretical model
in Section 3.6.6. But it is higher than 0.61 predicted by the theoret-
ical model in Section 3.6.7. The main reason behind this is that the
independence assumption for cell occupancy in (A5) in Section 3.6.7
is an over simplified assumption. In fact, we expect that nonempty
cells are more likely to be clustered together as we always search for
the first empty cell. As such, packets destined for the same output are
more well packed and the increase rate of the cell indexes of the virtual
waiting times is not as large as predicted in (3.137).

206 3. Load Balanced Birkhoff-von Neumann switches

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
ro

ug
hp

ut

Arrival Rate ρa

Fig. 3.32. Throughput as a function of the arrival rate ρa

In our second experiment, we measure the throughput by increas-
ing the arrival rate ρa. For this experiment, we choose δ = 50. In
Figure 3.32, we plot the throughput as a function of the arrival rate
ρa. Note that the throughput of the mailbox switch increases linearly
as a function of the arrival rate ρa until it reaches its maximum stable
throughput near 0.67. From that point on, the throughout is increased
at a much slower rate to it maximum (unstable) throughput near 0.68.
This shows that the mailbox switch does not have the undesired catas-
trophic behavior in some random conflict resolution algorithms such as
ALOHA and CSMA (see e.g., [128]), where the throughput decreases
as the load is increased further.

In this experiment, we also measure the normalized average incre-
ment of the virtual waiting time when a packet is placed successfully
in a mailbox. The normalized average increment of the virtual waiting
time is obtained by the ratio of the average increment of the virtual
waiting time to the number of input ports N . In Figure 3.33, we plot
the normalized average increment of the virtual waiting time as a func-
tion of the arrival rate and compare it with the theoretical model in
(3.132). Specifically, we plot the theoretical curve as a function of the
arrival rate ρa by

ρd

2(1 − ρd)
+ (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
), (3.142)

3.6 Mailbox switches 207

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve
ra
g
e
 in
cr
e
m
e
n
t
o
f
vi
rt
u
a
l w

a
iti
n
g
 t
im
e

Arrival Rate ρ
a

 Experim ent
 Theoretical

Fig. 3.33. Normalized average increment of the virtual waiting time as a function
of the arrival rate ρa

where ρd = ρa if ρa is smaller than the maximum stable throughput
0.6748, and ρd is obtained from (3.135) otherwise. As shown in Figure
3.33, the simulation result is quite close to that obtained from our
theoretical model.

Note from Figure 3.33 that the curve from simulation can also be
broken into two different segments near the maximum throughput 0.68:
the stable segment with ρa < 0.68 and the overloaded segment with
ρa > 0.68. In the stable segment, the product of the arrival rate and
the normalized average increment of the virtual waiting time is less
than 1. As the virtual waiting time is decreased by 1 per time slot, the
virtual waiting time remains finite in the stable segment. To verify this,
we plot in Figure 3.34 a sample path of the cell index of the virtual
waiting time for flow (1, 50) when ρa = 0.55. In Figure 3.34, the cell
index of the virtual waiting time exhibits the typical behavior of a
stable queue, i.e., the virtual waiting time returns to zero recurrently.
Note that when the virtual waiting time is zero, its cell index is one.
Thus, on average every HOL packet only needs to wait for a finite
amount of time after being placed in a mailbox. As such, every HOL
packet departs from the mailbox switch within a finite average delay.
In this case, the throughput is the same as the arrival rate (since the

208 3. Load Balanced Birkhoff-von Neumann switches

0 20000 40000 60000 80000 100000
0

5

 ρa = 0.55

C
el

l i
nd

ex

Time

Fig. 3.34. A sample path of the cell index of the virtual waiting time of flow (1, 50)
when arrival rate is 0.55

HOL blocking is not a constraint when δ = 50). This is consistent with
the throughput plot in Figure 3.32.

On the other hand, the virtual waiting time in the overloaded seg-
ment will go to ∞ eventually. In Figure 3.35, we plot a sample path
of the cell index of the virtual waiting time for flow (1, 50) when
ρa = 0.69. Note that the cell index of the virtual waiting time in
this figure increases almost linearly to ∞ with respect to time. This
is also consistent with the well known behavior of a unstable queue.
As ρa exceeds the maximum throughput of the mailbox switch, it is
intuitive to see that late arrivals of HOL packets have to wait much
longer than early arrivals. As such, the virtual waiting time increases
with respect to time.

To further explore the behavior of the mailbox switch, we plot
packet delay as a function of the arrival rate for various numbers of
forward trials δ. For every curve in the Figure 3.36, we observe that
packet delay increases rapidly to ∞ as the arrival rate approaches its
maximum throughput. This phenomenon provides further support for
the throughput predicted by our theoretical models.

Moreover, as shown in Figure 3.36, in order to obtain the best
packet delay, it seems that one should use the least δ that has the
maximum throughput larger than the arrival rate ρa. For instance,

3.6 Mailbox switches 209

0 20000 40000 60000 80000 100000

0

5

10

15

20

25

30

35

40
 ρa = 0.69

C
el

l i
nd

ex

Time

Fig. 3.35. A sample path of the cell index of the virtual waiting time of flow (1, 50)
when the arrival rate is 0.69

ρ

δ = 0
δ = 1
δ = 2
δ = 3
δ = 50

Fig. 3.36. Packet delay as a function of the arrival rate for various numbers of
forward tries δ.

210 3. Load Balanced Birkhoff-von Neumann switches

ρ

δ = 3
δ = 4
δ = 5
δ = 8
δ = 50

Fig. 3.37. Packet delay as a function of the arrival rate for forward trials not less
than 3, i.e., δ ≥ 3.

when the arrival rate ρa is smaller than 0.58, the case with δ = 0 has
the best performance in terms of packet delay. In this case, the average
packet delay is around N/2 = 50, which is the average number of time
slots needed for a bin in a mailbox to be connected to its output.
However, when the arrival rate ρa is between 0.58 and 0.74, the case
with δ = 1 is the best choice. As shown in Figure 3.31, the maximum
throughput is achieved when δ = 3. It is interesting to see in Figure
3.37 that the case with δ = 3 is better than any other cases with δ > 3
in terms of packet delay for the whole range of arrival rates.

In the third experiment, we consider the mailbox switch with lim-
ited numbers of forward and backward tries. As discussed in Section
3.6.4, there are two parameters for such a mailbox switch: δ and δb.
The search for an empty cell for flow (i, j) is started from the cell with
the index max[1, fi,j(t)−δb] to the cell with the index min[F, fi,j(t)+δ].
The resequencing delay for such a mailbox switch is bounded by Nδb
slots. In Figure 3.38 we plot the throughput as a function of δb for
δ = 5, 6, and 7. From Figure 3.38, we note that the mailbox switch can
achieve more than 95% throughput with small δ and δb. The through-
put is an increasing function of δb as placing a packet in a cell with the
index smaller than the cell index of its virtual waiting time does not
result in the increase of its virtual waiting time. Another interesting

3.7 Finite central buffers 211

observation is that increasing δ does increase the throughput when δb
is large. In the case that δb = 0, we have known from Figure 3.31 that
the throughput decreases as δ increases when δ ≥ 4. This is because
a large δ tends to increase a large amount of the virtual waiting time
when backward tries are not allowed (δb = 0). However, this is not
the case when δb is large. Even though a large δ tends to increase a
large amount of the virtual waiting time, a large δb allows packets to
be repacked in the cells that are “wasted” by a large increase of the
virtual waiting time. Thus, the constraint is shifted from the stability
of the virtual waiting time to the HOL blocking of FIFO queues. As
a large δ tends to have a small probability of HOL blocking, this ex-
plains why the mailbox switch with a large δ has better throughput
than that with a small δ when δb is large.

0 5 10 15 20

0.70

0.75

0.80

0.85

0.90

0.95

Th
ro

ug
hp

ut

δb

 δ = 5
 δ = 6
 δ = 7

Fig. 3.38. The maximum throughput as a function of δb

3.7 Finite central buffers

From the simulation results in the previous section, we know that
one can achieve higher throughput by allowing backward tries in the
mailbox switch. If we set the number of backward tries δb to be the
bin size F , then the entire bin has to be searched (from the first cell to

212 3. Load Balanced Birkhoff-von Neumann switches

the last cell) for each placement of a packet. As such, there is no need
to keep track of the cell indexes and the communication overhead can
be greatly reduced to the single bit that indicates whether a packet is
successfully placed in its bin, i.e., f = 0 for a failure and f �= 0 for a
success.

In this section, we will consider the special case of the mailbox
switch with δb = F . In this case, the maximum resequencing delay is
then bounded by NF time slots. Clearly, there is a tradeoff between
the throughput and the maximum resequencing delay. If one increases
the bin size F , the throughput is increased. However, the maximum
resequencing delay is also increased. As such, the complexity of rese-
quencing buffer is also increased. On the other hand, if we choose a
very small F , then it is quite likely that packets will be blocked at
the central buffer. This leads to very low throughput for the switch.
The key design problem is then to determine the right size
of the central buffer so that one can have reasonably high
throughput and tolerable re-sequencing delay.

3.7.1 Sizing the central buffers

The objective of the section is to determine the bin size F for the
switch. As the exact analysis for the finite buffer case is much more
difficult than the infinite buffer case in Section 3.1, one has to resort
to computer simulations. In all the simulations, we set N = 100. In
the first experiment, each simulation is run for 200000 time slots under
the uniform i.i.d. traffic model described in Section 3.1.3.

To find the maximum throughput, we set the arrival rate of each
input to 1, i.e., there is a packet arrival at each input port in every time
slot. In Figure 3.39, we plot the (measured) maximum throughput as
a function of F (the bin size of the central buffer). As shown in Figure
3.39, one can have throughput over 95% when F = 15. We also plot the
average delay as a function of the arrival rate for F = 1, 5, 10, 15, 20
in Figure 3.40. As shown in Figure 3.40, the average delay is smaller
for smaller F when the arrival rate is small. For instance, the case
with F = 1 has the smallest average delay when the arrival rate is not
greater than 0.4. However, as the arrival rate approaches to 0.58, the
average delay for F = 1 is increased sharply. From Figure 3.40, it also
shows that the case F = 15 has a reasonably good delay-throughput
performance.

3.7 Finite central buffers 213

0� 5� 10� 15� 20� 25� 30�

0.55�

0.60�

0.65�

0.70�

0.75�

0.80�

0.85�

0.90�

0.95�

1.00�

T
hr

ou
gh

pu
t�

F�

Fig. 3.39. The maximum throughput as a function of F under the uniform i.i.d.
traffic model

0.0� 0.2� 0.4� 0.6� 0.8� 1.0�

0�

500�

1000�

1500�

2000�

2500�

A
ve

ra
ge

 d
el

ay
(t

im
e

sl
ot

s)
�

Arrival rate�

 F1�
 F5�
 F10�
 F15�
 F20�

Fig. 3.40. The average delay for various F under the uniform i.i.d. traffic model

214 3. Load Balanced Birkhoff-von Neumann switches

The first experiment suggests that F = 15 might be a good choice.
To verify this, we set F = 15 and measure the throughput for various
arrival rates under the uniform i.i.d traffic model and the uniform
Pareto traffic model in Section 3.1.5.

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

T
hr

ou
gh

pu
t

A rr iv a l ra te

 T h ro u g

Saturation Throughput=0.96

Fig. 3.41. Throughput as a function of the arrival rate for the uniform i.i.d traffic
model with F = 15

In Figure 3.41 and Figure 3.42, we plot the throughput as a function
of the arrival rate for the uniform i.i.d. traffic model and the uniform
Pareto traffic model. These figures show that the throughput increases
with the arrival rate linearly until it reaches its maximum throughput.
Once the arrival rate is increased to its maximum throughput, it will
almost maintain its maximum value even though the arrival rate is
increased further. The variation of the maximum throughput in Fig-
ure 3.42 is due to the measurement inaccuracy of the simulation for
the bursty Pareto traffic. In Figure 3.41, it shows that the maximum
throughput is 96% for the uniform i.i.d. model. But for the uniform
Pareto traffic model, the maximum throughput is down to 70% as
shown in Figure 3.42.

To gain intuition on these simulation results, we note from the
queueing theory that a queue subject to a Bernoulli input has an ex-
ponential tail while a queue subject to a Pareto input has a Pareto
tail (power law). Since a HOL packet is blocked when the bin in a cen-
tral buffer is full, HOL blocking occurs much often for bins with large
probabilities to be full. For the uniform Pareto traffic, the probability

3.7 Finite central buffers 215

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

T
hr

ou
gh

pu
t

A rr iv a l ra te

 T h ro u

Saturation Throughput: about 0.7

Fig. 3.42. Throughput as a function of the arrival rate for the uniform Pareto
traffic model with F = 15

that a bin is full is governed by the power law, i.e., 1/Fα for some
α > 0 (see e.g., [130, 89] and references therein). On the other hand,
for the Bernoulli input, the probability that a bin is full is governed
by the exponential law, i.e., exp(−θF) for some θ > 0 (see e.g., [27]
and references therein). In short, HOL blocking is more severe
for the bursty Pareto traffic than the Bernoulli traffic.

For the HOL blocking problem caused by the bursty Pareto traffic,
there are two general approaches to solve it. One is to increase the
size of the central buffer. However, increasing the size of the central
buffer causes another problem in the re-sequencing buffer. Moreover,
if the bins are governed by the power law, then it is very inefficient
to increase the throughput by increasing the size of the central buffer.
The second approach is to use multiple virtual output queues (VOQs)
at the input. This is the approach we will address in the next section.

3.7.2 Round-robin policy for multiple VOQs at input buffers

Instead of using a single FIFO queue as in the generic mailbox switch,
in this section we will use multiple FIFO VOQs to solve the HOL
problem.

Here we introduce the VOQ technique used in our architecture.
Each input port has m VOQs and each VOQ is a FIFO queue. When
m = N , we have a full size VOQ scheme and each VOQ corresponds
to a flow. To reduce the implementation complexity, we may consider

216 3. Load Balanced Birkhoff-von Neumann switches

the case m < N . For this, we need to implement flow aggregation,
i.e., a set of flows is assigned to a particular VOQ. To be specific, in
our VOQ dispatching policy we examine the destination field of each
arrival packet at the input port. If the destination of a packet is d,
then the packet is dispatched to the [((d− 1) mod m) + 1]th VOQ.

As there are multiple VOQs at each input, we need to choose one
of the m VOQs at each input port to send a packet in every time slot.
Since our main objective is to have a simple and high performance
switch architecture, we do not intent to use complicated matching
polices that require heavy communication or computation overheads.
Here we adopt a very simple service policy, called the round-robin
(RR) service policy. The RR service policy is described as follows:

1. Keep a pointer at each input port.
2. If not all the VOQs are empty, advance the pointer clockwise (in

the round-robin fashion) to the first non-empty VOQ. Send the
HOL packet from that VOQ.

In this experiment, we replace the single FIFO queue (used in Sec-
tion 3.7.1) with the VOQ technique mentioned above. We set the num-
ber of VOQs to be 10 (m = 10), and then measure the throughput for
the RR service policy by increasing the arrival rate for two different
traffic models: the uniform Pareto traffic model and the uniform i.i.d.
traffic model.

In Figure 3.43, we plot the throughput as a function of the arrival
rate for the uniform Pareto traffic model. It shows that the maximum
throughput is now increased to 90% from 70% of the case with sin-
gle FIFO queue. However, while the arrival rate exceeds 90%, an un-
expected catastrophic phenomenon occurs. The throughput not only
cannot keep up with the arrival rate but also sharply reduces down
to 10%. The throughput is even worse than the case of single FIFO
queue! In Figure 3.44, it shows a similar result for the uniform i.i.d.
traffic model. Both curves show that the switch under the RR service
policy encounters an unexpected catastrophic phenomenon like that
in ALOHA and CSMA (see e.g., R. Nelson [128]). By carefully ex-
amining our simulation results, we find that the patterns of pointer
rotation fall into a deterministic and periodic circle. As such, a par-
ticular central buffer always tries to fetch the same group of VOQs.
Such a phenomenon is called a non-ergodic mode of the switch and
it will be explained further in the next section.

3.7 Finite central buffers 217

0.0� 0.2� 0.4� 0.6� 0.8� 1.0�

0.0�

0.2�

0.4�

0.6�

0.8�

1.0�

T
hr

ou
gh

pu
t�

Arrival rate�

Fig. 3.43. The throughput of the switch with m = 10 and the RR service policy
for the uniform Pareto traffic model with F = 15

0.0� 0.2� 0.4� 0.6� 0.8� 1.0�

0.0�

0.2�

0.4�

0.6�

0.8�

1.0�

T
hr

ou
gh

pu
t�

Arrival rate�

Fig. 3.44. The throughput of the switch with m = 10 and the RR service policy
for the uniform i.i.d. traffic model with F = 15

218 3. Load Balanced Birkhoff-von Neumann switches

3.7.3 Non-ergodic mode

To understand the non-ergodic mode in our switch, we note that when
the offered load exceeds the maximum (stable) throughput,
all the VOQs start to grow. As we choose m = 10 and N = 100
in our experiments, the number of output ports is an inte-
ger multiple of the number of VOQs. Moreover, as the ser-
vice policy is round-robin, the pointers at the input ports
become deterministic and periodic when all VOQs become
non-empty. Since the connection patterns of the switch fab-
rics are also deterministic and periodic, the “state” of the
switch is non-ergodic, i.e., a particular central buffer will not
be connected to all the VOQs in the long run. Instead, it is
only connected to a certain subset of VOQs.

In Figure 3.45, we illustrate concept of non-ergodic modes via a
state transition diagram of a Markov chain. A Markov chain is a
discrete-time stochastic process that its future only depends on its
most recent state. A non-ergodic mode in a Markov chain is a group of
states that have no transition link to other states outside of the group.
If the system enters a non-ergodic mode, then it can only stay in one
of the states in that non-ergodic mode.

:Transition Link

:State

Non-ergodic modes

Fig. 3.45. The non-ergodic modes in a state transition diagram

3.7 Finite central buffers 219

From our simulation results, we observe that the flows are parti-
tioned into several groups in a non-ergodic mode. Once the switch
enters a non-ergodic mode, a particular central buffer only
has incoming traffic from a certain set of flows. Thus, for a
particular central buffer, time slots are wasted for certain
output ports as there are no incoming traffic for these out-
put ports. As a result, the throughput is sharply reduced.
This phenomenon occurs for both the uniform i.i.d traffic and the
bursty Pareto traffic. We also run another simulation which extends
the number of VOQs to N , i.e., the full size VOQ scheme. For both
the uniform i.i.d traffic and the uniform Pareto traffic, the throughput
is also reduced to 0.6 in heavy load. This phenomenon also exists even
when the number of VOQs is the same as the number of input ports,
i,e., m = N = 100.

3.7.4 The effect of randomness for the non-ergodic mode

:Original transition link

:State

:New transition link built by
introducing randomness

Fig. 3.46. Jumping out of a non-ergodic mode by introducing randomness

In this section, we provide several tentative solutions for avoiding
the non-ergodic modes. The idea is to introduce randomness into the
system so that the switch can jump out of a non-ergodic mode. As
shown in Figure 3.46, if a system is trapped in a non-ergodic

220 3. Load Balanced Birkhoff-von Neumann switches

mode, then providing a transition probability to permit the
system to jump out of the non-ergodic mode is needed. The
transition probability can be created by introducing random-
ness into the system so that the system will not be trapped
in a fixed group of states. We do so by modifying the scheme of
advancing pointers in the RR service policy.
[Solution 1.] Advance when not blocked: Advance the pointer when the
transmission to the connected central buffer is not blocked. Otherwise
keep the pointer at the same position.
[Solution 2.] Advance when blocked: Advance the pointer when the
transmission to the connected central buffer is blocked. Otherwise keep
the pointer at the same position.
[Solution 3.] Advance with probability 0.5: Advance the pointer with
probability 0.5 in every time slot. (This is independent of the outcome
of the transmission to the connected central buffer as in the RR service
policy.)
[Solution 4.] Randomly setup the position of the pointers at the be-
ginning of each time slot.

Note that the randomness in Solution 1 and Solution 2 relies on the
event whether a transmission to a connected center buffer is successful
or not. This may not be as “random” as that used in Solution 3 and
Solution 4.

Under the same settings as the simulations used for the RR service
policy, we also perform several experiments to compare the perfor-
mance of the switches that use these solutions. In Figure 3.47 and
Figure 3.48, it shows that the throughput in heavy load has a great
deal of improvement after modifying the RR service policy. In Figure
3.49 and Figure 3.50, we enlarge the heavy load segments (for the ar-
rival rate from 0.80 to 1.00) in Figure 3.47 and Figure 3.48. Now the
improvement can be observed more clearly. From these two figures,
we show that Solution 3 and Solution 4 achieve 96% throughput for
the uniform i.i.d. traffic model and 93% throughput for the uniform
Pareto traffic model. These two solutions are based on introducing
randomness into the switch. However, the performance of Solution 1
and Solution 2, though greatly improved from the RR service policy,
is not as good as that in Solution 3 and Solution 4. This is due to
the fact that “randomness” introduced in Solution 1 and Solution 2
may not be independent of the switch. As such, it may not be random
enough to provide sufficient transition links to enable the switch to

3.7 Finite central buffers 221

Fig. 3.47. The throughput of the switch with m = 10 under various service policies
for the uniform i.i.d. traffic model

Fig. 3.48. The throughput of the switch with m = 10 under various service policies
for the uniform Pareto traffic model

222 3. Load Balanced Birkhoff-von Neumann switches

jump out of non-ergodic modes. For Solution 3 and Solution 4, the
random information is independent of the state of the switch.

Note that the throughput of Solution 3 is almost as good as that
of Solution 4, even though only one bit of randomness is needed in So-
lution 3. In the regard of hardware complexity, Solution 3 is a better
choice than Solution 4. For Solution 4, in general a pseudo random
number generator is needed and this causes additional hardware com-
plexity. For Solution 3, one only needs one bit information and this may
be taken from a bit in the header or payload of an incoming packet.
One then advances the pointer at an input port if the bit taken is 1.
Otherwise keep the pointer at the same position.

We also extend our simulations to the full size VOQs for Solution
3 and Solution 4, i.e., m = N = 100. Our simulation results show that
the throughput can achieve 96% for the uniform Pareto traffic model,
which is higher than 93% of the case of m = 10. There is only 3%
improvement of the throughput at the cost of expanding to the full
size VOQs.

We note that non-ergodic modes can also be used for explaining the
pointer synchronization problem observed in input-buffered switches
with the Round-Robin Matching (RRM) in Section 2.2.4. The RRM
used in input-buffered switch consists of the following three steps:
[Step 1.] Request. Each unmatched input sends a request to every
output for which it has a non-empty VOQ.
[Step 2.] Grant. If an unmatched output receives any requests from the
inputs, it grants to the one that is closest to its pointer. The pointer
at that output is incremented clockwise to one location beyond the
granted input.
[Step 3.] Accept. If an input receives a grant, it accepts the one that is
closest to its pointer. The pointer at that input is incremented clock-
wise to one location beyond the accepted output.

As addressed in Section 2.2.4, McKeown [121] observed that the
pointers in RRM are trapped in a deterministic and periodic cycle for
a certain traffic model. As such, only half of the inputs/outputs can
be matched and that leads to only 50% throughput. To cope with the
pointer synchronization problem, he proposed using SLIP (see Section
2.2.5 for more details) by modifying Step 2 in RRM. The pointer at
an output is incremented clockwise to one location beyond the granted
input if and only if the grant is accepted in Step 3.

3.8 Notes 223

Whether a grant is accepted is somehow like flipping a coin and
the SLIP algorithm can de-synchronize the pointers in RRM by using
this one bit of ”hidden random” information. However, this one bit of
information may not be random at all for a certain traffic model. In
fact, as shown in Section 2.2.5, there is a deterministic traffic model
that also leads SLIP to a non-ergodic mode.

Fig. 3.49. Enlargement of Figure 3.47 under heavy load

3.8 Notes

The idea of using load balancing for parallel communications was in-
troduced by L. G. Valiant [161]. In Valiant’s scheme, packets are sent
randomly to an intermediate node for load balancing. Such a scheme
is known as “randomization.” It was also used by D. Mitra and R. A.
Cieslak [126] by randomly spreading packets over multistage banyan
type of networks. Such a randomization scheme was also depicted in
the book by J. Y. Hui [76].

Unlike “randomization,” load balancing in the load balanced
Birkhoff-von Neumann switches is done in a more “deterministic” man-

224 3. Load Balanced Birkhoff-von Neumann switches

Fig. 3.50. Enlargement of Figure 3.48 under heavy load

ner. The one-stage buffering scheme in Section 3.1 was introduced by
C.-S. Chang, D.-S. Lee and Y.-S. Jou [34], and the multi-stage buffer-
ing scheme in Section 3.3 was introduced by C.-S. Chang, D.-S. Lee
and C.-M. Lien [35]. The key differences between the randomization
schemes and the load balanced Birkhoff-von Neumann switches can be
summarized as follows:

(i) Hardware complexity: as PIM and SLIP, one uses a random ar-
bitration scheme and the other uses a deterministic round-robin
arbitration scheme. In terms of hardware design, SLIP is much eas-
ier than PIM. Similarly, the load balanced Birkhoff-von Neumann
switches that use deterministic connection patterns are much easier
to design than a randomization scheme.

(ii) Deterministic performance bounds: there are deterministic delay
bounds for the load balanced Birkhoff-von Neumann switches in
comparison with the corresponding ideal output-buffered switches.
This is not possible for a randomization scheme.

(iii) Non-ergodic modes: due to their deterministic nature, there ex-
ist non-ergodic modes for certain load balanced Birkhoff-von Neu-
mann switches with finite buffers. As SLIP and RRM, when

Notes 225

trapped in a non-ergodic mode, the performance could be consid-
erably worse than its normal behavior. A randomization scheme
does not have such a problem.

(iv) Internal blocking: in the randomization scheme in [126], every
packet, upon its arrival at the first stage, randomly selects an out-
put port at the first stage. The packet is then routed through
the banyan network at the first stage via the self routing prop-
erty of the banyan network. The problem of the randomization
scheme is internal blocking. There might be two or more packets
that share a common internal link in the banyan network. As a
result, packets might be lost inside the banyan network, and this
leads to throughput degradation. The load balanced Birkhoff-von
Neumann switches do not have such a problem.

The Full Ordered Frames First (FOFF) scheme in Section 3.3.6 was
proposed by the research team at Stanford University [99]. It provides
an easy way to achieve 100% throughput and the correction of out-of-
sequence packets (see also Problems 19 and 20 for the application flow-
based routing scheme and the uniform frame spreading scheme). In
[99], they also proposed an optical implementation of the FOFF scheme
for a 100 tearbits/sec optical router. A variant of the FOFF scheme was
reported by I. Keslassy and N. McKeown [98] to show a deterministic
delay bound in comparison with the ideal output-buffered switch. It
was further shown by I. Keslassy, S.-T. Chuang and N. McKeown in
[97] that it is possible to add an arbitrary number of linecards in a load-
balanced switch. An interesting theoretical result was obtained by I.
Keslassy, C.-S. Chang, N. McKeown, D.-S. Lee [96]. They showed that
there exists a unique optimal load balancing scheme that achieves the
best universal throughput (see Problems 14-18). The load balanced
Birkhoff-von Neumann switch, though not optimal, is asymptotically
optimal when the size of the switch is increased to ∞. The problem of
the FOFF scheme, as pointed out by [44], is its large average packet
delay due to the large frame size. An improved scheme, called the byte-
focal switch, was proposed by H. J. Chao, J. Song, N. S. Artan, G.
Hu, and S. Jiang [44]. J.-J. Jaramillo, F. Milan, and R. Srikant also
proposed another alternative by using padded frames (see Problem
21).

Guaranteed rate services in the load balanced Birkhoff-von Neu-
mann switches in Section 3.4 was proposed by C.-S. Chang, D.-S. Lee,
and C.-Y. Yue [40]. The analytic results for input-buffered switches

226 3. Load Balanced Birkhoff-von Neumann switches

with head-of-line blocking in Section 3.5.2 was taken from C.-S. Chang,
D.-S. Lee, and C.-L. Yu [39]. The mailbox switches in Section 3.6 was
proposed by C.-S. Chang, D.-S. Lee, and Y.-J. Shih [36]. The exis-
tence of non-ergodic modes in the load balanced Birkhoff-von Neu-
mann switches with finite central buffers in Section 3.7 was discovered
by C.-Y. Tu, C.-S. Chang, D.-S. Lee, and C.-T. Chiu [159].

Problems

1. (Non-uniform i.i.d. traffic model) Consider a non-uniform i.i.d.
traffic model to an N × N switch. With probability ρi, a packet
arrives at the ith input for every time slot. This is independent of
everything else. With probability pi,j, the jth output is chosen as
the destination of an arriving packet at the ith input. This is also in-
dependent of everything else. Note that pi,j ≥ 0 and

∑N
j=1 pi,j = 1

for all i.
a) Suppose that N = 2. For an output-buffered switch under the

above non-uniform traffic model, show that the average queue
length at the first output is ρ1ρ2p11p21/(1 − ρ1p11 − ρ2p21).

b) Suppose that N = 2. For an output-buffered switch under the
above non-uniform traffic model, show that the average packet
delay through the first output is

ρ1ρ2p11p21

(1 − ρ1p11 − ρ2p21)(ρ1p11 + ρ2p21)
.

c) Suppose that N = 2. Consider a load-balanced Birkhoff-von
Neumann switch with one stage buffering in Section 3.1. As-
sume that the connection patterns of both switch fabrics are
symmetric TDM switches. Show that the average queue length
under the above non-uniform traffic model at the first VOQ of
the first central buffer (i.e., q1,1) is 1

2ρ2p21 + ρ1ρ2p11p21/(1 −
ρ1p11 − ρ2p21).

2. (Non-uniform bursty traffic model) Consider a non-uniform bursty
traffic model to an N × N switch. As the uniform bursty traffic
model, packets come as a burst of length N . Packets within the
same bursty are destined to the same output. For every N time
slots, the probability that there is a burst arriving at the ith input
is ρi. This is independent of everything else. With probability pi,j,
the jth output is chosen as the destination of an arriving burst

Problems 227

to the ith input. This is also independent of everything else. Note
that pi,j ≥ 0 and

∑N
j=1 pi,j = 1 for all i. Suppose that N = 2.

Consider a load-balanced Birkhoff-von Neumann switch with one
stage buffering in Section 3.1. Assume that the connection patterns
of both switch fabrics are symmetric TDM switches. Show that the
average queue length under the above non-uniform traffic model
at the first VOQ of the first central buffer (i.e., q1,1) is 1

2ρ2p21 +
ρ1ρ2p11p21/(1 − ρ1p11 − ρ2p21).

3. Using the two-stage construction to design a 16 × 16 symmetric
TDM switch with 8 4 × 4 symmetric TDM switches.

4. In Figure 3.51, we show a 16×16 symmetric TDM switch via 2×2
switches. Use ”b” to denote the bar connection and ”x” to denote
the cross connection of a 2 × 2 switch.
a) Find the connection patterns of switch (3,6) for t = 1, 2, . . . , 16.
b) Find the connection patterns of switch (4,3) for t = 1, 2, . . . , 16.

5. Prove Proposition 3.3.3.
6. Prove Theorem 3.3.6 (see [35]).
7. Show that the difference between the queue length of these N

VOQs at the central buffers in FOFF scheme is bounded above by
Mmax.

8. Show how the frame based scheme in Section 3.5.1 can be used for
variable length packets.

9. Identify the technical conditions needed to ensure that no packets
are lost inside the frame based scheme in Section 3.5.1 for multi-
casting flows.

10. (Generalized Pollaczek-Khinchin formula [39]) Consider the follow-
ing Lindley equation:

q(∞) =st (q(∞) − F)+ + a(1).

Let i =
√−1,

pi = P(q(∞) = i), i = 0, 1, . . .

and

P (z) =
∞∑
i=0

piz
i = E[zq(∞)]

be the generating function of q(∞). Also, let A(z) = E[za(1)] be
the generating function of a(1),

228 3. Load Balanced Birkhoff-von Neumann switches

(1,1)�

(1,2)�

(2,1)�

(2,2)�

(1,3)�

(1,4)�

(2,3)�

(2,4)�

(3,1)�

(3,2)�

(3,3)�

(3,4)�

(1,5)�

(1,6)�

(2,5)�

(2,6)�

(1,7)�

(1,8)�

(2,7)�

(2,8)�

(3,5)�

(3,6)�

(3,7)�

(3,8)�

(4,1)�

(4,2)�

(4,3)�

(4,4)�

(4,5)�

(4,6)�

(4,7)�

(4,8)�

Fig. 3.51. A 16 × 16 symmetric TDM switch

Problems 229

ρ =
E[a(1)]
F

be its normalized mean, and

σ2 =
E[(a(1))2] − (E[a(1)])2

F 2

be its normalized variance. Suppose that a(1) is independent of
q(∞) and ρ < 1. Show that

P (z) =
(z − 1)G(z)

H(z)
,

where

H(z) =
zF

A(z)
− 1,

G(z) = F (1 − ρ)
F−1∏
j=1

(z − αj)
(1 − αj)

,

and αj is the unique root within the unit circle of the following
equation:

z − ei2πj/F (A(z))1/F = 0,

for j = 0, 1, . . . , F − 1. Moreover,

E[q(∞)] =
σ2F − Fρ2 − ρ+ 2Fρ− F + 1

2(1 − ρ)

+
F−1∑
j=1

1
1 − αj

.

11. To solve (3.100), note that

A(z) = eρF (z−1)

for Poisson arrivals. Use the generalized Pollaczek-Khinchin for-
mula to show that

P (z) =
eρF (z−1)(z − 1)G(z)

zF − eρF (z−1)
, (3.143)

where

G(z) = F (1 − ρ)
F−1∏
j=1

(z − αj)
(1 − αj)

, (3.144)

230 3. Load Balanced Birkhoff-von Neumann switches

and αj is the unique root within the unit circle of the following
equation:

z − ei2πj/F eρ(z−1) = 0, (3.145)

for j = 0, 1, . . . , F − 1. Use (3.143) to show that

E[q(∞)] =
1 − F (1 − ρ)2

2(1 − ρ)
+

F−1∑
j=1

1
1 − αj

, (3.146)

12. Continue from the previous problem. Suppose that Eq(∞) = F .
Show that the maximum throughput ρ has the following upper
and lower bounds:

1 − 1√
F + 1 + 1

≤ ρ ≤ 1 − 2√
F 2 + 6F + 1 + F + 1

.

(3.147)

13. In the simple design of a mailbox switch with finite central buffers
in Section 3.7, one still needs to design a re-sequencing buffer. Show
that the re-sequencing buffer can be bounded above by NF , where
N is the number of input/output ports and F is the size of central
buffers. Also, show that the delay in the re-sequencing buffer can
be bounded above by 2NF (see e.g., [159]).

14. (Optimal load-balancing [96]) Consider a network of N nodes with
fixed interconnections. Let Ci,j be the link capacity (measured in
bits for a unit of time) from node i to node j and C = (Ci,j) be
the N ×N capacity matrix. Assume that every node is capable of
transmitting and receiving at most one bit per unit of time, i.e.,

N∑
i=1

Ci,j ≤ 1, j = 1, 2, . . . , N, (3.148)

and
N∑

j=1

Ci,j ≤ 1, i = 1, 2, . . . , N. (3.149)

Let Ti,j be the traffic demand (measured in bits per unit of time)
from node i to node j and T = (Ti,j) be the N ×N traffic matrix
for the network. A traffic matrix is feasible if for all i and j one
can find a set of routing paths R(i, j) such that∑

p∈R(i,j)

T p = Ti,j, (3.150)

Problems 231

and ∑
p:(i→j)∈p

T p ≤ Ci,j, (3.151)

where T p is the traffic carried by the routing path p. The condition
in (3.150) says that the total traffic carried by all the routing paths
from node i to node j should meet the traffic demand. On the other
hand, (3.151) means that the total traffic carried by the routing
paths that use the link from node i to node j should not exceed
the link capacity. Show that for the case that Ci,j = 1/N for all i
and j, any traffic matrix T that satisfies

N∑
i=1

Ti,j ≤ 1
2
, j = 1, 2, . . . , N, (3.152)

and
N∑

j=1

Ti,j ≤ 1
2
, i = 1, 2, . . . , N, (3.153)

is feasible. (Hint: this corresponds to the load balancing Birkhoff-
von Neumann switch. Use the two hop routes i→ k → j with each
route carrying Ti,j/N .)

15. Continue from the previous problem. Suppose that two traffic ma-
trices T̂ and T̃ are feasible for a fixed interconnection network
with the capacity matrix C satisfying (3.148) and (3.149). Show
that any traffic matrix T that is a convex combination of these two
traffic matrices, i.e., for some 0 ≤ α ≤ 1

T = αT̂ + (1 − α)T̃ ,

is also feasible. (Hint: use the routing paths for T̂ with the traffic
being reduced by a factor α. Also, use the routing paths for T̃ with
the traffic being reduced by 1 − α.)

16. Continue from the previous problem. A fixed interconnection net-
work with the capacity matrix C satisfying (3.148) and (3.149) is
said to achieve a universal throughput θ if it is feasible for any
traffic matrix T that satisfies

N∑
i=1

Ti,j ≤ θ, j = 1, 2, . . . , N, (3.154)

and

232 3. Load Balanced Birkhoff-von Neumann switches

N∑
j=1

Ti,j ≤ θ, i = 1, 2, . . . , N. (3.155)

Use the result in the previous problem and the Birkhoff-von Neu-
mann decomposition to show a network that achieves a universal
throughput θ if it is feasible for any traffic matrix T = θP , where
P is a permutation matrix.

17. A fixed interconnection network is called a ring if Ci,j = 1 for
j = (i+1) mod N , and 0 otherwise. Show that a ring only achieves
a universal throughput 1/N . (Hint: consider the case that the per-
mutation matrix P is the identity matrix.)

18. A fixed interconnection network is called the biased mesh if Ci,j =
2/(2N − 1) for j �= i, and Ci,j = 1/(2N − 1) for j = i. Show
that a biased mesh achieves a universal throughput N/(2N − 1).
In fact, it is further shown in [96] that N/(2N−1) is the maximum
universal throughput that can be achieved by any interconnection
network satisfying (3.148) and (3.149). Moreover, the biased mesh
is the unique interconnection network that achieves the maximum
universal throughput. (Hint: consider a permutation matrix P . If
Pi,i = 1, then use the direct route i→ i with the traffic 1/(2N−1),
and the two hop routes i→ k → i (k �= i) with the traffic 1/(2N −
1). If Pi,j = 1 for some j �= i, then use the direct route i→ j with
the traffic 2/(2N − 1) and the two hop routes i→ k → j (k �= i, j)
with the traffic 1/(2N − 1).)

Birkhoff-�
von Neumann�

switch�

N�

1�

Load-balancing�

N�

1�

FCFS� FCFS�

Fig. 3.52. The application flow-based routing scheme

19. (Application flow-based routing [95]) In the setting of load-balanced
Birkhoff von Neumann switches, a flow is a sequence of packets
that have the same input port and the same output port. In fact, a

Problems 233

flow might consist of many application flows, e.g., TCP flows, and
one only needs to make sure that the packets in each application
flow are in sequence. To achieve this, one can assign the packets
of the same application flow to go through the same route (central
buffer). For this, one may add Virtual Output Queues (VOQs) at
each input port of the load-balanced Birkhoff von Neumann switch
with one-stage buffering (see Figure 3.52). Packet of the same ap-
plication flow are routed to the same VOQ at each input port and
thus routed to the same central buffer. By so doing, packets of the
same application flow depart in sequence. If there are many appli-
cation flows in each flow, then load-balancing might be achieved
by randomly assigning each application flow to one of the VOQs
at an input port. Show by a counterexample that the application
flow-based routing scheme cannot achieve 100% throughput (Hint:
each flow only consists of an application flow.)

Birkhoff-�
von Neumann�

switch�

N�

1�

Load-balancing�

N�

1�

Resequencing-and-
output buffer�

FCFS� FCFS�

Fig. 3.53. The uniform frame spreading scheme

20. (Uniform frame spreading scheme [95]) It is shown in Section 3.1.4
that load-balancing is perfect if the incoming traffic is the uniform
bursty traffic. Moreover, resequencing is limited to the packets in
the same burst, i.e., N packets for an N×N switch. The idea of the
uniform frame spreading (UFS) scheme is to convert the incoming
traffic into the uniform bursty traffic. The architecture of the UFS
scheme (shown in Figure 3.19) is almost the same as the application
flow-based scheme in Figure 3.53 except a resequencing-and-output
buffer is added at each output port. In the UFS scheme, every N
time slots is grouped into a frame. At the beginning of a frame,
each input checks whether there is a full frame (a VOQ contains
more than or equal to N packets). If there is one, the longest

234 3. Load Balanced Birkhoff-von Neumann switches

VOQ is selected and N packets from that VOQ are sent to the
N central buffers. Otherwise, nothing is transmitted during that
frame. Show that there are at most N2 packets at each input and
thus the UFS scheme achieves 100% throughput. (Hint: let q(m)
be the total number of packets at a particular input at the end of
the mth frame and a(m+ 1) be the number of arrivals during the
m + 1th frame. Write down the governing equation for the UFS
scheme and prove the bound by induction.)

21. (Padded frames [88]) Note that the full ordered frame first (FOFF)
scheme in Section 3.3.6 is in fact an improvement based on the
UFS scheme. In the FOFF scheme, partial frames are transmitted
when there does not have a full frame. Another alternative is the
padded frame scheme in [88]. The padded frame scheme, as the
UFS scheme, operates in frames. If there is a full frame, the longest
VOQ is selected and N packets from that VOQ are sent to the
N central buffers. Otherwise, the longest VOQ is selected and the
partial frame of that VOQ is padded with fictitious packets to form
a padded frame with N packets. The padded frame is sent only if
the total number of padded frames in the central buffers does not
exceed a threshold T . By so doing, the average packet delay can be
reduced in light traffic. Clearly, when T is 0, it reduces to the UFS
scheme. Show that the padded frame scheme still achieves 100%
throughput as long as T is finite.

4. Quasi-circuit switching and quasi-circuit
switches

There are two fundamental approaches towards building core networks:
circuit switching and packet switching. In circuit-switched networks,
resources, including bandwidth and buffers, are reserved along a path
for the duration of communication. As such, quality of service (QoS)
is easily guaranteed. However, as resources are reserved for dedicated
use, resources are not used efficiently in circuit-switched networks. On
the other hand, as there is no resource reservation in packet-switched
networks, resources could be used more efficiently in packet-switched
networks. However, it is much more difficult to provide QoS in packet-
switched networks.

It would be nice to have the advantages from both packet switching
and circuit switching. For this, we propose the concept of quasi-circuit
switching. Quasi-circuit switching is a generalization and an abstrac-
tion of the stop-and-go queueing proposed by Golestani [67, 68]. As
in [67, 68], time in a quasi-circuit switched network is partitioned into
frames. Flows (such as virtual circuits in ATM [72] and traffic trunks
in MPLS [10]) entering a quasi-circuit switched network are rate con-
trolled so that the number of bits of each flow in every frame is always
bounded.

The key components in a quasi-circuit switched network are quasi-
circuit switches. As long as the total rate at every link of a quasi-circuit
switch does not exceed its link capacity, a quasi-circuit switch has the
following property:

(P1) For any two packets with the same input and output links, the
difference of their arriving frames is the same as the difference of
their departing frames. If such a difference is (resp. bounded by)
d, then the switch is called a quasi-circuit switch with exact (resp.
maximum) frame delay d.

A quasi-circuit switch is order-preserving if it further satisfies the fol-
lowing property:

236 4. Quasi-circuit switching and quasi-circuit switches

(P2) Packets that arrive during the same frame and have the same in-
put and output links depart in the First Come First Serve (FCFS)
order.

These two properties can then be propagated through a quasi-circuit
switched network to provide QoS guarantees. As such, one can build
a quasi-circuit switch by a network of quasi-circuit switches.

In this chapter, we will rehash several well-known switch architec-
tures to quasi-circuit switches, including the shared memory switches,
and the crosspoint buffered switches. Unfortunately, these known
switch architectures are either too simple to scale or too complicate
to build. For scalable quasi-circuit architectures, we propose several
multi-stage switches. The first one is the frame based scheme in Sec-
tion 3.5.1. In such an architecture, the memory access speed is only
required to match the link speed. Moreover, it is on-line complexity is
only O(1).

To reduce the maximum frame delay, we propose the Clos quasi-
circuit switches (with speedup). Unlike the classical Clos three-stage
network, routing paths can be easily determined in the Clos quasi-
circuit switches. By recursively expanding the Clos quasi-circuit
switches, we derive the Benes quasi-circuit switches in which the rout-
ing path of a packet can be easily determined by the binary repre-
sentation of the output of that packet. Moreover, the frame delay in
the Benes quasi-circuit switch is substantially smaller than that in the
load balanced Birkhoff-von Neumann quasi-circuit switch.

To increase the link utilization, one may allow packets to be
dropped inside a quasi-circuit switch once the link capacity is exceeded.
By so doing, one can then apply the Chernoff bound to infer the sta-
tistical QoS via measuring the average link utilization. As such, there
is no need for centralized control as required in circuit switching and
complicated packet scheduling as required in packet switching.

4.1 Quasi-circuit switching

4.1.1 Definitions and basic properties

In this section, we introduce the concept of quasi-switching. Quasi-
switching is a generalization of the stop-and-go queueing in [67]. We
will follow some terminologies used in [67]. As in [67], time is parti-
tioned into frames. In this chapter, we only consider a single frame

4.1 Quasi-circuit switching 237

size. Let T be the universal frame time. Everything will be normalized
with respect to the frame time T .

Definition 4.1.1. A link is said to be with capacity c if it is capable
of transmitting c bits in a frame.

Definition 4.1.2. A flow is a sequence of packets with a common
source and a common destination. A flow in a link is said to be (r, T)-
smooth if the total number of bits (of the packets) of that flow in every
frame in that link is bounded above by r bits. The quantity r is called
the (peak) rate of that flow.

It is not necessary to use bits as a measure for capacity. If packets
are of the same size, one may describe the capacity of a link by the
number of packets that it can transmit within a frame. Also, one can
further partition a frame into time slots so that a fixed size packet can
be transmitted within a time slot. By so doing, the (peak) rate of a
flow can also be characterized by the (maximum) number of time slots
that it occupies within a frame.

A switch that has M input links and N output links is called an
M×N switch. In this chapter, we assume that all the links in a switch
are synchronized so that all the frames at the input/output links start
at the same time. In other words, there is no phase mismatch between
any two links of a switch (the case with phase mismatch can be easily
compensated by adding a delay constant as in [67]).

Consider an M × N switch. Let cIi , i = 1, . . . ,M , be the capacity
of the ith input link and cOk , k = 1, . . . , N , be the capacity of the kth

output link. As there are M inputs and N outputs, there are MN local
flows in an M × N switch. Let Ai,k be the local flow for the packets
that arrive at the ith input and are destined to the kth output of the
M ×N switch.

Definition 4.1.3. The inputs of an M × N switch is said to satisfy
the no overbooking conditions if (A1), (A2) and (A3) listed below hold.

(A1) For all i = 1, . . . ,M , k = 1, . . . , N , the local flow Ai,k is (ri,k, T)-
smooth when it arrives at the ith input of the switch.

(A2) The total rate coming out from an input link does not exceed its
capacity, i.e.,

N∑
k=1

ri,k ≤ cIi , i = 1, . . . ,M. (4.1)

238 4. Quasi-circuit switching and quasi-circuit switches

(A3) The total rate going to an output link does not exceed its capacity,
i.e.,

M∑
i=1

ri,k ≤ cOk , k = 1, . . . , N. (4.2)

An M × N switch is called a quasi-circuit switch with maximum
frame delay d if it has the following property when its inputs satisfy
the no overbooking conditions:

(P1) For any two packets of the same local flow, the difference of their
arriving frames is the same as the difference of their departing
frames. Moreover, such a difference is bounded above by d. To be
precise, let m1 and m2 (resp. m̃1 and m̃2) be the arriving frame
and the departing frame of the first (resp. second) packet. Then

m2 −m1 = m̃2 − m̃1 ≤ d. (4.3)

We will also call a quasi-circuit switch with exact frame delay d if
the inequality in (4.3) is replaced by an equality. Also, a quasi-circuit
switch is order-preserving if it further satisfies the following property:

(P2) Packets of the same local flow that arrive during the same frame
depart in the FCFS order.

To gain more intuition of quasi-circuit switching, consider the case
that the frame time T is infinity. In this case, (P1) is irrelevant and
quasi-circuit switching is reduced to the usual packet switching that
only guarantees the order of packets if (P2) is satisfied. To see the
connection between circuit switching and quasi-circuit switching, one
may further partition a frame into a group of fixed size time slots.
For circuit switching, assume that every packet can be transmitted
in a time slot. Then circuit switching guarantees that for any two
packets of the same local flow, the difference of their arriving time
slots is the same as the difference of their departing time slots. This
is much stronger than (P1). To summarize, quasi-circuit switching is
between packet switching and circuit switching. In circuit switching,
traffic is completely isolated by slot assignment. On the other hand,
traffic is completely mixed in packet switching. Quasi-circuit switching
uses frames to isolate traffic. As such, it can viewed as circuit switching
at the time scale of frames. Thus, it can still provide some guarantees
of quality of services (QoS) at the frame level. At the same time,
quasi-circuit switching allows packets to be multiplexed within a frame.

4.1 Quasi-circuit switching 239

Thus, it can achieve statistical multiplexing gain at the time scale of
time slots. This is equivalent to the statistical line grouping in the
circuit switching context (see e.g., [111]) and is known as the duration
limited statistical multiplexing in [68].

There are several direct consequences from (P1) and (P2).

Proposition 4.1.4. Consider an M × N quasi-circuit switch with
maximum frame delay d. Suppose that its inputs satisfy the no over-
booking conditions.

(P3) The maximum packet delay is bounded by (d + 1)T , where T is
the universal frame time.

(P4) No packets are lost inside the switch.
(P5) The local flow Ai,k is (ri,k, T)-smooth when it departs from the

kth output link of the switch.
(P6) If the quasi-circuit switch is order-preserving, then packets of the

same local flow depart in the FCFS order.

Proof. The proofs for (P3) and (P4) are rather straightforward and
thus omitted.

Now we prove (P5). As we assume that the local flow Ai,k is (ri,k, T)-
smooth when it arrives at the ith input of the switch, there are at most
ri,k bits (of the packets) of that local flow in every frame. From (4.3),
we also know that packets of the same local flow depart during the
same frame if and only if they arrive during the same frame. Thus,
there are at most ri,k bits (of the packets) of the local flow Ai,k in
every frame of the kth output link. This then implies the local flow
Ai,k is also (ri,k, T)-smooth when it departs from the kth output link
of the switch.

To show (P6), we consider two packets of the same local flow. Let
m1 and m2 (resp. m̃1 and m̃2) be the arriving frame and the departing
frame of the first (resp. second) packet. If m1 = m̃1, we know from
(P2) that these two packets depart in the FCFS order. On the other
hand, if m1 < m̃1, then we have from (P1) that m2 < m̃2. Thus, these
two packets departs in the FCFS order.

In the following examples, we provide several methods for con-
structing quasi-circuit switches.

240 4. Quasi-circuit switching and quasi-circuit switches

Example 4.1.5. (Stop-and-go queueing in shared memory
switches) The simplest way to build a quasi-circuit switch is to use
the shared memory architecture in Section 2.1.1. Consider an N ×N
switch with an identical link capacity c. For a shared memory switch
architecture (see Figure 2.1), packets that arrive during the same frame
from all input links are read into a common shared memory. In the next
frame, a central controller then writes all those packets (in the FCFS
order for order-preserving) to the destined output links (according to
an address lookup table). This is known as the stop-and-go queueing
in [67].

During a frame time, the shared memory has to read all the pack-
ets from the current frame and write all the packets from the previous
frame. Thus, its memory access speed must be at least 2Nc. As such,
the shared memory architecture is not scalable if the number of in-
put/output links is large.

Note that under the no overbooking conditions, packets that arrive
at the same frame will all depart in the next frame. Thus, the frame
delay in the shared memory switch is exactly one frame time. Also, no
packets are lost inside the switch if the buffer is larger than Nc bits.

Example 4.1.6. (Crosspoint buffered switches) One way to
solve the memory access speed problem is to use the crosspoint buffered
switch in Section 2.6.1. As shown in Figure 2.36, a crosspoint buffered
switch consists of a crossbar switch fabric and separate buffers at the
crosspoints. For an N × N switch, the number of separate buffers
is N2. Each buffer at a crosspoint stores packets from one input to
one output. Call the (i, j)th buffer for the buffer at the crosspoint of
the ith input and the jth output. To build an N × N quasi-circuit
switch with capacity c, we allocate each buffer with buffer size larger
than c. As the shared memory architecture, there are two phases of
memory access. During the first phase of a frame, the (i, j)th buffers,
j = 1, 2, . . . , N , are connected to the ith input link, i = 1, 2, . . . , N . An
arriving packet from the ith input link and destined for the jth out-
put link is then placed in the (i, j)th buffer. During the second phase
of a frame, the (i, j)th buffers, i = 1, 2, . . . , N , are connected to the
jth output link, j = 1, 2, . . . , N . Packets that are stored in the (i, j)th

buffers, i = 1, 2, . . . , N , are then read out sequentially to the jth out-
put link. Clearly, under the no overbooking conditions, no packets are

4.1 Quasi-circuit switching 241

lost inside the switch and the frame delay is exactly one frame time.
Moreover, the memory access speed for this architecture is only re-
quired to be twice of the link capacity. However, as pointed out in [3],
the architecture based on crosspoint buffers does not scale for a large
number of input/output links because of the square growth. It is only
good either for small switches, or as basic architecture for the building
blocks of modular multi-stage switches.

Example 4.1.7. (Load balanced Birkhoff-von Neumann quasi-
circuit switches) Both switch architectures in Example 4.1.5 and
Example 4.1.6 do not scale when the number of input/output ports is
large. Consider the frame based scheme for the load balanced Birkhoff-
von Neumann switch in Section 3.5. In such an architecture, (see Figure
3.24), there are two crossbar switch fabrics and buffers between these
two crossbar switch fabrics. To build an N × N quasi-circuit switch
with capacity c by this architecture, one first partitions time into fixed
size frames. Both the N × N crossbar switches in Figure 3.24 have
identical connection patterns for all time and change their connection
patterns simultaneously at the beginning of every frame. The connec-
tion patterns are set up corresponding to a circular-shift matrix. As
such, every input is connected to every output exactly once in every
N frames.

There are N central buffers between these two switch fabrics. Each
central buffer consists of two alternating memory blocks as the double-
queue structure in [67]. The buffer size of each memory block is Nc
bits, which is divided into N bins (indexed from 1 to N), each with
buffer size of c bits. The jth bin in every memory block is used for
buffering packets that are destined for the jth output, j = 1, 2, . . . , N .

When a packet arrives at an input, it is immediately transferred to
one of the central buffers that is connected to that input. According
to the destination of the packet, the packet is placed in the bin that
corresponds to the destination of that packet. When the bin is con-
nected to the output, packets in that bin are all transferred to that
output. It is shown in Theorem 3.5.2 of Section 3.5.1 that under the no
overbook condition, the maximum packet delay is bounded by 2N − 1
frame times. As such, the switch architecture described in Section 3.5
is a quasi-circuit switch with maximum frame delay 2N − 1. The key
feature of this architecture is its simplicity. Its on-line complexity is

242 4. Quasi-circuit switching and quasi-circuit switches

O(1) and it is independent of the number of input/output links. Such
complexity is much lower than input-buffered packet switches. How-
ever, its frame delay is O(N). In Section 4.1.2 and Section 4.2.1 below,
we will show how to reduce the frame delay by building networks of
quasi-circuit switches.

4.1.2 Networks of quasi-circuit switches

In this section, we consider a network interconnected by quasi-circuit
switches. We assume that the propagation delay to traverse through a
link is compensated so that all the frames in the input links of a quasi-
circuit switch start at the same time. For the ease of the presentation,
we assume that the propagation delay to traverse through a link is a
positive integer multiple of Δ for some Δ > 0. The constant Δ has
nothing to do with the frame time T . It is only used as an induction
step for the proof of Theorem 4.1.8 below.

In Section 4.1.1, only local flows are considered from input links
to output links in a switch. In addition to local flows, we consider
end-to-end flows that traverse through a series of links.

Suppose that there are I links in the network, indexed from 1 to
I, and J end-to-end flows, indexed from 1 to J . Let ci, i = 1, . . . , I,
be the capacity of the ith link. Suppose that the jth end-to-end flow is
(rj , T)-smooth when it arrives at the network. Let D = (Di,j) be the
I × J routing matrix, i.e., Di,j = 1 if the jth flow traverses through
link i and Di,j = 0 otherwise. Also, let r be the J × 1 column vector
with its jth element being rj , and c be the I×1 column vector with its
ith element being ci. Note that the total rate at link i does not exceed
its capacity if

J∑
j=1

Di,jrj ≤ ci. (4.4)

Thus, the condition that the total rate at every link does not exceed
its capacity can be written in the following matrix form:

Dr ≤ c. (4.5)

To summarize, we make the following assumptions:

(A1′) The jth end-to-end flow is (rj , T)-smooth when it arrives at the
network (the first link of its route), j = 1, . . . , J .

4.1 Quasi-circuit switching 243

(A2′) The total rate at every link does not exceed its capacity, i.e., the
inequality in (4.5) holds.

(A3′) The propagation delay to traverse a link is a positive integer
multiple of Δ for some Δ > 0.

Theorem 4.1.8. Assume that (A1′)-(A3′) hold. Then the network of
quasi-circuit switches has the following properties.

(P1′) For any two packets of the same end-to-end flow, the difference
of their arriving frames at the network is the same as the difference
of their departing frames at every link traversed by the flow.

(P2′) If every quasi-circuit switch is order-preserving, then packets of
the same end-to-end flow that arrive at the network during the
same frame depart in the FCFS order at every link traversed by
the flow.

(P3′) The maximum delay for packets of an end-to-end flow is bounded
by the sum of the propagation delay of each link and the maximum
delay of each quasi-circuit switch along its route.

(P4′) No packets are lost inside the network.
(P5′) For j = 1, . . . , J , the jth end-to-end flow is (rj, T)-smooth at

every link traversed by the flow.
(P6′) If every quasi-circuit switch is order-preserving, then packets of

the same end-to-end flow depart the network in the FCFS order.

Proof. The key is to prove (P5′) by induction on time under (A1′)-
(A3′). At time 0, the traffic of end-to-end flows only arrive at the
network (as we assume the propagation delay of a link is positive in
(A3′)). Thus, the induction hypothesis (P5′) holds trivially from (A1′).

Now suppose the induction hypothesis hold up to time nΔ. From
the induction hypothesis and (A2′), it follows that the no overbooking
conditions in (A1)-(A3) in Definition 4.1.3 are satisfied for every quasi-
circuit switch in the network. Using the same argument in the proof
of (P5) in Proposition 4.1.4, one can easily show that the induction
hypothesis (P5′) holds for every frame up to time (n + 1)Δ (as we
assume the propagation delay of a link is positive in (A3′)).

That (P1′)-(P4′) and (P6′) hold follows trivially from (P1)-(P4)
and (P6) in Definition 4.1.3 and Proposition 4.1.4.

Define the maximum jitter of an end-to-end flow as the difference
between its maximum packet delay and its minimum delay through
the network.

244 4. Quasi-circuit switching and quasi-circuit switches

Corollary 4.1.9. Under the conditions in Theorem 4.1.8, the maxi-
mum jitter of an end-to-end flow is bounded above by 2T .

Proof. Note from (P1′) that for any two packets of the same end-
to-end flow, the difference of their arriving frames at the network is
the same as the difference of their departing frames from the network.
This then implies that the jitter is bounded by 2T .

4.2 Recursive construction of quasi-circuit switches

4.2.1 Clos quasi-circuit switches

Theorem 4.1.8 suggests a way to construct a large quasi-circuit switch
via a network of smaller quasi-circuit switches. The idea is to use
the three-stage Clos network architecture in Section 2.4.1. To
do this, we further assume in this section that packets are of the same
size. Under such an assumption, each frame can be further partitioned
into a group of time slots so that a packet can be transmitted within
a time slot. Moreover, both the link capacity and the (peak) rate of a
flow can be represented by the number of packets in a frame.

As shown in Figure 4.1, there are three stages of quasi-circuit
switches. The first stage consists of q p× p quasi-circuit switches with
exact frame delay d1. Every input (resp. output) link of these switches
has capacity c1 (resp. c2). That is, the maximum number of packets
that can be transmitted in a frame in an input (resp. output) link of
the switches at the first stage is c1 (resp. c2). Every one of the p out-
puts from a switch at the first stage is connected to an input of the
p q × q quasi-circuit switches with exact frame delay d2 at the second
stage. Every one of the q outputs from a switch at the second stage
is connected to an input of the q p× p quasi-circuit switches with ex-
act frame delay d3 at the third stage. Every input (resp. output) link
of the switches at the third stage has capacity c2 (resp. c1). In this
three-stage switch, there are pq inputs and pq outputs.

Number the switches at the first stage from 1 to p. Do the same
for the switches at the third stage. As such, we can use the (i, �)th

input, i = 1, 2, . . . , q, � = 1, 2, . . . , p, to denote the �th input of the
ith switch at the first stage. Similarly, we use the (j, �)th output, j =
1, 2, . . . , q, � = 1, 2, . . . , p, to denote the �th output of the jth switch at

4.2 Recursive construction of quasi-circuit switches 245

p
 ×
p

1
c

2
c

2
c

1
c

q
 sw

itc
h
es

p
 sw

itc
h
es

q
 sw

itc
h
es

p
 ×
p

p
 ×
p

p
 ×
p

q
 ×
q

q
 ×
q

Fig. 4.1. A three-stage Clos quasi-circuit switch

246 4. Quasi-circuit switching and quasi-circuit switches

the third stage. The flow from the (i, �1)th input to the (j, �2)th output
is denoted by the (i, �1) → (j, �2) flow. Let r(i,�1),(j,�2) be (peak) rate of
the (i, �1) → (j, �2) flow, i.e., the maximum number of packets of the
(i, �1) → (j, �2) flow in a frame.

The key problem of the three-stage Clos network is routing. Tradi-
tionally, finding the routing path in such a network requires running
sophisticated algorithms that may not be scalable. For instance, in the
case without speedup, i.e., c2 = c1, finding the routing path for every
packet relies on the well-known Birkhoff-von Neumann decomposition
(see Proposition 2.3.1 and Proposition 2.3.3), and such an algorithm
does not scale for a switch with a large number of input/output ports.
The nice thing of the quasi-circuit switches is that routing can be
solved easily at the cost of speedup, i.e., c2/c1 > 1. When c1 >> pq,
the cost of speedup is relatively small.

The idea is to use the round-robin routing policy for load balancing
at the first stage. We consider the following two round-robin splitting
policies.
Round-robin splitting:

(R1) Round-robin splitting for every flow at every input link: the kth

packet of the (i, �1) → (j, �2) flow in a frame is routed to the
(kmod p) + 1th output at the first stage.

(R2) Round-robin splitting for every aggregated flow from all the input
links at a switch of the first stage: consider the aggregated i →
j flow from multiplexing all the (i, �1) → (j, �2) flows, �1, �2 =
1, . . . , p. The kth packet of the aggregated i→ j flow in a frame is
routed to the (kmod p) + 1th output at the first stage.

Note that there is a unique path for every packet to its destination
from the second stage onward. For both round-robin routing policies,
a packet destined to the (j, �2)th output is routed to the jth output at
the second stage and the �th2 output at the third stage.

Clearly, the first scheme is much easier to do than the second one as
it only needs the information for every flow at an input link. Thus, the
first scheme in (R1) can be carried out distributively at every input link.
However, for the second scheme in (R2), one needs a centralized control
at every switch of the first stage as it has to gather the information of
all the flows coming into that switch. A suitable architecture for the
first scheme is the crosspoint buffered switch architecture in Example
4.1.6. On the other hand, the shared memory architecture in Example
4.1.5 is more suitable for the second scheme as every packet in the

4.2 Recursive construction of quasi-circuit switches 247

shared memory architecture is processed sequentially. As we shall see
in the following theorem, the needed speedup for the first scheme is
substantially larger than that of the second scheme.

Theorem 4.2.1. (i) Suppose that the three-stage Clos network in Fig-
ure 4.1 is operated under the round-robin splitting in (R1). If

c2 ≥ c1 + p2q, (4.6)

then the network in Figure 4.1 is a pq×pq quasi-circuit switch with
exact frame delay d1 + d2 + d3.

(ii) Suppose that the three-stage Clos network in Figure 4.1 is operated
under the round-robin splitting in (R2). If

c2 ≥ c1 + q − 1, (4.7)

then the network in Figure 4.1 is a pq×pq quasi-circuit switch with
exact frame delay d1 + d2 + d3.

To ensure that the quasi-circuit switch is order-preserving, one may
add a resequencing element after each output link from the third stage.
The resequencing element only needs to reorder packets in the same
frame and causes an additional frame delay.
Proof. (i) For this network of quasi-circuit switches, the (i, �1) →
(j, �2) flow is now split into p sub-flows as there are p routing paths from
the (i, �1)th input to the (j, �2)th output (with each of them traversing
through a central switch). As the routing policy is round-robin, the
(peak) rate of each sub-flow is then bounded above by � r(i,�1),(j,�2)

p �.
Since all the quasi-circuit switches at the same stage have the same
frame delay, it follows from (P1) that packets of these p sub-flows in
the mth frame from the (i, �1)th input link will arrive at the (j, �2)th

output link in the m + d1 + d2 + d3
th frame if every link inside the

network is not overbooked. To see that the no overbooking conditions
are satisfied, we consider a particular output link at the ith switch of
the first stage. LetM be the total number of packets that can be routed
to that link in a frame. Note that there are p2q sub-flows traversing
through that link and thus

M ≤
p∑

�1=1

q∑
j=1

p∑
�2=1

�r(i,�1),(j,�2)

p
�

≤ p2q +
p∑

�1=1

q∑
j=1

p∑
�2=1

r(i,�1),(j,�2)
p

. (4.8)

248 4. Quasi-circuit switching and quasi-circuit switches

From the no overbooking conditions for every input link of the first
stage switches, we have

q∑
j=1

p∑
�2=1

r(i,�1),(j,�2) ≤ c1. (4.9)

Using (4.9) and the assumption in (4.6), we then have

M ≤ p2q + c1 ≤ c2. (4.10)

The argument for the output links at the second switch is similar.
(ii) The proof is quite similar to that in (i). It suffices to show that

the no overbooking conditions are satisfied for every link inside the
network. Let ri,j =

∑p
�1=1

∑p
�2=1 r(i,�1),(j,�2) be the rate of the i → j

aggregated flow. Consider a particular output link at the ith switch
of the first stage. Let M be the total number of packets that can be
routed to that link in a frame. As the routing policy is round-robin for
the aggregated flows, we then have

M ≤
q∑

j=1

�ri,j
p

� ≤ q − 1 + �
q∑

j=1

ri,j
p

�. (4.11)

From the no overbooking condition in (4.9), we have
q∑

j=1

ri,j ≤ pc1. (4.12)

Using (4.12) and the assumption in (4.7), we then have

M ≤ q − 1 + c1 ≤ c2. (4.13)

The argument for the output links at the second switch is similar.

In particular, if we choose p = q =
√
N and c1 = N

3
2 for the

round-robin splitting scheme in (R1), then c2 = 2N
3
2 = 2c1. Thus, for

this case, a speedup factor of 2 is enough to build an N × N quasi-
circuit switch by the three-stage architecture. By choosing a larger
frame time T , one can further increase c1 so that the speedup factor
can be further reduced. For instance, if c1 = kN

3
2 , then c2/c1 = 1+ 1

k .
However, reducing the needed speedup is at the cost of delay as now
the frame time is increased by k times.

4.2 Recursive construction of quasi-circuit switches 249

1
c

2
c

2
c

1
c

22

NN
×

22

NN
×

N

2

N

2

2 2× 2 2×

2 2× 2 2×

Fig. 4.2. Recursive construction of the Benes quasi-circuit switch

4.2.2 Benes quasi-circuit switches

Another interesting case of the Clos networks is when the total number
of input/output links N is a power of 2. In this case, one can construct
a Benes network by using 2 × 2 quasi-circuit switches. In Figure 4.2,
one first constructs a three-stage Clos network with 2× 2 quasi-circuit
switches at the first stage and the last stage. Every input link at the
first stage and every output link at the third stage has capacity c1.
The second stage consists of two N

2 × N
2 quasi-circuit switches with

link capacity c2. As N is a power of 2, each of the two N
2 × N

2 quasi-
circuit switches in Figure 4.2 can be further implemented by a three-
stage Clos network with 2 × 2 quasi-circuit switches at the first stage
and the last stage, and two N

4 × N
4 quasi-circuit switches with link

capacity c3 at the second stage. One can expand the N
4 × N

4 switches
recursively and we obtain a multi-stage switch with all 2 × 2 quasi-
circuit switches. In Figure 4.3, we show an 8 × 8 Benes quasi-circuit
switch. For an N×N Benes network, it is well-known that the number
of stages of is 2 log2N−1 and the number of 2×2 quasi-circuit switches
is N log2N − N

2 .
Let n = log2N . For the round-robin splitting scheme in (R1), one

can easily verify from the recursive equation that one needs

cj+1 = cj +
4N
2j
, j = 1, 2, . . . , n− 1. (4.14)

As such, the link capacity of the most inner 2× 2 quasi-circuit switch
is

cn = c1 + 4N − 8. (4.15)

250 4. Quasi-circuit switching and quasi-circuit switches

On the other hand, for the round-robin splitting scheme in (R2), one
needs that

cj+1 = cj +
N

2j
− 1, j = 1, 2, . . . , n − 1. (4.16)

As such, the link capacity of the most inner 2× 2 quasi-circuit switch
is

cn = c1 +N − log2N − 1. (4.17)

1st stage 2nd stage 3rd stage

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

2×2

4th stage 5th stage

c c+3 cc+3c+4 c+4
000
001

010
011

100
101

110
111

Load-balancing Self-routing

Fig. 4.3. An 8× 8 Benes quasi-circuit switch using the second round-robin scheme

Unlike the classical Benes network, finding the routing path in the
Benes quasi-circuit switch is very easy. Index the output links at the
last stage from 0, 1, 2, . . . , N − 1. Consider a packet that is destined
for output j (at the last stage). Let b1b2 . . . bn be the n-bit binary
representation of j, e.g., 100 for j = 4 in Figure 4.3. This binary
representation is added in the packet header. As in the three-stage
Clos quasi-circuit switch, the routing policy used in the Benes quasi-
circuit switch consists of two parts: self-routing and load-balancing.

(i) Self-routing: when the packet arrives at stage n − 1 + j, j =
1, 2, . . . , n, the packet is routed to the upper link if bj = 0 and
the lower link if bj = 1.

(ii) Load-balancing: when the packet arrives at stage j, j = 1, 2, . . . , n−
1, and it is the kth packet in that frame that has the same

4.2 Recursive construction of quasi-circuit switches 251

b1b2 . . . bn−j+1’s in its packet header, then the packet is routed to
the upper link if k is even, and the lower link if k is odd. This can
be implemented by keeping a 2n−j+1-bit vector at each input link
of stage j. Let � = b120 + b221 + . . .+ bn−j+12n−j . Then the packet
is routed to the upper link if �th bit of that bit vector is 0 and
the lower link otherwise. Moreover, the �th bit of that bit vector is
toggled after the packet is routed.

Note that for the round-robin splitting scheme in (R1), load-
balancing is performed (and implemented) for the flows at each input
link. On the other hand, for the round-robin splitting scheme in (R2),
load-balancing is performed for the aggregated flows of all the input
links.

Example 4.2.2. (Benes quasi-circuit switch) In this example,
we argue that one can build a 256 × 256 Benes quasi-circuit switch
with OC-192 input/output links using today’s technology for memory.
Suppose that we choose the universal frame time T = 125μs. Fur-
thermore, the frame is partitioned into time slots, each is capable of
transmitting 64 bytes. For an OC-192 link, its link capacity is 64 times
of that of an OC-3 link (149.760 Mbits/sec [72]). Each OC-192 link is
roughly 10 Gbits/sec and the overall capacity of this switch is then
roughly 2.56 Tbits/sec.

One can easily calculate that the capacity of an OC-192 link in this
setting, denoted by c1, is 2340 time slots/frame. Suppose that we use
the shared memory architecture in Example 4.1.5 to build each of the
2×2 quasi-circuit switch. As such, we may use the round robin splitting
scheme in (R2). From (4.17), the needed speedup is 1 + N−log2 N−1

c1
≈

1.11 (with N = 256). The needed memory access speed is around
10+10+10∗1.11+10∗1.11 = 42.2 Gbits/sec. This is within the limit
of the memory access speed in today’s technology.

Note that there are 2 log2N − 1 stages in the Benes network and
each stage causes exactly one frame delay. Adding the additional one
frame delay for resequencing after the last stage, the maximum delay
is 2(log2N)T = 2ms (if the input/output links satisfy the no over-
booking conditions). Note that the maximum delay in the load bal-
anced Birkhoff-von Neumann switch architecture in Example 4.1.7 is
(2N − 1)T = 63.875ms, which is substantially larger than that in the
corresponding Benes quasi-circuit switch.

252 4. Quasi-circuit switching and quasi-circuit switches

4.3 Lossy quasi-circuit switches

In Section 4.1.2, we have developed a scalable QoS architecture based
on quasi-circuit switches. Such an architecture ensures that every
packet is delivered within a maximum delay. As such, no packets are
lost inside the network. However, the (deterministic) no overbooking
condition in (A2′) might lead to low utilization. To increase the uti-
lization, we may relax the (deterministic) no overbooking condition in
(A2′) and allow some links in the network to be overbooked. When a
link is overbooked in a frame, packets are dropped. By controlling the
probability that a frame in a link is overbooked, we can still retain
QoS while keeping a very low packet loss probability.

In the following, we define the concept of lossy quasi-circuit switches.

Definition 4.3.1. The inputs of an M × N switch is said to satisfy
the no overbooking conditions with losses if (A1) in Definition 4.1.3,
(A2L) and (A3L) below hold.

(A2L) The total number of bits coming out from an input link in a
frame does not exceed its capacity.

(A3L) Packets are dropped only when the total number of bits going
to an output link in a frame exceeds its capacity.

An M ×N switch is called a lossy quasi-circuit switch with maximum
frame delay d if (P1) in Definition 4.1.3 hold for all packets that are
not dropped by the switch when its inputs satisfy the no overbooking
conditions with losses.

Note that (A2L) is weaker than (A2) in Definition 4.1.3. The as-
sumption in (A2) ensures that the total (peak) rate does not exceed the
capacity, while (A2L) only assumes that the actual rate does not exceed
the capacity. In (A3L), we do not specify how packets are dropped. The
key point of achieving good quality of service is to minimize the prob-
ability that there is a link exceeding its capacity in a frame. Following
the same proof in Theorem 4.1.8, it is easy to see that Theorem 4.1.8
still holds for a network of lossy quasi-circuit switches except (P4′).

4.3.1 Statistical multiplexing gain in high speed switching

To see the statistical multiplexing gain in high speed switching, con-
sider the network model in Section 4.1.2 except that the link capac-
ities are now increased n times, i.e., the capacity of the ith link is

4.3 Lossy quasi-circuit switches 253

nci, i = 1, . . . , I. As the capacities are increased, more flows can be
admitted to the network. We call an end-to-end flow a class j flow,
j = 1, . . . , J , if the flow is (rj , T)-smooth and it follows the same route
as the jth flow in Section 4.1.2. In view of the no overbooking condi-
tions in (4.4), the network now can admit n flows for each class without
exceeding the link capacity at each link.

Suppose that we have further information about the class j flow.

(A4′) The number of bits in a frame in a class j flow is a random
variable with mean r̄j < rj (when the flow arrives at the network).
This is independent of any other flow.

The following theorem illustrates how statistical multiplexing gain
can be achieved.

Theorem 4.3.2. Suppose that there are nαj class j flows admitted to
the network for some αj ≥ 1, j = 1, . . . , J . If

J∑
j=1

Di,j r̄jαj < ci, (4.18)

then the probability that packets are dropped at the ith link in a frame
is bounded above by

e−nΛ∗
i (ci), (4.19)

where

Λ∗
i (ci) = sup

θ≥0
[θci −

J∑
j=1

Di,jαjΛj(θ)], (4.20)

and

Λj(θ) = log
(r̄j
rj
erjθ + (1 − r̄j

rj
)
)
, j = 1, . . . , J. (4.21)

Note that Λ∗
i (·) is known as the (one-sided) Legendre transform

(see e.g., Rockafellar [143], Avriel [9]) of the sum of Λj(θ)’s. As such,
Λ∗

i (·) > 0 under the condition in (4.18). When n is large, the proba-
bility that there exists a link exceeding its capacity in a frame can be
made very small.
Proof. Consider a particular frame at link i. Let R̃j,� be the random
variable that represents the number of bits of the �th class j flow in
that frame, � = 1, . . . , nαj, j = 1, . . . , J . Furthermore, let Rj,� be the

254 4. Quasi-circuit switching and quasi-circuit switches

number of bits generated by the flow in that frame when the flow enters
the network. Due to possible packet loss in the quasi-circuit switches
along the route, R̃j,� ≤ Rj,�. The event that packets are dropped at the
ith link in that frame is the same as the event that the ith link exceeds
its capacity in that frame, i.e., {∑J

j=1Di,j
∑nαj

�=1 R̃j,� > nci}. From the
Chernoff bound (see Problem 5), it follows that for all θ ≥ 0

P
(J∑

j=1

Di,j

nαj∑
�=1

R̃j,� > nci
)

≤ P
(J∑

j=1

Di,j

nαj∑
�=1

Rj,� > nci
)

≤ e−θnciE exp
(
θ

J∑
j=1

Di,j

nαj∑
�=1

Rj,�

)
. (4.22)

From (A4′) and the assumption that the jth end-to-end flow is
(rj , T)-smooth, we know that Rj,� is a random variable that has the
mean r̄j and the bounded support [0, rj]. It is well-known (see Problem
15) that the moment generating function of such a random variable is
bounded above by the Bernoulli random variable R with P(R = rj) =
r̄j

rj
and P(R = 0) = 1 − r̄j

rj
. Thus,

EeθRj,� ≤ eΛj(θ),

where Λj(θ) is defined in (4.21). As we assume independence in (A4′),
we have for all θ ≥ 0

E exp
(
θ

J∑
j=1

Di,j

nαj∑
�=1

Rj,�

)
=

∏
{j:Di,j=1}

nαj∏
�=1

EeθRj,�

≤
∏

{j:Di,j=1}
(eΛj(θ))nαj = exp

(
n

J∑
j=1

Di,jαjΛj(θ)
)
. (4.23)

Using (4.23) in (4.22), we have

P
(J∑

j=1

Di,j

nαj∑
�=1

R̃j,� > nci
)
≤ e−θnci exp

(
n

J∑
j=1

Di,jαjΛj(θ)
)

= exp
(
− n[θci −

J∑
j=1

Di,jαjΛj(θ)]
)

(4.24)

Choosing the best bound in the exponent yields

4.3 Lossy quasi-circuit switches 255

P
(J∑

j=1

Di,j

nαj∑
�=1

R̃j,� > nci
)

≤ exp
(
− n sup

θ≥0
[θci −

J∑
j=1

Di,jαjΛj(θ)]
)

= exp(−nΛ∗
i (ci)), (4.25)

where Λ∗
i (ci) is defined in (4.20).

The vector α = (α1, . . . , αJ) can be viewed as the statistical mul-
tiplexing gain. We further illustrate the statistic multiplexing gain in
the following example.

multiplexing gain�

lo
g

P�

10
�o

�

Fig. 4.4. log10 Po as a function of multiplexing gain

Example 4.3.3. (Multiplexing gain) Consider the case with a
single link. For an OC-3 link, its link rate is 149.760 Mbits/sec
(155.520Mbits/sec with overhead [72]). Suppose we choose the frame
time T to be 125μs. Then the capacity of an OC-3 link is 18720
bits/frame (2340 bytes/frame). The maximum packet size for an Eth-
ernet packet is 1500 bytes. Thus, a flow of Ethernet packets is (r, T)-
smooth with r = 1500 × 8 =12000 bits and T = 125μs. To ensure the
no overbooking conditions, one can admit at most one flow of Ethernet
packets in an OC-3 link no matter how its average rate might be.

256 4. Quasi-circuit switching and quasi-circuit switches

To see the multiplexing gain, suppose that the average rate for
a flow of Ethernet packets is 8 Mbits/sec, or equivalently r̄ = 1000
bits in a frame. For an OC-48 link (16 times of the rate of OC-
3), its link capacity is 292320 bits/frame. As a flow of Ethernet
packets is (r, T)-smooth with r = 12000 bits and T = 125μs, only
n =
292320/12000� = 16 flows can be admitted to the link under the
(deterministic) no overbooking conditions. Let Po be the upper bound
in (4.19) for the probability that packets are dropped in a frame. With
c = 292320/n, in Figure 4.4 we plot log10 Po as a function of the mul-
tiplexing gain α for an OC-48 link. As shown in Figure 4.4, one can
achieve 2.7 times of multiplexing gain while keeping the probability
that packets are dropped in a frame smaller than 10−9.

4.3.2 Inferring QoS via the average link utilization

We have shown in Section 4.1.2 and Section 4.3.1 how one achieves
QoS via appropriate admission control. To implement an admission
control mechanism, it is usually required for a router to gather the
routing information (the routing matrix) and the detailed statistics
of each flow (the average rate). All these additional tasks might slow
down a router and cause performance degradation.

Instead of using admission control, in this section we take a much
simpler approach to infer the quality of service. We admit all the flows
to the network (considered in Section 4.3.1). However, we assume that
flows come and go so that we can have the flow level multiplexing. To be
specific, assume that class j flows arrive according to a Poisson process
with rate nλj. The duration of a class j flow is a random variable with
mean 1/μj and this is independent of everything else. Then it follows
from the classical theory for M/G/∞ queues (see Problem 12) that
the number of class j flows in any frame is a Poisson random variable
with mean nλj/μj . Moreover, these random variables are independent
of each other.

Let

rmax = max
1≤j≤J

rj (4.26)

be the maximum peak rate of the flows entering the network and

ρi =

∑J
j=1Di,j r̄j

λj

μj

ci
(4.27)

4.3 Lossy quasi-circuit switches 257

be the average utilization of link i. In the following theorem, we show
how one infers the quality of service via the average link utilization.

Theorem 4.3.4. For the model without admission control, if

ρi < 1, (4.28)

then the probability that packets are dropped at the ith link in a frame
is bounded above by exp(−Γ (ci, ρi, rmax)), where

Γ (ci, ρi, rmax) =
ci
rmax

(ρi − 1 − log ρi). (4.29)

Proof. As in the proof of Theorem 4.3.2, consider a particular frame
at link i. Let Nj be the number of class j flows in that frame, and
Rj,� be the random variable that represents the number of bits of
the �th class j flow in that frame, � = 1, . . . , Nj , j = 1, . . . , J . The
event that packets are dropped at the ith link in that frame is the
same as the event that the ith link exceeds its capacity in that frame,
i.e., {∑J

j=1Di,j
∑Nj

�=1Rj,� > nci}. Using the Chernoff bound and the
fact that Nj ’s are independent Poisson random variables with mean
nλj/μj , it follows from a similar argument to the proof of Theorem
4.3.2 that for all θ ≥ 0

log P
(J∑

j=1

Di,j

Nj∑
�=1

Rj,� > nci
)

≤ −n sup
θ≥0

[θci −
J∑

j=1

Di,j
λj

μj
(eΛj(θ) − 1)], (4.30)

where Λj(θ)’s are defined in (4.21).
Since flow j is (rj , T)-smooth, it is also (rmax, T)-smooth. Replacing

Λj(θ) in (4.30) with

log
(r̄j
rmax

ermaxθ + (1 − r̄j
rmax

)
)

yields

log P
(J∑

j=1

Di,j

Nj∑
�=1

Rj,� > nci
)

≤ − nci
rmax

(ρi − 1 − log ρi)

= −nΓ (ci, ρi, rmax). (4.31)

258 4. Quasi-circuit switching and quasi-circuit switches

As log x < x − 1 for all x �= 1, we have Γ (ci, ρi, rmax) for ρi < 1.
Thus, under the condition in (4.28), this probability can be made very
small if the link capacity nci is much larger than rmax.

In view of Theorem 4.3.4, one only needs to know three things to
infer the quality of a link: the average utilization ρi, the link capacity
nci and the maximum rate of a flow rmax. There is no need to know
the routing matrix D and the detailed statistics of each flow (the flow
arrival rate nλj, the average duration of a flow 1/μj , and the aver-
age rate r̄j, j = 1, . . . , J). Note that the information for the average
utilization of a link can be collected locally by measuring the average
number of bits used in a frame. As such, the network can be man-
aged in a distributed manner and one might not need to implement
an admission control mechanism to ensure the condition in (4.28). In
the following example, we illustrate how one infers the statistical QoS
without admission control.

OC-48�

OC-192�

OC-768�

utilization�

lo
g

P�

10
�o

�

Fig. 4.5. log10 Po as a function of the average link utilization

Example 4.3.5. (Statistical QoS) As in Example 4.3.3, consider
the single link case with the frame time T = 125μs. Suppose that every
flow is a flow of Ethernet packets and there is at most one packet in a
frame for each flow. Thus, each flow is (r, T)-smooth with r = 12000

4.4 Notes 259

bits. Note that the capacity of an OC-48 link is 292320 bits/frame. The
capacity of an OC-192 link is four times larger than the capacity of an
OC-48 link. Similarly, the capacity of an OC-768 link is 16 times larger
than the capacity of an OC-48 link. Let Po be the bound in Theorem
4.3.4 for the probability that packets are dropped in a frame in the
link. In Figure 4.5, we plot log10 Po as a function of the average link
utilization for the OC-48, OC-192 and OC-768 links. Suppose that we
would like to operate the link so that Po ≤ 10−9. Then for an OC-48
link, the average utilization cannot exceed 19%. For an OC-192 link,
the average utilization can be raised to 48%. For an OC-768 link, the
average utilization can be even raised to 70%. Now suppose we lower
the requirement to Po ≤ 10−6. Then the average utilization for an
OC-48 (resp. OC-192,OC-768) link is roughly 27% (resp. 59%,75%).

4.4 Notes

In this chapter we developed the theory of quasi-circuit switching and
the associated methods of building quasi-circuit switches. Most of the
material of this chapter was adopted from the unpublished manuscript
by the authors [33]. In comparison with packet switching and circuit
switching, quasi-circuit switching has the following nice features:

(i) Quasi-circuit switching can be viewed as circuit switching at the
time scale of frames. As such, QoS can still be provided at the
frame level.

(ii) Quasi-circuit switching allows packets to be multiplexed within a
frame. As such, it can achieve statistical multiplexing gain within
frames.

(iii) Quasi-circuit switches are much more scalable than packet switches
and circuit switches in the context of high speed switching. In
particular, the load balanced Birkhoff-von Neumann quasi-circuit
switch has the on-line complexity of O(1). Such complexity is much
lower than input-buffered packet switches. Moreover, finding rout-
ing paths in the Benes network of quasi-circuit switches is much
easier than the corresponding Benes network of circuit switches.

(iv) By allowing packets to be dropped in a quasi-circuit switch, sta-
tistical QoS can be easily inferred by measuring the average link
utilization. There is no need for centralized control as required in

260 4. Quasi-circuit switching and quasi-circuit switches

circuit switching and complicated packet scheduling as required in
packet switching.

Problems

1. Show how to build an N ×N quasi-circuit switch with the input-
buffered switch architecture. (Hint: use the Birkhoff-von Neumann
decomposition.)

2. Verify the recursive equations in (4.14) and (4.16).

k switches m switches

Fig. 4.6. A 2X construction for k × k quasi-circuit switch (in space)

3. (Line grouping) In Figure 4.6, it is a two-stage switch using the
2X construction. Instead of defining a frame as a period of time,
one may define a frame as a group of lines (this is known as line
grouping in circuit switching). In Figure 4.6, one may view the
m inputs in every m ×m switch at the first stage as a frame (or
a group). Similarly, one can also do the same for the outputs as
shown in Figure 4.6. Use the Birkhoff-von Neumann decomposition
(in the proof of Theorem 2.4.2) to show that such a 2X construction
can be operated as a k × k quasi-circuit switch (in space).

4. (Markov inequality) Consider a nonnegative random variable X.
Show that for all x > 0,

P(X ≥ x) ≤ E[X]
x

.

5. (Chernoff bound) Consider a random variable X. Use the Markov
inequality to show that for all θ > 0,

Problems 261

P(X ≥ x) = P(eθX ≥ eθx) ≤ e−θxE[eθX].

6. (Doubly stochastic Poisson process) A stochastic process {N(t), t ≥
0} is a counting process if N(t) is integer-valued and it is non-
decreasing in t with N(0) = 0. To understand the meaning of
a counting process {N(t), t ≥ 0}, one may simply view N(t) as
the cumulative number of arrivals by time t. A counting process
{N(t), t ≥ 0} is a doubly stochastic Poisson process with the in-
tensity process {λ(t), t ≥ 0} if the event that there is an arrival in
[t, t+Δt] is with probability λ(t)Δt for very small Δt, i.e.,

P(N(t+Δt) −N(t) = 1) ≈ λ(t)Δt,

and this event is independent of the past. On the other hand,
the event that there is no arrival in [t, t +Δt] is with probability
1 − λ(t)Δt for very small Δt, i.e.,

P(N(t+Δt) −N(t) = 0) ≈ 1 − λ(t)Δt,

and this event is also independent of the past. A doubly stochastic
Poisson process is called a Poisson process with rate λ if its inten-
sity process λ(t) = λ for all t. For a Poisson process with rate λ,
show that

P(N(t+Δt) = k)
= P(N(t) = k)P(N(t +Δt) −N(t) = 0)

+P(N(t) = k − 1)P(N(t +Δt) −N(t) = 1)
= P(N(t) = k)(1 − λΔt) + P(N(t) = k − 1)λΔt. (4.32)

Let pk(t) = P(N(t) = k). Use (4.32) to derive the following differ-
ential equation:

dpk(t)
dt

= λ(pk−1(t) − pk(t)), (4.33)

with the initial conditions p0(0) = 1 and pk(0) = 0 for k > 0.
Verify that

pk(t) =
e−λt(λt)k

k!
is the solution of the above differential equation. Thus, N(t) is a
Poisson random variable with parameter λt.

262 4. Quasi-circuit switching and quasi-circuit switches

7. (Superposition of Poisson processes) Continue from the previous
problem. Suppose that {N1(t), t ≥ 0} is a doubly stochastic Poisson
process with the intensity process {λ1(t), t ≥ 0} and {N2(t), t ≥ 0}
is a doubly stochastic Poisson process with the intensity process
{λ2(t), t ≥ 0}. If {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent,
show that {N1(t)+N2(t), t ≥ 0} is also a doubly stochastic Poisson
process with the intensity process {λ1(t) + λ2(t), t ≥ 0}.

8. (Random splitting of a Poisson process) Suppose that {N(t), t ≥ 0}
is a doubly stochastic Poisson process with the intensity process
{λ(t), t ≥ 0}. Construct two counting processes {N1(t), t ≥ 0}
and {N2(t), t ≥ 0} by randomly (and independently) selecting an
arrival from {N(t), t ≥ 0} to {N1(t), t ≥ 0} with probability p.
Those arrivals not selected by {N1(t), t ≥ 0} form {N2(t), t ≥ 0}.
Show that {N1(t), t ≥ 0} is a doubly stochastic Poisson process
with the intensity process {pλ(t), t ≥ 0} and {N2(t), t ≥ 0} is a
doubly stochastic Poisson process with the intensity process {(1−
p)λ(t), t ≥ 0}. (In fact, it can be further shown that {N1(t), t ≥ 0}
and {N2(t), t ≥ 0} are independent.)

9. (Shift of a Poisson process) Suppose that {N1(t), t ≥ 0} is a doubly
stochastic Poisson process with the intensity process {λ1(t), t ≥ 0}.
Construct another counting process {N2(t), t ≥ 0} by delaying
every arrival from {N1(t), t ≥ 0} by z. Show that {N2(t), t ≥ 0}
is a doubly stochastic Poisson process with the intensity process
{λ1(t− z), t ≥ 0}.

10. (Random shift of a Poisson process) Suppose that {N1(t), t ≥ 0}
is a doubly stochastic Poisson process with the intensity process
{λ1(t), t ≥ 0}. Construct another counting processes {N2(t), t ≥
0} by randomly (and independently) delaying an arrival from
{N1(t), t ≥ 0} according to a density function f(z). Use the results
in Problems 7-9 to show that {N2(t), t ≥ 0} is a doubly stochastic
Poisson process with the intensity process {∫∞0 λ1(t−z)f(z)dz, t ≥
0}. In particular, if {N1(t), t ≥ 0} is a Poisson process with rate
λ, then {N2(t), t ≥ 0} is also a Poisson process with rate λ (in the
“steady state” as t→ ∞).

11. An M/D/∞ queue is a queueing system with the arrival process
being a Poisson process. Every arrival to the queueing system is
delayed by the same constant. Suppose that the arrival process is a
Poisson process with rate λ and the constant delay is z. Show that
(in steady state) the number of customers in the M/D/∞ queue is

Problems 263

a Poisson random variable λz (Hint: given a time t, those arrivals
are still in the M/D/∞ queue at time t if and only if they arrive
within [t− z, t]).

12. An M/G/∞ queue is a queueing system with the arrival process
being a Poisson process. Every arrival to the queueing system is
randomly delayed according to a general distribution. Suppose that
the arrival process is a Poisson process with rate λ and the density
function of the delay is f(z). Let 1/μ =

∫∞
0 zf(z) be the mean

delay. Show that (in steady state) the number of customers in the
M/G/∞ queue is a Poisson random variable λ/μ (Hint: use the
random splitting property in Problem 8 to decompose the arrival
process into several independent Poisson processes such that each
of them has a constant delay. Then use Problem 11 and the super-
position property in Problem 7 to show the desired result.)

13. (Departure property) Continue from the previous problem. Use the
result in Problem 10 to show that the departure process from an
M/G/∞ queue is also a Poisson process (in the steady state).

14. (A network of M/G/∞ queues) In a network of M/G/∞ queues,
customers of the same class arrive to the network according to a
Poisson process, and they are randomly delayed at every queue
according to a general distribution. Using the departure property
in Problem 13, the superposition property in Problem 7 and the
random splitting property in Problem 8 to show that the arrival
process to every queue in a network of M/G/∞ queues is also
a Poisson process. Moreover, every M/G/∞ can be analyzed in
isolation once the overall arrival rate to that queue is known. (see
[129] for more details).

15. (Variability ordering) A nonnegative random variable X is more
variable than another nonnegative random variable Y , denoted by
X ≥v Y , if for all c ≥ 0,∫ ∞

c
P(X ≥ x)dx ≥

∫ ∞

c
P(Y ≥ x)dx.

It is known (see e.g., [145, 154]) that if X ≥v Y and E[X] = E[Y],
then E[f(X)] ≥ E[f(Y)] for all convex function f . Use this to
show that the moment generating function of a random variable
with bounded support [0, 1] and mean p is bounded above by the
moment generating function of a Bernoulli random variable with
parameter p (see also [63, 18] for an alternative proof).

264 4. Quasi-circuit switching and quasi-circuit switches

5. Optical packet switches

5.1 Optical memory cells and SDL elements

We have discussed several approaches for solving the conflicts in high
speed packet switches with electronic memories. The key problem of
extending these approaches to optical switches is the lack of inexpen-
sive optical random access memory. In Figure 5.1, we show a simple
architecture for building a random access memory with size N . As
shown in Figure 5.1, the first stage is a 1 → N demultiplexer (1 ×N
crossbar) and the third stage is an N → 1 multiplexer (N × 1 cross-
bar). The second stage consists of N memory cells. To perform a write
operation, the demultiplexer at the first stage selects the right memory
cell to store the information. Similarly, to perform a read operation,
the multiplexer at the third stage selects the right memory cell to read
out the information.

Memory cells�

1-to-N demultiplexer� N-to-1 multiplexer�

Fig. 5.1. A simple architecture for random access memory

266 5. Optical packet switches

A memory cell in electronic memory can be easily implemented
by a few transistors that store electrical charges. As such, the size of
electronic random access memory can be very large, e.g., 512Mbits.
Thus, the cost of using electronic random access memory is usually
assumed to be independent of the size of memory. Such an assumption
is called the uniform cost assumption in the literature. However, it is
much more difficult to store photons. One way to implement a mem-
ory cell for optical memory is to use a 2 × 2 optical crossbar switch
and a fiber delay line as shown in Figure 5.2. To write the informa-
tion to the memory cell, set the 2 × 2 crossbar switch to the “cross”
state so that photons can be directed to the fiber delay line. Once the
write operation is completed, the crossbar switch is then set to the
“bar” state so that the photons directed into the fiber delay line keep
circulating through the fiber delay line. To read out the information
from the memory cell, set the crossbar switch to the “cross” state so
that the photons in the fiber delay line can be directed to the output
link. Unlike transistors, the cost of a 2 × 2 optical crossbar switch is
high in today’s technology. As the number of 2× 2 switches needed in
the simple architecture in Figure 5.1 is proportional to the number of
memory cells, it is very costly to build optical random access memory
by using such an architecture.

1�1� 1�(a)� (b)� (c)�

Fig. 5.2. An optical memory cell: (a) writing information (b) circulating informa-
tion (c) reading information

A network element that is built by optical crossbar switches and
fiber delay lines as described in Figure 5.2 is called a Switched Delay
Line (SDL) element in this chapter. An N ×N crossbar switch, as
discussed in Chapter 2, is a network element that has N input links
and N output links. Moreover, it is capable of realizing all the N !
permutations that connects the N input links to the N output links.
To give a more precise definition of SDL elements, we need to provide

5.1 Optical memory cells and SDL elements 267

a formal definition of fiber delay lines. For this, we consider fixed size
packets over optical links in this chapter (unless otherwise specified).
Assume that time is slotted and synchronized so that a packet can be
transmitted within a time slot. Since there is at most one packet within
a time slot, we may use indicator variables to represent the state of a
link. A link is in state 1 at time t (for some t = 0, 1, 2, . . .) if there is
a packet in the link at time t, and it is in state 0 at time t otherwise.

d�

a(t)� a(t-d)�

Fig. 5.3. An optical delay line with delay d

Definition 5.1.1. (Delay line) An (optical) delay line in Figure 5.3
is a network element that has one input link and one output link. In
Figure 5.3, the delay is d. Let a(t) be the state of the input link. Then
the state of the output link is a(t− d).

Note that at the end of the tth time slot, the packets that arrive at
time t, t − 1, . . . , t − (d − 1), are stored in the optical delay line with
delay d. As such, the state of a delay line with delay d at time t can
be characterized by the d-vector

(a(t), a(t − 1), . . . , a(t− d+ 1)).

As optical crossbar switches do not have memory, the state of an SDL
element can be represented by the concatenation of the states of the
delay lines in that SDL element. But such a representation in general
results in a huge state space for an SDL element with a lot of delay
lines. As we shall see later in this chapter, one may be able to use state
aggregation for certain SDL elements to reduce the size of the state
space.

Recall that a Switched Delay Line (SDL) element is a network
element that is built by optical crossbar switches and fiber delay lines.

Definition 5.1.2. (Scaled SDL element) A scaled SDL element is
said to be with scaling factor m if the delay in every delay line is m
times of that in the original (unscaled) SDL element.

268 5. Optical packet switches

2�

Fig. 5.4. An optical memory cell with scaling factor 2

In Figure 5.4, we show an optical memory cell with scaling factor
2. Note that the length of the delay line in Figure 5.4 is twice of that
in the original optical memory cell in Figure 5.2. As such, every packet
directed into the delay line takes two units of time to circulate back to
the 2×2 optical crossbar switch. One of the most important properties
of SDL elements is the following time interleaving property.

Proposition 5.1.3. (Time interleaving property) A scaled SDL
element with scaling factor m can be operated as time interleaving of
m SDL elements.

To understand the intuition of the time interleaving property, con-
sider the memory cell with scaling factor 2 in Figure 5.4. To operate
the scaled optical memory cell with scaling factor 2, one first partitions
time into even and odd numbered time slots. For the even numbered
time slots, one can set the connection patterns of the 2 × 2 optical
crossbar switch in the scaled SDL element according to the read/write
operation for one memory cell. Similarly, for the odd numbered time
slots, one can set the connection patterns of the 2× 2 optical crossbar
switch in the scaled SDL element according to the read/write opera-
tion for another memory cell. By so doing, the scaled optical memory
cell with scaling factor 2 can be operated as time interleaving two
optical memory cells.
Proof. (Proof of Proposition 5.1.3) It suffices to illustrate this for
the case with m = 2. As explained in the case for the scaled optical
memory cell with scaling factor 2, we partition time into even and odd
numbered time slots. To perform time interleaving of two SDL ele-
ments, we then operate these two SDL elements alternatively between
even numbered time slots and odd numbered time slots. As such, the
states of each of the two SDL elements are changed every two time
slots (and remain unchanged when the SDL element is not operated).

5.2 Time slot interchange 269

In short, each of the time interleaved SDL elements is operated at
the clock rate that is one half of that in the original SDL element.
In view of this, each of the time interleaved SDL elements can then
be implemented by the original SDL element by doubling the delay in
each delay line and changing the state in each switch every two time
slots. Clearly, each of the time interleaved SDL elements can then be
implemented by a scaled SDL element with scaling factor 2.

Instead of using two scaled SDL element with scaling factor 2 for
time interleaving of two SDL elements, now we show that we only
need one. To see this, call the two time interleaved SDL elements SDL
element A and SDL element B, and the scaled SDL element (with
scaling factor 2) SDL element C. As described in the last paragraph,
note that the states of the switches in SDL elements A and B are
changed every two time slots. Thus, for the even numbered time slots,
we can set the connection patterns of the optical crossbar switches in
SDL element C according to the connection patterns of the optical
crossbar switches in SDL element A. Similarly, for the odd numbered
time slots, we can set the connection patterns of the optical crossbar
switches in SDL element C according to the connection patterns of
the optical crossbar switches in SDL element B. By so doing, we can
operate a scaled SDL element with scaling factor 2 as time interleaving
of two 2-to-1 SDL elements.

In the following sections, we shall discuss SDL elements that im-
plement various types of optical memories.

5.2 Time slot interchange

5.2.1 Optical time slot interchange by serial/parallel
conversion

Definition 5.2.1. (Time slot interchange) A time slot interchange
(see Figure 5.5) is a network element that has one input link and one
output link. A time slot interchange is said to have frame N if for a
frame of N slots, the network element is capable of interchanging the
position of these N time slots according to any specific permutation
of time slots. To ease our presentation, a time slot interchange with
frame N is denoted by an N ×N time slot interchange (TSI).

270 5. Optical packet switches

4� 3� 2� 1� 2� 4� 1� 3�

Fig. 5.5. A 4 × 4 time slot interchange

A time slot interchange has the same function as a crossbar switch.
The difference is that a time slot interchange rearranges packets in time
and a crossbar switch rearranges packets in space. As such, a time slot
interchange is known as a time switch, while a crossbar switch is known
as a space switch.

As a shared memory switch in Section 2.1, a time slot interchange
can be easily implemented by using random access memory. One first
writes the packets in the time slots of a frame into the memory and then
reads out the packets according to the desired order. In the following,
we discuss how one implements a time slot interchange with optical
crossbar switches and fiber delay lines.

4� 3� 2� 1� 2� 4� 1� 3�
1�

2�

3�

1�

2�

3�

1-to-4�
demultiplexer�

4-to-1�
multiplexer�

4x4 crossbar�
4�

3�

2�

1�

1�

4�

3�

2�

Fig. 5.6. A simple implementation of an optical time slot interchange

One easy way to implement an optical time slot interchange is to use
serial/parallel conversion with optical crossbar switches. We illustrate
this by an optical 4×4 time slot interchange in Figure 5.6. We first use
the 1-to-4 demultiplexer and the fiber delay lines to perform serial-to-
parallel conversion. During the ith time slot, the 1-to-4 demultiplexer
is connected to the fiber delay line with delay 4 − i, i = 1, 2, 3, 4. By
so doing, at the beginning of the fourth time slot, all the packets in

5.2 Time slot interchange 271

these four time slots appear at the four input links of the 4 × 4 cross-
bar switch. The crossbar switch then sets up the connection pattern
according to the desired permutation matrix. Finally, we use the fiber
delay lines and the 4-to-1 multiplexer to perform the parallel-to-serial
conversion. During the 3 + ith time slot, the output of the multiplexer
is connected to the fiber delay line with delay i−1, i = 1, 2, 3, 4. At the
end of the seventh time slot, the order of the four time slots are now
interchanged according to the desired permutation. Note that there is
delay of three time slots in doing the time slot interchange. Such delay
is due to the serial-to-parallel conversion.

5.2.2 Optical Clos time slot interchange

As discussed in Section 2.4.1, one can build a larger switch fabric by
using the three-stage Clos network. In this section, we demonstrate the
idea of using the time interleaving property in Proposition 5.1.3 and
the three-stage Clos network to form a larger time slot interchange.

To further illustrate the time interleaving property in Proposition
5.1.3, we consider the scaled 4 × 4 time slot interchange with scaling
factor 2 in Figure 5.7. Note that the delay in each fiber delay line in
Figure 5.7 is exactly 2 times of that in the corresponding fiber delay
line in Figure 5.6. The demultiplexer and the multiplexer in Figure 5.7
change their connection patterns in every two time slots. For the odd
numbered time slots (slots 1,3,5,7), it is a 4× 4 time slot interchange.
Similarly, for the even numbered time slots (slots 2,4,6,8), it is also a
4× 4 time slot interchange. Thus, such an SDL element can be viewed
as time interleaving of two 4 × 4 time slot interchanges.

2�

4�

6�

2�

4�

6�

1-to-4�
demultiplexer�

4-to-1�
multiplexer�

4x4 crossbar�
7�

5�

3�

1�

1�

7�

5�

3�

4�3�2�1�8�7�6�5�

2�

8�

6�

4�

2�

8�

6�

4�
2�3�4�7�6�1�8�5�

Fig. 5.7. Time interleaving of two time slot interchanges

272 5. Optical packet switches

Now consider the three-stage rearrangeable network in Section
2.4.2. As shown in Figure 5.8(a), the first stage and the third stage
consist of k m×m crossbar switches, and the second stage consists ofm
k×k crossbar switches. Crossbar switches between the first two stages
are connected by the perfect shuffle exchange, i.e., the m output links
of every crossbar switch at the first stage are connected to exactly one
input link of the m crossbar switches at the second stage. Similarly,
crossbar switches between the last two stages are connected by the
perfect shuffle exchange. It is shown in Theorem 2.4.2 that the three-
stage network in Figure 5.8 realizes all the N × N sub-permutation
matrices, where N = m× k. Moreover, via the Birkhoff-von Neumann
decomposition one can find non-conflicting paths from all inputs to all
outputs as long as the connection pattern is a sub-permutation matrix.

m m TSI

Scaled k k TSI

with scaling factor

m
m m TSI

k switches k switchesm switches

2 1m2 1m

1st subframekth subframe

N time slots

(a)

(b)

Fig. 5.8. The mapping of a three-stage rearrangeable network (shown in part (a))
and a three-stage time slot interchange (shown in part (b))

In Figure 5.8(b), we consider a three-stage time slot interchange
that is a concatenation of an m × m time slot interchange, a scaled

5.2 Time slot interchange 273

k×k time slot interchange with scaling factorm, and anm×m time slot
interchange. Via mapping such a three-stage construction to the three-
stage rearrangeable network, we will show that such a construction is
indeed an N × N time slot interchange with N = m × k. To see
this, we number the switches at the first stage in the rearrangeable
network from 1 to k and do the same for the switches at the third
stage (as in the proof of Theorem 2.4.2). As such, we can use the (i, �)th

input, i = 1, 2, . . . , k, � = 1, 2, . . . ,m, to denote the �th input/output
of the ith switch at the first and the third stages. Similarly, we can
partition the N time slots in the three-stage time slot interchange into
k subframes, each with m time slots. As such, we can use the (i, �)th

time slot, i = 1, 2, . . . , k, � = 1, 2, . . . ,m, to denote the �th time slot
of the ith subframe. By so doing, we can map the (i, �)th time slot in
the three-stage time slot interchange to the (i, �)th input in the three-
stage rearrangeable network. Now by the time interleaving property in
Proposition 5.1.3, the scaled k × k time slot interchange with scaling
factor m can be operated as time interleaving of m k × k time slot
interchanges, i.e., the set of time slots {(i, �), i = 1, 2, . . . ,m} from the
output of the time slot interchange at the first stage are fed to the
�th time interleaved k × k time slot interchange in the second stage.
This corresponds to the perfect shuffle that is used to connected the
switches between the first stage and the second stage in the three-stage
rearrangeable network. Following the same argument, one can see that
the concatenation of another m×m time slot interchange at the third
stage corresponds to the perfect shuffle that connects the k m × m
switches at the third stage of the rearrangeable network.

5.2.3 Optical Benes time slot interchange

As described in the previous section, if N is a power of 2, one can
construct an N × N time slot interchange via a concatenation of a
2 × 2 time slot interchange, a scaled N/2 ×N/2 time slot interchange
with scaling factor 2, and a 2× 2 time slot interchange. Then one can
recursively expand the scaled N/2 × N/2 time slot interchange with
scaling factor 2 via a concatenation of a scaled 2 × 2 time slot inter-
change with scaling factor 2, a scaled N/4×N/4 time slot interchange
with scaling factor 4, and a scaled 2 × 2 time slot interchange with
scaling factor 2. As in Section 4.2.2, eventually we can build an N ×N
time slot interchange by 2 log2N−1 scaled 2×2 time slot interchanges
with various scaling factors. Such a network is called the Benes time

274 5. Optical packet switches

slot interchange as it can be mapped to a Benes network. In Figure
5.9, we show an 8 × 8 Benes time slot interchange.

2 2 TSI

Scaled

2 2 TSI

with

scaling

factor 4

Scaled

2 2 TSI

with

scaling

factor 2

2 2 TSI

Scaled

2 2 TSI

with

scaling

factor 2

1 2 4 2 1

Fig. 5.9. An 8×8 Benes time slot interchange and its implementation with optical
memory cells

Instead of using the serial/parallel conversion in Figure 5.6 to build
a 2 × 2 time slot interchange, one can use a memory cell as shown in
Figure 5.10. At t = 1, the first packet is written into the memory cell
by setting the 2 × 2 switch to the “cross” state. At t = 2, the switch
is set to the “bar” state. As such, the first packet keeps circulating
in the memory cell, while the second packet departs from the switch.
At t = 3, the switch is then set back to the “cross” state and the
first packet departs in this time slot. By so doing, the second packet
departs before the first packet and their order is reversed. To keep the
same departing order, we simply set the switch to the “cross” state at
t = 2. It is easy to see that now the first packet departs at t = 2 and
the second packet departs at t = 3. Thus, the memory cell in Figure
5.10 can be used as a 2 × 2 time slot interchange. Note that there is
one time slot delay for this time slot interchange.

At the first glance, it takes three time slots to interchange the two
packets in two consecutive time slots in Figure 5.10. We note that
one can do pipelining so that the time slot interchange in Figure 5.10
can be operated for multiple frames. In Figure 5.11, we show this for
consecutive 8 time slots (4 frames). At odd numbered time slots (e.g.,
t = 1, 3, 5, 7, 9), the 2 × 2 switch is always set to the “cross” state
so that packets arriving at odd numbered time slots are written into

5.2 Time slot interchange 275

1�1� 1�(a)� (b)� (c)�

Fig. 5.10. Using a memory cell as a 2 × 2 time slot interchange

the memory cell. At an even numbered time slot, the switch can be
set to the “bar” state to interchange the order of the packet and the
packet arriving immediately before it. On the other hand, the order
is preserved if the 2 × 2 switch is set to the “cross” state in an even
numbered time slot. For instance, at t = 2 and t = 6, the switch is set
to the “bar” state. As such, the order of packet 1 and packet 2 and the
order of packet 5 and packet 6 are reversed. At t = 4 and t = 8, the
switch is set to the “cross” state, and the order of packet 3 and packet
4 and the order of packet 7 and packet 8 are preserved. To summarize,
there are four things that one needs to keep in mind for pipelining a
memory cell.

(i) Odd numbered time slots are always set to the “cross” state.
(ii) The “bar” state at an even numbered time slot reverses the order

of two adjacent packets, and the “cross” state at an even numbered
time slot preserves the order of two adjacent packets.

(iii) Except for the first time slot, there is always a packet stored in
the memory cell.

(iv) There is one slot delay for the time slot interchange.

1�

4� 3� 2� 1�8� 7� 6� 5� 4� 3� 1� 2�8� 7� 5� 6�

x� x� b� x�x� x� b� x�x�

Fig. 5.11. Pipelining a memory cell

Example 5.2.2. (Connection patterns in a Benes time slot in-
terchange) In Figure 5.12, we show on the right an SDL implemen-

276 5. Optical packet switches

tation for an 8 × 8 Benes time slot interchange via a concatenation of
memory cells. Clearly, the memory cell at the 1st stage is a 2× 2 time
slot interchange, the memory cell at the 2nd stage is a scaled 2 × 2
time slot interchange with scaling factor 2, the memory cell at the 3rd

stage is a scaled 2 × 2 time slot interchange with scaling factor 4, the
memory cell at the 4th stage is a scaled 2 × 2 time slot interchange
with scaling factor 2, and the memory cell at the 5th stage is a 2 × 2
time slot interchange. As such, it can be operated as an 8×8 time slot
interchange.

As in Example 2.4.6, suppose that we would like to reverse the
order of 8 consecutive time slots, i.e., from the order of 1, 2, . . . , 8 to
the order of 8, 7, . . . , 1. Via mapping the 8 × 8 time slot interchange
into an 8× 8 Benes network, it is equivalent to realizing the following
permutation matrix:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As shown in Figure 2.23, a feasible realization for an 8 × 8 Benes
network is to set all the switches at the first stage and the second
stage to the “bar” state and all the switches at the third stage, the
fourth stage, and the fifth stage to the “cross” state.

Now we map these connection patterns to the switches in the
memory cells. As stated before, all the odd numbered time slots
(t = 1, 3, 5, 7, 9, . . .) are set to the “cross” state for the switch at
the first stage. Since the four switches at the first stage of the Benes
network are set to the “bar” state, the even numbered time slots
(t = 2, 4, 6, 8, . . .) are set to the “cross” state. By so doing, the packets
entering the first stage from t = 1 to 8 are simply delayed one time
slot and they enter the second stage with the same order.

Note that the second stage is time interleaving of two 2×2 time slot
interchanges. Call these two time slot interchanges, TSI A and TSI B.
As there is one unit delay from the first stage, the “odd” numbered
time slots for TSI A are t = 2, 6, 10, . . . and the “even” numbered time

5.2 Time slot interchange 277

2�

2�

1�

4�

1�

4� 3� 2� 1�8� 7� 6� 5�

x� x� x� x�x� x� x� x�x�

4� 3� 2� 1�8� 7� 6� 5�

x� x� x� x�x� x� x� x�x�x�

4� 3� 2� 1�8� 7� 6� 5�

x� x� x� x�b� b� b� b�x�x�x�x�

8� 7� 6� 5�4� 3� 2� 1�

b� b� x� x�b� b� x� x�x�x�

b� x�b� x� b� x�x�b�x�

8� 7�2� 1� 4� 3� 6� 5�

8�1� 2� 3� 4� 5� 6� 7�

1st�

2nd�

3rd�

4th�

5th�

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�14� 13�16� 15�18� 17� t�

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�14� 13�16� 15�18� 17� t�

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�14� 13�16� 15�17� t�

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�14� 13�15� t�

4� 3� 2� 1�8� 7� 6� 5�11� 10� 9� t�

4� 3� 2� 1�8� 7� 6� 5�9� t�

Fig. 5.12. Connection patterns in the Benes time slot interchange for Example
5.2.2

278 5. Optical packet switches

slots for TSI A are t = 4, 8, Similarly, the “odd” numbered time
slots for TSI B are t = 3, 7, 11, . . . and its “even” numbered time slots
are t = 5, 9, Since the four switches at the 2nd stage of the Benes
network are also set to the “bar” state, all the time slots are set to
the “cross” state in the switch at the 2nd memory cell. As such, all the
packets are delayed by another two time slots and they depart in the
same order as they arrive.

Now the delay is three time slots before entering the 3rd stage. As
the 3rd stage is time interleaving of four 2 × 2 time slot interchanges.
Call these four time slot interchanges, TSI C, TSI D, TSI E and TSI
F. Now the “odd” numbered time slots for TSI C are t = 4, 12, 20, . . .
and its “even” numbered time slots are t = 8, 16, Similarly, the
“odd” numbered time slots for TSI D are t = 5, 13, 21, . . . and its
“even” numbered time slots are t = 9, 17, The “odd” numbered
time slots for TSI E are t = 6, 14, 22, . . . and its “even” numbered time
slots are t = 10, 18, The “odd” numbered time slots for TSI F are
t = 7, 15, 23, . . . and its “even” numbered time slots are t = 11, 19,
Since the four switches at the 3rd stage of the Benes network are set to
the “cross” state, all the “even” number time slots in TSIs C,D,E,F,
i.e., t = 8, 9, 10, 11, are set to the ”bar” state and the rest of time slots
are set to the “cross” state in the switch at the 3rd memory cell. After
being delayed by 7 time slots, now the 8 packets entering the 4th stage
in the order of 5,6,7,8,1,2,3,4.

As described at the second stage, the 4th stage is time interleaving of
two 2×2 time slot interchanges. Call these two time slot interchanges,
TSI G and TSI H. As there is 7 unit delay from the first stage, the
“odd” numbered time slots for TSI G are t = 8, 12, 16, . . . and the
“even” numbered time slots for TSI G are t = 10, 14, Similarly,
the “odd” numbered time slots for TSI H are t = 9, 13, 17, . . . and
the “even” numbered time slots for TSI H are t = 11, 15, Since
the four switches at the 4th stage of the Benes network are set to the
“cross” state, all the “even” number time slots in TSIs G and H, i.e.,
t = 10, 11, 14, 15, are set to the ”bar” state and the rest of time slots
are set to the “cross” state in the switch at the 4th memory cell. After
being delayed by 9 time slots, now the 8 packets entering the 5th stage
in the order of 7,8,5,6,3,4,1,2.

As the first stage, the 5th stage is a 2 × 2 time slot interchange.
With the 9 time slot delay in mind, we know that the “odd” num-
bered time slots are t = 10, 12, 14, 16, 18, . . . and the “even” numbered

5.3 2-to-1 buffered multiplexers with switched delay lines 279

time slots are t = 11, 13, 15, 17, Since the four switches at the 5th

stage of the Benes network are set to the “cross” state, all the “even”
numbered time slots in this time slot interchange are set to the “bar”
state and the rest of time slots are set to the “cross” state. It is ready
to check that the packets now depart from the 5th stage in the order of
8, 7, 6, 5, 4, 3, 2, 1 after 10 time slot delay. Note that the total delay 10
is also the sum of the delay in all the fiber delay lines in this 5 stage
construction.

To summarize, one can build an N ×N SDL time slot
interchange with 2 log2N−1 2×2 optical crossbars. The
delay for such a time slot interchange is 3

2N − 2, which
is exactly the sum of the delay in its fiber delay lines.

5.3 2-to-1 buffered multiplexers with switched delay
lines

Our main objective of this section is to show how one uses switched
delay lines (SDL) to construct a 2-to-1 buffered multiplexer. The main
idea is to redistribute packets through delay lines with different delays
so that packets competing for the same output link can be resolved
over time and space. In Figure 5.13, we illustrate this idea via a simple
example. There are two input links that are multiplexed into an output
link. Suppose that two packets arrive at both input links. This causes
a conflict for the output link. To resolve such a conflict, we can first
put these two packets through a 2×2 switch and distribute one packet
to a zero delay transmission line (the upper link) and the other to a
fiber delay line with one unit of delay (the lower link). By so doing,
these two packets can be multiplexed into the same link sequentially.
In fact, as we will show later, the construction in Figure 5.13 is indeed
a 2-to-1 multiplexer with one unit of buffer.

In the following, we provide a formal definition of a 2-to-1 multi-
plexer with buffer B.

Definition 5.3.1. (Multiplexer) A 2-to-1 multiplexer with buffer B
has two input links and two output links (see Figure 5.14). One output
link is for departing packets and the other is for lost packets. As shown
in Figure 5.14, let a1(t) (resp. a0(t)) be the state of the dotted (resp.

280 5. Optical packet switches

MUX�1�Switch�

Fig. 5.13. An illustrating example of using switched delay lines for conflict reso-
lution

B�

l�(t)�

d(t)�a (t)�0�

a (t)�1�

Fig. 5.14. A 2-to-1 multiplexer with buffer B

undotted) input link, d(t) (resp. �(t)) be state of the output link for
departing (resp. lost) packets, and q(t) be the number of packets queued
at the multiplexer at time t (at the end of the tth time slot). Then the
2-to-1 multiplexer with buffer B satisfies the following four properties:

(P1) Flow conservation: arriving packets from the two input links are
either stored in the buffer or transmitted through the two output
links, i.e.,

q(t) = q(t− 1) + a0(t) + a1(t) − d(t) − �(t). (5.1)

(P2) Non-idling: there is always a departing packet if there are packets
in the buffer or there are arriving packets, i.e.,

d(t) =

{
0 if q(t− 1) = a0(t) = a1(t) = 0
1 otherwise

. (5.2)

(P3) Maximum buffer usage: arriving packets are lost only when buffer
is full, i.e.,

�(t) =

{
1 if q(t− 1) = B and a0(t) = a1(t) = 1
0 otherwise

. (5.3)

(P4) FIFO with prioritized inputs: packets depart in the first in first
out (FIFO) order. Moreover, if each input has an arriving packet,
the packet from the dotted input is put in the multiplexer first. In
other word, the virtual delay for the dotted input a1(t) is q(t− 1),
the number of packets that is stored in the multiplexer at t−1. The

5.3 2-to-1 buffered multiplexers with switched delay lines 281

virtual delay for the undotted input a0(t) is then q(t−1)+a1(t) (if
that packet is not lost).

Note from (P1) and (P2) that

q(t) = (q(t− 1) + a0(t) + a1(t) − 1)+ − �(t),

where x+ = max(0, x). In conjunction with (P3), we have the following
Lindley equation

q(t) = min[(q(t− 1) + a0(t) + a1(t) − 1)+, B]. (5.4)

Thus, a 2-to-1 multiplexer with bufferB is simply a discrete-time FIFO
queue with buffer B and two inputs in the queueing context.

As such, the state of a 2-to-1 multiplexer with buffer B is simply
q(t), the number of packets stored in the multiplexer at the end of the
tth time slot. This is crucial in simplifying the complexity of our design
(and later analysis) as a large number of binary states in optical delay
lines now can be summarized by a single number.

In addition to the state aggregation property described above, we
also need the time interleaving property in Proposition 5.1.3. For this,
we define the scaled multiplexers below.

B�

l�(t)�

d(t)�a (t)�0�

a (t)�1�

Scale=k�

Fig. 5.15. A scaled 2-to-1 multiplexer with buffer B and scaling factor k

Definition 5.3.2. (SDL multiplexer) A 2-to-1 multiplexer is called
a 2-to-1 SDL multiplexer if the multiplexer is built with crossbar
switches and delay lines (in Definition 5.1.1). A 2-to-1 SDL multi-
plexer is with scaling factor k (see Figure 5.15) if the delay in every
delay line is k times of that in the original (unscaled) 2-to-1 SDL mul-
tiplexer.

As described in Proposition 5.1.3, a scaled 2-to-1 SDL multiplexer
is with scaling factor k can be operated as time interleaving of k 2-to-1
SDL multiplexers.

282 5. Optical packet switches

5.3.1 Prioritized concentrator

One key element for building a 2-to-1 SDL multiplexer is the prioritized
concentrator defined below.

a (t)�1�

a (t)�0� b (t)=max[a (t), a (t)]�0� 0� 1�

b (t)=min[a (t), a (t)]�1� 0� 1�

Fig. 5.16. A prioritized concentrator

Definition 5.3.3. (Concentrator) A prioritized concentrator in Fig-
ure 5.16 is a 2×2 switch with its connection patterns depending on its
two inputs. Let a1(t) (resp. a0(t)) be the state of the dotted (resp. un-
dotted) input, and b0(t) (resp. b1(t)) be the state of the dotted (resp. un-
dotted) output. The switch is set to the cross state at time t if a1(t) = 1,
i.e., there is a packet arrival at the dotted input at time t. Otherwise,
the switch is set to the bar state.

From the operating rule of a prioritized concentrator, if there is
a packet at the dotted input at time t, this packet is transmitted to
the dotted output. If there is another packet at the undotted input,
then the packet at the undotted input is transmitted to the undotted
output. When there is no packet at the dotted input and there is a
packet at the undotted input, the packet at the undotted input is
transmitted to the dotted output. Such an operation rule ensures that

b0(t) = max[a0(t), a1(t)], (5.5)

and

b1(t) = min[a0(t), a1(t)]. (5.6)

Equations (5.5) and (5.6) are the governing equations for a prioritized
concentrator.

By letting d(t) = b0(t) and �(t) = b1(t), it is easy to see that a pri-
oritized concentrator in Definition 5.3.3 is indeed a 2-to-1 multiplexer
with buffer 0. In this case, it is stateless as q(t) = 0 for all t.

We note that a prioritized concentrator is called a track changer in
J. T. Tsai [158] for 2-to-1 multiplexers. As its main objective is to per-
form traffic concentration (this will become clear in the general case of

5.3 2-to-1 buffered multiplexers with switched delay lines 283

n-to-1 multiplexers), we prefer using the name prioritized concentrator
as the name reflects its functional objective.

5.3.2 Recursive construction

d(t)�

l�(t)�
1�

a (t)�1�

a (t)�0�

b (t)�0�

b (t)�1� b (t-1)�1�

B�

Scale=2�

Fig. 5.17. Recursive construction of a 2-to-1 multiplexer with buffer 2B + 1

In this section, we show how one constructs a 2-to-1 multiplexer
with a large buffer by time interleaving two 2-to-1 multiplexers with
small buffers. In Figure 5.17, we consider a network element with two
inputs and two outputs. It is a concatenation of a prioritized concen-
trator, a 2 × 2 switch and a scaled 2-to-1 multiplexer with buffer B
and scaling factor 2. The two outputs of the 2×2 switch are connected
to two delay lines with delay 0 and 1, respectively. We will show in
Theorem 5.3.4 that such a construction can be operated as a 2-to-1
multiplexer with buffer 2B + 1.

As described in Proposition 5.1.3, a scaled 2-to-1 multiplexer with
buffer B and scaling factor 2 can be operated as time interleaving of
two 2-to-1 multiplexers with buffer B (see Figure 5.18). To be specific,
we partition time into even and odd numbered time slots. For the even
numbered time slots, the two outputs of the delay lines (after the 2×2
switch) and the two outputs of the network element are connected to
the two inputs and the two outputs of one multiplexer, respectively. On
the other hand, for the odd numbered time slots, the two outputs of the
delay lines and the two outputs of the network element are connected
to the two inputs and the two outputs of the other multiplexer. The
state of each multiplexer, i.e., the number of packets stored in the
multiplexer, remains unchanged when the multiplexer is not connected.
Thus, every multiplexer changes its state every two time slots.

284 5. Optical packet switches

d(t)�

l�(t)�

B�

B�

1�

a (t)�1�

a (t)�0�

b (t)�0�

b (t)�1� b (t-1)�1�

Fig. 5.18. A 2-to-1 multiplexer with buffer 2B + 1

For the construction in Figure 5.18, we needs to specify the connec-
tion patterns of the 2 × 2 switch. Define the total number of packets
stored in the network element as the sum of the number of packets
stored in each multiplexer and the number of packet stored in the de-
lay line with delay 1. The 2 × 2 switch is set to the cross state
if there is an odd number of packets stored in the network
element (at the end of the previous time slot), and is set to
the bar state otherwise.

Theorem 5.3.4. If the network element in Figure 5.17 is started from
an empty system, then it is a 2-to-1 multiplexer with buffer 2B + 1.

The intuition of Theorem 5.3.4 is the same as that for the construc-
tion of the multiplexer in Section 2.7.2. In Figure 5.18, there are two
time interleaved multiplexers with buffer B. This is equivalent to have
two parallel FIFO queues with buffer B. To make these two parallel
queues behave as if it is a single FIFO queue, we need to operate these
two queues under the join-the-shortest-queue policy and the serve-the-
longest-queue policy (see Figure 2.42). As these two queues are served
periodically with period 2, the join-the-shortest-queue policy and the
serve-the-longest-queue policy are simply the round-robin policy. To
implement the round-robin policy, these two parallel queues need to
be kept in the most balanced state, i.e., the difference between these
two queues is at most one. The connection patterns of the 2×2 switch
in Figure 5.18 specified by the total number of packets in the system
are exactly doing that. The formal proof of Theorem 5.3.4 is given in
Section 5.3.3.

Example 5.3.5. Since a prioritized concentrator is a 2-to-1 multi-
plexer with buffer 0, it follows from Theorem 5.3.4 that the network

5.3 2-to-1 buffered multiplexers with switched delay lines 285

d(t)�
1�

a (t)�1�

a (t)�0�

l�(t)�b (t)�1�

Fig. 5.19. A 2-to-1 multiplexer with buffer 1

element in Figure 5.19 is a 2-to-1 multiplexer with buffer 1. At time t,
the 2 × 2 switch is set to the cross state if there is a packet stored in
the network element (i.e., b1(t − 1) = 1) and is set to the bar state if
the network element is empty (i.e., b1(t− 1) = 0).

1�

a (t)�1�

a (t)�0� 2�

d(t)�

l�(t)�
b (t)�11�

b (t)�10� b (t)�20�

b (t)�21�

Fig. 5.20. A 2-to-1 multiplexer with B = 3.

Example 5.3.6. In Figure 5.20, we illustrate how one applies The-
orem 5.3.4 to construct a 2-to-1 multiplexer with buffer 3 from the
2-to-1 multiplexer with buffer 1 in Figure 5.19. Note that the inner
block in Figure 5.20 is exactly the same as the 2-to-1 multiplexer in
Figure 5.19 except that the delay in the delay line is doubled from 1
to 2. As such, it is a scaled 2-to-1 SDL multiplexer with buffer 1 and
scaling factor 2. As a direct consequence of Theorem 5.3.4, the network
element in Figure 5.20 is indeed a 2-to-1 multiplexer with buffer 3. As
shown in Figure 5.19, let b11(t) (resp. b21(t)) be the state of the lower
output of the first (resp. second) 2×2 switch. Also, note that the state
of the network element at time t− 1 is

(b11(t− 1), b21(t− 2), b21(t− 1)).

Recall that the state of the switches at time t are based on the state
of the network element at time t − 1. Note that the total number of
packets stored in the network element at time t−1 is b11(t−1)+b21(t−
1)+b21(t−2). Thus, we have from the operation rule in Theorem 5.3.4

286 5. Optical packet switches

that the first switch is set to the cross state at time t if b11(t − 1) +
b21(t−1)+b21(t−2) is an odd number and the bar state otherwise. On
the other hand, we have from the operation rule in Example 5.3.5 that
the second switch is set to the cross state at time t if b21(t − 2) = 1
and the bar state otherwise.

(0,0,0)�

(1,0,0)� (0,1,0)�

(1,0,1)� (0,1,1)�

2/xb� 0/bb�
2/xx� 0/bx�

1/xx�

1/bb�
2/bb�

1/xb�

1/bx�

(1,1,1)�1/xx�

0/xx�
2/bx�

0/xx�
0/xb�

2/bb�

1/bb�

2/xx�

0/bb�

Fig. 5.21. The state transition diagram for B = 3.

In Figure 5.21, we draw the state transition diagram (from (b11(t−
1), b21(t−2), b21(t−1)) to (b11(t), b21(t−1), b21(t))) for this 2-to-1 mul-
tiplexer with buffer 3. We use the notation (number of arrivals)/(state
of the first switch)(state of the second switch) for each transition. For
instance, the notation 2/xb denotes two arrivals, the cross state of the
first switch and the bar state of the second switch.

To gain more intuition on this multiplexer, we consider the case
that a0(t) = a1(t) = 1 for t = 1, 2, 3, 4 and a0(t) = a1(t) = 0 for
t = 5, 6, 7. As the multiplexer is started from an empty system, the
state is at (0, 0, 0) for t = 0. Thus, at t = 1, both 2×2 switches are set
to the bar state. As there are two arrivals at t = 1, the arrival from
a1(1) departs at t = 1 and the arrival from a0(1) is routed to the delay
line with delay 1 after the first switch. This implies that b11(1) = 1.
At the end of the 1st time slot, the state is at (1, 0, 0).

5.3 2-to-1 buffered multiplexers with switched delay lines 287

At t = 2, the first 2×2 switch is set to the cross state and the second
2× 2 switch is set to the bar state. The packet that arrives from a0(1)
and is stored in the delay line with delay 1 departs at t = 2. As there
are two arrivals at t = 2, the arrival from a1(2) is routed to the delay
line with delay 1 after the first switch and the arrival from a0(2) is
routed to the delay line with delay 2 after the second switch. This
implies that b11(2) = 1 and b21(2) = 1. At the end of the 2nd time slot,
the state is at (1, 0, 1).

At t = 3, both 2 × 2 switches are set to the bar state. The packet
that arrives from a1(2) and is stored in the delay line with delay 1
departs at t = 3. As there are two arrivals at t = 3, the arrival from
a1(3) is routed to the delay line with delay 2 after the second switch
and the arrival from a0(3) is routed to the delay line with delay 1 after
the first switch. This implies that b11(3) = 1 and b21(3) = 1. At the
end of the 3nd time slot, the state is at (1, 1, 1).

At t = 4, both 2× 2 switches are set to the cross state. The packet
that arrives from a0(2) and is stored in the delay line with delay 2
departs at t = 4. The packet that arrives from a0(3) and is stored at
the delay line with delay 1 after the first switch is routed to the delay
line with delay 2 after the second switch. This implies that b21(4) = 1.
As there are two arrivals at t = 4, the arrival from a1(4) is routed to
the delay line with delay 1 after the first switch and the arrival from
a0(4) is routed to the output link for loss packets (i.e., �(4) = 1). This
implies that b11(4) = 1. At the end of the 4th time slot, the state is at
(1, 1, 1).

At t = 5, both 2× 2 switches are set to the cross state. The packet
that arrives from a1(3) and is stored in the delay line with delay 2
departs at t = 5. The packet that arrives from a1(4) and is stored at
the delay line with delay 1 after the first switch is routed to the delay
line with delay 2 after the second switch. This implies that b21(5) = 1.
As there are no arrivals at t = 5, we have that b11(5) = 0. At the end
of the 5th time slot, the state is at (0, 1, 1).

At t = 6, the first 2×2 switch is set to the bar state and the second
2×2 switch is set to the cross state. The packet that arrives from a0(3)
and is stored in the delay line with delay 2 departs at t = 6. As there
are no arrivals at t = 6, we have that b11(6) = 0 and b21(6) = 0. At
the end of the 6th time slot, the state is at (0, 1, 0).

At t = 7, both 2× 2 switches are set to the cross state. The packet
that arrives from a1(4) and is stored in the delay line with delay 2

288 5. Optical packet switches

departs at t = 7. As there are no arrivals at t = 6, we have that
b11(7) = 0 and b21(7) = 0. At the end of the 7th time slot, the state is
back to (0, 0, 0).

Note from this state transition diagram that (0, 0, 1) and (1, 1, 0)
are not reachable from the empty state (0, 0, 0). Moreover, all these
states satisfies the following inequality

b21(t) ≤ b11(t) + b21(t− 1) ≤ b21(t) + 1.

Such an inequality will play an important role in the proof of Theorem
5.3.4.

Now one can use Theorem 5.3.4 and the time interleaving property
in Proposition 5.1.3 to recursively construct a 2-to-1 multiplexer with
buffer 2k − 1. The mth switch, m = 1, 2, . . . , k, is set to the cross state
at time t if

∑k
i=m

∑2i−m

j=1 bi1(t− 2m−1j) is an odd number and the bar
state otherwise, where bm1(t) is the state of the lower output of the
mth switch. One can further combine the operation of the prioritized
concentrator and the 2× 2 switch at each stage by a 2× 2 switch (see
Figure 5.22). The combined switch is to set to the bar state if both
the prioritized concentrator and the original 2 × 2 switch are set to
the same state, and it is set to the cross state otherwise. For such a
multiplexer, all its switch patterns are completely determined by the
states of the multiplexer.

d(t)�

l�(t)�

1� 2� 2�k-1�

b (t)�k1�

a (t)�0�

a (t)�1� b (t)�11�

b (t)�10� b (t)�20�

b (t)�21�

b (t)�k0�

Fig. 5.22. A self-routing 2-to-1 multiplexer with B = 2k − 1.

We note that the 2-to-1 multiplexer in Figure 5.22 can be a self-
routing multiplexer. Since the delay of a 2-to-1 buffered multiplexer is
governed by the Lindley equation in (5.4), the delay of a packet is in
fact known upon its arrival (as stated in (P4)). Moreover, any packet,
leaving from either the departure link or the loss link, experiences a
delay between 0 and 2k−1. Note that there is a unique path through the
2-to-1 multiplexer in Figure 5.22 for every delay d with 0 ≤ d ≤ 2k −1,

5.3 2-to-1 buffered multiplexers with switched delay lines 289

and this path corresponds to the binary representation of d. As such,
the binary representation of the delay of a packet can be used for self-
routing a packet through the multiplexer. To be precise, suppose an
arriving packet is with delay d =

∑k
j=1 rj2

j−1, where rj is either 0 or
1. If rj is 0, then this packet is routed to the upper output link of the
jth 2 × 2 switch. On the other hand, it is routed to the lower output
link of of the jth 2 × 2 switch if rj is 1.

5.3.3 Inductive proof of Theorem 5.3.4

In this section, we prove Theorem 5.3.4.
As shown in Figure 5.18, let a1(t) (resp. a0(t)) be the state of the

dotted (resp. undotted) input of the prioritized concentrator at time
t, b1(t) (resp. b0(t)) be the state of the lower (resp. upper) output of
the 2× 2 switch at time t, and d(t) (resp. �(t)) be the state of the link
for departing (resp. lost) packets at time t. Also, let q1(t − 1) be the
number of packet stored in the 2-to-1 multiplexer at time t − 1 that
is going to be connected to the 2 × 2 switch at time t and q2(t − 1)
be the number of packet stored in the other 2-to-1 multiplexer at time
t − 1. As there is one unit delay line after the 2 × 2 switch in Figure
5.18, the state of the network element at time t − 1 is the 3-vector
(b1(t− 1), q1(t− 1), q2(t− 1)).

Note that q1(·) represents the multiplexer that will be connected
next time slot and q2(·) represents the multiplexer that will stay un-
changed next time slot. This state representation is different from the
representation that partitions time into even numbered time slots and
odd numbered time slots. The reason of using this state representation
is that it is easier to write down the governing equations as described
below.

Now we write down the governing equations for the network ele-
ment. As the 2 × 2 switch is connected to the two multiplexers alter-
natively, we have from (5.1)-(5.3) that

q2(t) = q1(t− 1) + b1(t− 1) + b0(t) − d(t) − �(t), (5.7)
q1(t) = q2(t− 1), (5.8)

d(t) =

{
0 if q1(t− 1) = b1(t− 1) = b0(t) = 0
1 otherwise

, (5.9)

�(t) =

{
1 if q1(t− 1) = B and b1(t− 1) = b0(t) = 1
0 otherwise

.

290 5. Optical packet switches

(5.10)

Let

q(t− 1) = q1(t− 1) + q2(t− 1) + b1(t− 1) (5.11)

be the total number of packets stored in the network element at the
end of the t − 1th time slot. According to the operation rule of the
2 × 2 switch, the switch is set to the cross state if q(t − 1) is an odd
number and is set to the bar state otherwise. From the operation rule
of a prioritized concentrator in Definition 5.3.3, the state of the upper
input of the 2× 2 switch is max[a0(t), a1(t)] and the state of the lower
input of the 2 × 2 switch is min[a0(t), a1(t)]. Thus,

b1(t) =

{
max[a0(t), a1(t)] if q(t− 1) is odd
min[a0(t), a1(t)] otherwise

. (5.12)

Similarly,

b0(t) =

{
min[a0(t), a1(t)] if q(t− 1) is odd
max[a0(t), a1(t)] otherwise

. (5.13)

Now we show that the network element is a 2-to-1 multiplexer with
buffer 2B+1 by verifying the four properties in Definition 5.3.1. Since
arriving packets from the two input links are either stored in the net-
work element or transmitted through the two output links, flow conser-
vation of the network element is obviously satisfied. We will verify the
other three properties by induction on t with the following additional
induction hypothesis.

(P5) If we start from an empty system, i.e., b1(0) = q1(0) = q2(0) = 0,
then

q2(t) ≤ b1(t) + q1(t) ≤ q2(t) + 1, ∀ t. (5.14)

As illustrated in Example 5.3.6, the induction hypothesis in (5.14) says
that only a certain set of states are reachable from an empty state.

In view of the induction hypothesis in (5.14), there are four possible
cases as described below.
Case 1. (b1(t− 1), q1(t− 1), q2(t− 1)) = (0, 0, 0):

In this case, we have from (5.7)-(5.10) that

d(t) = b0(t), (5.15)
�(t) = 0, (5.16)
q2(t) = 0, (5.17)
q1(t) = 0. (5.18)

5.3 2-to-1 buffered multiplexers with switched delay lines 291

In this case, q(t − 1) = 0. It then follows from (5.12) and (5.13)
that

b0(t) = max[a0(t), a1(t)], (5.19)
b1(t) = min[a0(t), a1(t)], (5.20)

Thus, we have from (5.17), (5.18) and (5.20) that the next state

(b1(t), q1(t), q2(t)) = (min[a0(t), a1(t)], 0, 0).

Since 0 ≤ min[a0(t), a1(t)] ≤ 1, the induction hypothesis in (5.14) is
satisfied at time t.

Since q(t − 1) = 0, there should be no packet loss at time t for a
2-to-1 multiplexer with buffer 2B + 1. Equation (5.16) verifies this.
Also, there should a packet departure at time t if there is at least one
packet arrival at time t. This is shown by (5.15) and (5.19).

As q(t− 1) = 0, the 2× 2 switch is set to the bar state. It is easy to
see that the virtual delay for a1(t) is 0 and the virtual delay for a0(t)
is a1(t) so that the FIFO order is maintained.
Case 2. (b1(t−1), q1(t−1), q2(t−1)) = (1, q−1, q) or (b1(t−1), q1(t−
1), q2(t− 1)) = (0, q, q) for some 0 < q ≤ B:

In this case, we have from (5.7)-(5.10) that

d(t) = 1, (5.21)
�(t) = 0, (5.22)
q2(t) = q + b0(t) − 1, (5.23)
q1(t) = q. (5.24)

In this case, q(t − 1) = 2q and the 2 × 2 switch is set to the bar
state. It then follows from (5.12) and (5.13) that

b0(t) = max[a0(t), a1(t)], (5.25)
b1(t) = min[a0(t), a1(t)], (5.26)

Thus, we have from (5.23), (5.24), (5.25) and (5.26) that the next state

(b1(t), q1(t), q2(t)) = (min[a0(t), a1(t)], q, q + max[a0(t), a1(t)] − 1).

Since

max[a0(t), a1(t)] − 1 ≤ min[a0(t), a1(t)] ≤ max[a0(t), a1(t)],

the induction hypothesis in (5.14) is satisfied at time t.

292 5. Optical packet switches

Since 0 < q(t− 1) = 2q < 2B + 1, there should a packet departure
at time t and there should be no packet loss at time t for a 2-to-
1 multiplexer with buffer 2B + 1. Equations (5.21) and (5.22) verify
these for this case.

Now we show that the virtual delay for a1(t) is q(t−1). Since the 2×
2 switch is set to the bar state, a1(t) is routed to the multiplexer with
buffer B that is going to be connected at time t. As this multiplexer
with buffer B is operated under the FIFO policy, the number of packets
that should depart before a1(t) is q1(t−1)+b1(t−1) = q. Note that this
multiplexer with buffer B is connected to the outputs every two time
slots. Thus, the virtual delay of a1(t) is 2q, which is exactly q(t − 1).
On the other hand, if a1(t) = 1, then a0(t) is routed to the multiplexer
that is going to be connected at time t+1. As q2(t−1) = q, the virtual
delay for a0(t) = 2q + 1. Thus, the FIFO order is maintained.
Case 3. (b1(t−1), q1(t−1), q2(t−1)) = (0, q+1, q) or (b1(t−1), q1(t−
1), q2(t− 1)) = (1, q, q) for some 0 < q < B:

In this case, we have from (5.7)-(5.10) that

d(t) = 1, (5.27)
�(t) = 0, (5.28)
q2(t) = q + b0(t), (5.29)
q1(t) = q. (5.30)

In this case, q(t − 1) = 2q + 1 and the 2 × 2 switch is set to the
cross state. It then follows from (5.12) and (5.13) that

b0(t) = min[a0(t), a1(t)], (5.31)
b1(t) = max[a0(t), a1(t)], (5.32)

Thus, we have from (5.29), (5.30), (5.31) and (5.32) that the next state

(b1(t), q1(t), q2(t)) = (max[a0(t), a1(t)], q, q + min[a0(t), a1(t)]).

Since

min[a0(t), a1(t)] ≤ max[a0(t), a1(t)] ≤ min[a0(t), a1(t)] + 1,

the induction hypothesis in (5.14) is satisfied at time t.
Since 0 < q(t − 1) = 2q + 1 < 2B + 1, there should a packet

departure at time t and there should be no packet loss at time t for
a 2-to-1 multiplexer with buffer 2B + 1. Equations (5.27) and (5.28)
verify these.

5.4 N-to-1 buffered multiplexers with switched delay lines 293

Now we show that the virtual delay for a1(t) is q(t− 1). Since the
2× 2 switch is set to the cross state, a1(t) is routed to the multiplexer
with buffer B that is going to be connected at time t+1. As the number
of packets in this multiplexer is q2(t−1) = q, the virtual delay of a1(t)
is 2q+1, which is exactly q(t−1). On the other hand, if a1(t) = 1, then
a0(t) is routed to the multiplexer that is going to be connected at time
t. As q1(t− 1) + b1(t− 1) = q + 1, the virtual delay for a0(t) = 2q+ 2.
Thus, the FIFO order is maintained.
Case 4. (b1(t− 1), q1(t− 1), q2(t− 1)) = (1, B,B):

In this case, we have from (5.7)-(5.10) that

d(t) = 1, (5.33)
�(t) = b0(t), (5.34)
q2(t) = B, (5.35)
q1(t) = B. (5.36)

In this case, q(t− 1) = 2B + 1 and the 2× 2 switch is set to the cross
state. Thus, (5.31) and (5.32) still hold. Thus, we have from (5.35),
(5.36), and (5.32) that the next state

(b1(t), q1(t), q2(t)) = (max[a0(t), a1(t)], B,B).

Since 0 ≤ max[a0(t), a1(t)] ≤ 1, the induction hypothesis in (5.14) is
satisfied at time t.

Since q(t − 1) = 2B + 1, there should a packet departure at time
t. This is shown in (5.33). On the other hand, since the buffer is full,
there should be a packet loss at time t if two packets arrive at time t.
Equations (5.34) and (5.31) verify this.

Verification of the virtual delay is the same as that in Case 3.

5.4 N -to-1 buffered multiplexers with switched delay
lines

In this section, we extend the results for 2-to-1 multiplexers to N -to-1
multiplexers. In Section 5.3, we construct network elements with 2× 2
switches and optical delay lines that emulate exact 2-to-1 multiplexers
for both the departure process and the loss process. Exact emulation
of N -to-1 multiplexers is much more difficult for N > 2. Instead, we
only construct network elements with N × N switches and optical
delay lines that generate the same departure processes as those from

294 5. Optical packet switches

N -to-1 multiplexers. Packet losses at our N -to-1 multiplexers might
be delayed. Such a construction is called a delayed-loss multiplexer.

B�

d(t)�

l� (t)�1�

a (t)�0�

a (t)�1�

a (t)�
N-1� l� (t)�N-1�

Fig. 5.23. An N-to-1 multiplexer with buffer B

Definition 5.4.1. (Multiplexer) An N -to-1 multiplexer with buffer
B (see Figure 5.23) is a network element with N input links and N
output links. We call the first output link of this multiplexer the de-
parture port and the rest of the output links the loss ports. As shown
in Figure 5.23, let ai(t), i = 0, 1, . . . , N − 1, be the state of the N in-
put links, d(t) be state of the output link for the departure port, �i(t),
i = 1, 2, . . . , N − 1, be the state of the ith loss port, and q(t) be the
number of packets queued at the multiplexer at time t (at the end of
the tth time slot). Then the N -to-1 multiplexer with buffer B satisfies
the following four properties:

(P1) Flow conservation: arriving packets from the N input links are
either stored in the buffer or transmitted through the n output links,
i.e.,

q(t) = q(t− 1) +
N−1∑
i=0

ai(t) − d(t) −
N−1∑
i=1

�i(t). (5.37)

(P2) Non-idling: there is always a departing packet if there are packets
in the buffer or there are arriving packets, i.e.,

d(t) =

{
0 if q(t− 1) +

∑N−1
i=0 ai(t) = 0

1 otherwise
. (5.38)

(P3) Maximum buffer usage: arriving packets are lost only when buffer
is full, i.e., for i = 1, . . . , N − 1,

5.4 N-to-1 buffered multiplexers with switched delay lines 295

�i(t) =

{
1 if q(t− 1) +

∑N−1
i=0 ai(t) ≥ B + i+ 1

0 otherwise
. (5.39)

(P4) FIFO with prioritized inputs: packets depart in the first in first
out (FIFO) order. The priority of the input links is increasing in
the link number. As such, if there are multiple arriving packets, the
packet from the largest input link number is put in the multiplexer
first. Specifically, the virtual delay for the input ai(t) is q(t− 1) +∑N−1

j=i+1 aj(t), the sum of the number of packets that is stored in
the multiplexer at t− 1 and the number of higher priority packets
that arrives at time t.

From (P1-3), it is clear that the q(t) process of an N -to-1 multi-
plexer satisfies the following recursive equation:

q(t) = min[(q(t− 1) + a(t) − 1)+, B], (5.40)

where a(t) =
∑N−1

i=0 ai(t) is the total number of arrivals at time t, and
x+ = max(0, x). In view of (5.40), if one does not care about the exact
match of the loss processes, one can emulate the departure process of
an N -to-1 multiplexer by emulating the q(t) process only. This leads
to our definition of delayed-loss multiplexers in Definition 5.4.2.

Definition 5.4.2. (Delayed-loss multiplexer) An N -to-1 delayed-
loss multiplexer with buffer B is a network element with N input links
and N output links. As in Definition 5.4.1, the first output link of this
multiplexer is the departure port and the rest of the output links are
the loss ports (we use the same diagrammatic representation in Figure
5.23). Let q(t) be the number of packets that are queued at the delayed-
loss multiplexer at time t (and will be departed from the departure
port). Then the N -to-1 delayed-loss multiplexer with buffer B satisfies
the recursive equation in (5.40), (P2) and (P4) of Definition 5.4.1.

As (5.40) is also the governing equation of the N -to-1 multiplexer,
(P2) and (P4) imply that the delayed-loss multiplexer and the mul-
tiplexer have identical FIFO departure processes (from the departure
ports) if both systems are started from empty systems and subject to
identical arrival processes.

As in Definition 5.3.2, we define scaled SDL multiplexers in Defini-
tion 5.4.3 below. As explained in Section 5.3, scaled SDL multiplexers
have the time interleaving property in Proposition 5.1.3 .

296 5. Optical packet switches

Definition 5.4.3. (SDL multiplexer) A N -to-1 (delayed-loss) mul-
tiplexer is called an N -to-1 SDL (delayed-loss) multiplexer if the multi-
plexer is built with delay lines (in Definition 5.1.1) and N×N switches.
An N -to-1 SDL (delayed-loss) multiplexer is with scaling factor k (see
Figure 5.24) if the delay in every delay line is k times of that in the
original N -to-1 SDL (delayed-loss) multiplexer.

B�

d(t)�

l� (t)�1�

a (t)�0�

a (t)�1�

a (t)�
N-1� l� (t)�N-1�

Scale=k�

Fig. 5.24. A scaled N-to-1 multiplexer with buffer B and scaling factor k

5.4.1 Prioritized concentrator

a (t)�0�

a (t)�1�

a (t)�N-1� b (t)�N-1�

b (t)�1�

b (t)�0�

Fig. 5.25. An N-to-N prioritized concentrator

We first generalize the 2 × 2 prioritized concentrator in Definition
5.3.3.

Definition 5.4.4. (Concentrator) An N ×N prioritized concentra-
tor (see Figure 5.25) is an N × N switch with its connection pattern
depending on its N inputs. Both the input links and output links are

5.4 N-to-1 buffered multiplexers with switched delay lines 297

numbered from the top to the bottom. The priority of the input links is
increasing in the link number and the priority of the output links is de-
creasing in the link number (the dotted input and the dotted output in
the diagrammatic representation have the highest priority). The pack-
ets that arrive at high priority input links have priority to be switched
to high priority output links. Thus, if there is a packet arrival at input
link N−1, it is switched to output link 0. If there is no arrival at input
link N − 1 and there is an arrival at input link N − 2, the arrival at
input link N −2 is switched to output link 0. Mathematically, the state
at output link k is

bk(t) =
N∑

i=k+1

aN−i(t)1{∑i−1
j=1 aN−j(t) = k

},
where 1{A} is 1 if the event A is true and 0 otherwise.

Note that if there is a packet arriving at the N − ith input at time t
(i.e., aN−i(t) = 1), then the packet is routed to the kth output if there
are exactly k packet arrivals at the inputs N−1, N−2, . . . , N−i+1 at
time t (i.e.,

∑i−1
j=1 aN−j(t) = k). Thus, bk(t) = 1, k = 0, 1, . . . , N − 1,

if and only if there are at least k+ 1 packet arrivals at time t.
The purpose of the N×N prioritized concentrator is to perform traffic
concentration, i.e., to sort inputs {ai(t), i = 0, 1, . . . , N−1} (according
to a pre-assigned priority) so that bk(t) = ai(t) for some i and that
bk(t) ≥ bk+1(t) for k = 0, 1, . . . , N − 1.

We note that an N×N prioritized concentrator is an N -to-1 multi-
plexer with buffer 0. It is also an N -to-1 delayed-loss multiplexer with
buffer 0.

5.4.2 Recursive construction of N-to-1 multiplexers

In this section, we show how one constructs an N -to-1 delayed-loss
multiplexer with a large buffer by time interleaving N N -to-1 delayed-
loss multiplexers with small buffers. In Figure 5.26, we consider a net-
work element with N inputs and N outputs. It is a concatenation
of a prioritized concentrator, an N × N switch and a scaled N -to-1
delayed-loss multiplexer with buffer B and scaling factor N . The ith

output of the N × N switch is connected to a delay line with delay
i, i = 0, 1, . . . , N − 1. We will show in Theorem 5.4.5 such a network
element can be operated as an N -to-1 delayed-loss multiplexer with
buffer N(B + 1) − 1.

298 5. Optical packet switches

1�

2�

N-1�

a (t)�0�

a (t)�1�

a (t)�2�

a (t)�
N-1�

b (t)�
N-1�

b (t)�0�
c (t)�0�

c (t)�
N-1�

B�

l� (t)�1�

d(t)�

l� (t)�2�

l� (t)�
N-1�

Scale=N�

Fig. 5.26. Recursive construction of an N-to-1 delayed-loss multiplexer with buffer
N(B + 1) − 1

As described in Proposition 5.1.3, a scaled N -to-1 multiplexer with
buffer B and scaling factor N can be operated as time interleaving of
N N -to-1 multiplexers with buffer B (see Figure 5.27). The N outputs
of these delay lines are connected to the inputs of the N multiplexers
in a round robin fashion. The N outputs of the N multiplexers are
connected to the N outputs of the network element in the same order.
The state of each multiplexer, i.e., the number of packets stored in the
multiplexer, remains unchanged when the multiplexer is not connected.
Thus, every multiplexer changes its state every N time slots. To ease
our presentation, we reorder the N time interleaved multiplexers in
every time slot. The ith multiplexer at time t is the multiplexer that
is going to be connected at time t + i, i = 1, 2, . . . , N − 1. Thus, the
first multiplexer at any time is always the multiplexer that is going to
be connected in the next time slot.

As shown in Figure 5.27, let ai(t), bi(t) and ci(t), i = 0, 1, . . . , N−1,
be the inputs of the concentrator, the outputs of the concentrator, and
the outputs of the N × N switch. Let q0i (t), i = 1, . . . , N , be the
number of packets stored at time t in the ith N-to-1 delayed-
loss multiplexer at time t (i.e., the multiplexer that is going to be
connected to the N×N switch at time t+ i). Since the N multiplexers
are connected in a round robin fashion, the i+ 1th multiplexer at time
t − 1 becomes the ith multiplexer at time t for i = 1, . . . , N . As the

5.4 N-to-1 buffered multiplexers with switched delay lines 299

l� (t)�1�
1�

2�

N-1�

B�

B�

a (t)�0�

a (t)�1�

a (t)�2�

a (t)�
N-1�

b (t)�
N-1�

b (t)�0�
c (t)�0�

c (t)�
N-1�

d(t)�

l� (t)�2�

l� (t)�N-1�

Fig. 5.27. An N-to-1 delayed-loss multiplexer with buffer N(B + 1) − 1

state of a multiplexer remains unchanged when the multiplexer is not
connected, we have

q0i (t) = q0i+1(t− 1), i = 1, . . . , N − 1. (5.41)

On the other hand, the first multiplexer at time t−1 will be connected
at time t and become the N th multiplexer at time t. It then follows
from the governing equation for a multiplexer in (5.40) that

q0N(t) = min[(q01(t−1)+
N−2∑
k=0

c1+k(t−1−k)+c0(t)−1)+, B].(5.42)

We define

qi(t− 1) = min[q0i (t− 1) +
N−i−1∑

k=0

ci+k(t− 1 − k), B + 1],

i = 1, 2 . . . , N, (5.43)

with the convention that the sum equals 0 if the upper index is smaller
than the lower index. The quantity qi(t−1) represents the number
of packets in the system at time t−1 that are eligible to leave
the system from the departure port at time t + i − 1 if the

300 5. Optical packet switches

arrivals were blocked from time t onward. To see this, note that∑N−i−1
k=0 ci+k(t − 1 − k) is the number of packets that are already in

the fiber delay lines and will become the inputs to the multiplexer
connected at time t+ i− 1 (if there were no further arrivals from time
t onward). Recall that q0i (t−1) represents the number of packets stored
in the multiplexer that is going to be connected at time t+ i − 1. As
the connected multiplexer at time t+ i − 1 has buffer B and there is
one (possible) departure at time t + i − 1, the sum of q0i (t − 1) and∑N−i−1

k=0 ci+k(t− 1 − k) cannot exceed B + 1.
For this network element, we also define

q(t− 1) =
N∑

i=1

qi(t− 1). (5.44)

Clearly, q(t − 1) is the total number of packets in the system
that will depart from the departure link from time t onward if
the arrivals to the system were blocked. The connection pattern
of the N ×N switch in the middle stage of the network element is set
according to the value of q(t− 1).

As we shall prove later, the network element is a delayed-loss mul-
tiplexer with buffer N(B+1)−1 (under the operation rule RN defined
below) and q(t−1) is also the number of packets queued in the delayed-
loss multiplexer at time t− 1.
Rule RN : The connection pattern of the N ×N switch in the middle
stage of the network element in Figure 5.27 is set to P q(t−1), where P
is the N × N circular-shift matrix, i.e., for all i, j = 0, 1, . . . , N − 1,
Pi,j = 1 when j = i+ 1modN and Pi,j = 0 otherwise.

Note that PN is the identity matrix. Thus, if q(t− 1)modN = m,
then

P q(t−1) = Pm,

where the (i, j)-th element of Pm is

(Pm)ij =

{
1 if j = (i+m)modN
0 otherwise

.

Specifically, if output link j of the switch is connected with input link
i, then cj(t) = bi(t), where j = (i+m)modN = (i+ q(t− 1))modN .

Intuitively, one may view qi(t)’s as the numbers of customers in
the parallel queues in Figure 2.42 and Rule RN mimics the join-the-
shortest-queue policy and the serve-the-longest-queue policy (as the

5.4 N-to-1 buffered multiplexers with switched delay lines 301

shifter in the Knockout switch in Section 2.7.2). By so doing, the
parallel queues are kept in the most balanced state, i.e., for all t

q1(t) ≥ q2(t) ≥ . . . ≥ qN(t) ≥ q1(t) − 1.

As a result, the parallel queues behaves as if it was a single queue with
a shared buffer. This leads to the following theorem and its formal
proof is shown in Section 5.4.4.

Theorem 5.4.5. If the network element in Figure 5.26 is operated
under Rule RN and it is started from an empty system, then it is an
N -to-1 delayed-loss multiplexer with buffer N(B + 1) − 1.

a (t)�0�

a (t)�1�

a (t)�2�

a (t)�
N-1�

1�

2�

N-1�

b (t)�
N-1�

b (t)�0� c (t)�0�

c (t)�
N-1�

l� (t)�1�

d(t)�

l� (t)�2�

l� (t)�
N-1�

Fig. 5.28. An N-to-1 delayed-loss multiplexer with buffer N − 1

Example 5.4.6. Since a prioritized concentrator is an N -to-1 multi-
plexer with buffer 0, it follows from Theorem 5.4.5 that the network
element in Figure 5.28 is an N -to-1 delayed-loss multiplexer with buffer
N − 1. For this example, we have from (5.43) that

qi(t− 1) = min[
N−i−1∑

k=0

ci+k(t− 1 − k), 1]

= max
0≤k≤N−i−1

[ci+k(t− 1 − k)], (5.45)

for i = 1, 2, . . . , N − 1, and qN (t− 1) = 0. Thus,

q(t− 1) =
N−1∑
i=1

max
0≤k≤N−i−1

[ci+k(t− k − 1)]. (5.46)

The connection pattern of the N × N switch at time t is then set
according to Rule RN that only depends on q(t− 1). We note that the

302 5. Optical packet switches

total number of packets that can be stored in the optical delay lines
of the network element in Figure 5.28 is N(N − 1)/2, which is much
larger than the designed buffer size N −1. It means that some packets
that should have been discarded when they arrive are still stored in
the system. In view of (5.45), one can see that at most one packet can
be departed from the departure port at time t+ i− 1 and the rest of
packets that are stored in the delay lines will be departed from the
loss ports. This is how the delayed losses occur!

a (t)�0�

a (t)�1�

a (t)�2�

a (t)�
N-1�

N-1�

c (t)�
N-1�

1�

2�

c (t)�0�

N�

2N�
l� (t)�1�

d(t)�

l� (t)�2�

l� (t)�N-1�

e (t)�0�

e (t)�
N-1�

N(N-1)�

Fig. 5.29. An N-to-1 delayed loss multiplexer with B = N2 − 1.

Example 5.4.7. In Figure 5.29, we illustrate how one applies Theo-
rem 5.4.5 to construct an N -to-1 delayed-loss multiplexer with buffer
N2 − 1 from the N -to-1 delayed-loss multiplexer with buffer N − 1 in
Figure 5.28. Note that the inner block in Figure 5.29 is exactly the
same as the N -to-1 delayed-loss multiplexer with buffer N − 1 in Fig-
ure 5.28 except that the delay in every delay line is scaled N times. As
such, it is an N -to-1 delayed-loss SDL multiplexer with buffer N − 1
and scaling factor N . As a direct consequence of Theorem 5.4.5, the
network element in Figure 5.29 is indeed an N -to-1 delayed-loss mul-
tiplexer with buffer N2 − 1. As shown in (5.46) in Example 5.4.6,
q0j (t− 1), i.e., the number of packets stored in the multiplexer that is
going to be connected at time t+ j − 1, has the following form:

q0j (t− 1) =
N−1∑
i=1

max
0≤k≤N−i−1

[ei+k(t− (k + 1)N + j − 1)],

5.4 N-to-1 buffered multiplexers with switched delay lines 303

j = 1, 2, . . . , N. (5.47)

Moreover, the second N × N switch is set according to q01(t − 1). To
see the operation of the first N ×N switch, we have from (5.43) that

qj(t− 1) = min[q0j (t− 1) +
N−j−1∑

k=0

cj+k(t− 1 − k), B + 1],

j = 1, 2 . . . , N. (5.48)

Thus, the operation of the first N × N switch is set according to
q(t− 1) =

∑N
j=1 qj(t− 1).

By Theorem 5.4.5 and the time interleaving property in Proposi-
tion 5.1.3, one can then recursively construct a multi-stage multiplexer
with a large buffer. One can further combine the operation of the pri-
oritized concentrator and the N×N switch at each stage by an N×N
switch. In Figure 5.30, we show the construction of an N -to-1 delayed-
loss multiplexer with buffer Nk − 1. All its switching patterns are
completely determined by the state of the multiplexer.

a (t)�
N-1�

a (t)�0�

a (t)�1�

N-1�

1� N�

N(N-1)�

N�
k-1�

N (N-1)�
k-1�

d(t)�

l� (t)�1�

l� (t)�
N-1�

Fig. 5.30. An N-to-1 delayed-loss multiplexer with B = Nk − 1.

5.4.3 Self-routing optical multiplexers

Now we have shown from Theorem 5.4.5 a way to control the switching
patterns in the N -to-1 delayed-loss multiplexer with buffer Nk − 1
in Figure 5.30. One key observation from this is that those packets
departing from the departure port have the same delays as the (ideal)
N -to-1 multiplexer with bufferNk−1 since the two departure processes
are identical and both of them are FIFO. Moreover, for any packet that
departs from the departure port and experiences delay 0 ≤ d ≤ Nk−1,
there is a unique path through the network element. The path can be

304 5. Optical packet switches

a (t)�
N-1�

N-1�

1� N�

N(N-1)�

N�k-1�

N (N-1)�
k-1�

d(t)�

l� (t)�
N-1�

a (t)�0�

a (t)�1�

l� (t)�1�

Fig. 5.31. A self-routing N-to-1 multiplexer with B = Nk − 1.

determined by the unique decomposition of d =
∑k

j=1 rjN
j−1 and the

packet is sent through the network element by taking the rjth output
link at the jth N × N switch. However, the path of a packet that
departs from a loss port cannot be determined this way. Thus, if we
discard all the packets that depart from the loss ports before entering
the network element, then we are left with the packets that depart from
the departure port and the paths of those packets can be determined
upon their arrivals. As these paths are identical to those from the
N -to-1 delayed-loss multiplexer, we conclude that these paths do not
conflict with each other, i.e., no more than one packet occupies the
same link at any time. This leads to the self-routing multiplexer in
Figure 5.31.

In Figure 5.31, we replace the first N ×N switch by an N × (2N −
1) switch in Figure 5.30. The network element in Figure 5.31 keeps
track of the number of packets stored in it. If such a number exceeds
Nk − 1, further arrivals are lost immediately. Specifically, let q(t) be
the number of packets stored in the network element. Then q(t) is
governed by

q(t) = min[(q(t− 1) +
N−1∑
i=0

ai(t) − 1)+, Nk − 1], (5.49)

and

�i(t) =

{
1 if q(t− 1) +

∑N−1
i=0 ai(t) ≥ Nk + i

0 otherwise
, (5.50)

for i = 1, . . . , N − 1. Let q be the number of packets stored in the
network element when a particular packet enters the network element.
Then we have 0 ≤ q ≤ Nk − 1 and there exists a unique vector r =

5.4 N-to-1 buffered multiplexers with switched delay lines 305

(r1, r2, . . . , rk) with 0 ≤ rj ≤ N − 1 for all j such that

q =
k∑

j=1

rjN
j−1.

The packet is then routed through the network element by taking the
rj

th output link at the jth N ×N switch. Note that we now not only
match the departure process but also the loss processes. Thus, the
network element in Figure 5.31 is an N -to-1 multiplexer with buffer
Nk − 1.

To see the analogy between our self-routing multiplexer and the
classical banyan self-routing network in Section 2.5.2, one may view the
virtual delay in our self-routing multiplexer as the “output address”
in the banyan self-routing network. By routing packets to different
“output addresses,” we then resolve conflicts at the multiplexer.

5.4.4 Proof of Theorem 5.4.5

In this section, we prove Theorem 5.4.5. The proof of Theorem 5.4.5
requires the following lemmas. In Lemma 5.4.8, we first derive the
governing equations for qi(t), i = 1, . . . , N . To gain the intuition of
our proof, one may view qi(t)’s as the numbers of customers in the
parallel queues in Figure 2.42.

Lemma 5.4.8. The quantities qi(t), i = 1, 2, . . . , N , satisfy the fol-
lowing recursive equations:

qi(t) = min[qi+1(t− 1)+ ci(t), B+1], i = 1, 2, . . . , N − 1,(5.51)

and

qN(t) = min[(q1(t− 1) + c0(t) − 1)+, B]. (5.52)

Proof. We have from (5.41) and (5.43) that for i = 1, . . . , N − 1,

qi(t) = min[q0i (t) +
N−i−1∑

k=0

ci+k(t− k), B + 1]

= min[q0i+1(t− 1) +
N−i−2∑

k=0

ci+1+k(t− 1 − k) + ci(t), B + 1]

= min[q0i+1(t− 1) +
N−i−2∑

k=0

ci+1+k(t− 1 − k) + ci(t),

306 5. Optical packet switches

B + 1, B + 1 + ci(t)]

= min
[
min[q0i+1(t− 1) +

N−i−2∑
k=0

ci+1+k(t− 1 − k), B + 1]

+ci(t), B + 1
]

= min[qi+1(t− 1) + ci(t), B + 1].

Moreover, it follows from (5.42) and (5.43) that

qN(t) = min[q0N (t), B + 1] = q0N (t)

= min[(q01(t− 1) +
N−2∑
k=0

c1+k(t− 1 − k) + c0(t) − 1)+, B]

= min[(q01(t− 1) +
N−2∑
k=0

c1+k(t− 1 − k) + c0(t) − 1)+,

B,B + c0(t)]

= min
[
(min[q01(t− 1) +

N−2∑
k=0

c1+k(t− 1 − k), B + 1]

+c0(t) − 1)+, B
]

= min[(q1(t− 1) + c0(t) − 1)+, B]

Lemma 5.4.9 shows that if the vector (q1(t−1), q2(t−1), . . . , qN (t−
1)) is in the most balanced state, i.e., the difference between the largest
element and the smallest element is at most 1, then Rule RN behaves
as if it is the join-the-shortest-queue policy and the state is still kept
in the most balanced state.

Lemma 5.4.9. If

q1(t− 1) ≥ q2(t− 1) ≥ . . . ≥ qN(t− 1) ≥ q1(t− 1) − 1, (5.53)

then under Rule RN

q1(t− 1) + c0(t) ≥ q2(t− 1) + c1(t) ≥ . . .

≥ qN (t− 1) + cN−1(t) ≥ q1(t− 1) + c0(t) − 1. (5.54)

Proof. We define the function h(k, q(t − 1)) = k − q(t − 1)modN .
Then under Rule RN , we have

5.4 N-to-1 buffered multiplexers with switched delay lines 307

ci(t) = bh(i,q(t−1))(t), i = 0, 1, . . . , N − 1. (5.55)

Note that for any fixed q(t − 1), h(k, q(t − 1)) is increasing with k,
except when k = q(t− 1) − 1modN at which h(k, q(t − 1)) = N − 1
and h(k + 1, q(t− 1)) = 0.

We first show that

qi+1(t−1)+ci(t) ≥ qi+2(t−1)+ci+1(t), i = 0, 1, . . . , N−2.(5.56)

If i �= (q(t− 1) − 1)modN , then

h(i+ 1, q(t− 1)) ≥ h(i, q(t− 1)).

Since bi(t) is decreasing in i (bi(t)’s are the outputs from a prioritized
concentrator), it then follows that

ci(t) = bh(i,q(t−1))(t) ≥ bh(i+1,q(t−1))(t) = ci+1(t). (5.57)

Hence, (5.56) follows from (5.53) and (5.57).
On the other hand, if i = (q(t− 1) − 1)modN , then we have from

(5.53) that qi+1(t− 1) = qi+2(t− 1)+1 for this case. This implies that

qi+1(t− 1) + ci(t) = qi+2(t− 1) + 1 + ci(t)
≥ qi+2(t− 1) + ci+1(t)

Now we show that

qN(t− 1) + cN−1(t) ≥ q1(t− 1) + c0(t) − 1. (5.58)

If q(t − 1)modN �= 0, then h(N − 1, q(t − 1)) ≤ h(0, q(t − 1)). Since
bi(t) is decreasing in i, it then follows that

cN−1(t) = bh(N−1,q(t−1))(t) ≥ bh(0,q(t−1))(t) = c0(t).

That (5.58) holds then follows from the last inequality in (5.53). On
the other hand, if q(t − 1)modN = 0, then we have from (5.53) that
q1(t− 1) = q2(t− 1) = . . . = qN (t− 1). The inequality in (5.58) holds
trivially as 0 ≤ cj(t) ≤ 1 for all j.

Lemma 5.4.10 shows that Rule RN behaves as if it is the serve-the-
longest-queue policy and the state (q1(t), q2(t), . . . , qN (t)) is always
kept in the most balanced state if the state is started from an empty
system.

308 5. Optical packet switches

Lemma 5.4.10. If the network element in Figure 5.27 is operated
under Rule RN and it is started from an empty system, then for all
t ≥ 0

qi+1(t) ≤ qi(t), i = 1, 2, . . . , N − 1, (5.59)

and

q1(t) ≤ qN (t) + 1. (5.60)

Proof. Since we assume that the network element starts from an
empty system, Eq. (5.59) and (5.60) hold for t = 0. Now we assume
that they hold for some t− 1.

Using the induction hypotheses and Lemma 5.4.9, we have from
(5.51) that qi(t) ≥ qi+1(t) for i = 1, . . . , N −2. To see that qN (t)+1 ≥
q1(t), observe from (5.52) that

qN(t) + 1 = min[(q1(t− 1) + c0(t) − 1)+, B] + 1
= min[(q1(t− 1) + c0(t) − 1)+ + 1, B + 1]
≥ min[q1(t− 1) + c0(t), B + 1].

Once again, using the induction hypotheses, Lemma 5.4.9 and (5.51),
we have that

qN(t) + 1 ≥ min[q1(t− 1) + c0(t), B + 1]
≥ min[q2(t− 1) + c1(t), B + 1] = q1(t).

It remains to show that qN−1(t) ≥ qN (t). Note from (5.52), the
induction hypotheses, the last inequality in (5.54), and (5.51) that

qN(t) = min[(q1(t− 1) + c0(t) − 1)+, B]
≤ min[(qN (t− 1) + cN−1(t))+, B]
= min[qN (t− 1) + cN−1(t), B]
≤ min[qN (t− 1) + cN−1(t), B + 1] = qN−1(t).

(Proof of Theorem 5.4.5) We first show that q(t) satisfies the fol-
lowing recursive equation:

q(t) = min

⎡
⎣
(
q(t− 1) +

N−1∑
i=0

ai(t) − 1

)+

, N(B + 1) − 1

⎤
⎦ . (5.61)

5.4 N-to-1 buffered multiplexers with switched delay lines 309

Since the network element in Figure 5.27 is started from an empty
system, we first consider the case that q(t−1) = 0. If q(t−1) = 0, then
qi(t− 1) = 0 for all i and ci(t) = bi(t), i = 0, 1, 2 . . . , N − 1 (according
to Rule RN). Therefore, we have from (5.51) and (5.52) that

N∑
i=1

qi(t) =
N−1∑
i=1

min[qi+1(t− 1) + ci(t), B + 1]

+ min[(q1(t− 1) + c0(t) − 1)+, B]

=
N−1∑
i=1

bi(t)

We argue that
N−1∑
i=1

bi(t) = (
N−1∑
i=0

bi(t) − 1)+. (5.62)

To see this, note that (5.62) holds trivially if b0(t) = 1. On the other
hand, if b0(t) = 0, then bi(t) = 0, i = 1, 2, . . . , N − 1, as b0(t) is the
largest element in bi(t). Both sides of (5.62) equal 0. Using (5.62) yields

q(t) =
N∑

i=1

qi(t) = (
N−1∑
i=0

bi(t) − 1)+

= (
N−1∑
i=0

ai(t) − 1)+

= (a(t) − 1)+

= min[(a(t) − 1)+, N(B + 1) − 1].

Thus, (5.61) holds for the case q(t− 1) = 0.
Now consider the case that q(t− 1) > 0. As q1(t− 1) is the largest

element in qi(t − 1), i = 1, 2, . . . , N (Lemma 5.4.10), it follows that
q1(t− 1) > 0. In conjunction with (5.52), we have

qN(t) = min[q1(t− 1) + c0(t) − 1, B]
= min[q1(t− 1) + c0(t), B + 1] − 1. (5.63)

Thus, we have from (5.51) and (5.63) that

q(t) =
N∑

i=1

qi(t) =
N−1∑
i=0

min[qi+1(t− 1) + ci(t), B + 1] − 1. (5.64)

We argue that

310 5. Optical packet switches

N−1∑
i=0

min[qi+1(t− 1) + ci(t), B + 1]

= min[
N−1∑
i=0

qi+1(t− 1) + ci(t), N(B + 1)]. (5.65)

If q1(t − 1) + c0(t) ≤ B + 1, then it follows from Lemma 5.4.10 and
Lemma 5.4.9 that qi+1(t− 1)+ ci(t) ≤ B+1 for all i = 0, 1, . . . , N − 1.
Thus,

N−1∑
i=0

min[qi+1(t− 1) + ci(t), B + 1]

=
N−1∑
i=0

qi+1(t− 1) + ci(t)

= min[
N−1∑
i=0

qi+1(t− 1) + ci(t), N(B + 1)].

On the other hand, if q1(t − 1) + c0(t) ≥ B + 2, then it follows from
Lemma 5.4.10 and Lemma 5.4.9 that qi+1(t− 1)+ ci(t) ≥ B+ 1 for all
i = 0, 1, . . . , N − 1. Thus,

N−1∑
i=0

min[qi+1(t− 1) + ci(t), B + 1]

=
N−1∑
i=0

B + 1 = N(B + 1)

= min[
N−1∑
i=0

qi+1(t− 1) + ci(t), N(B + 1)].

Using (5.65) in (5.64) yields

q(t) =
N∑

i=1

qi(t)

= min[
N−1∑
i=0

qi+1(t− 1) + ci(t), N(B + 1)] − 1

= min[
N∑

i=1

qi(t− 1) +
N−1∑
i=0

ai(t), N(B + 1)] − 1

= min[q(t− 1) + a(t), N(B + 1)] − 1
= min[q(t− 1) + a(t) − 1, N(B + 1) − 1].

5.5 FIFO multiplexers with variable length bursts 311

Thus, we have shown that q(t) satisfies (5.61).
Now we show the non-idling property in (P2), i.e.,

d(t) = 1{q(t−1)+a(t)>0} . (5.66)

From the non-idling property for the delayed-loss multiplexer con-
nected to the outputs at time t, it follows that

d(t) = 1{q1(t−1)+c0(t)>0}.

Note that q1(t − 1) > 0 if and only if q(t − 1) > 0. Therefore, if
q1(t− 1) > 0,

d(t) = 1 = 1{q(t−1)+a(t)>0} .

On the other hand, if q1(t− 1) = q(t− 1) = 0, then c0(t) = b0(t) from
Rule RN . As b0(t) is the largest element in bi(t), i = 0, 1, . . . , N − 1,
c0(t) > 0 if and only if a(t) > 0. Thus,

d(t) = 1{c0(t)>0} = 1{a(t)>0}.

Finally, we verify the departure order is FIFO in (P4). Without
loss of generality, assume that q(t− 1) = mN + k for some m ≥ 0 and
0 ≤ k ≤ N − 1. From Lemma 5.4.10, it follows that

qi(t− 1) =

{
m+ 1 1 ≤ i ≤ k
m k + 1 ≤ i ≤ N

.

Also, we have b0(t) = ck(t) from Rule RN . From (5.51) and (5.52)
in Lemma 5.4.8, ck(t) is added to the end of qk+1(t − 1). Thus, the
virtual delay for b0(t) is Nqk+1(t − 1) + k = mN + k = q(t − 1) as
the N multiplexers are served in a round robin fashion. Similarly, if
b0(t) = 1, then b1(t) is added to the end of qk+2mod N (t− 1). One can
easily verify that the virtual delay for b1(t) is q(t− 1) + 1. Continuing
the same argument shows that the virtual delay for bi(t) is q(t−1)+i if
b0(t) = b1(t) = . . . = bi−1(t) = 1. Thus, the FIFO order is maintained.

5.5 FIFO multiplexers with variable length bursts

In the previous section, we have shown how to achieve exact emula-
tion of multiplexers for fixed size packets (or cells). In this section, we
address the natural question whether one can use the multiplexers for
fixed size packets (or cells) for exact emulation of multiplexers with

312 5. Optical packet switches

variable length bursts. As in electronic buffers, this requires perform-
ing burst segmentation and reassembly. In this section, we assume that
burst segmentation is feasible. Each variable length burst can be di-
vided into a contiguous sequence of fixed size cells, and each cell can
then be transmitted within a time slot in the multiplexer for fixed size
cells.

There are two natural places for burst reassembly: (i) after the
multiplexer for fixed size cells, and (ii) before the multiplexer for fixed
size cells. The former approach is much more difficult to realize by
SDL as it has to take the multiplexer into account. Moreover, it incurs
additional reassembly delay for each burst. As such, exact emulation
for multiplexers with variable length bursts cannot be achieved. Only
a time shifted version can be achieved. The latter is the approach we
use in this section. Its design objective is to schedule cells in a careful
manner so that cells of the same burst depart contiguously from the
multiplexer for fixed size cells. As such, we add a cell scheduling block
in front of the multiplexer for fixed size cells. For such an architecture,
we show there is an efficient cell scheduling algorithm. Starting from
an empty system, we can perform cell scheduling by keeping track of a
single state variable, called the total virtual waiting time. Moreover, the
delay through the cell scheduling block is bounded above by a constant
that only depends on the number of inputs and the maximum number
of cells in a burst. Such a delay bound provides a limit on the number
of fiber delay lines needed in the cell scheduling block.

5.5.1 Cell contiguity problem

Now we would like to extend the multiplexer for fixed size cells to
cope with variable length bursts. In this section, we assume that burst
segmentation is feasible. Each variable length burst can be divided
into a contiguous sequence of fixed size cells, and each cell can then be
transmitted within a time slot in the multiplexer for fixed size cells.
Our objective is to use SDL units to design a multiplexer that achieves
exact emulation of a FIFO finite buffer queue with variable length
bursts, i.e., the departure process from the multiplexer is the same as
that from a FIFO finite buffer queue with variable length bursts. For
this, there are two things we need to do. The first is to schedule these
bursts under the FIFO policy. The second is to maintain the contiguity
of cells in a burst at the output link. The first thing is rather easy to

5.5 FIFO multiplexers with variable length bursts 313

do. However, maintaining the cell contiguity becomes a problem as
shown in the following example in Figure 5.32.

B�

l� (t)�1�

l� (t)�
2�

0�1�2�

0�

1�2�

a (t)�0�

a (t)�1�

d (t)�1�

t�

t�

t+6�

0�

1�2� a (t)�
2�

1st�

2nd�

1�1�1�

0�

0�0�2�2�2�

1st�2nd�3rd�1st�2nd�3rd�1st�2nd�3rd�

t+9�

3rd�

Fig. 5.32. An illustration for the contiguity problem

In Figure 5.32, we show that if we put variable length bursts directly
into the multiplexer (for fixed length cells) in Definition 5.4.1, there will
be a problem on cell contiguity. In this figure, we consider a multiplexer
with 3 inputs and 3 outputs. Assume that the buffer at time t in the
multiplexer is empty, i.e., q(t) = 0. There are three bursts that arrive at
time t. The cells in a burst are indexed by consecutive integers starting
from zero. We call the burst arriving to port a2(t) the first burst, the
burst to port a1(t) the second burst, and the burst to port a0(t) the
third burst. Assume that the buffer B is so large that no cells are lost
(a trivial condition is B ≥ 6 in this case). According to Definition
5.4.1, the order of multiplexing is in the descending order of the input
link number for cells that arrive at the same time. Thus, the cell order
in the departure port is cell 0 of the three bursts, followed by cell 1
of the three bursts and finally cell 2 of the three bursts, as shown in
the figure. Clearly, cells in the same bursts do not depart contiguously.
As a result, we cannot naively put variable length bursts directly into
multiplexers for fixed size cells. To solve the cell contiguity problem,
cells need to be scheduled in a careful manner as illustrated in Figure
5.33.

In Figure 5.33, we add a cell scheduling block in front of the mul-
tiplexer for fixed size cells. The function of the cell scheduling block
is to route each cell to the right input of the multiplexer at the right
time so that we can receive cells from the same burst contiguously. We
illustrate this by considering the same traffic in Figure 5.32. At time
t, we can schedule cell 0 of the first burst at input 2 of the multiplexer
(for fixed size cells). In order for the cells in the first burst to come
out contiguously from the multiplexer, we can not schedule anything

314 5. Optical packet switches

B�

l� (t)�1�

l� (t)�
2�

a (t)�0�

a (t)�1�

d (t)�1�

t�

a (t)�
2�

0�

1�2�0�1�2� 1�2� 0�

t�t+6�

0�

1�2�

1st�2nd�

0�

1�

2�

0�

2�

1�

1st�1st�

2nd�

2nd�

2nd�2nd�

2nd�

Cell Scheduling �

Block�

Multiplexer �

for fixed size �

cells �

0�1�2�

0�

1�2�

b (t)�0�

 b (t)�1�

t�t+6�

0�

1�2� b (t)�
2�

1st�

2nd�

3rd�

Fig. 5.33. Basic idea for cell scheduling

at input 1 and input 0 of the multiplexer at time t. At time t+ 1, we
then schedule cell 1 of the first burst at input 2. Similarly, we do not
schedule anything at input 1 and input 0 at time t+ 1. At time t+ 2,
we schedule cell 2 of the first burst at input 2. Clearly, the cells in
the first burst come out contiguously this way. Now we can schedule
cell 0 of the second burst at input 1 and cell 1 of the second burst at
input 0 at time t+2. Since the multiplexing order is in the descending
order of the input link number for cells that arrive at the same time,
cell 0 of the second burst will come out from the multiplexer after cell
2 of the first burst. Similarly, cell 1 of the second burst will be out
after cell 0 of the second burst. At time t+ 3, we schedule cell 2 of the
second burst at input 2, cell 0 of the third burst at input 1, and cell
1 of the third burst at input 0, respectively. At time t + 4, we then
schedule cell 2 of the third burst at input 2. It is easy to verify that
the three bursts depart from the multiplexer contiguously, as shown in
Figure 5.33. In Section 5.5.2, we will present the design of the schedul-
ing block. In Section 5.5.4, we will further show that the delay through
the cell scheduling block is bounded by a constant.

5.5.2 The overall multiplexer architecture

As addressed in the previous section, we need to add a cell schedul-
ing block in order to overcome the cell contiguity problem. In Figure
5.34, we show our architecture for a variable length burst multiplexer
with N inputs. It consists of two blocks. The latter is the N -to-1 multi-
plexer for fixed size cells described in Section 5.4. The former is the cell
scheduling block. The function of the cell scheduling is to route each
cell to the right input at the right time so that cells of the same burst
come out contiguously. To achieve this, the cell scheduling block con-
sists of two stages. As shown in Figure 5.34, there are N 1×N switches

5.5 FIFO multiplexers with variable length bursts 315

(t)N-2

B

d(t)

(t)
1

N to 1

Mux

(t)b0

(t)b1

N M

Switch

1

2

3

M-1

N M

Switch

1

2

3

M-1

N M

Switch

1

2

3

M-1

a (t)1

a (t)0

1 N

Switch

1 N

Switch

1 N

Switch

N M

Switch

1

2

3

M-1

(t)bN-2

1 N

Switch

a (t)
N-2

a (t)
N-1

(t)bN-1

Cell Scheduling Block
Multiplexer for Fixed

Length Cells Block

1st stage 2nd stage

Fig. 5.34. Architecture

316 5. Optical packet switches

at the first stage. The objective of these switches is to route cells to
the right inputs of the multiplexer for fixed size cells. At the second
stage, there are N N ×M switches. The M outputs of each switch are
connected to fiber delay lines with delay from 0 toM−1. The objective
of the second stage is to delay cells so that they arrive at the routed
input at the right time. The constant M − 1 is the maximum delay for
a cell to go through the cell scheduling block. One key result of this
section is that the delay for a cell in the cell scheduling block never
exceeds

⌊
(2N−2)�max−N+1

N

⌋
, where �max is the maximum number of cells

in a burst. Thus, we can choose M so that M ≥
⌊

(2N−2)�max−N+1
N

⌋
+1.

One easy choice to satisfy this requirement is M = 2�max.

5.5.3 The cell scheduling algorithm

In order for the variable length burst multiplexer with N inputs to
work properly, we assume that the burst length of a burst is known
when the first cell of a burst arrives. This can be done either by adding
the burst length information in the header of the first cell or by trans-
mitting such information through a different channel in advance (see
e.g., [171, 163]). The arrival time of the first cell in a burst is called
the arrival time of that burst. Bursts that arrive at the same time are
scheduled in the descending order of their input link numbers (as in
the multiplexer for fixed size cells).

Now we describe our cell scheduling algorithm. Note that there are
three natural constraints of the cell scheduling algorithm.

(i) Conflict constraint: no more than one cell can be scheduled at the
same input (of the multiplexer for fixed size cells) at the same time.

(ii) Causality constraint: no cell can be scheduled before its arrival.
(iii) Contiguity constraint: cells from the same burst should be sched-

uled so that they leave the multiplexer for fixed length cells block
contiguously.

To satisfy the conflict constraint, we have to keep track of the time
slots used in every input. For this, we let Vj(t), j = 0, 1, · · · , N − 1, be
the number of time slots that cannot be scheduled at input j from t
onward. In other words, the next available time slot for input j is at
time t+Vj(t). Following the queueing context, we call Vj(t) the virtual
waiting time of input j (as a cell that is routed to input j at time t

5.5 FIFO multiplexers with variable length bursts 317

will have to wait for Vj(t) time slots). As we will show later, under our
cell scheduling algorithm (described below) the virtual waiting times
satisfy the following inequalities for all t:

VN−1(t) ≥ VN−2(t) ≥ · · · ≥ V1(t) ≥ V0(t) ≥ VN−1(t) − 1. (5.67)

Initially, we set Vj(0) = 0 for all j = 0, 1, · · · , N − 1, so that the
inequalities in (5.67) are satisfied. Moreover, if there is no burst arrival
at time t, then the next available time slot for input j is still at time
t+ Vj(t). Thus, we have

Vj(t+ 1) = (Vj(t) − 1)+, j = 0, 1, . . . , N − 1. (5.68)

In this case, one can also easily verify that Vj(t + 1)’s satisfy the in-
equalities in (5.67).

Let V (t) be the total virtual waiting time at time t, i.e.,

V (t) =
N−1∑
j=0

Vj(t). (5.69)

Using the inequalities in (5.67), one can relate the total virtual waiting
time to the virtual waiting time of input j as follows:

Vj(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌊
V (t)
N

⌋
+ 1

for j = N − 1, N − 2,
· · · , N − k

⌊
V (t)
N

⌋ for j = 0, 1, · · · ,
N − k − 1

(5.70)

where k = V (t)modN . Thus, the total virtual waiting time V (t)
is sufficient for the purpose of cell scheduling.

Now suppose that the m+ 1th burst arrives at time τm with length
�m, m = 0, 1, Let V (τ−m) be the total virtual waiting time imme-
diately before the arrival of the first cell (cell 0) of that burst. As the
multiplexing order of the multiplexer (for fixed size cells) is in the de-
scending order of the input link number and in the ascending order
of time, cell 0 should be routed to the input with the smallest virtual
waiting time and the largest input link number. From (5.70), we know
it should be routed to input N−k0−1 with k0 = V (τ−m)modN . More-
over, the delay for cell 0 is simply the virtual waiting time of input

N − k0 − 1, i.e.,
⌊

V (τ−
m)

N

⌋
. By so doing, the inequalities in (5.67) are

satisfied after cell 0 is scheduled. As the total virtual waiting time is

318 5. Optical packet switches

increased by 1 after cell 0 is scheduled, cell 1 should be scheduled at
input N − k1 − 1 with k1 = (V (τ−m) + 1)modN . The first available

time slot at input N − k1 − 1 is τm +
⌊

V (τ−
m)+1
N

⌋
. As cell 1 arrives

at time τm + 1, the delay for cell 1 would be
⌊

V (τ−
m)+1
N

⌋
− 1 if cell

1 is scheduled at input N − k1 − 1. If
⌊

V (τ−
m)+1
N

⌋
− 1 ≥ 0, then the

causality constraint is satisfied and cell 1 can be scheduled this way.
We may continue the process to schedule the other cells in the burst
until the causality constraint is violated. In general, cell � should be
scheduled at input N − k� − 1 with k� = (V (τ−m) + �)modN (as the
total virtual waiting time has been increased by � after scheduling
the first � cells). As cell � arrives at time τm + �, the delay for cell �

would be
⌊

V (τ−
m)+�
N

⌋
− � if cell � is scheduled at input N − k� − 1. If⌊

V (τ−
m)+�
N

⌋
− � ≥ 0, then the causality constraint is satisfied and cell

� can be scheduled this way. If
⌊

V (τ−
m)+�
N

⌋
− � < 0, then the causality

constraint is violated. We have to schedule cell � at its arrival time. In
order to satisfy the contiguity constraint, cell � is scheduled at input
N − 1, the highest priority input at its arrival time. It is easy to see

that if cell � is the first cell such that
⌊

V (τ−
m)+�
N

⌋
− � < 0, then all

the subsequent cells in the same burst also satisfy the same inequality.
As such, all the subsequent cells have to be scheduled at their arrival
times at input N − 1. To illustrate this, we show in Figure 5.35 how a
burst of length 8 is scheduled. Cells 0,1,2,3,4 and 5 can be scheduled
without violating the causality constraint. Cells 6 and 7 have to be
scheduled at their arrival times.

To summarize, we let

I0(m, �) = N − 1 − ((V (τ−m) + �)modN). (5.71)

Cell � of the m + 1th burst is routed to the I0(m, �)th input of the

multiplexer for fixed size cells if
⌊

V (τ−
m)+�
N

⌋
≥ �. In this case, its delay

is
⌊

V (τ−
m)+�
N

⌋
− �. On the other hand, if

⌊
V (τ−

m)+�
N

⌋
< �, cell � of the

m+ 1th burst is routed to input N − 1 of the multiplexer for fixed size
cells. In this case, its delay is zero. This is formalized in the following
algorithm.

5.5 FIFO multiplexers with variable length bursts 319

time�

0�

1�

2�

3�

4�

5�6�7�

6�

7�

7� 6� 5� 2�3�4� 1� 0�

V (t)�
9�

V (t)�
8�

V (t)�
7�

V (t)�6�

V (t)�5�

V (t)�4�

V (t)�3�

V (t)�2�

V (t)�1�

V (t)�0�

Fig. 5.35. An illustrating example of the cell scheduling algorithm

Algorithm 5.5.1. (Cell scheduling algorithm) Let I(m, �) and
D(m, �) be the routed input (of the multiplexer for fixed size cells)
and the delay of cell � of the m + 1th burst, � = 0, 1, . . . , �m − 1, and
m = 0, 1, 2, Then

I(m, �) =

⎧⎨
⎩ I0(m, �) if

⌊
V (τ−

m)+�
N

⌋
≥ �

N − 1 otherwise
, (5.72)

and

D(m, �) =

(⌊
V (τ−m) + �

N

⌋
− �

)+

. (5.73)

Now we discuss how we update the total virtual waiting time. Let
V (τ+

m) be the total virtual waiting time immediately after the cells in
the m + 1th burst are scheduled. As described in our cell scheduling
algorithm, there are two cases that need to be considered. The first
case is that all the cells in that burst are scheduled using the rule
specified by I0(m, �). In this case, after the last cell in the burst, i.e.,
cell �m − 1, is scheduled, we have

V (τ+
m) = V (τ−m) + �m, (5.74)

320 5. Optical packet switches

and all the inequalities in (5.67) are still satisfied. The second case
is that there exists a cell that does not follow the rule specified by
I0(m, �). When this happens, cell �m−1 is scheduled at input N−1 at
time τm + �m − 1. In order to satisfy the contiguity constraint, no cells
(from other bursts) can be scheduled before τm + �m − 1. Thus, the
first available time slot for input j, j = 0, 1, . . . , N − 2, is τm + �m − 1
and the first available time slot for input N − 1 is τm + �m (see Figure
5.35 for an illustrating example). Clearly, the inequalities in (5.67) are
still satisfied and we have

V (τ+
m) = (N − 1)(�m − 1) + �m = N�m −N + 1. (5.75)

These two cases can be combined as follows:

V (τ+
m) = max[V (τ−m) + �m, N�m −N + 1]. (5.76)

To see this, note that the condition for the first case is equivalent to
that cell �m − 1 is routed to the I0(m, �m − 1)th input, i.e.,⌊

V (τ−m) + �m − 1
N

⌋
≥ �m − 1. (5.77)

As �m − 1 is an integer, this is equivalent to

V (τ−m) + �m − 1
N

≥ �m − 1. (5.78)

Thus, in the first case, we have from (5.74) that

V (τ+
m) = V (τ−m) + �m

= max[V (τ−m) + �m, N�m −N + 1]. (5.79)

On the other hand, the inequality in (5.78) is reversed in the second
case and we have from (5.75) that

V (τ+
m) = N�m −N + 1

= max[V (τ−m) + �m, N�m −N + 1]. (5.80)

Now we describe how we update the total virtual waiting time
between two successive bursts. Suppose that the m+ 2th burst arrives
at τm+1. There are two cases that need to be considered:
Case 1. V (τ+

m) − N(τm+1 − τm) > 0: in this case, we have from
(5.70) that VN−1(τ+

m) > τm+1 − τm. Note from (5.67) that Vj(τ+
m) ≥

VN−1(τ+
m) − 1 for all j. Thus, we have τm + Vj(τ+

m) − τm+1 ≥ 0 for
all j = 0, 1 . . . , N − 1. Since the next available time slot of input j is
τm + Vj(τ+

m), we then have

5.5 FIFO multiplexers with variable length bursts 321

Vj(τ−m+1) = τm + Vj(τ+
m) − τm+1.

Summing up over j yields

V (τ−m+1) = V (τ+
m) −N(τm+1 − τm).

Case 2. V (τ+
m) −N(τm+1 − τm) ≤ 0: in this case, we have from (5.70)

that VN−1(τ+
m) ≤ τm+1−τm. Note from (5.67) that Vj(τ+

m) ≤ VN−1(τ+
m)

for all j. Thus, we have τm+Vj(τ+
m)−τm+1 ≤ 0 for all j = 0, 1 . . . , N−1.

As the next available time slot of input j is τm + Vj(τ+
m) ≤ τm+1, we

then have Vj(τ−m+1) = 0 for all j = 0, 1 . . . , N − 1. Thus, V (τ−m+1) = 0.
From these two cases, we then have V (τ−m+1) = (V (τ+

m)−N(τm+1−
τm))+. In the following, we summarize the algorithms for updating the
total virtual waiting time.

Algorithm 5.5.2. (Algorithms for updating the total virtual
waiting time)

(i) The total virtual waiting time after a burst is scheduled is updated
as follows:

V (τ+
m) = max[V (τ−m) + �m, N�m −N + 1]. (5.81)

(ii) The total virtual waiting time between two successive bursts is
updated as follows:

V (τ−m+1) = (V (τ+
m) −N(τm+1 − τm))+. (5.82)

We illustrate how we use the cell scheduling algorithm in the fol-
lowing example.

Example 5.5.3. In Figure 5.36, we consider multiplexing variable
length bursts over 3 links, i.e., N = 3. As shown in Figure 5.36, there
are two bursts coming at time 1 and four bursts coming respectively
at time 2, 5, 10, 11. To break the tie, we choose the burst with length
5 at time 1 to be the first burst. As shown in the figure, now we have
(τ0, �0) = (1, 5), (τ1, �1) = (1, 3), (τ2, �2) = (2, 5), (τ3, �3) = (5, 6),
(τ4, �4) = (10, 3), and (τ5, �5) = (11, 3). Assume that the buffer in the
multiplexer is empty at time 1 and the buffer size B is so large that no
cells of the six bursts are lost. Initially, set V0(1) = V1(1) = V2(1) = 0.
Thus, V (τ−0) = V (1) = 0 and the cells in the first burst are all sched-
uled at their arrival times at input 2. Using the algorithms for up-
dating the total virtual waiting time, we then have V (τ+

0) = 13 and

322 5. Optical packet switches

6th� 5th� 4th� 3th� 2nd� 1st�

B�
d(t)�

l� (t)�1�

l� (t)�2�

a (t)�0�

a (t)�1�

a (t)�2�

0�1�2�3�4�

t�

0�1�2�0�1�2�3�4�3�4�5� 0�1�2�0�1�2�0�1�2�

0�1�2�3�4�0�1�2�

0�1�2�3�4�

0�1�2�3�4�5� 0�1�2�

t�

0�1�2�

1st�

2nd�

3th�

4th�

5th�

6th�

1�1�

1st�

t�

2� 0�2�3�4�

0�

1�1�

2�

3�

4�

0�

0�

1�

2�

3�

4�

5�

0�

2� 1�

0�

1�

2�

1st�1st�1st�1st�

2nd�

2nd�

2nd�3th�

3th� 3th�

3th� 3th�

4th�

4th�

4th�

4th�

4th�

4th�

5th�

5th�5th�

6th�

6th�

6th�

Cell Scheduling�

1�4� 3� 2�8� 7� 6� 5�12� 11� 10� 9�13�

4� 3� 2�8� 7� 6� 5�12� 11� 10� 9�13� 1�

4� 3� 2� 1�8� 7� 6� 5�12�11�10� 9�14� 13�16�15�18�17�19�21� 20�23�22�25�24�

Fig. 5.36. An illustrating example for N=3

5.5 FIFO multiplexers with variable length bursts 323

V (τ−1) = V (τ+
0) = 13. According to the cell scheduling algorithm, cell

0 of the second burst is scheduled at input 1 at 5, cell 1 of the second
burst is scheduled at input 0 at 5, and cell 2 of the second burst is
scheduled at input 2 at 6. Thus, V (τ+

1) = 16 and V (τ−2) = 13. All the
cells in the third burst are scheduled using the rule by I0(m, �). As a
result, V (τ+

2) = 18 and V (τ−3) = 9. Note that the last cell (cell 5) of
the fourth burst does not follow the I0(m, �) rule and it is scheduled
at input 2 at its arrival time. Thus, V (τ+

3) = 16 and V (τ−4) = 1. Cell 0
and cell 1 of the fifth burst still follow the I0(m, �) rule. However, cell
2 of the fifth burst does not follow the same rule and it is scheduled
at its arrival time at input 2. Thus, V (τ+

4) = 7 and V (τ−5) = 4. The
cells in the last burst all follow the I0(m, �) rule.

5.5.4 Delay bound

We have introduced the architecture and the associated cell scheduling
algorithm for the variable length burst multiplexer with N inputs. In
this section, we will further show that both the total virtual waiting
time and the delay through the cell scheduling block are bounded by
constants that only depend on the number of inputs and the maximum
number of cells in a burst.

Theorem 5.5.4. Let �max = supm≥0 �m be the maximum number of
cells in a burst.

(i) The total virtual waiting time is bounded by (2N − 1)�max −N + 1
for all t, , i.e.,

V (t) ≤ (2N − 1)�max −N + 1. (5.83)

(ii) The delay for every cell through the cell scheduling block is bounded
by
⌊

(2N−2)�max−N+1
N

⌋
, i.e., for all m = 0, 1, 2, . . ., � = 0, 1, . . . , �m−

1,

D(m, �) ≤
⌊
(2N − 2)�max −N + 1

N

⌋
. (5.84)

Note that the bounds in Theorem 5.5.4 can be achieved in the worst
case. We now construct a worst case to achieve these bounds. To see
this, consider the scenario that there are N bursts arriving at time 0
at the N inputs of the variable length burst multiplexer. The burst

324 5. Optical packet switches

lengths of these N bursts are all �max. Thus, we have τm = 0, �m =
�max, for m = 0, 1, . . . , N − 1. Under our cell scheduling algorithm, we
then have

V (τ−0) = V (0) = 0,

V (τ+
m) = V (τ−m+1) = N(�max − 1) + 1 +m�max,

m = 0, 1, . . . , N − 2,

and
V (τ+

N−1) = N(�max − 1) + 1 + (N − 1)�max.

Thus, V (τ+
N−1) in this scenario achieves the upper bound in (5.83).

Moreover, the delay of cell 0 of the N th burst is
V (τ−
N−1

)

N �, which is
exactly the maximum delay in (5.84).

One important consequence of Theorem 5.5.4 is that the number
of the delay lines, M , used in each switch at the second stage of the
cell scheduling block is bounded by

⌊
(2N−2)�max−N+1

N

⌋
+ 1. A simple

choice is M = 2�max. Such a choice is independent of the number of
inputs N .

We need the following two lemmas to prove Theorem 5.5.4. In
Lemma 5.5.5, we expand the recursive equations in (5.81) and (5.82) to
derive closed form expressions of V (τ+

m) and V (τ−m). In Lemma 5.5.6,
we establish a bound for the multiplexed traffic of N inputs. This
bound will be used for the proof of Theorem 5.5.4.

Lemma 5.5.5. Let L(n) =
n−1∑
m=0

�m be the total number of cells in the

first n bursts. Suppose V (τ−0) = 0.

Then

V (τ+
m) = max

0≤n≤m
(N�n −N + 1 −N(τm − τn)

+L(m+ 1) − L(n+ 1)), (5.85)

and

V (τ−m) = max
0≤n≤m−1

((N − 1)�n −N + 1

−N(τm − τn) + L(m) − L(n))+. (5.86)

Proof. We prove (5.85) by induction. Since we assume that V (τ−0) =
0, we have from (5.81) that

5.5 FIFO multiplexers with variable length bursts 325

V (τ+
0) = max(V (τ−0) + �0, N�0 −N + 1)

= N�0 −N + 1

and (5.85) is satisfied trivially for m = 0.
Now suppose that (5.85) holds for some m ≥ 0 as the induction

hypothesis. It follows from (5.81) that

V (τ+
m+1)

= max(N�m+1−N+1, (V (τ+
m)−N(τm+1−τm))++�m+1)

= max(N�m+1−N+1, V (τ+
m)−N(τm+1−τm)+�m+1, �m+1)

= max(N�m+1−N+1, V (τ+
m)−N(τm+1−τm)+�m+1),

(5.87)

where we use the fact that N�m+1−N+1 ≥ �m+1. From the induction
hypothesis, we then have

V (τ+
m) −N(τm+1 − τm) + �m+1

= max
0≤n≤m

(
N�n −N + 1 −N(τm − τn) +

L(m+ 1) − L(n+ 1)
)
−N(τm+1 − τm) + �m+1

= max
0≤n≤m

(
N�n −N + 1 −N(τm+1 − τn) +

L(m+ 2) − L(n+ 1))
)

(5.88)

Replacing (5.88) in (5.87) yields

V (τ+
m+1) = max

0≤n≤m+1
(N�n −N + 1 −N(τm+1 − τn)

+L(m+ 2) − L(n+ 1)).

This completes the inductive argument for (5.85).
Since V (τ−m) = (V (τ+

m−1)−N(τm−τm−1))+ in (5.82), using (5.85)
yields

V (τ−m)
= (max

0≤n≤m−1
(N�n −N + 1 −N(τm−1 − τn)

+L(m) − L(n+ 1)) −N(τm − τm−1))+

= max
0≤n≤m−1

(N�n −N + 1 −N(τm − τn)

326 5. Optical packet switches

+L(m) − L(n+ 1))+

= max
0≤n≤m−1

((N − 1)�n −N + 1

−N(τm − τn) + L(m) − (L(n + 1) − �n))+

= max
0≤n≤m−1

((N − 1)�n −N + 1

−N(τm − τn) + L(m) − L(n))+.

Lemma 5.5.6. For all n ≤ m,

L(m) − L(n) −N(τm − τn) ≤ (N − 1)�max. (5.89)

Proof. Let τk(n) and �k(n), k = 0, 1, . . . , N − 1, n = 0, 1, 2, . . ., be
the arrival time and the burst length of the n + 1th burst at the kth

input of the multiplexer with variable length bursts. Also, let Lk(n) =∑n−1
m=0 �k(m) be the total number of cells in the first n bursts from the

kth input.
Without loss of generality, suppose that in the first n (resp. m)

bursts, there are nk (resp. mk) bursts from the kth input, k =
0, 1, . . . , N − 1. Moreover, suppose that the m+ 1th burst is from the
jth input for some j. Thus, we have

L(m) − L(n) =
N−1∑
k=0

(Lk(mk) − Lk(nk)). (5.90)

Note that Lk(mk)−Lk(nk) =
∑mk−1

i=nk
�k(i) is the total number of cells

from the nk + 1th burst to the mk
th burst at input k. These cells must

arrive during the time interval [τk(nk), τk(mk − 1) + �max − 1]. Since
there is at most one cell arrival within a time slot, we then have

Lk(mk) − Lk(nk) ≤ τk(mk − 1) + �max − τk(nk). (5.91)

As there are exactly nk bursts from the kth input in the first n bursts,
the arrival time of the nk + 1th burst from the kth input cannot be
earlier than the arrival time of the n+ 1th burst, i.e.,

τk(nk) ≥ τn. (5.92)

Similarly, as there are exactly mk bursts from the kth input in the first
m bursts, the arrival time of the mth

k burst from the kth input cannot
be later than the arrival time of the m+ 1th burst, i.e.,

5.5 FIFO multiplexers with variable length bursts 327

τk(mk − 1) ≤ τm. (5.93)

Using (5.92) and (5.93) in (5.91) yields

Lk(mk) − Lk(nk) ≤ τm − τn + �max. (5.94)

Now we refine the bound in (5.94) for the jth input. As the m+1th

burst is from the jth input, the cells in Lj(mj) − Lj(nj) must arrive
during the time interval [τj(nj), τm − 1]. Thus,

Lj(mj) − Lj(nj) ≤ τm − τj(nj) ≤ τm − τn. (5.95)

It then follows from (5.90), (5.94) and (5.95) that

L(m) − L(n) = Lj(mj) − Lj(nj)

+
∑
k �=j

(Lk(mk) − Lk(nk))

≤ N(τm − τn) + (N − 1)�max.

Proof of Theorem 5.5.4. (i) Note that V (t) is decreasing between
the interarrival time of two successive bursts and that V (τ−m) ≤ V (τ+

m)
for all m. Thus,

V (t) ≤ sup
m≥0

V (τ+
m).

It suffices to show that V (τ+
m) ≤ (2N − 1)�max − N + 1 for all m =

0, 1, 2, Note from (5.85) in Lemma 5.5.5 and (5.89) in Lemma 5.5.6
that

V (τ+
m)

= max
0≤n≤m

(N�n −N + 1 −N(τm − τn)

+L(m+ 1) − L(n+ 1))
= max

0≤n≤m
((N − 1)�n −N + 1 −N(τm − τn)

+L(m) + �m − (L(n+ 1) − �n))
≤ max

0≤n≤m
((N − 1)�n −N + 1 −N(τm − τn)

+L(m) − L(n) + �max)
≤ max

0≤n≤m
((N − 1)�n −N + 1 +N�max)

≤ (2N − 1)�max −N + 1.

328 5. Optical packet switches

(ii) Note from (5.86) in Lemma 5.5.5 and (5.89) in Lemma 5.5.6
that

V (τ−m)
= max

0≤n≤m−1
((N − 1)�n −N + 1 −N(τm − τn)

+L(m) − L(n))+

≤ max
0≤n≤m−1

((N − 1)�n −N + 1 + (N − 1)�max)

≤ (2N − 2)�max −N + 1

Thus, we have from (5.73) that

D(m, �) =

(⌊
V (τ−m) + �

N

⌋
− �

)+

≤
⌊
V (τ−m)
N

⌋

=
⌊
(2N − 2)�max −N + 1

N

⌋
.

5.6 FIFO queues

FIFO queues are widely used in every one’s daily life. A customer
arriving at a FIFO queue joins the tail of the queue. When a customer
departs at the head of the queue, every one in a FIFO queue moves up
one position. If the buffer of a FIFO queue is finite, then an arriving
customer to a full queue is lost. The concept of a discrete-time FIFO
queue is formalized in the following definition.

B�

l�(t)�

d(t)�a(t)�

c(t)�
FIFO�

Fig. 5.37. A FIFO queue with buffer B.

5.6 FIFO queues 329

Definition 5.6.1. (FIFO queue) A FIFO queue with buffer B is a
network element that has one input link, one control input and two
output links (see Figure 5.37). One output link is for departing packets
and the other is for lost packets. As shown in Figure 5.37, let a(t) be
the state of the input link, c(t) be the state of the control input, d(t)
(resp. �(t)) be state of the output link for departing (resp. lost) packets,
and q(t) be the number of packets queued at the FIFO queue at time t
(at the end of the tth time slot). Then the FIFO queue with buffer B
satisfies the following four properties:

(P1) Flow conservation: arriving packets from the input link are either
stored in the buffer or transmitted through the two output links, i.e.,

q(t) = q(t− 1) + a(t) − d(t) − �(t). (5.96)

(P2) Non-idling: if the control input is enabled, i.e., c(t) = 1, then
there is always a departing packet if there are packets in the buffer
or there is an arriving packet, i.e.,

d(t) =

{
1 if c(t) = 1 and q(t− 1) + a(t) > 0
0 otherwise

. (5.97)

(P3) Maximum buffer usage: if the control input is not enabled, i.e.,
c(t) = 0, then an arriving packet is lost only when buffer is full,
i.e.,

�(t) =

{
1 if c(t) = 0, q(t− 1) = B and a(t) = 1
0 otherwise

. (5.98)

(P4) FIFO: packets depart in the first in first out (FIFO) order.

Analogous to the four properties for a 2-to-1 FIFO multiplexer, one
also has from (P1) and (P2) that

q(t) = (q(t− 1) + a(t) − c(t))+ − �(t).

In conjunction with (P3), one further has the following Lindley equa-
tion

q(t) = min[(q(t− 1) + a(t) − c(t))+, B]. (5.99)

The key difference between the governing equation for a 2-to-1 FIFO
multiplexer in (5.4) and that for a FIFO queue in (5.99) is that the
delay of a packet in a 2-to-1 FIFO multiplexer can be immediately
determined upon its arrival. This is not possible in a FIFO queue as

330 5. Optical packet switches

the delay of an arriving packet depends on the future of the control
input c(t). We note that the control input c(t) is also known as the
time varying capacity of the discrete-time FIFO queue in the literature
(see e.g., [27] and references therein).

5.6.1 A naive construction of FIFO queues with optical
memory cells

1� 1� 1� 1� 1�

1�3�4�5� 2�

Fig. 5.38. A naive construction of FIFO queues with buffer 5 via optical memory
cells

One can easily construct an optical FIFO queue via optical memory
cells. As shown in Figure 5.38, it is a concatenation of 5 optical memory
cells. To see that such a construction is indeed a FIFO queue with
buffer 5, we number the memory cells from 1 to 5 (as shown in Figure
5.38). As each memory cell is capable of storing one packet, these
five memory cells corresponding to the 5 positions in the FIFO queue.
Initially, the queue is empty. When a packet arrives at an empty queue
at time t, the packet leaves the queue during the same time slot if
c(t) = 1. This requires setting up all the 5 2× 2 switches to the “bar”
state. On the other hand, if c(t) = 0, the arriving packet is stored in
the first memory cell. To do so, we set the first 2 × 2 switch to the
“cross” state and the rest of four switches to the “bar” state.

In general, one can construct an optical FIFO queue with buffer
B via a concatenation of B optical memory cells. If c(t) = 0 and
a(t) = 0, then all switches are set to the “bar” state so that the state
of the queue remains unchanged. If c(t) = 0 and a(t) = 1, switches 1
to q(t − 1) and switches q(t − 1) + 2 to B are set to the “bar” state.
Switch q(t−1)+1 is set to the “cross” state. The arrival joins the end
of the queue. If c(t) = 1, switches 1 to q(t− 1) are set to the “cross”
state and the others are set to the “bar” state. By so doing, every one
in the queue moves up one position.

5.6 FIFO queues 331

5.6.2 The main idea of the construction

In this section, we show that one might use the time interleaving prop-
erty to construct a FIFO queue with less complexity than the naive
construction in Section 5.6.1. Analogous to the design of the multi-
plexer in [37], the main idea is based on the following well known
queueing result. Consider a system with parallel FIFO queues as shown
in Figure 2.42. Suppose that we operate the system as follows: a cus-
tomer that arrives at the system joins the shortest queue (the queue
with the least number of customers), and the server after completing
the service of a customer always chooses a customer from the longest
queue (the queue with the largest number of customers). By so do-
ing, these parallel FIFO queues are kept in the most balanced state,
i.e., at any time the difference between the number of customers in
the longest queue and the number of customers in the shortest queue
is at most 1. If the service time of all the customers are all identical,
then the serving-the-longest-queue policy and the joining-the-shortest-
queue policy are simply the round robin policy. Moreover, as the
system always serves the longest queue, the customer with the longest
waiting time is served. Thus, the system with parallel FIFO queues
behaves as if it were a single FIFO queue. We note that such an idea
was previously used in [170, 93] to construct the multiplexers in the
Knockout switches.

In Figure 5.39, we show a direct implementation of a FIFO queue
with buffer 20 via four parallel FIFO queues with buffer 5 in Figure
5.38. The first switch is a 1-to-4 demultiplexer (a 1× 4 switch) that is
used for the joining-the-shortest-queue policy. On the other hand, the
last switch is a 4-to-1 multiplexer (a 4× 1 switch) that is used for the
serving-the-longest-queue policy. Clearly, such a direct implementation
of a FIFO queue with buffer BK requires K parallel FIFO queues with
buffer B and the total number of memory cells is still O(BK).

As in [37], the trick to reduce the complexity of constructing a
FIFO queue is to use the time interleaving property for SDL elements.
As shown in Figure 5.40, the delay line in every memory cell is in-
creased by four times. As such, it can be operated as time interleaving
of four FIFO queues. Specifically, time slots 1, 5, 9, 13, . . . are for the
1st queue, time slots 2, 6, 10, 14, . . ., are for the 2nd queue, time slots
3, 7, 11, 15, . . ., are for the 3rd queue, and time slots 4, 8, 12, 16, . . ., are
for the 4th queue.

332 5. Optical packet switches

1� 1� 1� 1� 1�

1� 1� 1� 1� 1�

1� 1� 1� 1� 1�

1� 1� 1� 1� 1�

Fig. 5.39. A direct implementation of a FIFO queue with parallel FIFO queues

4� 4� 4� 4� 4�

Fig. 5.40. A scaled FIFO queue that can be operated as four parallel FIFO queues

Unfortunately, the construction in Figure 5.40 is not yet a single
FIFO queue. This is because there may not be a departure in every
time slot in a FIFO queue. Even though the serving-the-longest-queue
policy is equivalent to the round-robin policy, it is not periodic as the
time interleaved queues in Figure 5.40. In order to retrieve the packet
in the longest queue, a modification of the first scaled memory cell in
Figure 5.40 is needed. In Figure 5.41, the scaled memory cell (with the
scaling factor 4) is modified by inserting a 1-to-2 demultiplexer after
each one unit of delay. By so doing, one can retrieve any packet from
any one of the four parallel queues. Similarly, we also need to modify
the last scaled memory cell so that an arriving packet can be placed in
the shortest queue. In Figure 5.42, we modify the scaled memory cell
by inserting a 2-to-1 multiplexer after each one unit of delay. By so
doing, one can place an arriving packet to any one of the four parallel
queues.

5.6.3 Three-stage constructions

The modifications in Figure 5.41 and Figure 5.42 can be further sim-
plified. As the serving-the-longest-queue policy is still equivalent to the

5.6 FIFO queues 333

1�1�1� 1�

Fig. 5.41. A modification of the right scaled memory cell in Figure 5.40 so that
one can retrieve a packet from any one of the four parallel queues.

1�1�1� 1�

Fig. 5.42. A modification of the left scaled memory cell in Figure 5.40 so that an
arriving packet can be placed in any one of the four parallel queues.

round-robin policy, there is no need to design a network element that
allows us to retrieve the head-of-line packets from any of the parallel
queues. Instead, one only needs a network element that allows us to
retrieve the head-of-line packets in the round robin fashion. For this,
we will show that one may simply add a FIFO queue (called the head
queue in this section) in front of the parallel queues. Similarly, we will
also append a FIFO queue (called the tail queue in the section) after
the parallel queues.

l�(t)�

d(t)�a(t)�

c(t)�

FIFO�FIFO scale=K�FIFO�

B�K-1� K-1�

BK+K-1�

Tail queue� Head queue�K central queues�

a (t)�
T� a (t)�

H�
a (t)�

C�
d (t)�

T� d (t)�
H�

d (t)�
C�

c (t)�
T�

c (t)�
C�

l �(t)�
T�

l �(t)�
H�

l �(t)�
C�

Fig. 5.43. A three-stage construction of a FIFO queue

Specifically, in Figure 5.43, we show a three-stage construction of a
FIFO queue with buffer BK +K − 1. It is a concatenation of a 1 × 2

334 5. Optical packet switches

switch, a FIFO queue with buffer K − 1 (tail queue), a scaled FIFO
queue with buffer B and scaling factor K (K parallel central queues),
and a FIFO queue with buffer K − 1 (head queue). The 1 × 2 switch
on the left acts as a 1-to-2 demultiplexer. Its objective is for admission
control. An arriving packet is admitted only when the total number
of packets inside the network element does not exceed BK + K − 1
after its admission. Otherwise, an arrival is lost and it is routed to the
loss port �(t) (as shown in Figure 5.43). By so doing, the maximum
number of packets inside the network element is at most BK+K− 1.

To represent the state of the head queue, we let aH(t) be the state
of its input link, cH(t) be the state of its control input, dH(t) be state
of its output link for departing packets, �H(t) be state of its output
link for lost packets, and qH(t) be the number of packets queued at
the head queue at time t. Similarly, we let aT (t), cT (t), dT (t), �T (t),
and qT (t) denote the corresponding states in the tail queue.

From the time interleaving property for SDL elements, the scaled
FIFO queue with buffer B and scaling factor K can be operated as K
parallel queues. TheseK time interleaved parallel queues are connected
to the head queue and the tail queue periodically with period K. An
illustrating graph is shown in Figure 5.44.

Fig. 5.44. An illustration of periodic connections in the three-stage construction

To simplify our presentation, we let aC(t) be the state of input link
of the central FIFO queue that is connected by the head queue and
the tail queue at time t. Also, let cC(t) be the state of its control input,
dC(t) be state of its output link for departing packets, �C(t) be state
of its output link for lost packets, and qC(t) be the number of packets
stored in that central queue. Let q̂C(t) be the total number of packets
stored in the K central queues at time t and

q(t) = qT (t) + q̂C(t) + qH(t) (5.100)

5.6 FIFO queues 335

be the total number of packets stored in the network element. To
summarize, a subscript H (resp. T , C) indicates that its is a state
variable of the head (resp. tail, connected central) queue.

From the three-stage construction in Figure 5.43, we have aT (t) =
a(t) (if the arrival is not lost), dT (t) = aC(t), dC(t) = aH(t), and
d(t) = dH(t).

To operate the three-stage construction in Figure 5.43 as a FIFO
queue, we let the control input of the head queue cH(t) to be the
control input of the overall FIFO queue c(t), i.e., cH(t) = c(t). To
complete the operation of the network element, it remains to specify
the control input of the tail queue cT (t) and the control input of the
connected central queue cC(t).

Define a busy period as the period of time that there are packets
stored in the central queues, i.e., q̂C(t) > 0. An idle period is the
period of time that there are no packets stored in the central queues,
i.e., q̂C(t) = 0. Initially, the network element is empty and it is in an
idle period.

(R1) (Idle period rule) In an idle period, the tail queue and the central
FIFO queues are always enabled as long as the head queue is not
full, i.e., cT (t) = cC(t) = 1 if q̂C(t− 1) = 0 and qH(t− 1) − c(t) <
K − 1.

According to the idle period rule, the tail queue and the scaled
FIFO queue are transparent during an idle period and the network
element is completely determined by the head queue. Thus, during an
idle period, the network element is a FIFO queue with buffer K − 1.

(R2) (Initiation of a busy period) When the head queue is full and
there is an arriving packet, the packet has to be stored in one of the
central queues and this triggers a busy period. Thus, if q̂C(t−1) = 0
and qH(t− 1) − c(t) = K − 1, then cT (t) = 1 and cC(t) = 0.

To specify the operation rules in a busy period, we need to keep
track of the shortest queue and the longest queue. Let A(t1, t2) be the
number of arrivals to the central queues between [t1, t2 − 1], i.e.,

A(t1, t2) =
t2−1∑
t=t1

aC(t). (5.101)

Also, let D(t1, t2) be the number of departures from the central queues
between [t1, t2 − 1], i.e.,

336 5. Optical packet switches

D(t1, t2) =
t2−1∑
t=t1

dC(t). (5.102)

Suppose that a busy period begins at time τ . As the joining-the-
shortest-queue policy is simply the round robin assignment of the ar-
riving packets in a busy period, the connected central queue at time t
is the shortest queue if and only if

(t− τ −A(τ, t)) mod K = 0.

Similarly, the connected central queue at time t is the longest queue if
and only if

(t− τ −D(τ, t)) mod K = 0.

(R3) (Serving-the-longest-queue rule) In a busy period, there are two
conditions that need to be met in order to enable a packet to depart
from the connected central queue to the head queue: (i) there is
a buffer space in the head queue, and (ii) the central queue being
connected is indeed the longest queue. Specifically, suppose that
q̂C(t−1) > 0. Then cC(t) = 1 if and only if qH(t−1)−c(t) < K−1
and (t− τ −D(τ, t)) mod K = 0.

(R4) (Joining-the-shortest-queue rule) In a busy period, there are two
conditions that need to be met in order to enable a packet to depart
from the tail queue to the connected central queue: (i) there is a
buffer space in the connected central queue, and (ii) the central
queue being connected is indeed the shortest queue. Specifically,
suppose that q̂C(t − 1) > 0. Then cT (t) = 1 if and only if qC(t −
1) − cC(t) < B and (t− τ −A(τ, t)) mod K = 0.

In the following theorem, we prove the main result for the three-
stage construction of FIFO queues. Its proof is given in Section 5.6.5.

Theorem 5.6.2. Suppose that the network element in Figure 5.43 is
started from an empty system. Under the operation rules specified in
(R1)-(R4), it is a FIFO queue with buffer BK +K − 1.

Note that the first 1 × 2 switch in the three-stage construction in
Figure 5.43 is only to make sure that the total number of packets
inside the network element does not exceed BK + K − 1. In other
words, this 1 × 2 switch can be omitted in the construction as long
as the queue never exceeds its buffer size. For this, we call a network
element a pre-FIFO queue with buffer B if it behaves exactly the same

5.6 FIFO queues 337

as a FIFO queue with buffer B as long as the queue never exceeds
its buffer size, i.e., it can realize all the sample paths that do not
lead to a buffer overflow. For instance, the naive construction via a
concatenation of 5 optical memory cells in Figure 5.38 is indeed a pre-
FIFO queue with buffer 5. As there is no internal loss in the three-stage
construction in Figure 5.43, the FIFO queues there can be replaced by
pre-FIFO queues. As such, one can build a pre-FIFO queue with buffer
BK +K − 1 by two pre-FIFO queues with buffer K − 1 and a scaled
pre-FIFO queue with buffer B and scaling factor K. Let H(K) be the
number of 2 × 2 switches needed for constructing a pre-FIFO queue
with buffer K. From the three-stage construction, it follows that

H(BK +K − 1) = 2H(K − 1) +H(B). (5.103)

As an optical memory cell can be used for a pre-FIFO queue with
buffer 1, we have H(1) = 1. Letting K = 2 in (5.103) yields

H(2B + 1) = 2 +H(B). (5.104)

Solving this yields

H(2n − 1) = 2n − 1. (5.105)

In fact, the recursive expansion using K = 2 for building a pre-FIFO
queue with buffer 2n − 1 yields the same implementation for a 2n × 2n

Benes time slot interchange in Section 5.2.3 (see Figure 5.9 for an
implementation). As one can add 1 × 2 switch in front of a pre-FIFO
queue for dropping overflowed packets, a FIFO queue with buffer 2n−1
can be constructed by using 2n 2×2 switches with the total fiber length
3 · 2n−1 − 2.

Even though the total number of buffers in the three-stage construc-
tion is BK+2(K−1), it is not possible to admit more than BK+K−1
packets without violating the properties of a FIFO queue. To see this,
suppose that we relax the admission control rule by admitting at most
BK+K packets. Consider the following scenario: the head queue and
the central queues are all full at time t− 1, i.e., qH(t− 1) = K− 1 and
q̂C(t−1) = BK, and the connected central queue at time t is both the
shortest queue and the longest queue. Suppose that c(t) = 0, a(t) = 1
and that a(s) = c(s) = 1 for s = t + 1, . . . , t + K − 1. According to
the relaxed admission control rule, the packet that arrives at time t
is admitted to the tail queue and we have qT (t) = 1, qH(t) = K − 1
and q̂C(t) = BK. As the connected central queue at time t is both
the shortest queue and the longest queue, the connected central queue

338 5. Optical packet switches

and the tail queue are not enabled for s = t+ 1, . . . , t+K − 1. Thus,
all the subsequent arrivals have to be store at the tail queue. More-
over, the departures from the head queue are not replenished by the
packets from the central queues. At time t + K − 2, we then have
qH(t+K − 2) = 1, q̂C(t+K − 2) = BK and qT (t+K − 2) = K − 1.
Even though the last packet in the head queue will depart at t+K−1,
we are not able to admit the arriving packet at t +K − 1 as the tail
queue is full. This violates the maximum buffer usage property for a
FIFO queue with buffer BK +K.

5.6.4 Extensions of FIFO queues

In this section, we address possible extensions of FIFO queues. First,
we show how one constructs a FIFO queue with two inputs from a
FIFO queue with a single input. The idea is to add a 2-to-1 FIFO
multiplexer (with buffer) in front of a FIFO queue with a single input.
As shown in Figure 5.45, we can construct a FIFO queue with two
inputs and buffer B via a concatenation of a 2 × 4 switch, a 2-to-
1 multiplexer with buffer B (in Definition 5.3.1) and a FIFO queue
with buffer B (in Definition 5.6.1). The objective of the 2 × 4 switch
is for admission control. When the total number of packets inside the
network element is B, further arrivals are routed to the loss ports �0(t)
and �1(t). By so doing, there are no internal losses inside the network
element. The 2-to-1 multiplexer with buffer B then allows packets
from the two inputs being multiplexed into the FIFO queue that only
has a single input. To see the reason why the 2-to-1 multiplexer is
required to have buffer B, consider the worst case sample path that
a0(t) = a1(t) = c(t) = 1 for t = 1, 2, . . . , B. For this particular sample
path, the FIFO queue is empty for t = 1, 2, . . . , B and one half of the
arriving packets have to be stored in the 2-to-1 multiplexer.

One can then use a FIFO queue with two inputs to construct a
2-to-1 multiplexer with two classes of priorities (see Figure 5.46). Sup-
pose that there are two classes of packets: high priority packets and
low priority packets. High priority packets are not affected by the low
priority packets. Low priority packets can be sent out only when there
are no high priority packets in the buffered multiplexer. As shown in
Figure 5.46, high priority packets that arrive at the two inputs are
routed to the upper 2-to-1 multiplexer with buffer B. On the other
hand, low priority packets that arrive at the two inputs are routed
to the lower FIFO queue with two inputs. The control input of the

5.6 FIFO queues 339

a (t)�0�

a (t)�1�

B�

d(t)�

c(t)�

FIFO�

B�

l �(t)�
1�

l �(t)�
0�

Fig. 5.45. A FIFO queue with two inputs

FIFO queue, i.e., c(t) in Figure 5.46, is enabled only when there are
no packets stored in the upper 2-to-1 multiplexer with buffer B.

B� High priority �

packets�

Low priority �

packets�

B� B�

FIFO�
a (t)�1�

a (t)�0�

l �(t)�
1�

l �(t)�
0�

c(t)�

d(t)�

Fig. 5.46. A 2-to-1 multiplexer with two classes of priorities

In view of the extension to 2-to-1 multiplexers with two classes of
priorities, one might also extend our results for constructing queue-
ing systems with per flow queueing, such as the Packetized Gener-
alized Processor Sharing (PGPS) in Parekh and Gallager [132] (or
the Weighted Fair Queueing (WFQ) in Demers, Keshav, and Shenkar
[58]).

5.6.5 Proof of Theorem 5.6.2

In this section, we prove Theorem 5.6.2. To prove the three-stage con-
struction in Figure 5.43 is indeed a FIFO queue with buffer BK+K−1,
we need to verify the four properties in Definition 5.6.1. From (R1),

340 5. Optical packet switches

the construction is the same as a FIFO queue with buffer K − 1 in an
idle period. It suffices to verify these four properties in a busy period.

(P1) Flow conservation: it is easy to see that under the serving-
the-longest-queue rule in (R3), qH(t) ≤ K − 1 for all t and there
is no loss in the head queue, i.e., �H(t) = 0. Similarly, under the
joining-the-shortest-queue rule in (R4), qC(t) ≤ B for all t and we
have �C(t) = 0. We will show in (P3) that there is no loss in the tail
queue, i.e., �T (t) = 0, as long as the total number of packets inside
the network element is not greater than BK + K − 1. As such, flow
conservation can be preserved.

(P2) Non-idling: we will prove this by contradiction. Suppose that a
busy period begins at time τ and the non-idling property is violated for
the first time at time t0 > τ . From the non-idling property of the head
queue, the head queue must be empty at t0 − 1. Moreover, a packet p
in the longest queue (called queue q) cannot be dequeued to the empty
head queue as queue q is not connected at t0. Mathematically, we have
(i) the (external) control input is enabled, i.e., c(t0) = 1, (ii) the head
queue is empty, i.e., qH(t0 − 1) = 0, and (iii) the central queues are
not empty, i.e., q̂C(t0 − 1) > 0, and (iv) the connected central queue
is not the longest queue, i.e.,

(t0 − τ −D(τ, t0)) mod K �= 0. (5.106)

Let t1 be the time that the last packet is dequeued to the head
queue from the central queues. If no packet is dequeued to the head
queue, let t1 = τ − 1. Clearly, t1 + 1 ≤ t0 as it takes at least one time
slot to dequeue a packet. Moreover, queue q is the longest queue since
t1 + 1. We first claim that the longest queue (queue q) is connected at
t1 + 1, i.e.,

(t1 + 1 − τ −D(τ, t1 + 1)) mod K = 0. (5.107)

As such, t1 +1 is the first time that queue q is connected after the last
packet is dequeued to the head queue from the central queues (if there
is one). Note that (5.107) holds trivially if no packet is dequeued to
the head queue since the beginning of the busy period. On the other
hand, according to the serving-the-longest-queue rule in (R3), we have

(t1 − τ −D(τ, t1)) mod K = 0. (5.108)

As t1 is the time that the last packet is dequeued to the head queue,
we also have D(τ, t1+1) = D(τ, t1)+1. Replacing this in (5.108) yields
(5.107).

5.6 FIFO queues 341

Secondly, we claim that there exists t2 with t0 −K < t2 < t0 such
that queue q is connected at t2, i.e.,

(t2 − τ −D(τ, t2)) mod K = 0. (5.109)

As such, t2 is the last time (before t0) that queue q is connected after
the last packet is dequeued to the head queue from the central queues
(if there is one). Since there is no packet that is dequeued from the
central queues to the head queue from t1 + 1 to t0, we have

D(τ, t1 + 1) = D(τ, t) = D(τ, t0) (5.110)

for all t1 + 1 ≤ t ≤ t0. Let m =
(t0 − t1 − 1)/K�, where
x� is the
floor function that returns the largest integer not greater than x. Let

t2 = t1 + 1 +mK. (5.111)

Since x− 1 <
x� ≤ x, we have

t0 −K < t2 ≤ t0. (5.112)

That (5.109) holds then follows from (5.111), (5.110) and (5.107). Fur-
thermore, as D(τ, t2) = D(τ, t0), replacing this in (5.109) yields

(t2 − τ −D(τ, t0)) mod K = 0.

In view of (5.106), we know that t2 �= t0. Thus, we have t0 −K < t2 <
t0.

Now we claim that the head queue must be full at t2, i.e.,

qH(t2) = K − 1. (5.113)

According to the serving-the-longest-queue rule in (R3), the condition
in (5.109) indicates that queue q would be enabled at time t2 if the
other condition qH(t2 − 1)− c(t2) < K − 1 were satisfied. As packet p
is still in queue q at time t0, this implies that

qH(t2 − 1) − c(t2) = K − 1. (5.114)

As qH(t) ≤ K−1 for all t and c(t) is nonnegative, we have qH(t2−1) =
K − 1 and c(t2) = 0. Thus, the head queue remains unchanged at t2
and we have qH(t2) = qH(t2 − 1) = K − 1.

Finally we show there is a contradiction to the empty head queue
condition qH(t0−1) = 0. As t0−K < t2 < t0, we have t0−1−t2 < K−1.
Since the head queue can be decreased by at most 1 in a time slot, we
also have from (5.113) that

qH(t0 − 1) ≥ qH(t2) − (t0 − 1 − t2) > 0. (5.115)

342 5. Optical packet switches

This leads to a contradiction to the empty head queue condition
qH(t0 − 1) = 0 when the non-idling property is violated.

(P3) Maximum buffer usage: once again, we will show by contradic-
tion that there is no loss in the tail queue as long as the total number
of packets inside the network element is not greater than BK+K−1,
i.e., for all t

qH(t) + q̂C(t) + qT (t) ≤ BK +K − 1. (5.116)

Suppose that the maximum buffer usage property is violated for the
first time at time t0, i.e., a packet arriving at the tail queue is lost at
time t0. When this happens, we have from the maximum buffer usage
property of the tail queue that (i) the tail queue must be full, i.e.,
qT (t0−1) = K−1 and (ii) the control of the tail queue is not enabled,
i.e., cT (t0) = 0.

Denote by packet p the head-of-line packet of the tail queue at time
t0. Let t1 be the time that the last packet is dequeued to the central
queues from the tail queue. If t1 is in a busy period, let τ be the
beginning of that busy period. Otherwise, let τ = t1. We first claim
that

(t1 + 1 − τ −A(τ, t1 + 1)) mod K = 0. (5.117)

Note that if τ = t1, then A(τ, t1+1) = 1 and (5.117) holds trivially. On
the other hand, if τ is the beginning of a busy period, it then follows
from the joining-the-shortest-queue rule in (R4) that

(t1 − τ −A(τ, t1)) mod K = 0. (5.118)

As t1 is the time that the last packet is dequeued to the central queues
from the tail queue, we also have A(τ, t1 +1) = A(τ, t1)+1. Replacing
this in (5.118) yields (5.117).

Secondly, we claim that there exists t2 with t0 −K < t2 ≤ t0 such
that

(t2 − τ −A(τ, t2)) mod K = 0. (5.119)

The argument for (5.119) is similar to that in the proof of the non-
idling property. Since there is no packet that is dequeued to the central
queues from the tail queue from t1 + 1 to t0, we have

A(τ, t1 + 1) = A(τ, t) = A(τ, t0) (5.120)

for all t1 + 1 ≤ t ≤ t0. Let

t2 = t1 + 1 +
(t0 − t1 − 1)/K�K. (5.121)

5.6 FIFO queues 343

Analogous to the argument for the non-idling property, we have

t0 −K < t2 ≤ t0. (5.122)

That (5.119) holds then follows from (5.121), (5.120) and (5.117).
Now we claim that packet p is in the tail queue at t2. If packet p has

not arrived at the tail queue by t2, then the tail queue must be empty
at t2, i.e., qT (t2) = 0, as the last packet departs at t1 < t2. Since there
is at most one packet arrival per time slot, we have from (5.122) that

qT (t0 − 1) ≤ qT (t2) + (t0 − 1 − t2) < K − 1. (5.123)

This leads to a contradiction that qT (t0 − 1) = K − 1.
Finally we show there is a contradiction to the maximum number of

packets inside the network element. In view of (5.119) and the joining-
the-shortest-queue rule in (R4), the only reason that packet p did not
depart from the tail queue at t2 is that

qC(t2 − 1) − cC(t2) = B.

This implies that the connected central queue is full, i.e., qC(t2−1) = B
and the control input of the connected central queue is not enabled,
i.e., cC(t2) = 0. As the connected central queue is the shortest queue,
all the central queues are full, i.e., q̂C(t2 − 1) = BK. As τ is the
beginning of a busy period, we have

A(τ, t2) = D(τ, t2) + q̂C(t2 − 1) = D(τ, t2) +BK. (5.124)

From (5.119), it then follows that

(t2 − τ −D(τ, t2)) mod K = 0. (5.125)

Thus, the connected central queue is also the longest queue. According
to the serving-the-longest-queue rule in (R3), the condition in (5.125)
indicates that the connected central queue would be enabled at time
t2 if the other condition qH(t2 −1)− c(t2) < K−1 were satisfied. This
in turn implies that the head queue is also full, i.e., qH(t2−1) = K−1
and the head queue is not enabled at t2, i.e., c(t2) = 0. Since both
the head queue and the connected central queue are not enabled at
t2, they remain unchanged at t2. Thus, we have qH(t2) = K − 1 and
q̂C(t2) = BK. Adding packet p in the tail queue at t2, the total number
of packets inside the network element at t2 is at least BK +K, which
contradicts to (5.116).

(P4) FIFO: since both the tail queue and the head queue are FIFO
queues, we only need to consider the order in the central queues. The

344 5. Optical packet switches

FIFO property in the central queues is trivially preserved from the
joining-the-shortest-queue rule and the serving-the-longest-queue rule.

5.7 Building optical queues from classical switching
theory

We will show how the classical switching theory can be applied to
construct optical queues. Intuitively, a sample path of a discrete-time
queue with a single input link and a single output link can be viewed
as a mapping from the arrivals (at the input link) to the departures
(at the output link). To illustrate this, in Figure 5.47 we show a typical
sample path of a queue with a single input link and a single output
link. The first customer arrives at time t = 1 and departs at time
t = 7, the second customer arrives at time t = 3 and departs at time
t = 5, the third customer arrives at time t = 5 and departs at time
t = 9, and so forth. As shown in Figure 5.47, the queue that realizes
this particular sample path can be viewed as a switch that sets up
a particular connection pattern between the inputs and the outputs.
The difference is that the arrivals at a queue is progressive in time and
can be infinite. On the other hand, the inputs of a switch is usually
finite and they can be wrapped around (or permuted in any manner).

Despite the difference, switching theory is quite useful in construct-
ing queues considered in this section. There are three types of discrete-
time queues in this section: linear compressors, non-overtaking delay
lines and flexible delay lines. In the queueing context, a linear com-
pressor is a First In First Out (FIFO) queue with vacations. A non-
overtaking delay line is a FIFO queue with known departure times
upon arrivals. A flexible delay line is a queue with an infinite number
of servers. In the switching context, a linear compressor corresponds to
a conditional nonblocking switch that satisfies a certain monotone and
consecutive condition. In fact, such a conditional nonblocking switch
is also called a linear compressor in switching theory (see e.g., Section
2.5.7 or the book by Li [111]). A non-overtaking delay line also corre-
sponds to a conditional nonblocking switch that satisfies a monotone
condition. Such a switch is called a UU (Unimodal-Unimodal) non-
blocking switch in [111]. A flexible delay line corresponds to a (strict
sense) nonblocking switch.

Our approaches for constructing these queues are inspired by the
early works in [118, 141, 90, 140] that map rearrangeable nonblock-

5.7 Building optical queues from classical switching theory 345

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�16� 15� 14� 13�

Arrivials (inputs)�

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�16� 15� 14� 13�

Departures (outputs)�

Queue (switch)�

Fig. 5.47. A typical sample path of a discrete-time queue

ing switches to time slot interchanges in Section 5.2. As the two-stage
construction for a linear compressor in switching theory, we show that
there is also a two-stage construction of a linear compressor in our
setting. Moreover, via recursive expansion of the two-stage construc-
tion, one can then construct a linear compressor via a banyan type
of network. Analogous to the three-stage construction of a UU non-
blocking switch, we show that there is a three-stage construction of a
non-overtaking delay line. Similarly, there is a three-stage construction
of a flexible delay line. Such a result is analogous to the three-stage
Clos network for a nonblocking switch. It is known that the Cantor
network [21] can be used for constructing a nonblocking switch with
less complexity than that by the Clos network. We show that this is
also the case by modifying the Cantor network to our setting.

5.7.1 Flexible delay lines, non-overtaking delay lines and
Linear compressors

As mentioned earlier, a discrete-time queue with a single input and
a single output can also be viewed as a network element that maps

346 5. Optical packet switches

the packets arriving at the input to the output. To be specific, let
τa(n) be the arrival time of the nth packet at the input and τd(n) be
the departure time of the nth packet at the output. Also, let τa =
{τa(n), n ≥ 1} be the sequence of arrival times and τd = {τd(n), n ≥
1} be the sequence of departure times. A discrete-time queue with a
single input and a single output then realizes a certain set of mappings
(or sample paths in this section) from τa to τd. For instance, the delay
line with delay d in Definition 5.1.1 can be viewed as a queue that
realizes the set of mappings with τd(n) = τa(n) + d for all n. In the
following, we introduce the concept of flexible delay lines that realize
a much larger set of mappings.

Definition 5.7.1. (Flexible delay line) Suppose that the departure
time of a packet is known upon its arrival. A network element with a
single input a(t) and a single output d(t) is called a flexible delay line
with maximum delay d if it realizes the set of mappings (or sample
paths) that satisfy

τa(n) ≤ τd(n) ≤ τa(n) + d, for all n, (5.126)

and

τd(m) �= τd(n), for all m �= n. (5.127)

Furthermore, a flexible delay line is said to be with the range of delay
[d1, d2] if it satisfies (5.127) and

τa(n) + d1 ≤ τd(n) ≤ τa(n) + d2, for all n, (5.128)

1�

2�

N-1�

d(t)�a(t)�

Fig. 5.48. A direct construction of a flexible delay line with maximum delay N −1

5.7 Building optical queues from classical switching theory 347

In Figure 5.48, we show a direct construction of a flexible delay
line with maximum delay N − 1. The first 1 × N switch is a 1-to-N
demultiplexer and the second N × 1 switch is an N -to-1 multiplexer.
When the nth packet arrives at the input, it will be routed to the fixed
delay line with delay τd(n) − τa(n) via the 1-to-N demultiplexer and
be multiplexed at the output link via the N -to-1 multiplexer. The cost
of such a construction is certainly very high, both in the size of the
two switches and the total length of fiber delay lines. Fortunately, for
some applications, it may not be necessary to realize such a large set
of mappings.

Definition 5.7.2. (Non-overtaking delay line) Suppose that the
departure time of a packet is known upon its arrival. A network el-
ement with a single input a(t) and a single output d(t) is called a
non-overtaking delay line with maximum delay d if it realizes the set
of mappings that satisfy (5.126) and

τd(n) < τd(n+ 1) (5.129)

for all n.

The additional constraint in (5.129) indicates that no packet can
overtake its previous packet at the output. Clearly, a non-overtaking
delay line is a special case of a flexible delay line. As such, it can be
built with less complexity. In fact, a non-overtaking delay line with
maximum delay d can be realized by a FIFO queue with buffer d.
This is done by letting c(t) = 1 for every time t that has a packet
departure, i.e., t = τd(n) for some n. However, as we mentioned before,
the difference between a FIFO queue and a non-overtaking delay line
is that a FIFO queue does not need to know the departure time of a
packet upon its arrival. With this additional piece of information, we
will show that one can construct a non-overtaking delay line that has
the self-routing property.

One possible application of non-overtaking delay lines is optical
burst switching (see e.g., [160, 171]), in which control signals of pack-
ets are sent via a separate electronic network before packets are actu-
ally transmitted. By so doing, packet departure times along the route
traversing through an optical network can be pre-determined. Another
application is for traffic regulation (see e.g., the books [27, 105] and
reference therein). Traffic regulation is done by delaying packets in
such a way that packets are spaced in a more regular manner. By so
doing, congestion can be avoided inside a network.

348 5. Optical packet switches

Non-overtaking delay line with maximum delay B�

Non-overtaking delay line with maximum delay B�

Non-overtaking delay line with maximum delay B�

Non-overtaking delay line with maximum delay B�

Fig. 5.49. A 4-to-1 multiplexer with buffer B by non-overtaking delay lines

A special case of traffic regulation is an N -to-1 buffered FIFO mul-
tiplexer. In Figure 5.49, we show an implementation of a 4-to-1 FIFO
multiplexer with buffer B by non-overtaking delay lines. For each in-
put, there is a non-overtaking delay line with maximum delay B before
the 4-to-1 un-buffered multiplexer (constructed by three 2×2 switches
in Figure 5.49). As the delay of a packet is known upon its arrival to
the FIFO multiplexer, we can put packets through the non-overtaking
delay lines so that they can be multiplexed by the 4-to-1 un-buffered
multiplexer.

More generally, if the control input c(t) of a FIFO queue is de-
terministic, then such a FIFO queue can be implemented by a non-
overtaking delay line. One particular example is the load balanced
Birkhoff-von Neumann switch in Chapter 3. In such a switch, the con-
nection patterns of the switch fabrics are periodic and the buffers there
are simply FIFO queues with periodic services.

Now we introduce the concept of linear compressors that allow us
to construct non-overtaking delay lines.

Definition 5.7.3. (Linear compressor) Suppose that the departure
time of a packet is known upon its arrival. A network element with
a single input a(t) and a single output d(t) is called a linear com-
pressor with maximum delay d if it realizes the set of mappings that
satisfy (5.126) and the following monotone and consecutive condition:
τd(n) = τd(n− 1) + 1 whenever τa(n) ≤ τd(n− 1).

Note that the monotone and consecutive condition and (5.126) im-
ply that τd(n) > τd(n − 1) for all n. As such, a linear compressor is

5.7 Building optical queues from classical switching theory 349

a special case of a non-overtaking delay line. The name, linear com-
pressor, originates from its counterpart for space switches (see e.g.,
[76, 111]). Historically, it was first shown in [73] that a certain class of
banyan networks can realize all permutations that satisfy a monotone
and consecutive condition. In that class of banyan networks, an out-
put is active if it has a packet to receive. The consecutive condition
ensures that there is no gap between two active outputs. The mono-
tone condition indicates that the input addresses of the packets in the
consecutive active outputs are increasing. In Chapter 4 of the book
by Li [111], it is further shown that this class of banyan networks are
equivalent to linear compressors.

The condition τa(n) ≤ τd(n − 1) means that the nth packet ar-
rives before the n − 1th packet departs. If one defines a busy period
of a linear compressor as the period of time that there are packets in
the linear compressor, then the monotone and consecutive condition
implies that the departures in a busy period are monotone and con-
secutive (see Figure 5.50). Note that the packet that initiates a busy
period can have an arbitrary delay (as long as its delay is not greater
than the maximum delay). A linear compressor is related to a queue
with vacations, i.e., the server of the queue goes on a vacation every
time the queue becomes empty. As such, the first customer that ini-
tiates a busy period has to wait until the server is back from his/her
vacation.

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�16� 15� 14� 13�

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�16� 15� 14� 13�

Arrivals�

Departures�

Fig. 5.50. A sample path of a linear compressor

350 5. Optical packet switches

In view of the natural connection between a linear compressor and
a queue with vacations, let us consider the 2-to-1 FIFO multiplexer
with buffer 2k − 1 in Figure 5.22. We claim that it can be used as a
linear compressor with maximum delay 2k − 1. In this 2-to-1 FIFO
multiplexer, we first disable one of the two inputs and the loss output.
Define q(t− 1) as the virtual delay for a packet that arrives at time t
for the linear compressor. We will use q(t − 1) to mimic the number
of packets stored in the 2-to-1 FIFO multiplexer at t − 1. Initially
the virtual delay is 0, i.e., q(0) = 0, and it remains unchanged until
the first packet arrives. Consider a packet that initiates a busy period
of a linear compressor at time t. This packet will not collide with any
other previous packets. As such, the packet can have an arbitrary delay
0 ≤ d ≤ 2k − 1 and it can be self-routed through the network element
via the binary representation of d. Then we update the virtual delay
by setting q(t) = d. By so doing, we mimic the state that there are
d packets stored in the 2-to-1 FIFO multiplexer. In other word, the
last packet in the network element will depart at t+ q(t). As we have
disabled one of the two inputs, the virtual delay q(t) is non-increasing
in t until it is decreased to 0. On the other hand, consider a packet
that arrives at time t with q(t − 1) > 0. This packet must arrive
before its previous packet departs. As its previous packet will depart
at t− 1 + q(t− 1), it then follows from the monotone and consecutive
condition that the arriving packet will depart at t+ q(t− 1) and this
is exactly the departure time of an arriving packet to the 2-to-1 FIFO
multiplexer. Thus, we can use the 2-to-1 FIFO multiplexer as a linear
compressor and this is stated in the following corollary.

d(t)�
1� 2� 2�

k-1�

a(t)�

Fig. 5.51. A self-routing linear compressor with maximum delay 2k − 1

Corollary 5.7.4. The construction in Figure 5.51 can be operated as
a self-routing linear compressor with maximum delay 2k − 1.

5.7 Building optical queues from classical switching theory 351

5.7.2 Mirror image and linear decompressor

Definition 5.7.5. (Mirror image) The mirror image of an SDL el-
ement is an SDL element that reverses the direction of every link in the
original SDL element. By so doing, the inputs (resp. outputs) of the
original SDL element become the outputs (resp. inputs) of its mirror
image.

d(t)�
2� 2� 1�

k-1�

a(t)�
k-2�

Fig. 5.52. The mirror image of the linear compressor with maximum delay 2k − 1
in Figure 5.51

For example, we show in Figure 5.52 the mirror image of the linear
compressor with maximum delay 2k − 1 in Figure 5.51. For this ex-
ample, consider a particular sample path {a(t), d(t), t = 1, 2, . . . ,∞}.
Let ar(t) = a(t0 − t) and dr(t) = d(t0 − t) be its time reversed sample
path from t0. Intuitively, the time reversed sample path is obtained
by playing backward the original sample path from t0. For instance,
in Figure 5.53 we show the time reversed sample path of the sample
path in Figure 5.50. As the direction of every link in the mirror image
is reversed, playing backward in the original SDL element is equiva-
lent to playing forward in its mirror image. This leads to the following
proposition.

Proposition 5.7.6. If a sample path can be realized by an SDL ele-
ment, then its time reversed sample path can also be realized by the
mirror image of the SDL element.

As shown in Figure 5.53, the time reversed sample path is obtained
by interchanging the arrivals and departures and running the system
backward in time. From Proposition 5.7.6, the time reversed sample
paths of those realized by a linear compressor can be realized by the
mirror image of a linear compressor, called a linear decompressor de-
fined below.

Definition 5.7.7. (Linear decompressor) Suppose that the depar-
ture time of a packet is known upon its arrival. A network element with

352 5. Optical packet switches

Departures�

Arrivals�

4�3�2�1� 8�7�6�5� 12�11�10�9� 16�15�14�13�

4�3�2�1� 8�7�6�5� 12�11�10�9� 16�15�14�13�

Fig. 5.53. A time reversed sample path of a linear compressor

a single input a(t) and a single output d(t) is called a linear decompres-
sor with maximum delay d if it realizes the set of mappings that satisfy
(5.126), (5.129) and the following inverse monotone and consecutive
condition: τa(n) = τa(n− 1) + 1 whenever τa(n) ≤ τd(n− 1).

As the construction in Figure 5.52 is the mirror image of a linear
compressor with maximum delay 2k − 1, it is a linear decompressor
with maximum delay 2k − 1. This is stated in the following corollary.

Corollary 5.7.8. The construction in Figure 5.52 can be operated as
a self-routing linear decompressor with maximum delay 2k − 1.

5.7.3 A two-stage construction of a linear compressor

In Figure 5.54, we consider a two-stage construction of a linear com-
pressor with maximum delay BK − 1. The first stage is a linear com-
pressor with maximum delay K−1. The second stage is a scaled linear
compressor with maximum delay B−1 and scaling factor K. From the
time interleaving property in Proposition 5.1.3, we note that the scaled
linear compressor at the second stage can be operated as K time in-
terleaved linear compressors. As shown in Figure 5.55, these K time
interleaved linear compressors are connected to the output link of the
linear compressor at the first stage and the output link of the network
element periodically with period K. Moreover, as the delay in each de-
lay line of the scaled linear compressor at the second stage is K times

5.7 Building optical queues from classical switching theory 353

of that in the original linear compressors, these K time interleaved lin-
ear compressors, when connected, only allow delay that is an integer
multiple of K, i.e., d = 0,K, 2K, . . . , (B − 1)K.

Linear compressor with�
maximum delay K-1�

Linear compressor with�
maximum delay B-1 and�

scaling factor K�

 a�(n)� c�(n)� d�(n)�

Fig. 5.54. A two-stage construction of a linear compressor

Fig. 5.55. An illustration of periodic connections in the two-stage construction

Now we specify the operation rule for the two-stage construction. As
shown in Figure 5.54, let τa(n) be the arrival time of the nth packet,
τ c(n) be its departure time from the linear compressor at the first
stage, and τd(n) be its departure time.

(R1) Initially, we set

τ c(1) = τa(1) +
(
(τd(1) − τa(1)) mod K

)
.

If τ c(n− 1) < τa(n), then we set

τ c(n) = τa(n) +
(
(τd(n) − τa(n)) mod K

)
.

Otherwise, we set τ c(n) = τ c(n− 1) + 1.

Theorem 5.7.9. If the network element in Figure 5.54 is started from
an empty system, then under (R1) the two-stage construction is a lin-
ear compressor with maximum delay BK − 1.

The proof of Theorem 5.7.9 is deferred to the end of this section.

354 5. Optical packet switches

Now we show how one constructs self-routing linear compressors
by using optical memory cells. First, we show that an optical memory
cell can be used as a linear compressor with maximum delay 1. When
there is a packet stored in the optical memory cell, the 2 × 2 switch
is always set to the “cross” state. When a packet arrives at the empty
optical memory cell, the 2 × 2 switch is set to the “bar” state if its
delay is 0 and the “cross” state if its delay is 1. As the maximum delay
is 1, every packet passes through the fiber delay line with one unit of
delay at most once.

With B = K = 2, we can apply Theorem 5.7.9 to construct a
linear compressor with maximum delay 3 via a concatenation of an
optical memory cell (at the first stage) and a scaled optical memory
cell with the scaling factor 2 (at the second stage). By recursively
expanding the two-stage construction in Theorem 5.7.9 with K = 2,
one can construct a linear compressor with maximum delay 2k − 1
by using a series of k scaled optical memory cells with scaling factors
20, 21, 22, . . . , 2k−1 (see Figure 5.56(a)). As a packet passes through
every fiber delay line in Figure 5.56(a) at most once, one can simply
use the binary representation of packet delay for self-routing. Since a
linear decompressor is the mirror image of a linear compressor, one
can also construct a self-routing linear decompressor with maximum
delay 2k − 1 by using a series of k scaled optical memory cells with
scaling factors 2k−1, 2k−2, . . . , 21, 20 (see Figure 5.56(b)).

k-1�
2�

k-2�
2�1� 2�

k-1�
2�

k-2�
2� 1�2�

(a)�

(b)�

Fig. 5.56. (a) A self-routing linear compressor with maximum delay 2k − 1, (b) a
self-routing linear decompressor with maximum delay 2k − 1.

Proof. In the following, we provide the proof for Theorem 5.7.9.
According to Definition 5.7.3 for a linear compressor, we need to show

5.7 Building optical queues from classical switching theory 355

that the network element in Figure 5.54 can realize all the mappings
(or sample paths) that satisfy

τa(n) ≤ τd(n) ≤ τa(n) +BK − 1, (5.130)
τd(n) = τd(n− 1) + 1,

whenever τa(n) ≤ τd(n − 1). (5.131)

In other words, if (5.130) and (5.131) hold for all n, then under the
assignment rule in (R1)

τa(n) ≤ τ c(n) ≤ τa(n) +K − 1, (5.132)
τ c(n) = τ c(n− 1) + 1,

whenever τa(n) ≤ τ c(n− 1), (5.133)

τ c(n) ≤ τd(n) ≤ τ c(n) + (B − 1)K, (5.134)
(τd(n) − τ c(n)) mod K = 0, (5.135)
τd(n) = τd(n∗) +K,

whenever τa(n) ≤ τd(n∗), (5.136)

where n∗ is the last packet that departs before the nth packet from the
same time interleaved linear compressor at the second stage.

We will prove this by induction. For n = 1, we have

τ c(1) = τa(1) +
(
(τd(1) − τa(1)) mod K

)
.

Thus,
τa(1) ≤ τ c(1) ≤ τa(1) +K − 1

and

τd(1) − τ c(1) = K
(τd(1) − τa(1))/K�
≤ (B − 1)K.

It is easy to see that (5.132), (5.134) and (5.135) are satisfied. As the
network element is started from an empty system, there is no need to
check (5.133) and (5.136).

Now suppose that the induction hypotheses in (5.132)-(5.136) hold
up to n−1. For the nth packet, we need to consider the following cases.
Case 1 τa(n) > τd(n− 1):

In this case, the nth packet sees an empty system. The proof is the
same as the case for n = 1.
Case 2 τa(n) ≤ τd(n− 1) and τa(n) > τ c(n− 1):

356 5. Optical packet switches

Since τa(n) > τ c(n− 1), we also have from (R1) that

τ c(n) = τa(n) + ((τd(n) − τa(n)) mod K). (5.137)

As argued for the case n = 1, it is easy to see that (5.132), (5.134)
and (5.135) are satisfied. Since τa(n) > τ c(n− 1), there is no need to
verify (5.133).

To prove (5.136), let n0 = sup{m < n : τa(m) > τd(m− 1)} be the
index of the packet that initiates the busy period containing the nth

packet. From (5.131), it follows that for all n0 < m ≤ n

τd(m) = τd(m− 1) + 1, (5.138)

As illustrated in Figure 5.55, these K time interleaved linear compres-
sors at the second stage are connected to the output link of the linear
compressor at the first stage periodically with period K. If n−K ≥ n0,
then we have from (5.138) that n∗ = n − K is the last packet that
departs before the nth packet from the same time interleaved linear
compressor at the second stage. As such, it follows from (5.138) that

τd(n∗) +K = τd(n−K) +K = τd(n). (5.139)

On the other hand, if n −K < n0, then the nth packet arrives at an
empty linear compressor at the second stage and there is no need to
check (5.136).
Case 3 τa(n) ≤ τd(n− 1) and τa(n) ≤ τ c(n− 1):

Since τa(n) ≤ τ c(n− 1), we also have from (R1) that

τ c(n) = τ c(n− 1) + 1. (5.140)

Thus, (5.133) is satisfied. Moreover,

τa(n) ≤ τ c(n− 1) = τ c(n) − 1 ≤ τ c(n). (5.141)

Using the induction hypothesis for n − 1 in (5.132) and τa(n − 1) <
τa(n) yields

τ c(n) = τ c(n− 1) + 1 ≤ τa(n− 1) +K − 1 + 1
≤ τa(n) +K − 1. (5.142)

Thus, (5.132) is satisfied.
Since τa(n) ≤ τd(n− 1), we have from (5.131) that

τd(n) = τd(n− 1) + 1, (5.143)

From (5.143) and (5.140), it follows that

τd(n) − τ c(n) = τd(n− 1) − τ c(n− 1).

5.7 Building optical queues from classical switching theory 357

Thus, (5.134) and (5.135) follow from the induction hypotheses for
n− 1.

The argument for (5.136) is the same as that in Case 2.

5.7.4 A three-stage construction of a non-overtaking delay
line

In Figure 5.57, we consider a three-stage construction of a non-
overtaking delay line with maximum delay BK − 1. The first stage
is a linear compressor with maximum delay K − 1, the second stage
is a scaled non-overtaking delay line with maximum delay B − 1 and
scaling factor K, and the third stage is a linear decompressor with
maximum delay K − 1.

As shown in Figure 5.57, let τa(n) be the arrival time of the nth

packet, τ c(n) be the departure time of the nth packet from the linear
compressor, τ b(n) be the arrival time of the nth packet at the linear
decompressor, and τd(n) be the departure time of the nth packet. In
order to show that the three-stage construction in Figure 5.57 can be
operated as a non-overtaking delay line, we need to specify τ c(n) and
τ b(n) for every n.

(R2) Initially, we set

τ c(1) = τa(1) +
(
(τd(1) − τa(1)) mod K

)
, (5.144)

and

τ b(1) = τ c(1) +
τ
d(1) − τ c(1)

K
� ×K. (5.145)

Note from (5.144) that

τd(1) − τ c(1) =
τ
d(1) − τa(1)

K
� ×K. (5.146)

Thus, it follows from (5.145) and (5.144) that

τ b(1) = τd(1). (5.147)

If τ c(n− 1) < τa(n), then we set

τ c(n) = τa(n) +
(
(τd(n) − τa(n)) mod K

)
, (5.148)

and

358 5. Optical packet switches

τ b(n) = τ c(n) +
τ
d(n) − τ c(n)

K
� ×K. (5.149)

By so doing, we also have

τ b(n) = τd(n). (5.150)

Otherwise, we set

τ c(n) = τ c(n− 1) + 1, (5.151)

and

τ b(n) = τ c(n) +
τ
d(n) − τ c(n)

K
� ×K. (5.152)

Note from (5.145),(5.149) and (5.152) that we always have

τ b(n) = τ c(n) +
τ
d(n) − τ c(n)

K
� ×K (5.153)

for all n. As such, τ b(n)− τ c(n) is an integer multiple of K and it can
be carried by the scaled non-overtaking delay line with scaling factor
K in the second stage.

 c�(n)� b�(n)�
Linear�

compressor�
with�

maximum�
delay K-1�

Linear�
decompressor�
with maximum�

delay K-1�

 a�(n)� d�(n)�

Scaled non-�
overtaking delay�

line with�
maximum delay�
B-1 and scaling�

factor K�

Fig. 5.57. A three-stage construction of a non-overtaking delay line

Theorem 5.7.10. If the network element in Figure 5.57 is started
from an empty system, then under (R2) the three-stage construction
is a non-overtaking delay line with maximum delay BK − 1.

The proof of Theorem 5.7.10 is deferred to the end of this section.
For the special case that B = 1, the second stage can be omitted. In

this case, a non-overtaking delay line with maximum delayK−1 can be
constructed as a concatenation of a linear compressor with maximum
delay K − 1 and a linear decompressor with maximum delay K − 1.
As we have shown how one constructs self-routing linear compressors
and decompressors by optical memory cells in Section 5.7.3, it is quite

5.7 Building optical queues from classical switching theory 359

k-1�
2�

k-2�
2�1� 2�

k-1�
2�

k-2�
2� 1�2�

Fig. 5.58. A construction of a self-routing non-overtaking delay line with maximum
delay 2k − 1 by a concatenation of optical memory cells

straightforward to construct a self-routing non-overtaking delay line
by a concatenation of scaled optical memory cells. In Figure 5.58, we
show a construction of a self-routing non-overtaking delay line with
maximum delay 2k − 1 by a concatenation of optical memory cells.
Proof. In the following, we provide the proof for Theorem 5.7.10. We
need to show that all the mappings that satisfy (5.126) and (5.129) can
be realized by a concatenation of a linear compressor with maximum
delay K − 1 (at the first stage), a scaled non-overtaking delay line
with maximum delay B−1 and scaling factor K (at the second stage),
and a linear decompressor with maximum delay K − 1 (at the third
stage). According to Definition 5.7.2 for a non-overtaking delay line,
Definition 5.7.3 for a linear compressor and Definition 5.7.7 for a linear
decompressor, we need to show that if for all n

τa(n) ≤ τd(n) ≤ τa(n) +BK − 1, (5.154)
τd(n) > τd(n− 1), (5.155)

then under the assignment rule for τ c(n) and τ b(n) in (R2) that

τa(n) ≤ τ c(n) ≤ τa(n) +K − 1, (5.156)
τ c(n) = τ c(n− 1) + 1,

whenever τa(n) ≤ τ c(n− 1), (5.157)

τ c(n) ≤ τ b(n) ≤ τ c(n) + (B − 1)K (5.158)
(τ b(n) − τ c(n)) mod K = 0, (5.159)
τ b(n) > τ b(n− 1), (5.160)

τ b(n) ≤ τd(n) ≤ τ b(n) +K − 1, (5.161)
τ b(n) = τ b(n− 1) + 1,

whenever τ b(n) ≤ τd(n− 1). (5.162)

360 5. Optical packet switches

We first show that τa(n) ≤ τ c(n) for all n. If n = 1 or τ c(n− 1) <
τa(n), then we have τa(n) ≤ τ c(n) from (5.144) and (5.148). On the
other hand, if τ c(n− 1) ≥ τa(n), then we have from (5.151) that

τa(n) < τ c(n− 1) + 1 = τ c(n).

Next, we show by induction that τ c(n) ≤ τd(n) for all n. Since
τa(1) ≤ τd(1), this holds trivially for n = 1 from (5.144). Now suppose
that τ c(n−1) ≤ τd(n−1). If τ c(n−1) < τa(n), then we also have from
(5.148) and τa(n) ≤ τd(n) that τ c(n) ≤ τd(n). On the other hand, if
τ c(n−1) ≥ τa(n), then we have from (5.151) that τ c(n) = τ c(n−1)+1.
It then follows from the induction hypothesis and τd(n) > τd(n − 1)
that

τ c(n) = τ c(n− 1) + 1 ≤ τd(n− 1) + 1 ≤ τd(n).

Now we use τ c(n) ≤ τd(n) for all n to show that (5.158),(5.159)
and (5.161) hold for all n. Note from (5.153) that

τ b(n) − τ c(n) = K
τ
d(n) − τ c(n)

K
�.

Thus, (5.159) is satisfied for all n. Moreover, we have from τa(n) ≤
τ c(n) for all n and (5.154) that

τ b(n) − τ c(n) = K
τ
d(n) − τ c(n)

K
�

≤ K
τ
d(n) − τa(n)

K
� ≤ K
(BK − 1)

K
�

= (B − 1)K. (5.163)

Thus, (5.158) is also satisfied for all n. Furthermore,

τd(n) − τ b(n) = τd(n) − τ c(n) −K
τ
d(n) − τ c(n)

K
�

= (τd(n) − τ c(n)) mod K. (5.164)

This shows that (5.161) is also satisfied for all n.
We will prove the other four conditions, i.e., (5.156), (5.157), (5.160)

and (5.162), by induction on n. For n = 1, it follows from (5.144) and
(5.154) that (5.156) holds trivially. As this is the first packet, there is
no need to verify (5.157), (5.160) and (5.162).

Now suppose that the induction hypotheses in (5.156), (5.157),
(5.160) and (5.162) hold up to n − 1. For the nth packet, we need
to consider the following two cases.

5.7 Building optical queues from classical switching theory 361

Case 1 τa(n) > τ c(n− 1):
In this case, the assignments for τ c(n) and τ b(n) are the same as

those for n = 1. As such, (5.156) holds accordingly. Since τa(n) >
τ c(n − 1), there is no need to verify (5.157). Also, in view of τ b(n) =
τd(n) in (5.150) and τd(n) > τd(n − 1) in (5.155), we have τ b(n) >
τd(n−1). Thus, there is no need to verify (5.162). In conjunction with
τd(n−1) ≥ τ b(n−1) in (5.161), we derive τ b(n) > τ b(n−1) for (5.160).
Case 2 τa(n) ≤ τ c(n− 1):

In this case, we have from (5.151) that τ c(n) = τ c(n−1)+1. Thus,
(5.157) is satisfied. Moreover, using the induction hypothesis for n− 1
in (5.156) and the fact that τa(n) ≥ τa(n− 1) + 1 yields

τ c(n) = τ c(n− 1) + 1 ≤ τa(n− 1) +K − 1 + 1
≤ τa(n) +K − 1.

This shows that τ c(n) ≤ τa(n) +K − 1 in (5.156).
To see (5.160), note from (5.151) and (5.155) that

τd(n) − τd(n− 1) ≥ 1 = τ c(n) − τ c(n− 1).

It then follows from (5.153) and (5.151) that

τ b(n− 1)

= τ c(n− 1) +
τ
d(n− 1) − τ c(n− 1)

K
� ×K

≤ τ c(n− 1) +
τ
d(n) − τ c(n)

K
� ×K

< τ c(n) +
τ
d(n) − τ c(n)

K
� ×K

= τ b(n).

It remains to verify (5.162). If τ b(n) ≤ τd(n − 1), then it follows
from (5.161) (for n− 1) that

τ b(n) ≤ τd(n− 1) ≤ τ b(n − 1) +K − 1.

Since (τ b(n) − τ c(n)) mod K = 0 for all n in (5.159), it then follows
from (5.151) that(

(τ b(n) − τ b(n− 1)) mod K
)

=
(
(τ c(n) − τ c(n− 1)) mod K

)
= 1.

Thus, we have τ b(n) = τ b(n− 1) + 1.

362 5. Optical packet switches

5.7.5 A three-stage construction of a flexible delay line

In Figure 5.59, we show a construction of a flexible delay line with the
range of delay [K − 1, BK − 1]. It is a combination of three parallel
three-stage constructions. In each three-stage construction, there is a
flexible delay line with maximum delay K − 1 (at the first stage), a
scaled flexible delay line with maximum delay B − 1 and scaling fac-
tor K (at the second stage), and a flexible delay line with maximum
delay K − 1 (at the third stage). These three parallel three-stage con-
structions are joined by a 1 × 3 switch at the beginning and a 3 × 1
switch at the end. The 1 × 3 switch acts as a 1-to-3 demultiplexer
so that an arriving packet can choose its path from one of the three
three-stage constructions. The departures from these three three-stage
constructions are then multiplexed by the 3 × 1 switch at the end.

Flexible�
delay line�

with�
maximum�
delay K-1�

Flexible�
delay line�

with�
maximum�
delay K-1�

Scaled flexible�
delay line with�

maximum�
delay B-1 and�
scaling factor�

K�

Flexible�
delay line�

with�
maximum�
delay K-1�

Flexible�
delay line�

with�
maximum�
delay K-1�

Scaled flexible�
delay line with�

maximum�
delay B-1 and�
scaling factor�

K�

Flexible�
delay line�

with�
maximum�
delay K-1�

Flexible�
delay line�

with�
maximum�
delay K-1�

Scaled flexible�
delay line with�

maximum�
delay B-1 and�
scaling factor�

K�

Fig. 5.59. A three-stage construction of a flexible delay line with the range of delay
[K − 1, BK − 1]

Theorem 5.7.11. The three-stage construction in Figure 5.59 is a
flexible delay line with the range of delay [K − 1, BK − 1].

5.7 Building optical queues from classical switching theory 363

Proof. The proof for Theorem 5.7.11 is quite similar to that for the
classical three-stage nonblocking Clos networks [51]. We will show for
each arriving packet, there is a non-conflicting path from the input
to the output. Consider the nth packet. Let τa(n) be the arrival time
of the nth packet and τd(n) be the departure time of the nth packet.
Suppose that the delay of the nth packet, denoted by d, is in the range
[K − 1, BK − 1], i.e., K − 1 ≤ d ≤ BK − 1. Then we claim that
the number of feasible paths for the nth packet to go through one of
the three three-stage constructions is K. To see this, note that one
can choose 0 ≤ d1 ≤ K − 1 to be the delay at the flexible delay line
with maximum delay K− 1 at the first stage. Once d1 is chosen, there
is a unique way to determine the delay at the second stage and the
delay at the third stage (as the delay at the second stage must be
an integer multiple of K). Specifically, the delay at the third stage is
((d−d1) mod K) and the delay at the second stage is
(d−d1)/K�×K.

As there are three parallel constructions, the total number of feasi-
ble paths for the nth packet to go through the network element is 3K.
The only places that the nth packet might collide with others are the
three output links of the first stage and the three input links of the
third stage. As the first stage (in all the three-stage constructions) is
a flexible delay line with maximum delay K − 1, those packets that
might collide with the nth packet at the output links of the first stage
must arrive during [τa(n) − (K − 1), τa(n) − 1]. These packets will
use at most K − 1 paths among the 3K feasible paths for the nth

packet. On the other hand, those packets that might collide with the
nth packet at the three input links of the third stage must depart dur-
ing [τd(n)−(K−1), τd(n)−1] and [τd(n)+1, τd(n)+K−1]. Similarly,
these packets use at most another 2(K−1) paths among the 3K feasi-
ble paths for the nth packet. Thus, there is at least one non-conflicting
path for the nth packet.

Unlike the classical nonblocking Clos networks, the construction in
Figure 5.59 cannot accommodate for the packets with delay smaller
than K − 1. This is because there are not enough feasible paths for
those packets with short delay. For instance, for a packet with delay
0, there are only three feasible paths.

To construct a flexible delay line with maximum delay BK−1, one
can simply add a flexible delay line with maximum delay K−1 parallel
to the three three-stage constructions (see Figure 5.60). By so doing,

364 5. Optical packet switches

Flexible�
delay line�

with�
maximum�
delay K-1�

Flexible�
delay line�

with�
maximum�
delay K-1�

Scaled flexible�
delay line with�

maximum�
delay B-1 and�
scaling factor�

K�

Flexible�
delay line�

with�
maximum�
delay K-1�

Flexible�
delay line�

with�
maximum�
delay K-1�

Scaled flexible�
delay line with�

maximum�
delay B-1 and�
scaling factor�

K�

Flexible delay line with maximum delay K-1�

Flexible�
delay line�

with�
maximum�
delay K-1�

Flexible�
delay line�

with�
maximum�
delay K-1�

Scaled flexible�
delay line with�

maximum�
delay B-1 and�
scaling factor�

K�

Fig. 5.60. A flexible delay line with maximum delay BK − 1

those packets with delay smaller than K − 1 can be routed through
the added flexible delay line with maximum delay K − 1.

We note that one may construct a flexible delay line with maximum
delay K−1 by a concatenation of K−1 optical memory cells (all with
one unit of delay). This is because an optical memory cell can be used
for storing one packet. When a packet arrives, we may store that packet
in an optical memory cell until its departure time. As the maximum
delay is K− 1, there are at most K− 1 packets that need to be stored
at the same time.

To compute the construction complexity, let H(B) be the number
of 2 × 2 switches needed for a flexible delay line with maximum delay
B using the construction in Figure 5.60. Note that a 1× 3 switch (and
a 3× 1 switch) can be implemented by two 2× 2 switches. Clearly, we
have the following recursive equation:

H(BK − 1) = 7H(K − 1) + 3H(B − 1) + 6. (5.165)

Letting B = K yields

H(B2 − 1) = 10H(B − 1) + 6. (5.166)

If we use B − 1 optical memory cells to construct all the ten (scaled
or unscaled) flexible delay lines with maximum delay B − 1, we can

5.7 Building optical queues from classical switching theory 365

construct a flexible delay line with maximum delay B2 − 1 by using
10B − 4 2 × 2 switches. By recursive expansion of (5.166), one can
construct a flexible delay line with maximum delay B with O((logB)γ)
2 × 2 switches, where γ = log2 10 ≈ 3.321928.

5.7.6 Constructions of flexible delay lines by Cantor
Networks

1� 2� 4� 8� 4� 2� 1�

1� 2� 4� 8� 4� 2� 1�

1� 2� 4� 8� 4� 2� 1�

1� 2� 4� 8� 4� 2� 1�

1� 2� 4� 8� 4� 2� 1�

1� 2� 4� 8� 4� 2� 1�

Fig. 5.61. The (6, 4)-Cantor network

Instead of using only three parallel three-stage constructions in the
previous section, one may consider a combination of multiple multi-
stage constructions as in the Cantor Network [21] for a nonblocking
switch. First, we consider a multistage network element constructed
by a concatenation of 2k − 1 scaled optical memory cells. The scal-
ing factor at the jth stage is 2j−1 for j = 1, 2, . . . , k and the scaling
factor at the jth stage is 22k−1−j for j = k + 1, . . . , 2k − 1. Such a
network element is called a Benes time slot interchange as it can be
used for realizing a 2k×2k Benes time slot interchange in Section 5.2.3.
Now we combine m 2k × 2k Benes time slot interchanges by adding

366 5. Optical packet switches

a 1 ×m switch in the front and an m × 1 switch at the end. Such a
network element is called the (m,k)-Cantor network (as it is closely
related to the nonblocking Cantor network). In Figure 5.61, we depict
the (6, 4)-Cantor network.

Theorem 5.7.12. Suppose that every delay line in the (m,k)-Cantor
network can be traversed by a packet at most once. If m ≥ 3

2k, then the
(m,k)-Cantor network is a flexible delay line with the range of delay
[2k−1 − 1, 2k − 1].

Proof. The proof for Theorem 5.7.12 is quite similar to the proof for
showing that Cantor networks are non-blocking switches (see e.g., [76]).
Consider the nth packet. Let τa(n) be its arrival time and τd(n) be its
departure time. Suppose that the delay of the nth packet, denoted by
d, is in the range [2k−1 − 1, 2k − 1], i.e.,

2k−1 − 1 ≤ d ≤ 2k − 1.

First, we claim that the total number of feasible paths for the nth

packet ism2k−1. To show this, it suffices to argue that the total number
of feasible paths through a particular Benes time slot interchange is
2k−1. Let d1 be the delay to the input link of the kth stage of a particular
Benes time slot interchange. As each delay line can be traversed at
most once, we have 0 ≤ d1 ≤ 2k−1 − 1. Once d1 is chosen, the path to
the input link of the kth stage is uniquely determined by the binary
representation of d1. On the other hand, since 2k−1 − 1 ≤ d ≤ 2k − 1,
we have 0 ≤ d− d1 ≤ 2k − 1. In view of the constraint that each delay
line can be traversed at most once, the path from the input link of
the kth stage to the output of the Benes time slot interchange is also
uniquely determined by the binary representation of d−d1. Since there
are 2k−1 choices of d1, there are 2k−1 feasible paths through a Benes
time slot interchange.

Let S1 be the set of feasible paths for the nth packet from the input
of the Cantor network to the m input links of the optical memory cells
at the kth stage. As argued in the previous paragraph, each path in S1

corresponds to a feasible path from the input to the output. Thus, we
have |S1| = m2k−1. Moreover, the delay of a path in S1 is between 0
and 2k−1−1. As such, these paths in S1 might be in conflict with those
packets that arrive during τa(n)− 1, τa(n)− 2, . . . , τa(n)− (2k−1 − 1).

Now we claim that the maximum number of paths in S1 that are
in conflict with the packet arriving at τa(n)− 1 is at most 2k−2. First,

5.7 Building optical queues from classical switching theory 367

note that the packet that arrives at τa(n)−1 might be in conflict with
the nth packet at various stages (from 2 to k). However, the worst case
that results in the maximum number of conflicting paths is to have
a conflict at the earliest stage, i.e., the second stage. To achieve this,
suppose that the packet that arrives at τa(n)−1 is delayed by 1 to the
input link of the kth stage in one of the m Benes time slot interchanges.
In this case, if the nth packet would still like to use the same Benes
time slot interchange, it cannot be delayed by 0 at the first stage. As
the number of paths for that Benes time slot interchange with delay 0
at the first stage is 2k−2, the number of conflicting paths in this case
is 2k−2.

In general, the maximum number of paths in S1 that are in conflict
with the packet arriving at τa(n) − s for some 2j−2 ≤ s ≤ 2j−1 − 1
and 2 ≤ j ≤ k, is 2k−j . This is because the earliest conflict can only
occur at the input link of the jth stage of a Benes time slot interchange
(as the maximum delay for the nth packet to be at the input link of
the (j − 1)th stage is 2j−2 − 1). As such, the maximum number of
paths in S1 that are in conflict with those packets arriving during
[τa(n) − 2j−2, τa(n) − (2j−1 − 1)] is 2j−22k−j . Hence, the maximum
number of paths that are in conflict with those packets arriving during
[τa(n) − 1, τa(n) − (2k−1 − 1)] is (k − 1)2k−2.

Define a reachable path as a feasible path that is not conflicting with
other packets (ahead of the nth packet). Let S̃1 be the set of reachable
paths for the nth packet from the input link of the Cantor network to
the m input links of the optical memory cells at the kth stage. Clearly,
we have

|S̃1| ≥ |S1| − (k − 1)2k−2 = m2k−1 − (k − 1)2k−2. (5.167)

Similarly, one can define S2 (resp. S̃2) to be the set of feasible (resp.
reachable) paths for the nth packet from the output of the Cantor
network to the m output links of the kth stage. As the Cantor network
is symmetric (its mirror image is itself), we also know that |S2| =
m2k−1. Moreover, these paths in S2 might be in conflict with those
packets that depart during [τd(n)− 1, τd(n)− (2k−1 − 1)] and [τd(n)+
1, τd(n)+ (2k−1 −1)]. Analogous to the argument used in the previous
paragraph, one can show that the maximum number of paths that
are in conflict with those packets departing during [τd(n)− 1, τd(n)−
(2k−1−1)] is (k−1)2k−2. Similarly, the maximum number of paths that
are in conflict with those packets departing during [τd(n) + 1, τd(n) +
(2k−1 − 1)] is also (k − 1)2k−2. Thus,

368 5. Optical packet switches

|S̃2| ≥ m2k−1 − 2(k − 1)2k−2. (5.168)

If m ≥ 3
2k, it then follows from (5.167) and (5.168) that

|S̃1| + |S̃2| > m2k−1. (5.169)

Since the total number of feasible paths for the nth packet is m2k−1, it
follows from (5.169) that there must be at least one feasible path that
is in the intersection of S̃1 and S̃2. Thus, there must be a reachable
path from the input of the Cantor network to the output of the Cantor
network.

As discussed in the previous section, there are not enough feasible
paths for packets with short delay, especially in the middle stages of the
Cantor network. To construct a flexible delay line with maximum delay
2k − 1, one may simply add a flexible delay line with maximum delay
2k−1 − 1 parallel to the (�3

2k�, k)-Cantor network as in the previous
section. Since the number of 2 × 2 switches in the (�3

2k�, k)-Cantor
network is O(k2), recursively expanding such a construction yields a
flexible delay line with maximum delay 2k − 1 that needs O(k3) 2 × 2
switches.

Here we propose a better alternative to solve the problem for pack-
ets with short delay. The idea is to add redundancy to each Benes time
slot interchange so that packets with short delay can bypass the middle
stages. As illustrated in Figure 5.62, we consider a “layered” (m,k)-
Cantor network by inserting a 1× 2 switch before the optical memory
cell at the jth stage for j = 1, 2, . . . , k − 1 and a 2× 1 switch after the
optical memory cell at the jth stage for j = k+ 1, k+ 2, . . . , 2k− 1. In
addition to these, we add another scaled optical memory cell with scal-
ing factor 2j−1 at the jth stage, j = 1, 2, . . . , k−1. For the newly added
optical memory cell at the jth stage, its input link is connected to the
upper output link of the 1×2 switch before the optical memory cell at
the jth stage, and its output link is connected to the upper input link
of the 2× 1 switch after the optical memory cell at the 2k− jth stage.
For a packet with delay between 2j−1−1 and 2j −1, j = 1, 2, . . . , k−1,
it is then routed through the newly added optical memory cell at the
jth stage. This is equivalent to embedding an (m, j)-Cantor network,
j = 1, 2, . . . , k − 1, inside the layered (m,k)-Cantor network. By so
doing, a packet with the delay ranging between 2j−1 − 1 and 2j − 1
can be routed by the embedded (m, j)-Cantor network. This is stated
in the following corollary.

5.8 Priority Queues 369

Corollary 5.7.13. Suppose that every delay line in the layered (m,k)-
Cantor network can be traversed by a packet at most once. If m ≥ 3

2k,
then the layered (m,k)-Cantor network (see Figure 5.62) is a flexible
delay line with maximum delay 2k − 1.

Proof. It suffices to show that a packet with the delay ranging be-
tween 2j−1−1 and 2j−1 can be routed by the embedded (m, j)-Cantor
network. The argument for this is exactly the same as that in the proof
of Theorem 5.7.12.

Note that the number of 2 × 2 switches in the layered (�3
2k�, k)-

Cantor network is still O(k2). This implies that one can construct a
flexible delay line with maximum delay B by using O((logB)2) 2 × 2
switches.

5.8 Priority Queues

Our main objective of this section is the constructions of optical pri-
ority queues. Sarwate and Anantharam [146] considered a feedback
system in [91] (see Figure 5.63). In such a feedback system, there is
an (M + 1) × (M + 1) crossbar switch and M fiber delay lines with
delays di, i = 1, 2, . . . ,M . If M = 2k − 1 for some positive integer k,
di = i for i = 1, . . . , k, and di = 1 for i = k + 1, . . . , 2k − 1, then it
was shown in [146] that such a system can be used for exact emulation
of a priority queue with buffer

∑k
i=1 di. In this section, we provide a

much simpler and shorter proof than that given in [146]. Our proof not
only gives the insights needed to understand why such a construction
works, but also leads to a much general result that recovers the choice
of the delays of the M fiber delay lines in [146] as a special case.

In the following, we define a (discrete-time) priority queue with
buffer B.

Definition 5.8.1. (Priority queue) A priority queue with buffer B
is a network element that has one input link, one control input link,
and two output links (see Figure 5.64). One output link is for departing
packets and the other is for lost packets. When a packet arrives at the
queue, it is associated with a label, called priority. We assume that
there is a total order for the priorities of all the packets. As shown in
Figure 5.64, let c(t) be the state of the control input at time t. When

370 5. Optical packet switches

2� 4� 8�1�

1� 4�2�

4� 2� 1�

2� 4� 8�1�

1� 4�2�

4� 2� 1�

2� 4� 8�1�

1� 4�2�

4� 2� 1�

2� 4� 8�1�

1� 4�2�

4� 2� 1�

2� 4� 8�1�

1� 4�2�

4� 2� 1�

2� 4� 8�1�

1� 4�2�

4� 2� 1�

Fig. 5.62. The layered (6, 4)-Cantor network

5.8 Priority Queues 371

1�

2�

M�

1�

2�

M�

M+1� M+1�

d�1�

d�2�

d�M�

Fig. 5.63. A construction of a priority queue via a single switch and fiber delay
lines.

B�

l�(t)�

d(t)�a(t)�

c(t)�
Priority queue�

Fig. 5.64. A priority queue with buffer B.

372 5. Optical packet switches

c(t) = 1, we say the priority queue is enabled at time t. On the other
hand, the priority queue is disabled at time t if c(t) = 0. Also, let a(t)
be the set of the packet arriving at time t (if any1), d(t) be the set of
the packet departing at time t (if any), �(t) be the set of the lost packet
at time t (if any), and q(t) be the set of packets queued at the priority
queue at time t (at the end of the tth time slot). Then the priority
queue with buffer B satisfies the following five properties:

(P1) Flow conservation: arriving packets from the input link are either
stored in the buffer or transmitted through the two output links, i.e.,

q(t) = q(t− 1) ∪ a(t)\(d(t) ∪ �(t)). (5.170)

(P2) Non-idling: if the control input is enabled, i.e., c(t) = 1, then
there is always a departing packet if there are packets in the buffer
or there is an arriving packet, i.e.,

|d(t)| =

{
1 if c(t) = 1 and |q(t− 1) ∪ a(t)| > 0
0 otherwise

. (5.171)

(P3) Maximum buffer usage: if the control input is not enabled, i.e.,
c(t) = 0, then there is a lost packet only when buffer is full and
there is an arriving packet, i.e.,

|�(t)| =

{
1 if c(t) = 0 and |q(t− 1) ∪ a(t)| > B
0 otherwise

. (5.172)

(P4) Priority departure: if there is a departing packet at time t, the
departing packet is the one with the highest priority among all the
packets in q(t− 1) ∪ a(t).

(P5) Priority loss: if there is a lost packet at time t, the lost packet is
the one with the lowest priority among all the packets in q(t− 1)∪
a(t).

5.8.1 Complementary Priority Queues

To construct a priority queue, one needs to verify the five properties
(P1)–(P5) in Definition 5.8.1. In the following, we introduce a com-
plementary priority queue that reduces these five properties into two
simple properties. As such, it is much easier to verify a construction
of a complementary priority queue.
1 This means that a(t) is an empty set if there is no packet arriving at time t, and

is a singleton otherwise.

5.8 Priority Queues 373

B�

b(t)�

c(t)�

Complementary �
priority queue�

a(t)�

Fig. 5.65. A complementary priority queue.

Definition 5.8.2. (Complementary priority queue) A comple-
mentary priority queue with buffer B is a network element that has
one input link, one control input link, and one output link (see Figure
5.65). As in a priority queue, every packet is associated with a label,
called priority, and there is a total order for the priorities. At time 0,
there are B packets stored in the network element. Unlike a priority
queue, there is always an arriving packet and a departing packet in
every time slot. As shown in Figure 5.65, let c(t) be the state of the
control input, a(t) be the set of the packet arriving at time t, b(t) be
the set of the packet departing at time t, and qc(t) be the set of packets
queued at the complementary priority queue at time t (at the end of
the tth time slot). Then the complementary priority queue with buffer
B satisfies the following two properties:

(C1) Flow conservation: arriving packets from the input link are either
stored in the buffer or transmitted through the output link, i.e.,

qc(t) = qc(t− 1) ∪ a(t)\b(t). (5.173)

(C2) Complementary priority departure: if c(t) = 1, then the departing
packet is the one with the highest priority among all the packets in
qc(t− 1) ∪ a(t). On the other hand, if c(t) = 0, then the departing
packet is the one with the lowest priority among all the packets in
qc(t− 1) ∪ a(t).
Clearly, a complementary priority queue and a priority queue are

closely related. This is further clarified in Proposition 5.8.3 below.

Proposition 5.8.3. As shown in Figure 5.66, a priority queue with
buffer B can be constructed by a concatenation of a complementary
priority queue with buffer B and a 1 × 2 switch.

Proof. The key is to view empty time slots as fictitious packets that
have priorities lower than those of real packets. Moreover, the prior-

374 5. Optical packet switches

B�

c(t)�

Complementary �
priority queue�

a(t)�

l�(t)�

d(t)�

Fig. 5.66. A construction of a priority queue with buffer B via a concatenation of
a complementary priority queue with buffer B and a 1 × 2 switch.

ities among the fictitious packets are decreasing in the order of their
arrival times. As such, we have a total order among all the packets,
including both the real packets and the fictitious packets. To emulate
an empty priority queue at time 0, we can store B fictitious packets
in the complementary priority queue.

Now we consider the following two cases.
Case 1. c(t) = 1:

In this case, we connect the input of the 1 × 2 switch to d(t) in
Figure 5.66. The complementary priority queue selects the packet with
the highest priority among all the packets in qc(t − 1) ∪ a(t), where
qc(t − 1) is the set of packets stored in the complementary priority
queue at the time t−1. If there is a real packet in qc(t−1)∪a(t), then
d(t) contains a real packet as fictitious packets have priorities lower
than those of real packets. Moreover, this packet is the one with the
highest priority. Thus, (P2) and (P4) in Definition 5.8.1 are satisfied.
Case 2. c(t) = 0:

In this case, we connect the input of the 1×2 switch to �(t) in Figure
5.66. The complementary priority queue selects the one with the lowest
priority among all the packets in qc(t− 1)∪ a(t). If there is a fictitious
packet in qc(t−1)∪a(t), then �(t) contains a fictitious packet (an empty
time slot) as fictitious packets have priorities lower than those of real
packets. If there is no fictitious packet in qc(t − 1) ∪ a(t), then �(t)
contains a real packet and this real packet is the one with the lowest
priority. Thus, (P3) and (P5) in Definition 5.8.1 are also satisfied.

5.8 Priority Queues 375

Sorter� Shifter�

d�1�

d�2�

d�M�

Input� Output

Control input�

lowest�

highest�1�

2�

M�

M+1�

1�

2�

M�

M+1�

1�

2�

M�

M+1�

1�

2�

M�

M+1�

Fig. 5.67. A construction of a complementary priority queue with buffer
∑M

i=1
di.

5.8.2 Constructions of Complementary Priority Queues

In Figure 5.67, we show a construction of a complementary priority
queue with buffer

∑M
i=1 di. In our construction, there are two (M +

1) × (M + 1) crossbar switches: a sorter (on the left hand side) and a
shifter (on the right hand side). The key insight of our construction is
based on the following assumption:

(A1) All the packets stored in all the fiber delay lines in Figure 5.67
cannot be either the packet with the highest priority or the packet
with the lowest priority until they appear at the inputs of the
sorter.

If (A1) holds, then the packets that appear at the inputs of the sorter
contain both the packet with the highest priority and the packet with
the lowest priority. The sorter then sorts the packets at the M + 1
inputs in the order of their priorities. By so doing, the first output from
the sorter is the packet with the highest priority and the (M + 1)th

output from the sorter is the packet with the lowest priority.
The (M + 1) × (M + 1) switch on the right hand side is a shifter

that only has two connection patterns. When c(t) = 0, its connection
pattern is realized by the (M + 1) × (M + 1) identity matrix, i.e., the
matrix I = (Iij) with Ii,j = 1 for i = j and Ii,j = 0 for i �= j. As such,
the (M+1)th input of the shifter is connected to the (M+1)th output of

376 5. Optical packet switches

the shifter and the packet with the lowest priority is sent out from the
output link. On the other hand, when c(t) = 1, its connection pattern
is realized by the (M+1)×(M+1) circular-shift matrix, i.e., the matrix
P = (Pij) with Pi,j = 1 for i = (j mod (M + 1)) + 1 and Pi,j = 0
otherwise. As such, the first input of the shifter is connected to the
(M+1)th output of the shifter and the packet with the highest priority
is sent out from the output link. Thus, the construction emulates a
complementary priority queue if (A1) holds.

The M outputs of the shifter, indexed from i = 1, . . . ,M , are con-
nected back to the corresponding M inputs of the sorter via M fiber
delay lines with delays di, i = 1, . . . ,M . For a fiber delay line with
delay d, there are d packets stored in that delay line. As such, there
are

∑M
i=1 di packets stored in the M fiber delay lines. The question is

then how we choose di’s so that the assumption in (A1) holds. This is
answered in Proposition 5.8.4 below.

Proposition 5.8.4. Suppose that (A1) holds at time 0. If 0 < di ≤
min[i,M+1−i] for all i = 1, 2, . . . ,M , then the construction in Figure
5.67 is a complementary priority queue with buffer

∑M
i=1 di.

Proof. It suffices to argue by induction that (A1) holds for all time.
Suppose that (A1) holds up to time t − 1. As such, we have exactly
emulated a complementary priority queue with buffer

∑M
i=1 di up to

time t. For both cases c(t) = 0 and c(t) = 1, we also know that the
priorities of the packets at the M outputs of the shifter, indexed from
1, 2, . . . ,M , are decreasing. Let us consider the packet at the ith output
of the shifter. Call this packet the tagged packet. For the tagged packet,
there are i− 1 packets that have priority higher than its priority and
there are M − i packets that have priority lower than its priority. As
the construction departs a packet in a time slot, the tagged packet
cannot be the packet with the highest priority or the packet with the
lowest priority for the next min[i−1,M − i] time slots. As the delay of
the ith delay line di is less than or equal to min[i,M + 1− i], it follows
that the tagged packet cannot be either the packet with the highest
priority or the packet with the lowest priority until it appears at the
input of the sorter. Thus, the assumption (A1) holds at time t.

We first note that the purpose of having two (M + 1) × (M + 1)
crossbar switches in our construction is for the ease of the presentation
and the proof. In practice, one can combine these two switches into

5.9 Notes 377

one to reduce the hardware cost. Also, note that for M = 2k − 1, the
maximum buffer size that can be achieved by Proposition 5.8.4 is to set
di = i for i = 1, 2, . . . , k, and di = 2k− i for i = k+1, k+2, . . . , 2k−1.
For this, we have buffer size

∑2k−1
i=1 di = k2. And for M = 2k, the

maximum buffer size that can be achieved by Proposition 5.8.4 is to set
di = i for i = 1, 2, . . . , k, and di = 2k+1− i for i = k+1, k+2, . . . , 2k.
For this, we have buffer size

∑2k
i=1 di = k2 + k. One less efficient way,

as originally proposed in [146], is to choose M = 2k− 1 and set di = i
for i = 1, 2, . . . , k, and di = 1 for i = k + 1, k + 2, . . . , 2k − 1, which
gives buffer size

∑k
i=1 di = (k2 + k)/2. As shown in Proposition 5.8.3,

a complementary priority queue (in conjunction with a 1 × 2 switch)
can be used for emulating a priority queue. Proposition 5.8.4 recovers
the result in [146] as a special case. Finally, we note that if one would
like to drop the arriving packet when the buffer is full, one can simply
add a 1×2 switch at the input as discussed for FIFO queues in Section
5.6.

5.9 Notes

The development of optical packet switching via switched delay lines
(SDL) starts from early 90’s. It was first demonstrated by M. J. Karol
[91], that SDL elements can be used as a buffer for a shared-memory
optical packet switch. The buffer in [91] is built by SDL elements
with feedbacks (like the optical memory cell in Section 5.1). However,
no proofs were given for exact emulation of a shared-memory switch.
The use of SDL elements for time slot interchanges in Section 5.2
seems to be introduced by M. J. Marcus [118] (as pointed out by
N. Pippenger [140]). See also [141, 90] for subsequent developments.
Pippenger called such a network a juggling network as packets are
just like balls being thrown by a sequence of jugglers. A huge project
(see [23, 24]), called CORD (contention resolution by delay lines), was
started by I. Chlamtac et al in Boston University. Once again, no
formal proofs for exact emulation of an output-buffered switch (or
multiplexer) were given in [23, 24].

It seems that J. T. Tsai and R. L. Cruz [158, 55] are the first to
construct an exact 2-to-1 First In First Out (FIFO) multiplexer with
SDL elements. The multiplexer in [158, 55], named COD (Cascaded
Optical Delay-Lines), only requires local information for the control
of the connection patterns of 2 × 2 switches. However, the number of

378 5. Optical packet switches

2 × 2 switches in such an architecture is proportional to the buffer
size. A more efficient design, called Logarithm Delay-Line Switch, is
proposed by D. K. Hunter, M. C. Chia and I. Andonovic in [83].
The 2-to-1 FIFO multiplexer in [83] turns out to be the recursively
expanded version of the 2-to-1 FIFO multiplexer presented in Section
5.3. As addressed in Section 5.3, the number of 2 × 2 switches needed
for such an architecture is only O(logB), where B is the buffer size.
In [82], SLOB (Switch with Large Optical Buffers) is proposed for the
extension of optical buffered switches with N input/output ports (N ≥
2). Such an architecture also uses output buffer emulation and relies
on a special hardware, called a primitive switching element (PSE).
Each PSE itself is an N × 2N output-buffered switch with buffer size
N − 1. Unlike the Logarithm Delay-Line Switch, the routing path of
a packet in SLOB cannot be uniquely determined upon its arrival.
This makes control of the PSEs much more difficult. In fact, a small
control message must be transmitted electronically for each packet,
representing the remaining delay over the remaining PSE’s. Finally,
we note that a “packing” and “scheduling” optical switch that uses
the framed Birkhoff-von Neumann decomposition was introduced by
E. A. Varvarigos [162].

Recursive constructions of buffered multiplexers in Section 5.3 and
Section 5.4 were proved by C.-S. Chang, D.-S. Lee and C.-K. Tu in
[37]. Our development of FIFO multiplexers with variable length bursts
in Section 5.5 follows that in [38]. The construction of optical FIFO
queues in Section 5.6 was originally proposed by C.-S. Chang, Y.-T.
Chen, and D.-S. Lee in [32]. The connection of the classical switch-
ing theory and the construction of optical queues in Section 5.7 was
established in the paper by C.-S. Chang, Y.-T. Chen, J. Cheng, and
D.-S. Lee [31]. The construction of optical priority queues in Section
5.8 was first proposed by Sarwate and Anantharam [146]. The sim-
ple proof for such a construction in Section 5.8 was taken from the
paper by H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee [46]. For
additional references of optical packet switches, we refer to the review
papers [81, 80, 169].

We note that optical packet switches are not as popular as opti-
cal crossconnects. Optical crossconnects are based on the technology
of wavelength division multiplexing (WDM). In fact, up to the time
of writing the book, most existing optical networks are optical cross-
connects. There are several reasons for this: (i) it is not clear that

Problems 379

people need the granularity of packet switching at the level of optical
networks, (ii) WDM (and Densed WDM) is a more economical technol-
ogy than optical packet switching with SDL, (iii) it is technologically
difficult to build optical buffers (even with the SDL elements), and
(iv) developing a theory for optical switches with SDL elements is in
general very challenging as it is switching (and scheduling) both in
time and space. However, recent advances in optical technologies have
demonstrated compact optical buffers using slow light in semiconduc-
tor nanostructures (see e.g., [42]). In the future, the construction of a
scaled optical memory cell may not be as bulky as one might expect.

Problems

2�

1�

1�

1st�

2nd�

3rd�

4� 3� 2� 1�8� 7� 6� 5�12� 11� 10� 9�14� 13�15� t�

4� 3� 2� 1�8� 7� 6� 5�11� 10� 9� t�

4� 3� 2� 1�8� 7� 6� 5�9� t�

Fig. 5.68. A 4 × 4 Benes time slot interchange

1. In Figure 5.68, we show a 4× 4 Benes time slot interchange. Con-
sider the following permutation

π =

(
1 2 3 4
4 3 2 1

)
.

Find all the connection patterns in the 2 × 2 switches that realize
π in Figure 5.68.

2. As in Example 5.2.2, find a feasible set of connection patterns in
the 8×8 Benes time slot interchange for the following permutation
matrix:

380 5. Optical packet switches

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3. Instead of designing sorters in space as addressed in Chapter 2,
one can also design sorters in time. It is shown in Section 5.2.3
that a memory cell can be used for a 2 × 2 time slot interchange.
Assume that a memory cell is also able to read and compare the
“output addresses” of two incoming packets to the 2× 2 switch in
the memory cell. Show that one can use a concatenation of log2N
(scaled) memory cells to design an N ×N bitonic sorter with SDL
elements.

4. Continue from the previous problem. Show that one can use a con-
catenation of 1

2 log2N(log2N + 1) (scaled) memory cells to design
an N ×N Batcher sorting network with SDL elements.

5. Continue from the previous problem. Show that one can use a con-
catenation of 1

2 log2N(log2N + 3) (scaled) memory cells to design
an N ×N Batcher-banyan network with SDL elements.

6. Use the optical Benes time slot interchange in Section 5.2.3 to
design the Cantor network in Problem 20 of Chapter 2 with SDL
elements.

1�

a (t)�1�

a (t)�0�

b (t)�11�

b (t)�10�

2�

b (t)�20�

b (t)�21�

d(t)�

l�(t)�4�

b (t)�30�

b (t)�31�

Fig. 5.69. A 2-to-1 multiplexer with B = 7.

7. In Figure 5.69, we show the construction for a 2-to-1 SDL mul-
tiplexer with buffer 7. Determine the connection patterns of the
three switches at time t by the state variables b11(t − 1), b21(t −
1), b21(t− 2), b31(t− 1), b31(t− 2), b31(t− 3) and b31(t− 4).

8. Continue from the previous problem. Note that the state of the
network element at time t − 1 is (b11(t − 1), q1(t − 1), q2(t − 1)).

Problems 381

(0,0,0)�

(1,0,0)� (0,1,0)�

(1,0,1)� (0,1,1)�

2/X�
0/B�

2/X� 0/B�

1/X�

1/B�
2/B� 0/X�

1/X�

1/B�

(1,1,1)� (0,2,1)�

(1,1,2)� (0,2,2)�

2/X�
0/B�

2/X� 0/B�

1/X�

1/B�
2/B� 0/X�

1/X�

1/B�

(1,2,2)� (0,3,2)�

(1,2,3)� (0,3,3)�

2/X�
0/B�

2/X� 0/B�

1/X�

1/B�
2/B�

1/X�

1/B�

(1,3,3)�1/X�

0/X�
2/B�

0/X�
2/B�

0/X�
2/B�

0/X�
0/X�

2/B�

1/B�

2/X�

0/B�

Fig. 5.70. The state transition diagram for B = 7.

382 5. Optical packet switches

where

q1(t− 1) = b21(t− 2) + b31(t− 4) + b31(t− 2)

and
q2(t− 1) = b21(t− 1) + b31(t− 3) + b31(t− 1).

Verify that the 2-to-1 multiplexer with buffer 7 has the state tran-
sition diagram in Figure 5.70.

9. Continue from the previous problem. Suppose that a0(t) = a1(t) =
1 for t = 1, 2, . . . , 7, 8 and a0(t) = a1(t) = 0 from t = 9 onward.
Trace the routes (with respect to time) for every packet that arrives
at the buffered multiplexer.

10. Verify (5.47) in Example 5.4.7.

a (t)�0�

a (t)�1�

a (t)�2�

1�

2�

b (t)�0� c (t)�0�

l� (t)�1�

d(t)�

l� (t)�2�

Fig. 5.71. A 3-to-1 delayed-loss multiplexer with buffer 2

11. In Figure 5.71, we show a 3-to-1 delayed-loss multiplexer with
buffer 2. Suppose that the arrivals are described in Table 5.1.

time t 1 2 3 4 5
a0(t) 1 1 1 0 0
a1(t) 1 1 1 0 0
a2(t) 0 1 1 0 0

Table 5.1. Arrivals to the 3-to-1 delayed-loss multiplexer with buffer 2

a) Find the connection patterns for the 3×3 switch (in the middle
of Figure 5.71) for t = 1, 2, 3.

b) Find d(t), �1(t) and �2(t) for t = 1, 2, 3, 4, 5.
12. In Figure 5.72, we consider multiplexing variable length bursts over

3 links, i.e., N = 3. As shown in Figure 5.72, there are two bursts
coming at time 1 and one burst coming at time 2. To break the
tie, we choose the burst from the link b1(t) to be the first burst. As
shown in this figure, now we have (τ0, �0) = (1, 3), (τ1, �1) = (1, 3)
and (τ2, �2) = (2, 3). Assume that the buffer in the multiplexer is

Problems 383

B�

l� (t)�
1�

l� (t)�
2�

a (t)�0�

a (t)�1�

d (t)�1�

t�

a (t)�
2�

0�

1�2�0�1�2� 1�2� 0�

t�t+6�

Cell Scheduling �

Block�

Multiplexer �

for fixed size �

cells �

0�1�2�

0�

1�2�

b (t)�0�

 b (t)�1�

t�t+6�

b (t)�
2�

1st�

2nd�

3rd�0�

1�2�

Fig. 5.72. Cell scheduling for variable length bursts

empty at time 1 and the buffer B is so large that no cells of these
three bursts are lost. Initially, set V0(1) = V1(1) = V2(1) = 0.
Thus, V (τ−0) = V (1) = 0.
a) Find V (τ+

0).
b) Find V (τ+

1).
c) Find V (τ−2).

13. Design an N × N output buffered switch using N -to-1 buffered
SDL multiplexers in Section 5.4. Compute the complexity of your
design in terms of the number of 2 × 2 switches. (Hint: need N
N -to-1 buffered multiplexers and N 1 ×N switches.)

14. Design anN×N output buffered switch using non-overtaking delay
lines. Compute the complexity of your design in terms of the num-
ber of 2 × 2 switches. (Hint: use the crosspoint buffer architecture
in Section 2.6.1.)

15. Design an N ×N output buffered switch using flexible delay lines.
Compute the complexity of your design in terms of the number of
2×2 switches. (Hint: use the parallel buffer architecture in Section
2.6.2).

16. Design an optical Knockout switch (see Section 2.7.3) using SDL
elements. (Hint: the fast Knockout concentrator/sorter in Figure
2.45 or the Knockout concentrator/sorter in Figure 2.51 can be
built with SDL elements)

17. Consider an N × N load balanced Birkhoff-von Neumann switch
with one-stage buffering in Section 3.1. For each central buffer,
there are N Virtual Output Queues (VOQs) with each VOQ for
each output. In Figure 5.73, there is an SDL element that is a
concatenation of 1 × N switch and a scaled N -to-1 (delayed-loss)
multiplexer with buffer B and scaling factor N . The ith output
of the 1 × N switch is connected to a delay line with delay i,

384 5. Optical packet switches

1�

2�

N-1�

a (t)�0�

c (t)�0�

c (t)�
N-1�

B�

l� (t)�1�

d(t)�

l� (t)�2�

l� (t)�
N-1�

Scale=N�

Fig. 5.73. A SDL construction of N VOQs in a central buffer of the load balanced
Birkhoff von Neumann switch with one stage buffering

i = 0, 1, 2 . . . , N − 1. Find the operation rule for the 1 ×N switch
so that the SDL element in Figure 5.73 can be operated as the N
VOQs in a central buffer of an N ×N load balanced Birkhoff-von
Neumann switch with one-stage buffering. (Hint: the connection
patterns of the two switch fabrics in the load balanced Birkhoff-
von Neumann switch are periodic with the period N . If a packet
is destined for a particular output port, it should be routed to the
appropriate fiber delay line.)

18. Continue from the previous problem. Use the VOQs in the previous
problem to design an N ×N load balanced Birkhoff-von Neumann
switch with one-stage buffering via SDL elements. Compare this
with your design for the corresponding output-buffered switch in
Problem 13. Without the uniform cost assumption for memory, is
the load balanced Birkhoff-von Neumann switch still a good switch
architecture?

19. The 4×4 time slot interchange in Figure 5.68 can be operated as a
pre-FIFO queue with buffer 3. In Table 5.2, we consider the input
pattern a(t) and the control input pattern c(t) for the pre-FIFO
queue with buffer 3 for t = 1, 2, . . . , 8. Find the connection patterns
for the three 2 × 2 switches in Figure 5.68 for t = 1, 2, . . . , 8.

Problems 385

time t 1 2 3 4 5 6 7 8
a(t) 1 1 1 0 1 0 0 0
c(t) 0 0 0 1 0 1 1 1

1st stage (Tail)
2nd stage (Central)
3rd stage (Head)

Table 5.2. Arrivals for the FIFO queue with buffer 3

20. In Figure 5.58, we have shown a non-overtaking delay line with
maximum delay 2k − 1. Note that there are two scaled optical
memory cells with scaling factor 2k−1. However, as the maximum
delay is 2k − 1, it is impossible for a packet to route through the
delay lines of these two scaled optical memory cells. Thus, we only
need one of them!!! This implies that the 4×4 time slot interchange
in Figure 5.68 can be operated as a non-overtaking delay line with
maximum delay 3. In Table 5.3 (see also Table 5.4 for another
representation), we consider the arrival times and departure times
of four packets for the non-overtaking delay line with maximum
delay 3.
a) Let τ c(n) be the departure time of the nth packet from the

linear compressor with maximum delay 3. Find τ c(n) for n =
1, 2, 3 and 4.

b) Find the connection patters for the three 2 × 2 switches for
t = 1, 2, . . . , 8.

Packets 1 2 3 4
τa(n) 1 3 4 6

τd(n) 3 4 6 8
τ c(n)

Table 5.3. Arrivals and departures for the non-overtaking delay line with maximum
delay 3

21. In Figure 5.74, we show a self-routing linear compressor with max-
imum delay 7. In Table 5.5 (see also Table 5.6 for another represen-
tation), we consider the arrival times and departure times of three
packets for the linear compressor with maximum delay 7. Find the
connection patters for the four 2 × 2 switches in Figure 5.74 for
t = 1, 2, . . . , 7.

386 5. Optical packet switches

time t 1 2 3 4 5 6 7 8
a(t) 1 0 1 1 0 1 0 0
d(t) 0 0 1 1 0 1 0 1

1st stage
2nd stage
3rd stage

Table 5.4. Arrivals and departures for the non-overtaking delay lines with maxi-
mum delay 3

1st�

1�

2nd�

1�

3rd�

2�

4th�

3�

Fig. 5.74. A construction of a self-routing linear compressor with maximum delay
7 by a concatenation of optical memory cells

Packets 1 2 3
τa(n) 1 4 6

τd(n) 5 6 7

Table 5.5. Arrivals and departures for the linear compressor with maximum delay
7

time t 1 2 3 4 5 6 7
a(t) 1 0 0 1 0 1 0
d(t) 0 0 0 0 1 1 1

1st stage
2nd stage
3rd stage
4rd stage

Table 5.6. Arrivals and departures for the linear compressor with maximum delay
7

Problems 387

22. Show that a concatenation of memory cells (see Figure 5.38) can
be used as an optical random access memory as in Figure 5.1.

23. Consider an N -to-1 priority queue with buffer B. For such a queue,
there are N input links, one control input c(t), and N + 1 output
links. The N+1 output links consist of one output link for depart-
ing packets and N output links for lost packets. The definition of
an N -to-1 priority queue is basically the same as that in Definition
5.8.1. An N -to-1 priority queue also satisfies the flow conservation
property in (P1), the non-idling property in (P2) and the prior-
ity departure property in (P4). The key difference is that there
might be multiple packet losses in a time slot as there are mul-
tiple packet arrivals in a time slot. For this, one needs to modify
the maximum buffer usage property in (P3) and the priority loss
property in (P5). Let c(t) be the state of the control input, q(t) be
the set of packets stored in the buffer at time t and a(t) be the set
of packets arriving at time t. If |q(t − 1) ∪ a(t)| − c(t) > B, then
there are |q(t − 1) ∪ a(t)| − c(t) − B lost packets at time t. When
there are � lost packets in a time slot (for some � ≥ 1), these � lost
packets are selected from the � lowest priority packets among the
packets in q(t−1)∪a(t). Show that the construction in Figure 5.75
can be operated as an N -to-1 priority queue (Hint: all the packets
stored in all the fiber delay lines in Figure 5.75 cannot be either
the packet with the highest priority or one of the N lowest priority
packets until they appear at the inputs of the sorter. See [46] for
a detailed proof).

24. (C-transform [47]) Consider an M-vector DM = (d1, d2, . . . , dM)
with di ∈ N, i = 1, 2, . . . ,M . Define a mapping C : N ∪ {0}
→
{0, 1}M as follows:

C(x) =
(
I1(x), I2(x), . . . , IM (x)

)
, (5.174)

where

IM (x) =

{
1, if x ≥ dM ,
0, otherwise,

(5.175)

and for i = M − 1,M − 2, . . . , 1, Ii(x) is given recursively by

Ii(x) =

{
1, if x−∑M

k=i+1 Ik(x) · dk ≥ di,
0, otherwise.

(5.176)

Then C(x) is called the C-transform of x with respect to DM . For
the 5-vector

388 5. Optical packet switches

Sorter�

Shifter�

d�1�

d�2�

d�M�

N input links�
Departure Control input�

1�

2�

M�

1�

2�

M�

1�

2�

M�

1�

2�

M�

M+1� M+1�M+1� M+1�

M+N�M+N�

M+2�

N loss links�

1�

2�

N�

1�

N�

Fig. 5.75. A construction of an N-to-1 priority queue with buffer
∑M

i=1
di.

D5 = (1, 2, 3, 6, 10),

find the C-transform of x for 0 ≤ x ≤ 22.
25. (C-transform as a projection) Continue from the previous problem.

The inverse mapping C−1 : {0, 1}M
→ N∪{0} is defined as follows:

C−1
(
C(x)

)
=

M∑
k=1

Ik(x) · dk. (5.177)

The mapping C−1
(
C(x)

)
is called the inverse C-transform. Suppose

that x, y ∈ N ∪ {0} and 1 ≤ i ≤M . Show the following properties
for the C-transform.
(i) 0 ≤∑M

k=i Ik(x) · dk ≤ C−1(C(x)) ≤ x.
(ii) (Uniqueness)

∑M
k=i Ik(x) · dk =

∑M
k=i Ik(y) · dk if and only if

Ik(x) = Ik(y), k = i, i + 1, . . . ,M .
(iii) (Monotonicity) If 0 ≤ x ≤ y, then

∑M
k=i Ik(x)·dk ≤∑M

k=i Ik(y)·
dk.

(iv) If x =
∑M

k=i Ik(y) · dk for some y, then x =
∑M

k=i Ik(x) · dk.
26. (Complete decomposition) Continue from the previous problem.

Assume that d1 = 1, and 1 ≤ di+1 ≤∑i
k=1 dk +1, i = 1, 2, . . . ,M−

1. Show that

Problems 389

x = C−1
(
C(x)

)
=

M∑
k=1

Ik(x) · dk, for all 0 ≤ x ≤
M∑

k=1

dk.

DepartureArrival

Loss

d1

d2

dM-1

dM

l(t)

d(t)
a0(t)

a1(t)

Fig. 5.76. A 2-to-1 multiplexer with buffer
∑M

i=1
di.

27. (2-to-1 multiplexer [47]) In Figure 5.76, we show a construction of
a 2-to-1 multiplexer by a single switch with feedback. The feedback
system consists of an (M+2)×(M+2) optical crossbar switch and
M fiber delay lines with delays d1, d2, . . . , dM . The (M+2)×(M+
2) optical crossbar switch is capable of realizing all the (M + 2)!
permutations between its inputs and outputs. Among the M + 2
outputs of the crossbar switch, two of them are used as the output
port and the loss port of the 2-to-1 multiplexer. The remaining
M outputs are connected to the M fiber delay lines with delays
d1, d2, . . . , dM , respectively. Similarly, among the M + 2 inputs of
the crossbar switch, two of them are used as the two inputs of the
2-to-1 multiplexer. The remaining M inputs are connected to the
M fiber delay lines that are fed back from the outputs. As the
delay of a packet is known upon its arrival, packet delay can be
used for routing. Suppose that the delay of a packet that arrives at
time t is x. One first finds out a specific decomposition of x (using

390 5. Optical packet switches

the C-transform of x in Problem 24) such that

x = di1 + di2 + · · · + dik ,

with 1 ≤ i1 < i2 < · · · < ik ≤ M . Then the packet arriving
at time t is routed to the delay line with delay di1 at time t, to
the delay line with delay di2 at time t + di1 , . . ., and to the delay
line with delay dik at time t +

∑k−1
�=1 di� . Assume that d1 = 1,

and di ≤ di+1 ≤ 2di, i = 1, 2, . . . ,M − 1. Show that there is no
collision at any fiber delay line at any time and the construction
indeed achieves the exact emulation of a 2-to-1 FIFO multiplexer
with buffer

∑M
i=1 di.

References

1. D. P. Agrawal, “Graph theoretical analysis and design of multistage intercon-
nection networks,” IEEE Transactions on Computers, Vol. 32, pp. 637-648,
1983.

2. R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “Performance
bounds for flow control protocols,” April, 1998. Available from
http://www.ece.wisc.edu/~agrawal.

3. H. Ahmadi and W. E. Denzel, “A survey of modern high-performance switching
techniques,” IEEE Journal of Selected Areas in Communications, Vol 7. pp.
1091-1103, 1989.

4. M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi and F. Neri, “On the
throughput of input-queued cell-based switches with multicast traffic,” Proceed-
ings of IEEE INFOCOM, 2001, pp. 1664-1672.

5. M. Ajtai, J. Komlos, and E. Szemeredi, “An O(n log n) sorting network,” Pro-
ceedings of the 15th ACM Symposium on Theory of Computing, pp. 1-9, 1983.

6. T. Anderson, S. Owicki, J. Saxes and C. Thacker, “High speed switch scheduling
for local area networks,” ACM Trans. on Computer Systems, Vol. 11, pp. 319-
352, 1993.

7. M. Andrews and M. Vojnovic, “Scheduling reserved traffic in input-queued
switches: new delay bounds via probabilistic techniques,” Proceedings of IEEE
INFOCOM, 2003.

8. M. Andrews and L. Zhang, “Achieving stability in networks of input-queued
switches,” Proceedings of IEEE INFOCOM, 2001.

9. M. Avriel. Nonlinear Programming: Analysis and Methods, Prentice-Hall, 1976.
10. D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell and J. McManus, “Require-

ments for Traffic Engineering Over MPLS,” Informational, RFC 2702, Septem-
ber, 1999.

11. F. Baccelli and P. Bremaud. Elements of Queueing Theory. New York: Springer-
Verlag, 1994.

12. L. A. Bassalygo and M. S. Pinsker, “Complexity of optimal non-blocking
switching networks without rearrangement,” Problems of Information Trans-
lations, New York, Plenum, Vol. 9, pp. 64-66, 1974.

13. K. E. Batcher, “Sorting networks and their applications,” Proc. 1968 Spring
Joint Comput. Conf., Vol. 32, pp. 307-314, 1968.

14. V. E. Benes. Mathematical Theory of Connecting Networks and Telephone Traf-
fic. New York: Academic Press, 1965.

15. C. Berge, The Theory of Graphs and Its Applications (translated by A. Doig).
New York: Wiely, 1962.

16. J. C. Bermond, J. M. Fourneau, and A. Jean-Marie, “Equivalence of multistage
interconnection networks,” Information Processing Letters, Vol. 26, pp. 45-50,
1987.

392 References

17. G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucumán
Rev. Ser. A, Vol. 5, pp. 147-151, 1946.

18. R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn, “Effective En-
velopes: Statistical Bounds on Multiplexed Traffic in Packet Networks,” Pro-
ceedings of IEEE INFOCOM, 2000, Vol. 3, pp. 1223-1232, Tel Aviv, Israel.

19. J. Bucklew. Large Deviation Techniques in Decision, Simulation and Estima-
tion. New York, NY: J. Wiley & Sons, Inc., 1990.

20. F. Callegati, “Approximate modeling of optical buffers for variable length pack-
ets,” Photonic Network Communications, Vol. 3, pp. 383-390, 2001.

21. D. G. Cantor, “On nonblocking switching networks,” Networks, Vol. 1, pp.
367-377, 1971.

22. I. Chlamtac and A. Fumagalli, “QUADRO-star: High performane optical WDM
star networks,” Proceedings of IEEE GLOBAECOM’91, Phoenix, AZ, Dec.
1991.

23. I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson, P. Pog-
giolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong, R. T. Hofmeister,
C. L. Lu, A. Mekkittikul, D. J. M. Sabido IX, C. J. Suh and E. W. M. Wong,
“Cord: contention resolution by delay lines,” IEEE Journal on Selected Areas
in Communications, Vol. 14, pp. 1014-1029, 1996.

24. I. Chlamtac and A. Fumagalli, and C.-J. Suh, “Multibuffer delay line archi-
tectures for efficient contention resolution in optical switching nodes,” IEEE
Transactions on Communications, Vol. 48, pp. 2089-2098, 2000.

25. C.-S. Chang, “Stability, queue length and delay of deterministic and stochastic
queueing networks,” IEEE Transactions on Automatic Control, Vol.39, pp. 913-
931, 1994.

26. C.-S. Chang, “On deterministic traffic regulation and service guarantees: a
systematic approach by filtering,” IEEE Transactions on Information Theory,
Vol. 44, pp. 1097-1110, 1998.

27. C.-S. Chang. Performance Guarantees in Communication Networks. Springer-
verlag: London, 2000.

28. C.-S. Chang, W.-J. Chen and H.-Y. Huang, “On service guarantees for input
buffered crossbar switches: a capacity decomposition approach by Birkhoff and
von Neumann,” Proceedings of IEEE IWQoS, 1999, pp. 79-86, London, U.K.

29. C.-S. Chang, W.-J. Chen and H.-Y. Huang, “Birkhoff-von Neumann input
buffered crossbar switches,” Proceedings of IEEE INFOCOM, 2000, pp. 1614-
1623, Tel Aviv, Israel.

30. C.-S. Chang, W.-J. Chen and H.-Y. Huang, “Birkhoff-von Neumann input-
buffered crossbar switches for guaranteed-rate services,” IEEE Transactions on
Communications, vol. 49, issue 7, pp. 1145-1147, July 2001.

31. C.-S. Chang, Y.-T. Chen, J. Cheng, and D.-S. Lee, ”Multistage constructions
of linear compressors, non-overtaking delay lines, and flexible delay lines,” Pro-
ceedings of IEEE INFOCOM, 2006.

32. C.-S. Chang, Y.-T. Chen, and D.-S. Lee, ”Constructions of optical FIFO
queues,” joint special issue of IEEE Transactions on Information Theory and
IEEE/ACM Transactions on Networking, Vol. 52, No. 6, p. 2838-2843, June
2006.

33. C.-S. Chang and D.-S. Lee, “Quasi-circuit switching and quasi-circuit
switches,” unpublished manuscript.

34. C.-S. Chang, D.-S. Lee and Y.-S. Jou, “Load Balanced Birkhoff-von Neumann
Switches, Part I: One-stage Buffering,” Computer Communications, Vol. 25, pp.
611-622, 2002.

References 393

35. C.-S. Chang, D.-S. Lee and C.-M. Lien, “Load Balanced Birkhoff-von Neumann
Switches, Part II: Multi-stage Buffering,” Computer Communications, Vol. 25,
pp. 623-634, 2002.

36. C.-S. Chang, D.-S. Lee, and Y.-J. Shih, “mailbox switch: a scalable two-stage
switch architecture for conflict resolution of ordered packets,” Proceedings of
IEEE INFOCOM, 2004.

37. C.-S. Chang, D.-S. Lee and C.-K. Tu, “Recursive construction of FIFO optical
multiplexers with switched delay lines,” IEEE Transactions on Information
Theory, Dec. 2004.

38. C.-S. Chang, D.-S. Lee and C.-K. Tu, “Using switched delay lines for exact
emulation of FIFO multiplexers with variable length bursts,” IEEE Journal
on Selected Areas in Communications, Vol. 24, No. 4, p. 108-117, April 2006.
conference version presented in Proceedings of IEEE INFOCOM, 2003.

39. C.-S. Chang, D.-S. Lee, and C.-L. Yu, “Generalization of the Pollaczek-
Khinchin formula for throughput analysis of input-buffered switches,” Proceed-
ings of IEEE INFOCOM, 2005.

40. C.-S. Chang, D.-S. Lee, and C.-Y. Yue, “Providing guaranteed rate services
in the load balanced Birkhoff-von Neumann switches,” IEEE Transactions on
Networking, Vol. 14, No. 3, p. 644-656, June 2006. conference version presented
in Proceedings of IEEE INFOCOM, 2003.

41. C.-S. Chang and H.-J. Wang, “Large deviations for large capacity loss networks
with fixed routing and polyhedral admission sets,” Discrete Event Dynamic
Systems, Vol. 7, pp. 391-418, 1997.

42. C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical
buffer using slow light in semiconductor nanostructures,” Proceedings of IEEE,
Vol. 91, No. 11, pp. 1884-1897, 2003.

43. H. J. Chao, C. H. Lam and E. Oki. Broadband Packet Switching Technologies:
A Practical Guide to ATM Switches and IP Routers. John Wiley & Sons, Inc.,
2001.

44. H. J. Chao, J. Song, N. S. Artan, G. Hu, and S. Jiang, “Byte-focal: a practical
load-balanced switch,” preprint.

45. A. Charny, P. Krishna, N. Patel and R. Simcoe, “Algorithms for providing
bandwidth and delay guarantees in input-buffered crossbars with speedup,”
IEEE IWQoS’98, pp. 235-244, Napa, California, 1998.

46. H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee, ”A simple proof for the
constructions of optical priority queues,” QUEUEING SYSTEMS: Theory and
Applications, Vol. 56, p. 73-77, June 2007.

47. C.-C. Chou, C.-S. Chang, D.-S. Lee, and J. Cheng, ”A necessary and sufficient
condition for the construction of 2-to-1 optical FIFO multiplexers by a sin-
gle crossbar switch and fiber delay lines,” IEEE Transactions on Information
Theory, Vol. 52, No. 10, pp. 4519–4531, October 2006.

48. G. L. Choudhury and W. Whitt, “Long-tail buffer-content distributions in
broadband networks,” Performance Evaluation, Vol. 30, pp. 177-190, 1997.

49. Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeabil-
ity, Martingales. New York: Springer-Verlag, 1988.

50. S.-T. Chuang, A. Goel, N. McKeown and B. Prabhakar, “Matching output
queueing with a combined input output queued switch,” Proceedings of IEEE
INFOCOM, 1999, pp. 1169-1178, New York.

51. C. Clos, “A study of nonblocking switching networks,” BSTJ, Vol. 32, pp. 406-
424, 1953.

52. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York:
Wiley & Sons, 1991.

394 References

53. R. L. Cruz, “A calculus for network delay, Part I: Network elements in isola-
tion,” IEEE Tran. Inform. Theory, Vol. 37, pp. 114-131, 1991.

54. R. L. Cruz, “A calculus for network delay, Part II: Network analysis,” IEEE
Transactions on Information Theory, Vol. 37, pp. 132-141, 1991.

55. R. L. Cruz and J. T. Tsai, “COD: alternative architectures for high speed
packet switching,” IEEE/ACM Transactions on Networking, Vol. 4, pp. 11-20,
February 1996.

56. J. Dai and B. Prabhakar, “The throughput of data switches with and without
speedup,” Proceedings of IEEE INFOCOM, 2000, pp. 556-564, Tel Aviv, Isreal.

57. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications.
Boston: Jones and Barlett Publishers, 1992.

58. A. Demers, S. Keshav, and S. Shenkar, “Analysis and simulation of a fair queue-
ing algorithm,” Proceedings of SIGCOMM, 1989, pp. 1-12, Austin, TX.

59. A. M. Duguid. Structural properties of switching networks. Progr. Rep. BTL-7,
Brown University, 1959.

60. L. Dulmage and I. Halperin, “On a theorem of Frobenius-König and J. von
Neumann’s game of hide and seek, Trans. Roy. Soc. Canada III(3), Vol. 49, pp.
23-29, 1955.

61. R. S. Ellis. Entropy, Large Deviations, and Statistical Mechanics. New York:
Spinger-Verlag, 1985.

62. A.I. Elwalid and D. Mitra, “Effective bandwidth of general Markovian traffic
sources and admission control of high speed networks,” IEEE/ACM Transac-
tions on Networking, Vol. 1, pp. 329-343, 1993.

63. A. Elwalid, D. Mitra and R. Wentworth, “A new approach for allocating buffers
and bandwidth to heterogeneous, regulated traffic in an ATM node,” IEEE
Journal on Selected Areas in Communications, Vol. 13, pp. 1115-1127, 1995.

64. O. Gabber and Z. Galil, “Explicit construction of linear size superconcentra-
tors,” J. Comput. Syst. Sci., Vol. 22, pp. 407-420, 1981.

65. J. Gärtner, “On large deviations from invariant measure,” Theory Probab.
Appl., Vol. 22, pp. 24-39, 1977.

66. P. Gazdzicki, I. Lambadaris, and R. R. Mazumdar, “Blocking probabilities for
large multirate Erlang loss systems,” Adv. Appl. Probab., Vol. 25, pp. 997–1009,
1993.

67. S. J. Golestani, “Congestion-free communication in high speed packet net-
works,” IEEE Transactions on Communications, Vol. 39, pp. 1802-1812, 1991.

68. S. J. Golestani, “Duration-limited statistical multiplexing of delay sensitive
traffic in packet networks,” Proceedings of IEEE INFOCOM, 1991, pp. 323-
332.

69. S. J. Golestani, “Network delay analysis of a class of fair queueing algorithms,”
IEEE Journal on Selected Areas of Communications, Vol. 13, pp. 1057-1076,
1995.

70. P. Gupta, S. Lin and N. McKeown, “Routing lookups in hardware at memory
access speeds,” Proceedings of IEEE INFOCOM, 1998.

71. P. Hall, “Distinct representatives of subsets,” J. London Math. Soc., Vol. 10,
pp. 26-30, 1932.

72. R. Händel, M. N. Huber, S. Schröder. ATM Networks: Concepts, Protocols,
Applications. Addison-Wesley Publishers Ltd., 1994.

73. A. Huang and S. Knauer, “Starlite: a wideband digital switch,” Proc. Globecom,
1984.

74. N.-F. Huang and S. M. Zhao, “A fast IP routing lookup scheme for gugabit
switch routers,” IEEE Journal on Selected Areas in Communications, pp. 1093-
1104, 1999.

References 395

75. J. Y. Hui, “Resource allocation for broadband networks,” IEEE Select. Areas
Commun., Vol. 6, pp. 1598-1608, 1988.

76. J. Y. Hui. Switching and Traffic Theory for Integrated Broadband Networks,
Boston: Kluwer Academic Publishers, 1990.

77. J. Y. Hui and E. Arthurs, “A broadband packet switch for integrated trans-
port,” IEEE Journal on Selected Areas of Communications, Vol. 5, 1987.

78. J. Y. Hui and T. Renner, “Queueing strategies for multicast packet switching,”
IEEE GLOBECOM’90, Vol. 3, pp. 1431-1437, 1990.

79. A. Hung, G. Kesidis and N. McKeown, “ATM input-buffered switches with
guaranteed-rate property,” Proc. IEEE ISCC’98, Athens, pp. 331-335, 1998.

80. D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet switch-
ing,” IEEE Communication Magazine, Vol. 38, pp. 116-122, 2000.

81. D. K. Hunter, M. C. Chia and I. Andonovic, “Buffering in optical packet
switches,” IEEE Journal of Lightwave Technology, Vol. 16, pp. 2081-2094, 1998.

82. D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen and I. Andonovic,
“SLOB: a switch with large optical buffers for packet switching,” IEEE Journal
of Lightwave Technology, Vol. 16, pp. 1725-1736, 1998.

83. D. K. Hunter, D. Cotter, R. B. Ahmad, D. Cornwell, T. H. Gilfedder, P. J. Legg
and I. Andonovic, “2×2 buffered switch fabrics for traffic routing, merging and
shaping in photonic cell networks,” IEEE Journal of Lightwave Technology, Vol.
15, pp. 86-101, 1997.

84. F. K. Hwang. The Mathematical Theory of Nonblocking Switching Networks,
Singapore: World Scientific Publishing Co., 1998

85. T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE
Trans. Commun., Vol. 27, pp. 1449-1455, 1979.

86. S. Iyer, A. Awadallah and N. McKeown, “Analysis of a packet switch with
memories running at slower than line speed,” Proceedings of IEEE INFOCOM,
2000.

87. S. Iyer and N. McKeown, “Making parallel packet switch practical,” Proceedings
of IEEE INFOCOM, 2001, Anchorage, Alaska, U.S.A.

88. J.-J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: a novel algorithm
for stable scheduling in load-balanced switches,” Technical Report, University
of Illinois at Urbana-Champaign, 2005.

89. P. R. Jelenković and A. A. Lazar, “Subexponential asymptotics of a Markov-
modulated random walk with queueing applications,” J. Appl. Prob., June,
1998.
indexLee, K. Y.

90. H. F. Jordan, D. Lee, K. Y. Lee, S. V. Ramanan, “Serial array time slot in-
terchangers and optical implementations,” IEEE Transactions on Computers,
,Vol. 43 , No. 11 , pp. 1309-1318, 1994.

91. M. Karol, “Shared-memory optical packet (ATM) switch,” SPIE Vol. 2024
Multigigabit Fiber Communications Systems, pp. 212-222, 1993.

92. M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input Versus Output Queueing
on a Space-Division Packet Switch,” IEEE Transactions on Communications,
Vol. COM35, NO.12, Dec. 1987.

93. M. J. Karol and M. G. Hluchyj, “The Knockout Packet Switch: Principles and
Performance,” Proceedings of the 12th Conf. on Local Computer Nets, Min-
neapolis, MN, Oct. 1987: 16-22.

94. G. Kesidis, J. Walrand and C.-S. Chang, “Effective bandwidths for multiclass
Markov fluids and other ATM sources,” IEEE/ACM Transactions on Network-
ing, Vol. 1, pp. 424-428, 1993.

95. I. Keslassy, “The load-balanced router,” PhD Thesis. Stanford University, 2004.

396 References

96. I. Keslassy, C.-S. Chang, N. McKeown, D.-S. Lee, “Optimal load balancing,”
Proceedings of IEEE INFOCOM, 2005.

97. I. Keslassy, S.-T. Chuang and N. McKeown, “A load-balanced switch with an
arbitrary number of linecards,” Proceedings of IEEE INFOCOM, 2004.

98. I. Keslassy and N. McKeown, “Maintaining packet order in two-stage switches,”
Proceedings of IEEE INFOCOM, 2002.

99. I. Keslassy, S.-T. Chung, K. Yu, D. Miller, M. Horowitz, O. Slogaard, N. McK-
eown, “Scaling Internet routers using optics,” Proceedings of ACM SIGCOMM,
2003, Karlsruhe, Germany.

100. I. Keslassy, M. Kodialam, T. V. Lakshman, D. Stiliadis, “On guaranteed
smooth scheduling for input-queued switches,” Proceedings of IEEE INFOCOM,
2003.

101. C. Kolias and L. Kleinrock, “Throughput analysis for multiple input-queueing
in ATM switches,” in Broadband Communications, L. Mason and A. Casaca,
Eds, Chapman & Hall, London, U.K., pp. 382-393, 1996.

102. P. Krishna, N. S. Patel, A. Charny and R. Simcoe, “On the speedup required
for work-conserving crossbar switches,” IEEE IWQoS’98, pp. 225-234, Napa,
California, 1998.

103. J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach
Featuring the Internet. Addison Wesley Longman, Inc., 2001.

104. J. Y. Le Boudec, “Application of network calculus to guarantee service net-
works,” IEEE Transactions on Information Theory, Vol. 44, pp. 1087-1096,
1998.

105. J. Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag, Lecture
Notes in Computer Science, LNCS 2050.

106. H. Y. Lee, F. K. Hwang and J. Capinelli, “A new decomposition algorithm
for rearrangeable Clos interconnection networks,” IEEE Transactions on Com-
munications, Vol. 44, pp. 1572-1578, 1997.

107. T. T. Lee, “Non-blocking copy networks for multicast packet switching,” IEEE
Journal of Selected Areas on Communications, Vol. 6, pp. 1455-1467, 1988.

108. T. T. Lee and C. H. Lam, “Path switching-a quasi-static routing scheme for
large scale ATM packet switches,” IEEE Journal on Selected Areas of Commu-
nications, Vol. 15, pp. 914-924, 1997.

109. W. E. Leland, M. S. Taqqu, W. Willinger and D.V. Wilson, “On the self-
similar Nature of Ethernet Traffic,” IEEE/ACM Transactions on Networking,
Vol. 2, pp. 1-15, 1994.

110. S. Li and N. Ansari, “Input-queued switching with QoS guarantees,” Proceed-
ings of IEEE INFOCOM, 1999, pp. 1152-1159, New York, 1999.

111. S.-Y. R. Li. Algebraic Switching Theory and Broadband Applications. Aca-
demic Press, 2001.

112. S.-Y. R. Li and C.-M. Lau, “Concentrators in ATM switching,” Comp. Sys.
Sci. Eng., Vol. 6, pp. 335-342, 1996.

113. Y. Li, S. Panwar and H. J. Chao, “On the performance of a dual round-robin
switch,” Proceedings of IEEE INFOCOM, 2001, pp. 1688-1697.

114. D. V. Lindley, “The theory of queues with a single server,” Proc. Camb. Phil.
Soc., Vol. 48, pp. 277-289, 1952.

115. J. D. C. Little, “A proof for the queueing formula L = λW ,” Operations
Research, Vol. 16, pp. 651-665, 1961.

116. R. M. Loynes, “The stability of a queue with non-independent inter-arrival
and service times,” Proc. Camb. Phil. Soc., Vol. 58, pp. 497-520, 1962.

117. J. van Lunteren and T. Engbersen, “Fast and scalable packet classification,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 4, pp. 560-571,
May 2003.

References 397

118. M. J. Marcus, “Designs for time slot interchangers,” Proceedings of the Na-
tional Electronics Conf., Vol. 26, pp. 812-817, 1970.

119. G. A. Marguis, “Explicit constructions of concentrations,” Problems Peredachi
Informatsii, Vol. 9, No. 4, 1973. (In English: Problems of Information Transla-
tions, New York, Plenum, 1975).

120. A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its
Applications. New York: Academic Press, 1979.

121. N. McKeown, “Scheduling algorithms for input-queued cell switches,” PhD
Thesis. University of California at Berkeley, 1995.

122. N. McKeown, “iSLIP: A Scheduling Algorithm for Input-Queued Switches,”
IEEE Transactions on Networking, Vol 7, No.2, April 1999.

123. N. McKeown, V. Anantharam and J. Walrand, “Achieving 100% throughput
in an input-queued switch,” Proceedings of IEEE INFOCOM, 1996, pp. 296-302,
1996.

124. A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to achieve
100% throughput in input-queued switches,” Proceedings of IEEE INFOCOM,
1998.

125. L. Mirsky, Transversal Theory. New York: Academic Press, 1971.
126. D. Mitra and R. A. Cieslak, “Randomized parallel communications on an

extension of the omega network,” Journal of the Association for Computing
Machinery, Vol. 34, No. 4, pp. 802-824, 1987.

127. M. G. Nadkarni. Basic Ergoidc Theory. Berlin: Birkhaüser, 1998.
128. R. Nelson, “Stochastic catastrophe theory in computer performance model-

ing,” Journal of the Association for Computing Machinery, Vol. 34, pp. 661-685,
1987.

129. R. Nelson, Probability, Stochastic Processes, and Queueing Theory: the Math-
ematics of Computer Performance Modeling. Springer-Verlag: New York, 1995.

130. A. G. Pakes, “On the tail of waiting-time distribution,” J. Appl. Prob., Vol.
12, pp. 555-564, 1975.

131. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithm
and Complexity. New Jersey: Prentice-Hall, 1982.

132. A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach
to flow control in integrated service networks: the single-node case,” IEEE/ACM
Transactions on Networking, Vol. 1, pp. 344-357, 1993.

133. A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to
flow control in integrated service networks: the multiple node case,” IEEE/ACM
Transactions on Networking, vol. 2, pp. 137-150, 1994.

134. A. Pattavina. Switching Theory: Architecture and Performance in Broadband
ATM Networks. New York: John Wiley & Sons Ltd., 1998.

135. M. C. Paull, “Reswitching of connection networks,” Bell Syst. Tech. J., Vol.
41, pp. 833-855, 1962.

136. T.B. Pei and C. Zukowski, “VLSI implementation of routing tables: tries and
CAMs,” Proceedings of the IEEE INFOCOM, 1991.

137. K. Petersen. Ergodic Theory. Cambridge: University Press, 1983.
138. L. L. Peterson and B. Davie. Computer Networks: A Systems Approach. San

Francisco: Morgan Kaufmann Publishers, 2000.
139. M. S. Pinsker, “On the complexity of a concentrator,” Proceedings of the

Seventh International Teletraffic Congress, Stockholm, 1973.
140. N. Pippenger, “Juggling networks,” Canada-France Conference on Parallel

and Distributed Computing, pp. 1-12, 1994.
141. S. V. Ramanan, H. F. Jordan, J. R. A. Sauer, “A new time domain, multistage

permutation algorithm,” IEEE Transactions on Information Theory, Vol. 36 ,
No. 1 , pp. 171-173, 1990.

398 References

142. M. R. N. Ribeiro and M. J. O’Mahony “Traffic management in photonic packet
switching nodes by priority assignment and selective discarding,” Computer
Communications, Vol 24, pp. 1689-1701, 2001.

143. R. T. Rockafeller. Convex Analysis. Princeton: Princeton University Press,
1970.

144. K. W. Ross. Multiservice Loss Models for Broadband Telecommunication Net-
works. Springer-Verlag: New York, 1995.

145. S. M. Ross, Stochastic Processes. New York: J. Wiley & Sons, 1983.
146. A. D. Sarwate and V. Anantharam, “Exact emulation of a priority queue

with a switch and delay lines,” to appear in Queueing Systems Theory and
Applications, 2005.

147. M. Schwartz. Broadband Integrated Networks. Prentice Hall, 1996.
148. C. E. Shannon, “A mathematical theory of communication,” Bell System Tech.

J., Vol. 27, (pt. I) pp. 379-423, (pt. 2) pp. 623-656, 1948.
149. S. Shenker, C. Patridge and R. Guerin, “Specification of guaranteed quality

of service,” (IETF RFC 2212) ftp://ds.internic.net/rfc/rfc2212.txt, 1997.
150. A. Shwartz and A. Weiss. Large Deviations for Performance Analysis: Queues,

Communication and Computing. 1994.
151. D. Slepian, “Two theorems on a particular crossbar switching network,” un-

published BTL memo.
152. D. Stiliadis and A. Varma, “Providing bandwidth guarantees in an input-

buffered crossbar switch,” Proceedings of IEEE INFOCOM, 1995, pp. 960-968.
153. I. Stoica and H. Zhang, “Exact emulation of an output queueing switch by a

combined input output queueing switch,” Proceedings of IEEE IWQoS, 1998,
pp. 218-224, Napa, California.

154. D. Stoyan, Comparison Methods for Queues and Other Stochastic Models,
Berlin: J. Wiley & Sons, 1983.

155. Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for VLSI communica-
tion switches,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4,
pp. 13-27, 1993.

156. L. Tancevski, S. Yegnanarayanan, G. Castanon, et al. “Optical routing of
asynchronous, variable length packets” Journal on Selected Areas in Commu-
nications, Vol. 18, pp. 2084-2093, 2000.

157. G. Thomas, “Bifurcated queueing for throughput enhancement in input-
queued switches,” IEEE Commun. Lett., Vol. 1, pp. 56-57, 1997.

158. J. T. Tsai, “COD: architectures for high speed time-based multiplexers and
buffered packet switches,” Ph.D. Dissertation, University of California, San
Diego, 1995.

159. C.-Y. Tu, C.-S. Chang, D.-S. Lee, and C.-T. Chiu, “Design a simple and high
performance switch using the two-stage architecture,” Proceedings of Globecom,
2005, St. Louis, Missouri.

160. J. S. Turner, “Terabit burst switching,” Journal of High Speed Networks, 1999.
161. L. G. Valiant, “A scheme for fast parallel communication,” SIAM J. Comput.,

Vol. 11, No. 2, pp. 350-361, 1982.
162. E. A. Varvarigos, “The ’Packing’ and ’Scheduling’ switch architectures for

almost-all optical lossless networks,” IEEE Journal of Lightwave Technologies,
vol. 16 (no. 10), pp. 1757-67, Oct. 1998.

163. E. A. Varvarigos and V. Sharma, “An efficient reservation connection control
protocol for gigabit networks, ” Computer Networks and ISDN Systems ,vol.
30, (no. 12), 13 July 1998, pp. 1135-1156.

164. J. von Neumann, “A certain zero-sum two-person game equivalent to the
optimal assignment problem, ” Contributions to the Theory of Games, Vol. 2,
pp. 5-12, Princeton University Press, Princeton, New Jersey, 1953.

References 399

165. S. X. Wai and V.P. Kumar, “On the multiple shared memory module approach
to ATM switching,” Proceedings of IEEE INFOCOM, 1992, pp. 116-123, Flo-
rence, Italy.

166. W. Whitt, “Tail probability with statistical multiplexing and effective band-
widths in multi-class queues,” Telecommunication Systems, Vol. 2, pp. 71-107,
1993.

167. C.-L. Wu and T.-Y. Feng, “On a class of multistage interconnection networks,”
IEEE Transactions on Computers, Vol. 29, pp. 694-702, 1980.

168. C.-L. Wu and T.-Y. Feng, “The university of the shuffle-exchange networks,”
IEEE Transactions on Computers, Vol. 30, pp. 324-332, 1981.

169. S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching:
An overview,” IEEE Communication Magazine, Vol. 38, pp. 84-94, 2000.

170. Y. S. Yeh, M. G. Hluchyj, and A. S. Acampora, “The Knockout switch: a sim-
ple, modular architecture for high-performance packet switching,” IEEE Jour-
nal of Selected Areas in Communications, Vol. SAC-5, pp. 1274-1283, 1987.

171. M. Yoo, C. Qiao and S. Dixit, “QoS performance of optical burst switching in
IP-over-ATM networks,” IEEE Journal on Selected Areas in Communications,
Vol. 18, pp. 2062-2071, 2000.

172. K. Y. Yun, K. W. James, R. H. Fairlie-Cuninghame, S. Chakraborty, and R.
L. Cruz, “A self-timed real-time sorting network,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 8, pp. 356-363, 2000.

400 References

Index

(r, T)-smooth, 235
M/G/∞ queue, 253
C-transform, 385
N-to-1 buffered multiplexer, 291–309
N-to-1 multiplexer
– definition, 292
– delayed-loss, 293
– self-routing, 301
2-to-1 buffered multiplexer, 277–291
2-to-1 multiplexer
– definition, 278
– feedback, 387
– for FIFO queues, 336
– SDL, 279
– two classes of priorities, 336
2X construction, 89, 257

Acampora, A. S., 109, 329, 397
Address Resolution Protocol (ARP), 3
Agrawal, D. P., 389
Ahmadi, H., 92, 109, 389
Ajtai, M., 389
ALOHA, 214
Anantharam, V., 53, 108, 376, 395
Anderson, T., 28, 108, 389
Andonovic, I., 376, 392
Andrews, M., 389
Ansari, N., 394
Application flow-based routing, 229
Artan, N. S., 222, 391
Arthurs, E., 106, 392
ATM, 233
Avriel, M., 251, 389
Awadallah, A., 92, 393

Baccelli, F., 389
Banyan network, 72, 78, 146, 303
– equivalence, 107
– shuffle exchange, 118
Bassalygo, L. A., 389
Batcher sorting network, 79, 120, 378

Batcher sorting theorem, 81, 120
Batcher, K. E., 79, 81, 83, 84, 87, 106,

120, 378, 389
Batcher-banyan network, 83, 378
Benes networks, 66, 117, 118, 246
Benes, V. E., 66, 106, 118, 389
Berge, C., 37, 389
Bermond, J. C., 389
Bernoulli random variable, 26
Biased mesh, 229
Binary tree, 79
Bipartite matching, 27, 38
Birkhoff decomposition, 37, 113
Birkhoff, G., 34, 37, 389
Birkhoff-von Neumann decomposition,

35–39, 113, 257, 270
Birkhoff-von Neumann switch, 34–53
– Birkhoff decomposition, 37
– framing, 47
– On-line scheduling, 39
– rate guarantees, 43
– von Neumann algorithm, 35
Bitonic sorter, 79, 378
Bremaud, P., 389
Bucklew, J., 390
Burst reduction, 139

Cantor network, 117, 363, 378
Cantor, D. G., 106, 117, 390
Capacity
– link, 235
Capinelli, J., 62, 106, 394
Cascaded Optical Delay-lines, 375
Causality constraint, 314
Ceiling function, 157
Cell contiguity, 310
Cell index, 191
Cell scheduling algorithm, 314–321
Cell scheduling block, 310
Chang, C.-S., 32, 34, 108, 221, 376, 390,

393, 396

401

402 Index

Chang-Hasnain, C. J., 391
Chao, H. J., 108, 109, 111, 222, 391,

394
Chen, W.-J., 34, 108, 390
Chen, Y.-T., 376, 390
Cheng, J., 376, 390
Chernoff bound, 251, 254, 258
Chi, H. C., 108, 111, 396
Chia, M. C., 376, 393
Chiu, C.-T., 223, 396
Chiu, H.-C., 376
Chlamtac, I., 375, 390
Choudhury, G. L., 391
Chow, Y. S., 391
Chuang, S.-L., 391
Chuang, S.-T., 109, 222, 391, 393
Cieslak, R. A., 220, 395
Circular bitonic list, 79
Circular unimodal permutation, 74, 79,

121
– inverse, 89
Clos networks, 58, 59, 66, 93, 118, 242,

269, 361
Clos, C., 58, 59, 66, 105, 118, 361, 391
Combined Input Output Queueing

(CIOQ), 93
Communication overhead, 125
Complementary priority queue, 370
Compressor, 90, 122
Compressor theorem, 122
Computation overhead, 125
Concentrator, 87
– fast Knockout, 102
– Knockout, 123
– prioritized, 280, 294
Conflict constraint, 314
Contiguity constraint, 314
Copy network, 107
CORD, 375
Counting process, 258
Cover, T. M., 391
Crosspoint buffers, 91, 238
Cruz, R. L., 8, 375, 391
CSMA, 214
CU nonblocking, 74, 121

Dai, J., 53, 391
Decompressor, 78
Delay bound, 154, 166, 172, 182,

321–326
Delay line
– definition, 265
Delayed-loss multiplexer, 293

Dembo, A., 391
Demers, A., 40, 337, 392
Denzel, W. E., 92, 109, 389
Dixit, S, 345, 397
Domain Name Server (DNS), 2
Doubly stochastic matrix, 35
Doubly stochastic Poisson process, 258
Doubly substochastic matrix, 35
DRAM, 12
DRRM, 111
Duguid, A. M., 50, 61, 105, 392
Dulmage, L., 37, 392
Duration limited statistical multiplex-

ing, 237

Earliest Deadline First (EDF), 165
Eligible time, 170
Ellis, R. S., 392
Elwalid, A. I., 392
Engbersen, T., 394
Ergodicity, 14, 109, 134, 135, 197
Exact emulation, 91–97
– CIOQ, 93
– crosspoint buffers, 91
– parallel buffers, 92

Fan-out splitting, 153, 171
Fast Knockout concentrator, 102
Fast Knockout concentrator/sorter, 104
FCFS, 154, 234, 236, 237
Feng, T.-Y., 396
FIFO queues, 326–342
– complexity, 335
– three-stage constructions, 330
– two inputs, 336
– via optical memory cells, 328
FIFO throughput, 25
FIFO with prioritized inputs, 278, 293
Flexible delay line
– Cantor networks, 363
– complexity, 362, 367
– definition, 344
– direct construction, 344
– three-stage construction, 360
Floor function, 157
Flow, 152, 153, 235
– multicasting, 152
– point-to-point, 152
Flow conservation, 278, 292, 326, 370,

371
Forwarding, 3
Fourneau, J. M., 389
Frame delay

Index 403

– exact, 236
Frame matrix, 63
Framed Birkhoff-von Neumann switch,

48
Full Ordered Frames First (FOFF), 167

Gärtner, J., 392
Gabber, O., 392
Gale-Shapely algorithm, 94
Galil, Z., 392
Gallager, R. G., 40, 337, 395
Gazdzicki, P., 392
Goel, A., 109, 391
Golestani, S. J., 233, 392
Gupta, P., 11, 392

Hall’s theorem, 113
Hall, M., 113
Hall, P., 37, 392
Halperi, I., 37
Halperin, I., 392
Head-of-line blocking, 24, 110, 184, 194,

211
Hluchyj, G., 25, 108
Hluchyj, M. G., 109, 329, 393, 397
Hu, G., 222, 391
Huang, A., 106, 118, 347, 392
Huang, H.-Y., 34, 108, 390
Huang, N.-F., 11, 392
Hui, J. Y., 50, 106, 107, 220, 347, 392
Hung, A., 24, 392
Hunter, D. K., 376, 392
Hwang, F. K., 62, 106, 393, 394
Hyper Text Transfer Protocol (HTTP),

1

Incremental assignment, 49
Input thread, 96
Input-buffered switch, 21–34
– DRRM, 111
– FIFO throughput, 25, 184
– fundamental limit, 23–24
– head-of-line blocking, 24
– maximal matching, 56
– maximum weighted matching, 53
– network, 115
– no overbooking conditions, 23, 182
– PIM, 28
– rate guarantees, 43
– round-robin matching, 29
– RRM, 29
– SLIP, 31
– virtual output queueing, 26

– wavefrnot arbitration, 111
Internet Protocol (IP), 1
Inukai, T., 37, 106, 393
Inverse C-transform, 386
Inverse circular unimodal permutation,

89
Inverse monotone consecutive

condition, 90
Iyer, S., 92, 393

Jaramillo, J.-J., 222, 393
Jean-Marie, A., 389
Jelenković, P. R., 393
Jiang, S., 222, 391
Jitter control, 153
Jordan, H. F., 342, 393, 395
Jou, Y.-S., 32, 108, 221, 390
Juggling network, 375

Karol, M., 375, 393
Karol, M. J., 25, 108, 109, 393
Keshav, S., 40, 337, 392
Kesidis, G., 24, 392, 393
Keslassy, I., 147, 178, 222, 393
Kim, J., 391
Kleinrock, L., 394
Knauer, S., 106, 118, 347, 392
Knockout switch, 97, 299
– optical, 381
Kolias, C., 394
Komlos, J., 389
Ku, P.-C., 391
Kumar, V. P., 92

Label switching, 9
Lam, C. H., 109, 391, 394
Lambadaris, I., 392
Lau, C.-M., 109, 394
Lazar, A. A., 393
Lee, D., 342, 393
Lee, D.-S., 32, 108, 221, 376, 390, 393,

396
Lee, H. Y., 62, 106, 394
Lee, K. Y., 342
Lee, T. T., 394
Lee-Hwang-Capinelli algorithm, 62
Legendre transform, 251
Leland, W. E., 394
Li, S., 394
Li, S.-Y. R., 69, 106, 107, 109, 342, 347,

394
Li, Y., 108, 111, 394
Liapunov function, 55

404 Index

Lien, C.-M., 221, 390
Lin, S., 11, 392
Lindley equation, 13, 109
Lindley, D. V., 394
Line grouping, 257
– statisitical, 237
Linear compressor, 90
– definition, 346
– optical memory cells, 351
– two-stage construction, 350
– via 2-to-1 multiplexer, 348
Linear decompressor, 78
– definition, 349
– upturned, 78
Link utilization, 253
Little’s formula, 19–21, 138, 140
Little, J. D. C., 19, 394
Load balanced Birkhoff-von Neumann

switch, 125–231, 239
– finite central buffers, 208
– frame based schemes, 178
– guaranteed rate services, 169
– mailbox switches, 188
– multi-stage buffering, 151
– one-stage buffering, 126, 381
– optical, 381
– switch fabrics, 145
Load-balancing buffer, 156
Longest queue first (LQF), 53, 168
Lossy quasi-circuit switch, 249–256
Loynes, R. M., 15, 394

Mailbox switch, 188–208
– δ = 0, 193
– δ = ∞, 195
– apprxoimation, 198
– backward tries, 193
– cell index, 191
– forward tries, 192
– simulation, 201
– virtual waiting time, 190
Marcus, M. J., 342, 375, 394
Marguis, G. A., 394
Markov chain, 215
Markov inequality, 257
Marshall, A. W., 35, 37, 394
Matching
– DRRM, 111
– low jitter, 114
– maximal matching, 56
– maximum weighted matching, 53
– parallel iterative matching, 28
– PIM, 221

– RRM, 29, 219, 221
– SLIP, 31, 142, 219, 221
– stable matching, 94
– wave front arbitration, 111
Maximal matching, 56
Maximum buffer usage, 278, 293, 327,

370
Maximum stable throughput, 197
Maximum unstable throughput, 198
Maximum weighted matching, 53
Mazumdar, R. R., 392
McKeown, N., 11, 24, 28, 30, 31, 53, 92,

108, 109, 147, 178, 222, 391–394
Mekkittikul, A., 395
Memory cell, 263
Merge-sort algorithm, 120
Milan, F., 222, 393
Mirror image, 89
mirror image
– SDL element, 349
Mirsky, L., 37, 395
Mitra, D., 220, 392, 395
Monotone consecutive condition, 74,

346
– inverse, 90
Morgan, S. P., 25, 108, 393
MPLS, 233
Multiplexer
– 2-to-1, 277
– N-to-1, 291
– Cascaded Optical Delay-lines, 375
– delayed-loss, 293
– Knockout switch, 99
– N-to-1, 345
– recursive construction, 281, 295
– self-routing, 301
– variable length burst, 310

Nadkarni, M. G., 395
Nelson, R., 214, 395
Networks of input-buffered switches,

115
No overbooking conditions, 23, 51, 235
Non-ergodic mode, 215
Non-idling, 278, 292, 327, 370
Non-overtaking delay line
– definition, 345
– optical memory cells, 356
– three-stage construction, 355
Non-uniform bursty, 223
Non-uniform i.i.d., 223
Nonblocking switch, 57–59
– Cantor network, 117, 378

Index 405

– CU, 74
– O(NlogN), 106
– UC, 89
– wide sense, 107

O(NlogN) nonblocking switch, 106
O(NlogN) sorting network, 107
Oki, E., 109, 391
Olkin, I., 35, 37, 394
One-cycle permutation matrices, 128
Optical burst switching, 345
Optical crossconnects, 376
Optical Knockout switch, 381
Optical output-buffered switch, 381
Optical RAM, 263, 383
Optimal load-balancing, 227
Order-preserving, 233, 236, 237
Output cushion, 95
Output-buffered switch, 11–21, 154
– average packet delay, 21
– average queue length, 16
– exact emulation, 91–97
– FCFS, 154
– optical, 381
Owicki, S., 28, 108, 389

Packetized Generalized Processor
Sharing (PGPS), 40

Padded frames, 231
Pakes, A. G., 395
Panwar, S., 108, 111, 394
Papadimitriou, C. H., 38, 395
Parallel buffers, 92
Parallel iterative matching, 28
Parekh, A. K., 40, 337, 395
Pareto traffic, 211
Pattavina, A., 395
Paull matrix, 50, 62
Paull, M. C., 50, 62, 395
Peak rate, 235
Pei, T., 395
Petersen, K., 395
PIM, 28, 221
Pinsker, M. S., 389, 395
Pippenger, N., 342, 375, 395
Poisson process, 253, 258
Poisson random variable, 18, 196, 254,

258
Pollaczek-Khinchin formula, 110, 224
Prabhakar, B., 53, 109, 391
Prioirty queue
– complementary, 370
Prioritized concentrator, 280

– N × N , 294
Priority queues, 367, 385

Qiao, C., 345, 397
Quality of services, 8, 236, 253
– statistical, 255
Quasi-circuit switch, 236
– Benes network, 246–249
– Clos, 242
– crosspoint buffers, 238
– load balanced Birkhoff-von Neumann,

239
– lossy, 249–256
– network, 240
– shared memory, 237
Quasi-circuit switching, 233–257

RAM, 263
Ramanan, S. V., 342, 393, 395
Random access memory, 263
Rate
– peak, 235
Rate guarantees, 43
Rearrangeable networks, 57, 59, 269
Reassembly
– burst, 310
Reduction of memory speed, 144
Renner, T., 392
Resequencing, 153
Resequencing-and-output buffer, 162
Ring, 229
Rockafeller, R. T., 251, 395
Ross, K. W., 395
Round-robin matching, 29
Round-robin service policy, 213
Round-robin splitting, 243
Router, 1, 3–5
Routing, 3
RRM, 29, 219, 221

Sarwate, A. D., 376, 395
Sauer, J. R. A., 342, 395
Saxes, J., 28, 108, 389
Scaled SDL element
– definition, 265
Schwartz, M., 396
Segmentation
– burst, 310
Self-routing optical multiplexer,

301–303
Serial/parallel conversion, 267
Shannon, C. E., 396
Shared medium switch, 12

406 Index

Shared memory switch, 6, 11
Shenkar, S., 40, 337, 392
Shih, Y.-J., 223, 390
Shuffle exchange network, 118
Shwartz, A., 396
Slackness, 96
Slepian, D., 50, 61, 396
Slepian-Duguid algorithm, 50–53, 61
SLIP, 31–34, 142, 219, 221
SLOB, 376
Sorter, 87
– Bitonic, 79, 378
Sorting network
– O(NlogN), 107
Specification matrix, 62
Srikant, R., 222, 393
Stable matching, 94
Stable sequence, 16
State transition diagram, 284
Stationarity, 14, 109, 133
Statistical line grouping, 237
Statistical multiplexing
– duration limited, 237
Statistical multiplexing gain, 250
Steiglitz, K., 38, 395
Stirling formula, 66
Stoica, I., 396
Stop-and-go queueing, 237
Stoyan, D., 396
Switch
– crossbar, 22
– crosspoint buffers, 91, 238
– input-buffered switch, 21–34
– Knockout, 299
– shared bus, 12
– shared medium, 12
– shared memory, 6, 11, 237
Switch fabric
– mirror image, 89
– three-stage construction, 57–69, 91
– two-stage construction, 69
Switched delay line, 264
Symmetric TDM switch, 130, 148, 178,

189
Szemeredi, E., 389

Tamir, Y., 108, 111, 396
Taqqu, M. S., 394
Teicher, H., 391
Thacker, C., 28, 108, 389
Thomas, G., 396
Thomas, J. A., 391
Three phase switch, 84

Time interleaving property, 266–267
Time slot interchange, 267–277
– Benes, 271–277, 363
– Clos, 269
– definition, 267
Traffic model
– non-uniform bursty, 223
– non-uniform i.i.d., 223
– uniform bursty, 138
– uniform i.i.d., 136
Transmission Control Protocol (TCP),

1
Tsai, J. T., 281, 375, 391, 396
Tu, C.-K., 376, 390
Tu, C.-Y., 223, 396
Turner, J. S., 345, 396

UC nonblocking, 89, 122
Uniform bursty, 138, 141, 143
Uniform cost assumption, 264, 382
Uniform frame spreading scheme, 230
Uniform i.i.d., 136, 193, 195, 198, 201,

213
Uniform Pareto, 142, 209, 211, 213
Universal throughput, 228

Valiant, L. G., 220, 396
van Lunteren, J., 394
Variability ordering, 260
Variable length burst, 310
Varvarigos, E. A., 376, 396
Virtual finishing time, 40
Virtual output queueing, 26
Virtual waiting time, 190, 315
– increment, 195
Vojnovic, M., 389
von Neumann algorithm, 35
von Neumann, J., 34, 35, 396

Wai, S. X., 92, 396
Walrand, J., 53, 108, 393, 395
Wang, H.-J., 391
Wavelength division multiplexing

(WDM), 376
Weakly mixing, 135
Weighted fair queueing, 40
Weiss, A., 396
Wentworth, R., 392
WFQ, 40
Whitt, W., 391, 396
Wide sense nonblocking switch, 107
Willinger, W., 394
Wilson, D. V., 394

Index 407

Wu, C.-L., 396

X2 construction, 70–72, 78, 80, 121, 148

Yeh, Y. S., 109, 329, 397
Yoo, M., 345, 397
Yu, C.-L., 223, 391
Yue, C.-Y., 222, 391

Zeitouni, O., 391
Zhang, H., 396
Zhao, S. M., 11, 392
Zukowski, C., 395

