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One of the fundamental problems in a cognitive radio network, known as the multichannel rendezvous
problem, is for two secondary users to find a common channel that is not blocked by primary users. The
basic idea for solving such a problem in most works in the literature is for the two users to select their own
channel hopping sequences and then rendezvous when they both hop to a common unblocked channel at the
same time. In this paper, we focus on the fundamental limits of the multichannel rendezvous problem and
formulate such a problem as a constrained optimization problem, where the selection of the random hopping
sequences of the two secondary users must satisfy certain constraints. We derive various lower bounds for the
expected (resp. maximum) time-to-rendezvous under certain constraints. For some of these lower bounds,
we are also able to construct optimal channel hopping sequences that achieve the lower bounds. Inspired by
the constructions of quorum systems and relative difference sets, our constructions of the channel hopping
sequences are based on the mathematical theories of finite projective planes, orthogonal Latin squares and
sawtooth sequences. The use of such theories in the constructions of channel hopping sequences appear
to be new and better than other existing schemes in terms of minimizing the expected (resp. maximum)
time-to-rendezvous.
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1. Introduction The rendezvous search problem that asks how two unit speed searchers,
randomly placed in a known search region, can minimize the time required to meet, has been one
of the classical problems in the area of operations research (see e.g., the book by [7] and references
therein). Anderson and Weber [10] first studied the rendezvous problem on discrete locations. The
rendezvous search problem was generalized to the compact metric space in [1]. Since then, the
rendezvous search problem on various topologies has been studied extensively in the literature,
e.g., the rendezvous search problem on the line [6, 8, 25, 18], the rendezvous search problem on
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the interval [27], the rendezvous search problem on a graph [5, 2, 22, 35], the two-dimensional
rendezvous problem [9, 3, 31, 32], and rendezvous in higher dimensions [4].

Motivated by the recent development in cognitive radio networks, in this paper we study the
multichannel rendezvous problem. As the use of spectrum in current wireless networks is regu-
lated by the fixed spectrum allocation, spectrum is not efficiently used. Cognitive radio, as a new
mechanism for dynamic spectrum access, has received a lot of attention in the communication and
networking literature. In a cognitive radio network, there are two types of spectrum users: primary
users and secondary users. Primary users usually have the licence to use the spectrum assigned
to them. On the other hand, secondary users are only allowed to share spectrum with primary
users provided that they do not cause any severe interference to the primary users. To do this,
secondary users first sense a number of frequency channels. If a channel is not blocked by a primary
user, then that channel may be used for secondary users to establish a communication link. One
of the fundamental problems in a cognitive radio network is then for two secondary users to find a
common unblocked channel and such a problem is known as the multichannel rendezvous problem.

There are several protocols and algorithms that have been proposed in the literature for solving
the multichannel rendezvous problem (see e.g., [11, 13, 20, 26, 36, 39, 41, 42, 46, 33]). The basic idea
behind most of these works is known as the channel hopping mechanism, in which each secondary
user hops over the channels with respect to time and eventually rendezvous the other party at
an unblocked channel. The time-to-rendezvous is then one of the key performance metrics in the
multichannel rendezvous problem. A good channel hopping mechanism should have a low expected
time-to-rendezvous and sometimes preferably a deterministically bounded time-to-rendezvous.

There are many fascinating methods in selecting hopping sequences. In particular, SSCH [11]
proposed using prime number modular arithmetic to generate the hopping sequences. In SSCH,
each secondary user chooses a hopping seed and an initial hopping channel and hops to the next
channel by adding the hopping seed according to the modulo operation. It was argued that hopping
sequences with different hopping seeds will rendezvous within a finite period. However, hopping
sequences with identical hopping seeds but different initial channels might not rendezvous. For
this, SSCH cleverly adds a parity slot for those sequences to rendezvous and that prevents logi-
cal partition of hopping sequences. In [39], the idea of rotating initial seeds in every period was
added into SSCH to increase robustness. By so doing, the rendezvous channels are different in
every period to avoid the problem of long term blocking from primary users. By using the Chinese
Remainder Theorem, the modular clock algorithm was further generalized in [42] to show that two
secondary users will still rendezvous even if they both use different modulo functions. In addition to
the prime number modular arithmetic, quorums and difference sets were used to generate hopping
sequences in [13, 26]. Difference sets are commonly used to construct quorum systems that guar-
antee nonempty intersections of sets (and thus rendezvous of users) with phase difference. As such,
time synchronization of the channel hopping mechanism is not needed. In particular, the sawtooth
sequence in [45] is of particular interest to us. In [20, 40, 33, 42, 12, 17], there are alternative
constructions that also do not need time synchronization.

In this paper, we focus on the fundamental limits of the multichannel rendezvous problem. For
this, we consider a system with n channels (with n≥ 2), indexed from 0 to n−1, in the discrete-time
setting, where time is indexed from t = 1,2, . . .. There are two users who would like to rendezvous
on a common unblocked channel by hopping over these n channels with respect to time. Denote
by X1(t) (resp. X2(t)) the channel selected by user 1 (resp. user 2) at time t. Let B(t) be the set
of channels that are blocked at time t. If a channel is blocked at time t, then the two users will not
rendezvous even though they both hop to that channel at time t. Then the time-to-rendezvous,
denoted by T , is the first time that these two users select a common unblocked channel, i.e.,

T = inf{t : X1(t) = X2(t) 6∈B(t)}. (1)
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The multichannel rendezvous problem here is mathematically equivalent to the rendezvous prob-
lem on a labelled complete graph (Chapter 13 of [7]) as the channels in the multichannel rendezvous
problem are labelled and known to both users. Since the channels are labelled, both users could
simply use the FOCAL strategy [7] and hop to channel 0 when the rendezvous process is started.
However, this is not a desirable thing to do in a cognitive radio network as all the secondary users
will hop to the same channel and that cause severe interference among themselves. Such a problem
is known as the control channel saturation problem (see e.g., [39] and references therein). As such,
it is much more desirable to have all the pairs of secondary users rendezvous on different channels.

In practice, there are several constraints for the selection of hopping sequences. In the following,
we summarize various verbal descriptions in the literature (see e.g., [13, 42, 46] and references
therein) for these constraints.
(i) (Independence of users) As both users are not able to communicate with each other at the
beginning, they are likely to select their hopping sequences independently.
(ii) (Efficient and fair use of channels) In a cognitive radio network, the secondary users
should try their best to rendezvous on a common channel that is not blocked by primary users.
Ideally, a channel hopping protocol should spread out the rendezvous over all channels evenly [13].
(iii) (Symmetric users’ strategies) Both users follow the same protocol (or algorithm) to gen-
erate their hopping sequences.
(iv) (Channel blocking) Primary users should not be affected by secondary users. As such, the
behavior of primary users is independent of secondary users.
(v) (Time synchronization) Both users may not be synchronized in a cognitive radio network.
As such, both users may not start the rendezvous process at the same time.

In this paper, we formalize the above five constraints into the following five mathematical con-
straints.
(A1) (Independence constraint) {X1(t), t≥ 1} and {X2(t), t≥ 1} are two independent random
sequences.
(A2) (Uniform load constraint) At any time t, each channel is selected with an equal probability,
i.e., for all t and i = 0,1,2, . . . , n− 1,

P(X1(t) = i) = P(X2(t) = i) =
1
n

. (2)

(A3) (Identical distribution constraint) {X1(t), t≥ 1} and {X2(t), t≥ 1} have the same joint
distribution.
(A4) (Channel blocking constraint) The two hopping sequences {X1(t), t ≥ 1} and
{X2(t), t≥ 1} are independent of {B(t), t≥ 1}. Also, E[|B(t)|]≥ b for all t and some nonnegative
number b, where |B(t)| is the number of channels that are blocked at time t.
(A5) (Stationarity constraint) {X1(t), t≥ 1} and {X2(t), t≥ 1} are stationary sequences, i.e.,
the joint distributions of {X1(t), t≥ 1} and {X2(t), t≥ 1} are invariant to any time shift.

The independence constraint in (A1) seems plausible as both users are not able to communicate
with each other at the beginning and they are likely to select their hopping sequences independently.
The second constraint in (A2) is for the efficient usage of channels as described in [13, 46]. It is
defined in [13] that the (system) load of a channel hopping mechanism is the maximum probability
(over space and time) that a user hops to a particular channel at a particular time. Clearly, the
minimum load of a channel hopping system with n channels is 1/n (as each user hops to one of the
n channels in every step). On the other hand, the maximum load could be 1. This happens when
both users select the degenerate random sequence with P(X1(t) = 1) = P(X2(t) = 1) = 1 for all t.
In this trivial scenario, both users select the same hopping sequence and they also rendezvous at
time 1 with probability 1. The problem with such a degenerate random sequence is that both users
always rendezvous at the same channel and that causes the so-called control channel saturation
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problem mentioned before. As such, it is of importance to impose a constraint on the load of
a channel hopping mechanism. In this paper, we impose the uniform load constraint in (A2) to
achieve maximum efficiency for the usage of channels. The third constraint in (A3) is a natural
one if both users follow the same protocol (or algorithm) to generate their hopping sequences. The
channel blocking constraint in (A4) is used for cognitive radio networks, where there are channels
blocked by primary users. If a channel is blocked at time t, then the two users will not rendezvous
even though they hop to that channel at time t. The stationary constraint in (A5) appears to be a
technical one at the first look, but it is a condition for avoiding time synchronization in the discrete-
time setting. If both hopping sequences are stationary, then the joint distributions are invariant to
arbitrary time shift. As such, it does not matter whether both users start the rendezvous process
at the same time and there is no need for time synchronization. Note that for (A5) to be valid,
one still needs to assume that both users follow the discrete-time setting. In other words, there is
a global clock and time t1 of user 1 (resp. t2 of user 2) might be time t′1 (resp. t′2) of the global
clock with t1 and t′1 (resp. t2 and t′2) being integers.

In comparison with the classical symmetric rendezvous search in [7], the multichannel rendezvous
problem imposes the uniform load constraint in (A2) and thus the FOCAL strategy [7] are ill-
suited for applications in cognitive radio networks. Also, the symmetric users’ strategies in the
multichannel rendezvous problem does not imply that the users’ strategies are symmetric with
respect to channels (locations). For instance, for the two-channel case, i.e., n = 2, each user could
choose with probability 1/4 from the four periodic sequences with period 3: 000, 011, 101 and 110.
Such a choice clearly satisfies the uniform load constraint in (A2). However, it is not symmetric
with respect to these two channels and this is quite different from symmetric rendezvous search
for unlabelled locations in [10]. The constraint (A4) for channel blocking is basically the same as
noisy rendezvous in the literature. The additional constraint (A5) on time synchronization seems
to be new. With all these, one might be able to further classify the rendezvous search problem by
whether the two users are labelled, the channels (locations) are labelled, and time is labelled.

Our first objective of this paper is to establish fundamental limits for the time-to-rendezvous
T under various subsets of the above constraints for selecting the two random hopping sequences
{X1(t), t ≥ 1} and {X2(t), t ≥ 1}. There are two specific performance metrics in which we are
particularly interested: the expected time-to-rendezvous and the maximum time-to-rendezvous (the
least deterministic upper bound for the time-to-rendezvous). We will first derive lower bounds
for these two performance metrics under a certain subset of these constraints, starting from the
simplest case with (A1) and (A2) and then adding additional constraints along the way. Our second
objective is then to seek methods to construct optimal random hopping sequences that achieve
these lower bounds under various subsets of these constraints. For certain subsets of constraints,
we are able to show these lower bounds are tight. However, there are also cases that we are not
able to construct hopping sequences that achieve the lower bounds. For these cases, we report our
constructions that have the smallest maximum time-to-rendezvous in the literature.

Our main results and contributions are summarized as follows:
(i) In Section 2, we consider users with potentially different distributions for hopping sequences.
Under (A1) and (A2), we show in Theorem 1 that there does not exist hopping sequences such that
the time-to-rendezvous can be deterministically bounded by n− 1 steps. Moreover, the expected
time-to-rendezvous is lower bounded by (n + 1)/2. In Example 1, we show the wait-for-mommy
approach guarantees that the maximum time-to-rendezvous is n and it achieves the lower bound
for the expected time-to-rendezvous. Hence, the wait-for-mommy approach is optimal under (A1)
and (A2).
(ii) In Section 3, we consider users with identical distributions for hopping sequences. Under (A1-
3), we show in Theorem 2 of Section 3.1 that there does not exist hopping sequences such that the
time-to-rendezvous can be deterministically bounded by n steps. Moreover, the expected time-to-
rendezvous is lower bounded by n+1

2
+ 1

2
− 1

2n
. In Theorem 3 of Section 3.2, we show if there is a
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Table 1. Summary of the achievable lower bounds for the time-to-rendezvous T under various constraints

Set of constraints A1, A2 A1, A2, A3 A1, A2, A4
Det. lower bound on T n n+1 n∗1 = n+ b+ d b2

n−b
e

Lower bound on E[T ] (n+1)/2 (n+1)/2+1/2− 1/2n n∗1− (n−b
n2 )(n∗1(n∗1−1)

2
)

Tightness for all n for all prime power n b = 1, n≥ 3 and n 6= 6
References Theorem 1 Theorems 2 and 3 Theorems 4 and 5

finite projective plane of order n, then one can construct random hopping sequences (see Algorithm
1 for more details) such that the maximum time-to-rendezvous is n + 1 and they also achieve the
lower bound for the expected time-to-rendezvous. Such a construction is optimal and it is nearly
twice better than SYNC-ETCH [46]. The use of finite projective planes for constructing optimal
hopping sequences for the multichannel rendezvous problem appears to be new (to the best of
our knowledge) though finite projective planes were previously used in [34] to establish quorum
systems for mutual exclusion in decentralized systems and in [19] for the construction of optical
orthogonal codes. Since there is a systematic method to construct a finite projective plane of order
n when n is a prime power, it is much more general than the prime number modular arithmetic
in [11, 39, 42]. We note that QCH [13] does not satisfy the uniform load constraint in (A2) and it
tends to rendezvous at the same channel in a frame. Since finite projective planes can also be used
for constructing quorum systems, our construction can be viewed as a better way to map points
in finite projective planes to spread out the rendezvous over all channels evenly. In fact, we also
proposed CACH in [47] that outperforms QCH in terms of reducing load while keeping the same
maximum time-to-rendezvous.
(iii) In Section 4, we further take the channel blocking constraint in (A4) into account. Under (A1),
(A2) and (A4), we show in Theorem 4 of Section 4.1 that there does not exist hopping sequences
such that the time-to-rendezvous can be deterministically bounded by n∗1 − 1 steps, where n∗1 =
n+b+d b2

n−b
e. Moreover, the expected time-to-rendezvous is lower bounded by n∗1− (n−b

n2 )(n∗1(n∗1−1)

2
).

For the case with a single permanently blocked channel, i.e., b = 1, we show how to construct
random sequences by using two orthogonal Latin squares to achieve the lower bound (see Algorithm
2′ in Section 4.2 for more details). Hence, such a construction is optimal under (A1), (A2) and
(A4) for b = 1. Orthogonal Latin squares are closely related to finite projective planes [14]. Though
orthogonal Latin squares were previously used in [28] for scheduling in multihop radio networks, its
use for constructing optimal hopping sequences for the multichannel rendezvous problem appears
to be new (to the best of our knowledge). For the case with multiple permanently blocked channels,
i.e., b > 1, we show in Theorem 6 in Section 4.3 that one can construct random hopping sequences
(see Algorithm 3 for more details) that satisfy the constraints in (A1-4) and the maximum time-to-
rendezvous is (n+1)(b+1). Our construction is based on a rotated version of the hopping sequence
from a finite projective plane.
(iv) In Section 5, we further take time synchronization in (A5) into account. Under (A1), (A2),
(A3) and (A5), we use the sawtooth sequence in [45] to show in Theorem 7 of Section 5.1 that
one can construct random hopping sequences (see Algorithm 4 for more details) that satisfy these
four constraints and the maximum time-to-rendezvous is 2n+1. For the setting with a single per-
manently blocked channel, we propose interleaving a sawtooth sequence and an inverted sawtooth
sequence in time (see Algorithm 5 in Section 5.2 for more details) so that any two sequences are
guaranteed to rendezvous within 4n+2 steps.

These results are further summarized in Tables 1 and 2, where we summarize the achievable
lower bounds for the time-to-rendezvous T under various constraints in Table 1 and the smallest
deterministic upper bounds for the time-to-rendezvous T under various constraints in Table 2.
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Table 2. Summary of the smallest deterministic upper bounds for the time-to-rendezvous T under various constraints

Set of constraints A1-A4 A1-A3, A5 A1-A5, b = 1 A1-A5, b = n− 1
Det. upper bound on T (n+1)(b+1) 2n+1 4n+2 n(3n− 1)

Conditions for all prime power n for all n for all even n for all prime n
References Theorem 6 Theorem 7 Theorem 8 [40]

2. Users with potentially different distributions for hopping sequences In this sec-
tion, we show in Theorem 1 that under the constraints in (A1) and (A2), there does not exist
random sequences such that the time-to-rendezvous can be deterministically bounded within n−1
steps. Moreover, the expected time-to-rendezvous under the constraints (A1) and (A2) is not lower
than (n + 1)/2. The proof of Theorem 1 is is basically the same as that in the first lemma of [10]
and is thus omitted.

Theorem 1. Under the constraints in (A1) and (A2),

P(T ≥ n)≥ 1
n

> 0, (3)

and
E[T ]≥ n+1

2
. (4)

Though our rendezvous problem is different from the unlabelled rendezvous problem in [10], the
lower bound for the expected time-to-rendezvous and its proof are the same as that in the first
lemma of that paper. Interesting enough, the well-known “wait-for-mommy” approach in [10, 42]
can also be used for constructing two random sequences {X1(t), t ≥ 1} and {X2(t), t ≥ 1} that
satisfy (A1) and (A2) and achieve the lower bounds in Theorem 1. We illustrate this in the following
example.

Example 1. (Wait for mommy) Let U1 and U2 be two uniform random variables over
[0,1, . . . , n− 1] that are independent of each other. Let {X1(t) = U1, t ≥ 1} and {X2(t) = ((U2 +
(t− 1)) mod n), t≥ 1}. Clearly, (A1) and (A2) are satisfied. Also, note that user 1 (the child) fixes
his/her channel once he/she makes the channel selection at time 1. On the other hand, user 2
(the mother) cycles through all the n channels periodically with period n. As such, they rendezvous
before the end of a period, i.e., T ≤ n. Moreover, we have T = ((U1−U2) mod n)+1 and thus T is
also uniformly distributed over [1, . . . , n], i.e., for τ = 1, . . . , n,

P(T = τ) =
1
n

. (5)

This then leads to E[T ] = n+1
2

.

3. Users with identical distributions for hopping sequences In this section, we further
take (A3) into consideration. Under (A3), both users have identical distributions for their hopping
sequences.

3.1. Lower bounds In this section, we show in the following theorem that there does not
exist random sequences such that the time-to-rendezvous can be deterministically bounded by n
steps under the constraints (A1), (A2) and (A3). Moreover, the expected time-to-rendezvous under
these three constraints is not lower than n+1

2
+ 1

2
− 1

2n
. The proof of Theorem 2 is deferred to the

end of this section.
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Theorem 2. Under the constraints in (A1), (A2) and (A3), we have for τ ≥ 2,

P(T ≥ τ)≥ (1− τ − 1
n

+
(τ − 2)

n2
)+, (6)

where x+ = max(0, x). As such, it follows that for n≥ 2,

P(T ≥ n+1)≥ 1
n

(1− 1
n

) > 0, (7)

and that
E[T ]≥ n+1

2
+

1
2
− 1

2n
. (8)

The rest of this section is devoted to the proof of Theorem 2. For the proof of Theorem 2, we first
generalize the union bound in Lemma 1. Such a generalization is crucial to our proof and it might
be of independent interest to probability theory as it is tighter than the classical union bound.
Note that our generalized union bound is different from the Boole-Bonferroni family of inequalities
[38] (which are also known as the generalized union bound).

Lemma 1. (Generalized union bound) For any n≥ 2 events, E1,E2, . . . ,En,

1∪n
i=1Ei

≤
n∑

i=1

1Ei
−

n−1∑
i=1

1Ei∩Ei+1
, (9)

where 1E is the indicator random variable that takes value 1 if the event E is true and 0 otherwise.
Thus,

P(∪n
i=1Ei)≤

n∑
i=1

P(Ei)−
n−1∑
i=1

P(Ei ∩Ei+1). (10)

Proof. We prove (9) by induction. For n = 2, this is simply the inclusion-exclusion principle as

1E1∪E2
= 1E1

+1E2
−1E1∩E2

.

Now we assume that (9) holds for some n≥ 2 as the induction hypothesis. Note that

1∪n+1
i=1 Ei

= 1{∪n
i=1Ei}∪En+1

= 1∪n
i=1Ei

+1En+1
−1{∪n

i=1Ei}∩En+1
.

(11)

Since En ⊆∪n
i=1Ei, we have

1En∩En+1
≤ 1{∪n

i=1Ei}∩En+1
. (12)

Using (12) and the induction hypothesis (i.e., the inequality in (9)) in (11) yields

1∪n+1
i=1 Ei≤ 1∪n

i=1Ei
+1En+1

−1En∩En+1

≤
n∑

i=1

1Ei
−

n−1∑
i=1

1Ei∩Ei+1
+1En+1

−1En∩En+1

=
n+1∑
i=1

1Ei
−

n∑
i=1

1Ei∩Ei+1
. (13)

Taking expectation on both sides of (9) yields (10).
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Lemma 2. Under the constraints in (A1) and (A2),

P(X1(t) = X2(t)) =
1
n

. (14)

The proof of Lemma 2 is immediate and is left to the reader.

Lemma 3. Under the constraints in (A1) and (A3),

P(X1(s) = X2(s),X1(t) = X2(t))≥ 1
n2

, s 6= t. (15)

Proof. Note that

P(X1(s) = X2(s),X1(t) = X2(t))

=
n−1∑
i=0

n−1∑
j=0

P(X1(s) = X2(s) = i,X1(t) = X2(t) = j)

=
n−1∑
i=0

n−1∑
j=0

P(X1(s) = i,X1(t) = j,X2(s) = i,X2(t) = j). (16)

From the independence constraint in (A1) and the identical distribution constraint in (A3), it
follows that

P(X1(s) = i,X1(t) = j,X2(s) = i,X2(t) = j)
= P(X1(s) = i,X1(t) = j)P(X2(s) = i,X2(t) = j)
= (P(X1(s) = i,X1(t) = j))2. (17)

Using this in (16), we then have

P(X1(s) = X2(s),X1(t) = X2(t)) =
n−1∑
j=0

n−1∑
i=0

(P(X1(s) = i,X1(t) = j))2. (18)

Note from Jensen’s inequality that for any x1, x2, . . . , xm ∈R
m∑

i=1

1
m

x2
i ≥ (

1
m

m∑
i=1

xi)2. (19)

Also, we know from the law of the total probability that

n−1∑
j=0

n−1∑
i=0

P(X1(s) = i,X1(t) = j) = 1. (20)

It then follows from (19) and (20) that

P(X1(s) = X2(s),X1(t) = X2(t))

= n2

n−1∑
j=0

n−1∑
i=0

1
n2

(P(X1(s) = i,X1(t) = j))2

≥ n2
( 1

n2

n−1∑
j=0

n−1∑
i=0

P(X1(s) = i,X1(t) = j)
)2

=
1
n2

. (21)
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Proof. (Theorem 2) The event {T ≥ τ} is equivalent to the event that these two users do not
rendezvous before time τ . Thus,

P(T ≥ τ) = P(X1(s) 6= X2(s),1≤ s≤ τ − 1)
= 1−P(∪τ−1

s=1{X1(s) = X2(s)}). (22)

Clearly, we have
P(T ≥ 2) = 1−P(X1(1) = X2(1)) = 1− 1

n
, (23)

where we use (14) in Lemma 2 for the last identity. Using the generalized union bound in (10) of
Lemma 1, we have for τ ≥ 3,

P(∪τ−1
s=1{X1(s) = X2(s)})

≤
τ−1∑
s=1

P(X1(s) = X2(s))−
τ−2∑
s=1

P(X1(s) = X2(s),X1(s+1) = X2(s+1)). (24)

It then follows from (14) in Lemma 2 and (15) in Lemma 3 that

P(∪τ−1
s=1{X1(s) = X2(s)})≤ τ − 1

n
− τ − 2

n2
. (25)

In conjunction with (22) and (23), we then have for τ ≥ 2,

P(T ≥ τ)≥ (1− τ − 1
n

+
τ − 2
n2

)+. (26)

In particular, choosing τ = n+1, we have

P(T ≥ n+1)≥ 1
n

(1− 1
n

) > 0. (27)

Since E[T ] =
∑∞

τ=1 P(T ≥ τ) and P(T ≥ 1) = 1, we have from the inequality in (26) that

E[T ]≥ 1+
∞∑

τ=2

(1− τ − 1
n

+
τ − 2
n2

)+

≥ 1+
n+1∑
τ=2

(1− τ − 1
n

+
τ − 2
n2

) =
n+1

2
+

1
2
− 1

2n
. (28)

3.2. Finite projective planes In this section, we show how one can construct random
sequences that satisfy (A1), (A2) and (A3), and achieve the lower bounds in Theorem 2. In the
following, we give a brief review of finite projective planes. Readers interested in this topic may
find additional material in [30] and its references.

Definition 1. A finite projective plane of order n is a collection of n2+n+1 lines and n2+n+1
points such that
(P1) every line contains n+1 points,
(P2) every point is on n+1 lines,
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Figure 1. A finite projective plane of order 2

(P3) any two distinct lines intersect at exactly one point, and
(P4) any two distinct points lie on exactly one line.

The finite projective plane of order 1 is simply a triangle that consists of three points and three
lines. In Figure 1, we show a finite projective plane of order 2, known as the Fano plane, where
points are shown as dots and lines are shown as lines or circles. In this figure, there are 7 lines:

L0 = {0,1,2},
L1 = {0,3,4},
L2 = {0,5,6},
L3 = {1,3,5},
L4 = {1,4,6},
L5 = {2,3,6}, and
L6 = {2,4,5}. (29)

If n is a prime power, then there exists a systematic method to construct a finite projective plane
of order n via projective geometry over the Galois field GF (n) [14, 15]. However, a finite projective
plane may not exist for arbitrary n. It was shown by Bose [14] that there is no projective plane
of order 6. Moreover, a much more general theorem by Bruck and Ryser [16] provided a necessary
condition for the existence of a finite projective plane of order n when n = 4m + 1 or 4m + 2 for
some nonnegative integer m. The necessary condition requires that n to be a sum of two integer
squares. However, such a necessary condition is not sufficient. In particular, when n = 10 = 12 +32,
it was shown in [30] by computer calculation that there is no projective plane of order 10.

Now we show how to construct the random sequence from a finite projective plane of order n.
Without loss of generality, we index the n2 + n + 1 points from 0 to n2 + n. Choose point 0 and
select the n + 1 lines that contains point 0. For each one of these n + 1 lines, we form a set by
removing point 0 in that line. This gives us n + 1 sets S1, S2, . . . , Sn+1, and each of them contains
exactly n points. Suppose that Si contains the n points {Si,0, Si,1, . . . , Si,n−1} for i = 1,2, . . . , n+1.
In the following lemma, we show several properties for the sets Si, i = 1,2, . . . , n+1.

Lemma 4. (i) For all 1≤ i < j ≤ n+1, Si ∩Sj is an empty set and ∪n+1
i=1 Si is the set of points

from 1 to n2 +n.
(ii) Consider a point S1,j1 ∈ S1 and another point S2,j2 ∈ S2. There is a unique line, denoted by
Lj1,j2, that contains these two points. Moreover, Lj1,j2 is one of the n2 lines that does not contain
point 0, and it intersects with Si at exactly one point for i = 1,2 . . . , n+1, i.e., |Lj1,j2 ∩Si|= 1.
(iii) Consider two lines Lj1,j2 and Lj′1,j′2. If either j1 6= j′1 or j2 6= j′2, there exists a unique point in
Lj1,j2 ∩Lj′1,j′2, i.e., |Lj1,j2 ∩Lj′1,j′2 |= 1.
(iv) For every point z in ∪n+1

i=1 Si, there are exactly n lines in the n2 lines, Lj1,j2 ,0≤ j1, j2 ≤ n− 1,
that contain point z.
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Proof. (i) As every two distinct lines intersect at exactly one point and any two of these n + 1
lines containing point 0 have already intersected at point 0, we know that Si ∩Sj is an empty set
for all 1≤ i < j ≤ n+1. Thus, ∪n+1

i=1 Si is the set of points from 1 to n2 +n.
(ii) Since S1,j1 and S2,j2 are distinct and any two distinct points lie on exactly one line, these

two points determines a line Lj1,j2 . Now we argue by contradiction that line Lj1,j2 does not contain
point 0. Suppose that Lj1,j2 contains point 0. Then Lj1,j2 and the line formed by S1 and point 0
intersect at two distinct points, i.e., point 0 and point S1,j1 . This contradicts to (P3).

Recall that Si is obtained from a line containing point 0 and line Lj1,j2 is a line that does not
contain point 0, there exists exactly one point in L∩Si as any two distinct lines intersect at exactly
one point.

(iii) This follows directly from (P4) for a finite projective plane.
(iv) Suppose that point z is in Si for some 1≤ i≤ n + 1. Since every point is on n + 1 lines and

point z is already on the line {0}∪Si, there are exactly n lines in the n2 lines, Lj1,j2 ,0≤ j1, j2 ≤ n−1,
that contain point z.

Now we propose an algorithm to construct a random hopping sequence from a finite projective
plane of order n that satisfies the uniform load constraint in (A2). The key idea is to select a line
uniformly and independently among the n2 lines that do not contain point 0.

Algorithm 1. Select a point in S1 and another point in S2 uniformly and independently. Suppose
that the line determined by these two points is line L = {Si,ji

, i = 1,2, . . . , n + 1}. Construct a
periodic sequence {X(t), t≥ 1} with period n+1 by assigning X(t) = ji, where i = ((t−1) mod (n+
1))+1.

Lemma 5. Suppose that a finite projective plane of order n exist. Then the random hopping
sequence {X(t), t≥ 1} constructed from Algorithm 1 satisfies the uniform load constraint in (A2),
i.e., for all t and i = 0,1,2, . . . , n− 1,

P(X(t) = i) =
1
n

. (30)

Proof. Note that there are n2 lines that can be chosen from selecting a point in S1 and another
point in S2. Thus, there are n2 sample sequences in this construction. As we select a point in S1 and
another point in S2 uniformly and independently, each sample sequence is selected with probability
1/n2. If X(i) = j for some 1≤ i≤ n+1 and 0≤ j ≤ n−1, then a line containing the point Si,j must
be selected. Since there are n lines containing Si,j in these n2 lines (Lemma 4(iv)), we conclude
that for all 1≤ i≤ n+1 and 0≤ j ≤ n− 1,

P(X(i) = j) =
n

n2
=

1
n

. (31)

Since X(t) constructed from Algorithm 1 is periodic with period n + 1, we know that (31) also
hold for any t≥ 1 and the constraint in (A2) is satisfied.

Example 2. (n = 2) In this example, we consider the case with n = 2. As shown in (29), the
three lines L0,L1 and L2 contain point 0. By removing point 0 from these three lines, we form
S1 = {S1,0, S1,1}= {1,2}, S2 = {S2,0, S2,1}= {3,4} and S3 = {S3,0, S3,1}= {5,6}. For a point in S1

and another point in S2, we have the following four lines:

L1,1 = {1,3,5}= L3,
L1,2 = {1,4,6}= L4,
L2,1 = {2,3,6}= L5,
L2,2 = {2,4,5}= L6.
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If L1,1 is selected, then the corresponding sample sequence is 000000 . . . as 1 = S1,0, 3 = S2,0 and
5 = S3,0. The other three sequences corresponding to L1,2, L2,1 and L2,2 are 011011 . . . , 101101 . . . ,
and 110110 . . . Each of these four sequences is selected with probability 1/4 and both 0 and 1 appear
with probability 1/2 at any time.

Theorem 3. Suppose that a finite projective plane of order n exist and that both users select
their hopping sequences independently via Algorithm 1.
(i) Both users rendezvous within n+1 steps, i.e., T ≤ n+1.
(ii) The tail distribution of the random variable T satisfies

P(T ≥ τ) = 1− τ − 1
n

+
τ − 2
n2

, 2≤ τ ≤ n+1. (32)

As such,

P(T = 1) =
1
n

, (33)

P(T = τ) =
1
n

(1− 1
n

), τ = 2, . . . , n+1. (34)

(iii) The expected number of steps for both users to rendezvous is n+1
2

+ 1
2
− 1

2n
, i.e.,

E[T ] =
n+1

2
+

1
2
− 1

2n
. (35)

Proof. (i) If both users follow the same sample sequence, they rendezvous at time 1. Thus, we only
need to consider the case that they follow two distinct sample sequences. As each sample sequence
constructed from Algorithm 1 corresponds to one of the n2 lines in a finite projective plane, we
know from Lemma 4(iii) that any two distinct sample sequences constructed from Algorithm 1
intersect at a point. Since there are n+1 points in a line, it then follows that T ≤ n+1.

(ii) Clearly, P(T ≥ 1) = 1. On the other hand, in view of T ≤ n + 1 in (1), we know that for
τ ≥ n+2,

P(T ≥ τ) = 0.

Thus, we only need to find P(T ≥ τ), τ = 2, . . . , n+1.
For this, let us condition on the event {X1(i) = ji, i = 1,2, . . . , n + 1}. In other words, user 1

selects the line Lj1,j2 = {Si,ji
, i = 1,2, . . . , n + 1}. Now we compute the conditional probability for

τ ≥ 2,
P(T ≥ τ |{X1(i) = ji, i = 1,2, . . . , n+1}) = P(X2(s) 6= js,1≤ s≤ τ − 1).

Such a condition probability is thus the probability that user 2 selects a line that does not contain
a point in {S1,j1 , S2,j2 , . . . , Sτ−1,jτ−1

}. Note that for each point z in ∪n+1
i=1 Si, there are exactly n

lines in the n2 lines that contain that point (Lemma 4(iv)). Excluding line Lj1,j2 , there are n− 1
lines containing Si,ji

. Thus, the total number of lines in the n2 lines that contain a point in
{S1,j1 , S2,j2 , . . . , Sτ−1,jτ−1

} is 1+ (τ − 1)(n− 1). As such, there are n2− 1− (τ − 1)(n− 1) lines that
do not contain any point in {S1,j1 , S2,j2 , . . . , Sτ−1,jτ−1

}. As every line is chosen with probability
1/n2, we then have

P(T ≥ τ |{X1(i) = ji, i = 1,2, . . . , n+1})
=

n2− 1− (τ − 1)(n− 1)
n2

= 1− τ − 1
n

+
τ − 2
n2

.
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Unconditioning the event {X1(i) = ji, i = 1,2, . . . , n+1} yields

P(T ≥ τ) = 1− τ − 1
n

+
τ − 2
n2

.

The probability distribution of T then follows from the fact that P(T ≥ 1) = 1 and

P(T = τ) = P(T ≥ τ − 1)−P(T ≥ τ).

We note that the results in (33) and (34) can also be argued by using the following insight:
If both users select the same point on S1, then they meet at time 1. If they select a different

point on S1, then their lines are different. Their lines intersect in one point. By symmetry, this
point is uniformly distributed in [2, . . . , n+1].

(iii) Since P(T ≥ 1) = 1, one can use

E[T ] =
∞∑

τ=1

P(T ≥ τ) =
n+1∑
τ=1

P(T ≥ τ)

to show (35).

Recently, it was shown in [43] that the optimal expected time-to-rendezvous for symmetric
rendezvous search on three unlabelled locations (channels) is 5/2 if the two users are placed at two
distinct locations at the beginning. Such a result can be achieved by using the Anderson-Weber
(AW) strategy in which each user stays at his initial location with probability 1/3 and tour the
other locations in random order with probability 2/3 for each successive block of two steps. If we
use the AW strategy for our labelled rendezvous problem for n = 3, then the expected time-to-
rendezvous is 1+(1/3)0+(2/3)(5/2) = 8/3 as the two users make an initial choice that may cause
them to meet with probability 1/3. On the other hand, the expected time-to-rendezvous by using
the finite projective plane in Algorithm 1 is 5/2−1/6 = 7/3, which is smaller than 8/3. This is not
surprising as the AW strategy does not need the locations to be labelled.

4. Channel blocking In this section, we further take the channel blocking constraint in (A4)
into account. If a channel is blocked at time t, then the two users will not rendezvous even though
they hop to that channel at time t. Recall that B(t) is the set of channels that are blocked at time
t and E[|B(t)|]≥ b for all t.

4.1. Lower bounds In the following theorem, we derive the lower bound for the tail distri-
bution of the time-to-rendezvous under the constraints in (A1), (A2) and (A4).

Theorem 4. Under the constraints in (A1), (A2) and (A4),

P(T ≥ τ)≥ 1− (τ − 1)
n− b

n2
, τ ≥ 1. (36)

Let
n∗1 = n+ b+ d b2

n− b
e, (37)

where dxe is the ceiling function that represents the smallest integer not less than x. It follows from
(36) that

P(T ≥ n∗1) > 0, (38)

and that
E[T ]≥ n∗1− (

n− b

n2
)(

n∗1(n∗1− 1)
2

). (39)
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As a direct consequence, we know that under the constraints in (A1), (A2) and (A4), there
does not exist two random sequences such that the time-to-rendezvous can be deterministically
bounded by n∗1 − 1 steps. Moreover, the expected time-to-rendezvous under the constraints (A1),
(A2) and (A4) is not lower than n∗1 − (n−b

n2 )(n∗1(n∗1−1)

2
). We note that the results in Theorem 4 are

more general than those in Theorem 1. If there are no blocked channels, i.e., b = 0, then we have
n∗1 = n and the lower bound in (39) reduces to that in (4) of Theorem 1. Since adding an additional
constraint increases the time-to-rendezvous, the lower bounds in (38) and (39) also hold under the
constraints in (A1), (A2), (A3) and (A4). On the other hand, the lower bounds in Theorem 2 also
hold under the constraints in (A1), (A2), (A3) and (A4).
Proof. Let Et be the event that the two users hop to a common unblocked channel at time t,
i.e., Et = {X1(t) = X2(t) 6∈B(t)}. Also, denote by Ec

t the complement of the event Et. Thus, the
event that the two users do not rendezvous before time τ , i.e., {T ≥ τ}, is the intersection of all
the events Ec

t , t = 1,2, . . . , τ − 1. Thus,

P(T ≥ τ) = P(∩τ−1
t=1 Ec

t ) = 1−P(∪τ−1
t=1 Et)≥ 1−

τ−1∑
t=1

P(Et), (40)

where we use the union bound in the last inequality.
Since we assume that the two random sequences {X1(t), t≥ 1} and {X2(t), t≥ 1} are independent

of B(t) in (A4), conditioning on the event that {B(t) = Γ} for some subset Γ of {0,1,2, . . . , n− 1}
yields

P(Et) = P(X1(t) = X2(t) 6∈B(t))
=

∑

Γ⊆{0,1,2,...,n−1}
P(X1(t) = X2(t) 6∈ Γ)P(B(t) = Γ).

(41)

Note from the independence constraint in (A1), the uniform load constraint in (A2) and the channel
blocking constraint in (A4) that

P(X1(t) = X2(t) 6∈ Γ)
=

∑
i 6∈Γ

P(X1(t) = X2(t) = i)

=
∑
i 6∈Γ

P(X1(t) = i)P(X2(t) = i)

=
∑
i 6∈Γ

(
1
n

)2 =
n− |Γ|

n2
. (42)

Using this in (41) yields

P(Et) =
n−E[|B(t)|]

n2
. (43)

Since we assume that E[|B(t)|]≥ b in (A4), it then follows that

P(Et)≤ n− b

n2
. (44)

In conjunction with (40), we then have

P(T ≥ τ)≥ 1− (τ − 1)
n− b

n2
. (45)
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In particular, if we choose τ = n∗1, then

P(T ≥ n∗1)

≥ 1− (n∗1− 1)
n− b

n2

=
1
n2

(
b2 +n− b− (n− b)d b2

n− b
e
)
.

Since dxe< x+1, it then follows that

P(T ≥ n∗1) >
1
n2

(
b2 +n− b− (n− b)(

b2

n− b
+1)

)
= 0.

To show the lower bound for the expected time-to-rendezvous in (39), note that

E[T ] =
∞∑

τ=1

P(T ≥ τ)≥
n∗1∑

τ=1

P(T ≥ τ), (46)

and then use (36) in (46).

4.2. One permanently blocked channel In this section, we consider the special case that
a particular channel is blocked all the time, i.e., |B(t)|= b = 1 for all t. Then n∗1 in (37) is n+2 and
there does not exist random sequences such that the time-to-rendezvous can be deterministically
bounded by n+1 steps. Moreover, we have from (39) that

E[T ]≥ n+1
2

+
n2 +n+2

2n2
. (47)

As such, the best scenario is to look for random sequences such that the time-to-rendezvous can be
deterministically bounded within n+2 steps and they have the expected time-to-rendezvous as the
right hand side of (47). We will show this is possible if the two hopping sequences are allowed to
have different joint distributions, i.e., without the constraint in (A3). Our idea for such an optimal
construction is to use two orthogonal Latin squares. For this, we give a brief review of Latin squares
and refer to [21, 44] for more references.

Definition 2. (Latin square and Orthogonal Latin squares) A Latin square with the
set of symbols S is an |S| × |S| matrix such that every symbol appears exactly once in every row
and every column. Two n× n Latin squares A = (ai,j) and B = (bi,j) are said to be orthogonal if
the order pairs (ai,j, bi,j) are all different for all i, j = 0,1,2, . . . , n− 1.

In the following, we show two 4× 4 orthogonal Latin squares with S = {0,1,2,3}.



0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


 ,




0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1


 . (48)

Remark 1. The study of the existence of two orthogonal Latin squares (also known as the
Graeco-Latin square) was first proposed by L. Euler in 1782 [24]. He was not able to construct
two orthogonal Latin squares of order 6 (known as the 36 officers problem) and then conjectured
that there does not exist two orthogonal Latin squares of order n for n = 4m + 2, where m is a
nonnegative integer. It was confirmed later by G. Tarry via exhaustive enumeration that there does
not exist two orthogonal Latin squares of order 6. However, via extensive computer enumeration,
two orthogonal Latin squares of order 10 and order 22 were found and it was later shown that
Euler’s conjecture is false for all n≥ 10. We now know that two orthogonal Latin squares exist for
all n≥ 3 except n = 6.
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As mentioned in the previous remark, two orthogonal Latin squares exist for all n ≥ 3 except
for n = 6. Let A = (ai,j) and B = (bi,j) (with i, j = 0,1,2, . . . , n− 1) be two n×n orthogonal Latin
squares with the symbol set {0,1, . . . , n − 1}. Consider a symbol u ∈ {0,1, . . . , n − 1}. As every
symbol appears exactly once in every row and every column in a Latin square, we know for every
column j there is one distinct row index F a

j (u) such that the (F a
j (u), j)th element in A is u, i.e.,

aFa
j (u),j = u. Similarly, for every column j there is one distinct row index F b

j (u) such that the
(F b

j (u), j)th element in B is u, i.e., bF b
j (u),j = u.

Algorithm 2. Let U1 and U2 be two uniform random variables over [0,1, . . . , n− 1] that are inde-
pendent of each other. We construct the two random sequences by assigning {X1(t) = F a

t−1(U1),1≤
t≤ n} and {X2(t) = F b

t−1(U2),1≤ t≤ n}.
To illustrate the construction of the two random hopping sequences, we consider the case

n = 4 with the two orthogonal Latin squares in (48) (left for user 1 and right for user 2).
Suppose that U1 = 0 and U2 = 2. Then we have (X1(1),X1(2),X1(3),X1(4)) = (0,1,2,3) and
(X2(1),X2(2),X2(3),X2(4)) = (3,1,0,2). They both hop to channel 1 at time 2.

With such a construction, the two constraints (A1) and (A2) are satisfied (for 1≤ t≤ n). More-
over, since A and B are two orthogonal Latin squares, we know that these two users will hop to
a common channel within n steps. As both U1 and U2 are uniformly distributed, we also know
these two users will hop to a common channel with an equal probability 1/n2 at any channel in
[0,1, . . . , n− 1] and at any time t in [1,2, . . . , n].

Now suppose that channel 0 is blocked for all time t≥ 1 and this is known to both users. Since
channel 0 is blocked, both users will not rendezvous even if they both hop to channel 0 at the
same time. To compensate for the time that both users hop to channel 0, we construct the hopping
sequences by modifying those from algorithm 2.

Algorithm 2′. Suppose that channel 0 is blocked for all time t ≥ 1 and this is known to both
users. As in Algorithm 2, let U1 and U2 be two uniform random variables over [0,1, . . . , n− 1] that
are independent of each other. We construct the two periodic random sequences with period n + 2
by assigning {X1(t) = F a

t−1(U1),1≤ t≤ n} and {X2(t) = F b
t−1(U2),1≤ t≤ n}. As each sequence is

constructed from the appearance of a particular symbol in a Latin square, there is a unique time
in [1, n] for each user to hop to channel 0. Suppose that user 1 (resp. user 2) hops to channel 0 at
time t1 (resp. t2), i.e., X1(t1) = 0 (resp. X2(t2) = 0). We set X1(n + 1) = t1 − 1 and X1(n + 2) =
(t1 mod n). Similarly, we also set X2(n+1) = t2− 1 and X2(n+2) = (t2 mod n).

Note that X1(n+1) and X1(n+2) (resp. X2(n+1) and X2(n+2)) are deterministic functions of
{X1(t),1≤ t≤ n} (resp. {X2(t),1≤ t≤ n}). Thus, the only randomness that determine {X1(t),1≤
t≤ n + 2} (resp. {X2(t),1≤ t≤ n + 2}) is the random variable U1 (resp. U2). Since U1 and U2 are
independent, we conclude that the independent constraint in (A1) is still satisfied. On the other
hand, since U1 is uniformly distributed in [0,1, . . . , n − 1] and {X1(t),1 ≤ t ≤ n} is constructed
from the appearance of a symbol in a Latin square, we know that t1 is also uniformly distributed
in [1,2, . . . , n]. Thus, both X1(n + 1) and X1(n + 2) are uniformly distributed in [0,1, . . . , n− 1].
Similarly, both X2(n+1) and X2(n+2) are uniformly distributed in [0,1, . . . , n−1] and the uniform
load constraint in (A2) is satisfied.

Theorem 5. For n≥ 3 and n 6= 6, suppose that channel 0 is blocked for all time t≥ 1 and this
is known to both users. If both users select their hopping sequences independently via Algorithm
2′, then both users rendezvous within n+2 steps, i.e., T ≤ n+2. Moreover,

E[T ] =
n+1

2
+

n2 +n+2
2n2

. (49)

Proof. Since A and B are two orthogonal Latin squares, we know that these two users will hop
to a common channel within n steps. As both U1 and U2 are uniformly distributed, we also know
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these two users will hop to a common channel with an equal probability 1/n2 at any channel in
[0,1, . . . , n− 1] and at any time t in [1,2, . . . , n]. We consider the following three cases:
Case 1. Both users hop to a common channel at time 1≤ t≤ n and this channel is not channel 0:

In this case, we have T = t and this happens with probability n−1
n2 . Thus, for 1≤ t≤ n,

P(T = t) =
n− 1
n2

. (50)

Case 2. Both users hop to channel 0 at time 2≤ t≤ n:
In this case, we have t1 = t2 = t and X1(n+1) = X2(n+1) = t− 1. Since 1≤ t− 1≤ n− 1, these

two users rendezvous at channel t− 1 and at time n + 1. This also happens with probability n−1
n2 .

Thus,
P(T = n+1) =

n− 1
n2

. (51)

Case 3. Both users hop to channel 0 at time t = 1:
In this case, we have t1 = t2 = 1, X1(n+1) = X2(n+1) = 0 and X1(n+2) = X2(n+2) = 1. Thus,

these two users rendezvous at channel 1 and at time n + 2. This happens with probability 1
n2 and

thus
P(T = n+2) =

1
n2

. (52)

From these cases, we know that both users rendezvous within n+2 steps. Moreover, for 1≤ τ ≤
n+2,

P(T ≥ τ) = 1− (τ − 1)
n− 1
n2

, (53)

and the lower bound in (36) is achieved. As such, we also have

E[T ] =
n+1

2
+

n2 +n+2
2n2

. (54)

Remark 2. When the permanently blocked channel is known to both users, it seems that the
problem could be viewed as the rendezvous problem with n − 1 channels. However, there is the
uniform load constraint in (A2) and that constraint requires the blocked channel to be visited with
an equal probability. With this constraint, the problem with one permanently blocked channel is
not the same as the problem with n− 1 channels. In a cognitive radio network, the “permanently”
blocked channel might be a channel assigned to a primary (licensed) user and it is still possible
for secondary (unlicensed) users to access that channel when the primary user is not using it. As
such, it might still be beneficial for secondary users to probe that channel. Of course, it may not be
optimal to probe it with an equal probability.

4.3. Multiple permanently blocked channels In this section, we consider the case that
there are a subset of channels Γ that are blocked all the time, i.e., |B(t)|= |Γ|= b≥ 1. For b = 1, we
have shown in Theorem 5 how one can construct two random sequences that satisfy (A1), (A2) and
(A4) and achieve the lower bound in Theorem 4. However, such a construction cannot be extended
to achieve the lower bound in Theorem 4 for b > 1. Instead, we propose in this section a suboptimal
solution that not only satisfy (A1), (A2) and (A4) but also has a deterministic upper bounded on
the time-to-rendezvous. This is done without the knowledge of the set of blocked channels.

Algorithm 3. Use Algorithm 1 to construct a periodic sequence {X(t), t≥ 1} with period n + 1.
Construct the rotated sequence {X̃(t), t≥ 1} by assigning

X̃(t) = ((X(t)− 1+ dt/(n+1)e) mod (n+1)). (55)
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Clearly, we have X̃(t) = X(t) for t = 1,2 . . . , n + 1, X̃(t) = ((X(t) + 1) mod (n + 1)) for t = n +
2, n+3, . . . ,2(n+1), X̃(t) = ((X(t)+2) mod (n+1)) for t = 2(n+1)+1,2(n+1)+2, . . . ,3(n+1),
. . .. In other words, if we view every n + 1 steps as a frame, then the values of X̃(t) in a frame
are simply the rotation of X(t) in that frame. Since we have shown in Lemma 5 that the random
hopping sequence {X(t), t≥ 1} constructed from Algorithm 1 satisfies the uniform load constraint
in (A2), the random hopping sequence {X̃(t), t ≥ 1}, as a rotated version of {X(t), t ≥ 1}, also
satisfies the uniform load constraint in (A2).

Theorem 6. Suppose that a finite projective plane of order n exist and that both users select
their hopping sequences independently via Algorithm 3. If there are b < n permanently blocked
channels, then both users rendezvous within (n+1)(b+1) steps, i.e.,

T ≤ (n+1)(b+1). (56)

Proof. As shown in Theorem 3(i), if we use Algorithm 1 to construct the two random sequences,
then both users will hop to a common channel every n + 1 steps and this rendezvous channel
stays the same for every n + 1 steps. Since the two sequences constructed from Algorithm 3 are
rotated versions of their counterparts from Algorithm 1, we know that both users will still hop to
a common channel every n+1 steps but this rendezvous channel will rotate for every n+1 steps.
As such, they will rendezvous at b + 1 distinct channels after (n + 1)(b + 1) steps. Since there are
only b permanently blocked channels, they must rendezvous within (n + 1)(b + 1) steps and thus
T ≤ (n+1)(b+1).

5. Time synchronization In this section, we further take (A5) into account. As both random
sequences are stationary, the distribution of the time-to-rendezvous is invariant for an arbitrary
time shift of any one of the two random sequences. In practice, time synchronization is not needed
under (A5) as it makes no difference for the performance in terms of the time-to-rendezvous. One
particular random sequence that satisfies (A1), (A2), (A3) and (A5) is to select a channel uniformly
and independently at any time t. We call such a random sequence the coin-tossing sequence. If both
users use two independent coin-tossing random sequences, then it is well-known that E[T ] = n (see
e.g., [42]).

One drawback of using the coin-tossing random sequences is that there is no upper bound for
the time-to-rendezvous [42]. To provide a deterministic upper bound for the time-to-rendezvous,
a sequence-based approach using permutations was proposed in [20] and it was shown to have a
deterministic upper bound of O(n2). It was further shown in [33] by using the Jump-Stay algorithm
that there is a deterministic upper bound of 3n steps. Our main result in this section is to construct
random sequences by using sawtooth sequences in [45] so that they satisfy (A1-3) and (A5) and
have a deterministic upper bound of 2n + 1 steps. Moreover, the expected time-to-rendezvous is
less than n and thus better than using the coin-tossing random sequences. For the setting with a
single permanently blocked channels, we propose interleaving a sawtooth sequence and an inverted
sawtooth sequence in time so that any two sequences are guaranteed to rendezvous within 4n + 2
steps.

5.1. Sawtooth sequences In the following, we propose using sawtooth sequences in [45] for
our constructions of stationary hopping sequences. Our construction is inspired by the ideal square
dot matrix in [29] that is closely related to difference sets in [48, 26].



Author: Article Short Title
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 19

Definition 3. (Sawtooth sequence [45]) A deterministic sequence {f(t), t≥ 1} is called a
sawtooth sequence of order n if

f(t) =
{

t− 1, for t = 1,2, . . . , n
2n− t, for t = n+1, n+1, . . . ,2n

, (57)

and
f(t) = f(t mod (2n+1)). (58)

for t > 2n+1 and t is not an integer multiple of 2n+1.
Note that f(t) is not specified for any t that is an integer multiple of 2n + 1. In view of (58), it is
periodic with period 2n+1 for the rest of time t. Also, every number i, i = 0,1, . . . , n− 1, appears
exactly twice for t = 1,2, . . . ,2n.

For example, a sawtooth sequence of order 4 is

01233210x01233210x . . . ,

where x denotes an unspecified value. One key property of a sawtooth sequence of order n is that
for any time shift d, there exists some 1≤ τ ≤ 2n such f(τ) = f(τ + d). This is formally stated in
the following proposition. The proof of Proposition 1 is quite straightforward and thus omitted.

Proposition 1. Suppose f(t) is a sawtooth sequence of order n. Consider two sequences
x1(t) = f(t) and x2(t) = f(t+ d) for some d≥ 0. Let

d0 = (d mod (2n+1)).

(i) Suppose d0 = 0. Then x1(1) = x2(1) = 0.
(ii) Suppose that d0 is a nonzero even number. Let τe = 2n+1− d0

2
. Then n+1≤ τe ≤ 2n and

x1(τe) = x2(τe) = 2n− τe.

(iii) Suppose that d0 is an odd number. Let τo = 2n−d0+1
2

. Then 1≤ τo ≤ n and

x1(τo) = x2(τo) = τo− 1.

In all these three cases,
x1(τ +(2n+1)m) = x2(τ +(2n+1)m)

for some 1≤ τ ≤ 2n and all nonnegative integer m.

In Table 3, we illustrate the results in Proposition 1 by considering the case for n = 4. Here we
show all the time shifted sequences f(t+ d), d = 0,1,2, . . . ,8. In the first row, we show a sawtooth
sequence of order 4 (the case with d = 0). Those numbers (channels) marked with an ∗ in all the
subsequent rows are the numbers (channels) that match their counterparts in the first row.

Algorithm 4. Suppose f(t) is a sawtooth sequence of order n. Construct a random sequence
{Y (t), t≥ 1} by letting (i) Y (t) = f(t) when t is not an integer multiple of 2n+1, and (ii) Y (t) = U1

for some uniform random variable U1 over [0,1, . . . , n− 1] when t is an integer multiple of 2n+1.
Choose a uniform random variable U2 over [0,1, . . . ,2n] that is independent of U1. Construct the
random sequence {X(t), t≥ 1} by letting X(t) = Y (t+U2).

Observe that {Y (t), t≥ 1} is now periodic with period 2n+1 and thus {X(t), t≥ 1}, as a random
start in a period, is stationary and the constraint in (A5) is satisfied. Moreover, we have for all t
and for 0≤ i≤ n− 1,

P(X(t) = i) = P(X(1) = i) = P(Y (1+U2) = i)
= P(U2 = i)+P(U2 = 2n− (i+1))+P(U2 = 2n,U1 = i)

=
2

2n+1
+

1
2n+1

1
n

=
1
n

. (59)

Thus, the constraint in (A2) is satisfied.
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t 1 2 3 4 5 6 7 8 9
f(t) 0 1 2 3 3 2 1 0 x

f(t+1) 1 2 3 3∗ 2 1 0 x 0
f(t+2) 2 3 3 2 1 0 x 0∗ 1
f(t+3) 3 3 2∗ 1 0 x 0 1 2
f(t+4) 3 2 1 0 x 0 1∗ 2 3
f(t+5) 2 1∗ 0 x 0 1 2 3 3
f(t+6) 1 0 x 0 1 2∗ 3 3 2
f(t+7) 0∗ x 0 1 2 3 3 2 1
f(t+8) x 0 1 2 3∗ 3 2 1 0

Table 3. A sawtooth sequence of order 4

Theorem 7. Suppose that both users select their hopping sequences independently via Algo-
rithm 4 and that there are no blocked channels. Then both users rendezvous within 2n + 1 steps,
i.e., T ≤ 2n+1.

Proof. This is a direct consequence of Proposition 1.

Moreover, it can be shown by a lengthy and detailed calculation that for n≥ 2,

E[T ] = n− 1
6

+
2n2 +11n− 4
6n(2n+1)2

< n,

if both users select their hopping sequences independently via Algorithm 4. As such, the expected
time-to-rendezvous is also better than using the coin-tossing sequences.

5.2. Time-interleaving sawtooth sequences The sawtooth sequence [45] has the smallest
deterministic upper bound for the time-to-rendezvous among all the works in the literature when
there are no blocked channels (see e.g., Table 1 of [17] for the comparison of various existing
algorithms). In this section, we extend the result for the setting with a single permanently blocked
channel. The key idea is based on time-interleaving a sawtooth sequence and an inverted sawtooth
sequence defined below.

Definition 4. (Inverted Sawtooth Sequence) A deterministic sequence {f(t), t ≥ 1} is
called an inverted sawtooth sequence of order n if

f(t) =
{

n− t, for t = 1,2 . . . , n,
t− (n+1), for t = n+1, . . . ,2n,

(60)

and

f(t) = f(tmod (2n+1)), (61)

for t > 2n+1 and t is not an integer multiple of 2n+1.
For example, an inverted sawtooth sequence of order 4 is

32100123x32100123x . . . (62)

where x denotes an unspecified value.
As the inverted sawtooth sequence is simply a mapping of the channel indices of a sawtooth

sequence, the inverted sawtooth sequence possesses the same property as the original sawtooth
sequence in Proposition 1. This is formally stated in the following corollary.
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Corollary 1. Suppose f(t) is an inverted sawtooth sequence of order n. Consider two
sequences x1(t) = f(t) and x2(t) = f(t+ d) for some d≥ 0. Let

d0 = dmod (2n+1). (63)

(i) Suppose d0 = 0. Then x1(1) = x2(1) = n− 1.
(ii) Suppose that d0 is a nonzero even number. Let τe = 2n+1− d0

2
. Then n+1≤ τe ≤ 2n and

x1(τe) = x2(τe) = τe− (n+1). (64)

(iii) Suppose that d0 is an odd number. Let τo = 2n−d0+1
2

. Then 1≤ τo ≤ n and

x1(τo) = x2(τo) = n− τo. (65)

In all these three cases,

x1(τ +(2n+1)m) = x2(τ +(2n+1)m) (66)

for some 1≤ τ ≤ 2n and all nonnegative integer m.

We now interleave an original sawtooth sequence of order n and another inverted sawtooth
sequence of order n in time to construct a sequence g(t).

Definition 5. (Interleaved Sawtooth Sequence) Let fo(t) and fe(t) be sawtooth and
inverted sawtooth sequences of order n, respectively. Let t0 equals t by modulo (4n + 2), namely,
t0 = t mod (4n + 2). Then, a deterministic sequence {g(t), t≥ 1} is called an interleaved sawtooth
sequence of order n if

g(t) =
{

fo(s), for t0 = 2s− 1, s = 1,2, . . . ,2n,
fe(s), for t0 = 2s, s = 1,2, . . . ,2n,

(67)

and g(t) is not specified if t0 = 4n+1 and 0.
For example, an interleaved sawtooth sequence of order 4 is

0312213030211203xx0312213030211203xx . . . (68)

where x denotes an unspecified value.
In the following theorem, we state the main result for the interleaved sawtooth sequence. For

the ease of our presentation, the proof of Theorem 8 is deferred to the end of this section.

Theorem 8. Suppose that {g(t), t≥ 1} is an interleaved sawtooth sequence of order n and n
is an even number. Consider two sequences x1(t) = g(t) and x2(t) = g(t + d) for some d≥ 0. Then
for any d≥ 0, there exists 1≤ τ1, τ2 ≤ 4n+2 such that

x1(τ1) = x2(τ1), and x1(τ2) = x2(τ2), (69)

and
x1(τ1) 6= x2(τ2). (70)

In view of Theorem 8, one can use an interleaved sawtooth sequence for constructing hopping
sequences such that the time-to-rendezvous can be deterministically bounded by 4n+2 steps even
when there is a single permanently blocked channel. The algorithm is stated formally in Algorithm
5 below.

Algorithm 5. Suppose g(t) is an interleaved sawtooth sequence of order n. Choose three indepen-
dent random variables U1, U2 and U3, where U1 and U2 are uniformly distributed over [0,1, . . . , n−1]
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and U3 is uniformly distributed over [0,1, . . . ,4n + 1]. Construct a random sequence {Y (t), t≥ 1}
by letting (i) Y (t) = g(t) when (t mod 4n + 2) 6= 0 or (t mod 4n + 2) 6= 4n + 1, (ii) Y (t) = U1 when
(t mod 4n + 2) = 0, and (iii) Y (t) = U2 when when (t mod 4n + 2) = 4n + 1 Construct the random
sequence {X(t), t≥ 1} by letting X(t) = Y (t+U3).

Observe that {Y (t), t≥ 1} is now periodic with period 4n+2 and thus {X(t), t≥ 1}, as a random
start in a period, is stationary and the constraint in (A5) is satisfied. It is also easy to see that the
constraint in (A2) is satisfied.

Corollary 2. Suppose that (i) n is an even number, (ii) both users select their hopping
sequences independently via Algorithm 5, and (iii) there is at most one permanently blocked chan-
nel. Then both users rendezvous within 4n+2 steps, i.e., T ≤ 4n+2.

Proof. This is a direct consequence of Theorem 8.

Since g(t) is the time-interleaving sequence of the two sequences fo(t) and fe(t), it is not difficult
to see from Proposition 1 and Corollary 1 that (69) holds for any even time shift d (the detailed
proof will be given in Lemma 6 later). The hard part is to show that (69) holds when d is odd.

From the definitions of sawtooth sequences and inverted sawtooth sequences, we note that for
j = 0,1, . . . , n− 1,

j = fo(j +1) = fo(2n− j)
= fe(n− j) = fe(n+1+ j).

In view of the definition of the interleaved sawtooth sequence g(t) in (67), we then have

j = g(2j +1) = g(4n− 2j− 1)
= g(2n− 2j) = g(2n+2+2j). (71)

Also, by replacing j by (n− 1)− j in (71), we have that

(n− 1)− j
= g(4n− 2((n− 1)− j)− 1) = g(2n+2j +1)
= g(2n+2+2((n− 1)− j)) = g(4n− 2j), (72)

for all j = 0,1, . . . , n− 1.
The proof of Theorem 8 is based on the following lemma that specifically identifies both the

time and the channel index for two users to rendezvous.

Lemma 6. Assume that {g(t), t≥ 1} is an interleaved sawtooth sequence of order n. Consider
two sequences x1(t) = g(t) and x2(t) = g(t+ d) for some d≥ 0. Let

d0 = (d mod (4n+2)). (73)

(i) Suppose that d0 = 0. Then, x1(t) = x2(t) for all 1≤ t≤ 4n.
(ii) Suppose that d0 = 2n + 1. Then, x1(t) = x2(t) for all odd t with 1 ≤ t ≤ 2n and all even t

with 2n+2≤ t≤ 4n.
(iii) Suppose that d0 is a nonzero even number and d0/2 is also an even number. Let τe,1 =

(2n + 1)− (d0/4). Then, n + 1≤ τe,1 ≤ 2n, x1(2τe,1 − 1) = x2(2τe,1 − 1) = 2n− τe,1 and x1(2τe,1) =
x2(2τe,1) = τe,1− (n+1).

(iv) Suppose that d0 is a nonzero even number and d0/2 is an odd number. Let τe,2 = (2n −
(d0/2)+1)/2. Then, 1≤ τe,2 ≤ n, x1(2τe,2− 1) = x2(2τe,2− 1) = τe,2− 1, and x1(2τe,2) = x2(2τe,2) =
n− τe,2.
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(v) Suppose that d0 is an odd number and d0 = 2n− 1− 4j0 for some 0≤ j0 ≤ b(2n− 1)/4c. Let
τo,1 = n− d0−1

2
. Then, 1≤ τo,1 ≤ n, x1(τo,1) = x2(τo,1) = τo,1−1

2
, and x1(τo,1 + 2n) = x2(τo,1 + 2n) =

(n− 1)− τo,1−1

2
. In particular, for d0 = 2n− 1, x1(t) = x2(t) for all even t with 2≤ t≤ 2n.

(vi) Suppose that d0 is an odd number and d0 = 2n− 3− 4j0 for some 0≤ j0 ≤ b(2n− 3)/4c. Let
τo,1 = n− d0−1

2
. Then, 1≤ τo,1 ≤ n, x1(τo,1) = x2(τo,1) = n− τo,1

2
, and x1(τo,1 + 2n) = x2(τo,1 + 2n) =

τo,1

2
− 1.

(vii) Suppose that d0 is an odd number and d0 = 2n+3+4j0 for some 0≤ j0 ≤ b(2n−1)/4c. Let
τo,2 = (2n+1)+n− d0−1

2
. Then, n+1≤ τo,2 ≤ 2n, x1(τo,2) = x2(τo,2) = n− τo,2

2
, and x1(τo,2 +2n) =

x2(τo,2 + 2n) = τo,2

2
− 1. In particular, for d0 = 2n + 3, x1(t) = x2(t) for all odd t with 2n + 1≤ t≤

4n− 1.
(viii) Suppose that is d0 an odd number and d0 = 2n+5+4j0 for some 0≤ j0 ≤ b(2n−3)/4c. Let

τo,2 = (2n + 1) + n− d0−1
2

. Then, n + 1≤ τo,2 ≤ 2n, x1(τo,2) = x2(τo,2) = τo,2−1

2
, and x1(τo,2 + 2n) =

x2(τo,2 +2n) = (n− 1)− τo,2−1

2
.

Proof. (i) For d0 = 0, we have from (67) that

x1(t) = g(t) = g(t+ d0) = x2(t) (74)

for all 1≤ t≤ 4n.
(ii) d0 = 2n+1. From (71), for all j = 0,1, . . . , n− 1, we have that

x1(2j +1) = g(2j +1) = g((2j +1)+ (2n+1)) = x2(2j +1),

and

x1(2n+2+2j) = g(2n+2+2j) = g(2j +1) = g(2j +1+4n+2)
= g((2n+2+2j)+ (2n+1)) = x2(2n+2+2j).

(iii) Since d0/2 is an even number, we have from Proposition 1(ii) and Corollary 1(ii) that
fo(τe,1) = fo(τe,1 +d0/2) = 2n− τe,1 and fe(τe,1) = fe(τe,1 +d0/2) = τe,1− (n+1) with τe,1 = 2n+1−
d0/4. Thus, it follows from (67) that

x1(2τe,1− 1) = g(2τe,1− 1) = fo(τe,1) = 2n− τe,1.

On the other hand,

x2(2τe,1− 1) = g(2τe,1− 1+ d0) = fo(τe,1 + d0/2) = 2n− τe,1.

Also, from (67), we have that

x1(2τe,1) = g(2τe,1) = fe(τe,1) = τe,1− (n+1),

and

x2(2τe,1) = g(2τe,1 + d0) = fe(τe,1 + d0/2) = τe,1− (n+1).

(iv) Since d0/2 is an odd number, we have from Proposition 1(iii) and Corollary 1(iii) that
fo(τe,2) = fo(τe,2 + d0/2) = τe,2− 1 and fe(τe,2) = fe(τe,2 + d0/2) = n− τe,2 with τe,2 = (2n− (d0/2)+
1)/2. Thus, it follows from (67) that

x1(2τe,2− 1) = g(2τe,2− 1) = fo(τe,2) = τe,2− 1.
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On the other hand,

x2(2τe,2− 1) = g(2τe,2− 1+ d0) = fo(τe,2 + d0/2) = τe,2− 1.

Also, from (67), we have that

x1(2τe,2) = g(2τe,2) = fe(τe,2) = n− τe,2,

and

x2(2τe,2) = g(2τe,2 + d0) = fe(τe,2 + d0/2) = n− τe,2.

(v) Since d0 = 2n− 1− 4j0, we have

τo,1 = n− d0− 1
2

= 2j0 +1. (75)

It then follows from (71) that

x1(τo,1) = g(2j0 +1) = j0 = g(2n− 2j0)

= g(n− d0− 1
2

+ d0) = x2(τo,1).

In conjunction with (75), we have

x1(τo,1) = x2(τo,1) =
τo,1− 1

2
.

On the other hand, we have from (72) that

x1(τo,1 +2n) = g(2n+2j0 +1) = (n− 1)− j0 = g(4n− 2j0)
= g(2n+2j0 +1+ d0) = x2(τo,1 +2n).

Thus,

x1(τo,1 +2n) = x2(τo,1 +2n) = (n− 1)− τo,1− 1
2

.

In particular, for the case that d0 = 2n− 1, we have from (75) that τo,1 = 1 and j0 = 0. Thus

x1(1) = x2(1) = 0, (76)

and

x1(2n+1) = x2(2n+1) = n− 1. (77)

Moreover, from (71), we also have that

x1(2n− 2j) = g(2n− 2j)
= g(4n− 2j− 1)
= g((2n− 2j)+ (2n− 1))
= x2(2n− 2j) = j, (78)

for all j = 0,1, . . . , n− 1. In other words, for d0 = 2n− 1, we have that x1(t) = x2(t) for all even t
with 2≤ t≤ 2n.
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(vi) Let k0 = (n− 1)− j0. Since 0≤ j0 ≤ b2n− 3/4c, it is easy to see that 0≤ k0 ≤ n− 1. Since
d0 = 2n− 3− 4j0, we have

τo,1 = n− d0− 1
2

= 2j0 +2 = 2n− 2k0. (79)

It then follows from (71) that

x1(τo,1) = g(2n− 2k0) = k0 = g(2k0 +1)

= g(n− d0− 1
2

+ d0) = x2(τo,1).

In conjunction with (79), we have

x1(τo,1) = x2(τo,1) = k0 = n− τo,1

2
.

On the other hand, we have from (72) that

x1(τo,1 +2n) = g(4n− 2k0) = (n− 1)− k0 = g(2n+2k0 +1)
= g(4n− 2k0 + d0) = x2(τo,1 +2n).

Thus,
x1(τo,1 +2n) = x2(τo,1 +2n) = (n− 1)− k0 =

τo,1

2
− 1.

(vii) Since d0 = 2n+3+4j0, we have

τo,2 = (2n+1)+n− d0− 1
2

= 2n− 2j0. (80)

It then follows from (71) and the periodic property of g(t) that

x1(τo,2) = g(2n− 2j0) = j0 = g(2j0 +1)

= g(4n+2+2j0 +1) = g((2n+1)+n− d0− 1
2

+ d0) = x2(τo,2).

In conjunction with (80), we have

x1(τo,2) = x2(τo,2) = n− τo,2

2
.

On the other hand, we have from (72) and the periodic property of g(t) that

x1(τo,2 +2n) = g(4n− 2j0) = (n− 1)− j0 = g(2n+2j0 +1)
= g(4n+2+2n+2j0 +1) = g(4n− 2j0 + d0) = x2(τo,2 +2n).

Thus,
x1(τo,2 +2n) = x2(τo,2 +2n) =

τo,2

2
− 1.

In particular, for the case that d0 = 2n+3, we have from (80) that τo,2 = 2n and j0 = 0. Thus

x1(2n) = x2(2n) = 0, (81)

and

x1(4n) = x2(4n) = n− 1. (82)
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Moreover, from (71) and the periodic property of g(t), we also have that

x1(4n− 2j− 1) = g(4n− 2j− 1)
= g(2n− 2j)
= g(4n+2+2n− 2j)
= g((4n− 2j− 1)+ (2n+3))
= x2(4n− 2j− 1) = j, (83)

for all j = 0,1, . . . , n− 1. In other words, for d0 = 2n + 3, we have that x1(t) = x2(t) for all odd t
with 2n+1≤ t≤ 4n− 1.

(viii) Let k0 = (n− 1)− j0. Since d0 = 2n+5+4j0, we have

τo,2 = 2n+1+n− d0− 1
2

= 2k0 +1. (84)

It then follows from (71) and the periodic property of g(t) that

x1(τo,2) = g(2k0 +1) = k0 = g(2n− 2k0)
= g(4n+2+2n− 2k0) = g(τo,2 + d0) = x2(τo,2).

In conjunction with (84), we have

x1(τo,2) = x2(τo,2) =
τo,2− 1

2
.

On the other hand, we have from (72) and the periodic property of g(t) that

x1(τo,2 +2n) = g(2n+2k0 +1) = (n− 1)− k0 = g(4n− 2k0)
= g(4n+2+4n− 2k0) = g(2n+2k0 +1+ d0) = x2(τo,1 +2n).

Thus,
x1(τo,2 +2n) = x2(τo,2 +2n) = (n− 1)− τo,2− 1

2
.

Proof. (Theorem 8) Note that the results in Lemma 6(iii) and (iv) address the case when d0 is a
nonzero even number. It is clear that (70) holds when n is a nonzero even number. Similarly, the
results in Lemma 6(v) and (vi) address the case when d0 is an odd number and 1≤ d0 ≤ 2n− 1,
and the results in Lemma 6(vii) and (viii) address the case when d0 is an odd number and 2n+3≤
d0 ≤ 4n + 1, respectively. It is also clear that (70) holds for all these four cases when n is an even
number. Finally, the two trivial cases with d0 = 0 and d0 = 2n + 1 are shown in Lemma 6(i) and
(ii).

6. Conclusion In this paper, we formulated the multichannel rendezvous problem as an opti-
mization problem that minimizes the expected (resp. maximum) time-to-rendezvous among all
the random hopping sequences that satisfy certain constraints. We also proposed several new con-
structions of hopping sequences by using the mathematical theories of finite projective planes,
orthogonal Latin squares, and sawtooth sequences. Though we are able to show some of them
are indeed optimal or better than other existing schemes in the literature, there are still many
unanswered questions that require further study. Here we address some possible extensions of our
works.
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(i) Relaxation of the load constraint: in this paper, we assume the uniform load constraint in (A2).
One possible extension is to use a less stringent assumption on the load such as

sup
t≥1

max
0≤i≤n−1

max[P(X1(t) = i),P(X2(t) = i)]≤ ρ

for some 1
n
≤ ρ ≤ 1. In particular, when ρ = 1/k for some integer 1 ≤ k ≤ n, one can apply the

majorization theory [37] to extend the result in Lemma 2 as follows:

1
n
≤ P(X1(t) = X2(t))≤ 1

k
.

Following the same argument as in the proof of Theorem 2, one can show there does not exist
random sequences such that the time-to-rendezvous can be deterministically upper bounded by k
steps. Clearly, if a finite projective plane of order k exists, then one can select k channels out of
the n channels and then use Algorithm 1 to construct random sequences such that the two users
are guaranteed to rendezvous within k +1 steps.
(ii) Degree of overlapping: in addition to time-to-rendezvous, another important performance met-
ric is the degree of overlapping that counts the number of distinct channels for the two users to
rendezvous [13, 47]. For instance, we showed in Theorem 6 that the degree of overlapping for the
sequences constructed by Algorithm 3 is n (under the condition of time synchronization), i.e.,
all the channels can be used for the two users to rendezvous. On the other hand, we showed in
Theorem 8 that the interleaved sawtooth sequence constructed by Algorithm 5 has the degree of
overlapping 2 (without the need for time synchronization). It was shown in [40, 33] that there are
sequences with the degree of overlapping n. In particular, when there are n− 1 blocked channels,
it was shown in [40] that the two users are still guaranteed to rendezvous within n(3n− 1) steps.
It would be of interest to see if it is possible to construct sawtooth sequences (by interleaving)
that can have a better deterministic upper bound for the time-to-rendezvous when there are n− 1
blocked channels.
(iii) Tighter lower bounds under the stationary constraint: as pointed out in [42], it is of interest
to note that the objective of constructing optical orthogonal codes is to construct channel hopping
sequences that minimize the interference (in terms of the number of overlapping time intervals
over space and time) while the construction of hopping sequences in the multichannel rendezvous
problem is to maximum the number of rendezvous. It seems that techniques for obtaining upper
bounds in optical orthogonal codes for periodic sequences (see e.g., [23]) might also be able to used
for obtaining lower bounds for the multichannel rendezvous problem.
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[18] Chester, E. J., R. H. Tütüncü. 2004. Rendezvous search on the labeled line. Operations Research 52(2)

330–334.
[19] Chung, F., J. A. Salehi, V. K. Wei. 1989. Optical orthogonal codes: design, analysis and applications.

IEEE Transactions on Information Theory 35(3) 595–604.
[20] DaSilva, L. A., I. Guerreiro. 2008. Sequence-based rendezvous for dynamic spectrum access. IEEE

DySPAN’08 1–7.
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