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Abstract

Recommendation systems based on historical action logs
between users and items are usually formulated as link pre-
diction problems for user-item bipartite networks, and such
problems have been studied extensively in the literature.
With the advent of on-line social networks, social interac-
tions can also be recorded and used for predicting user’s
future actions. As such, the link prediction problem based
on the union of a social network and a user-item bipartite
network, called a social user-item network in this paper, has
been a hot research topic recently. One of the key challenges
for such a problem is to identify and compute an appropri-
ate proximity (similarity) measure between two nodes in a
social user-item network. To compute such a proximity mea-
sure, in this paper we propose using a random walk with
two different jumping probabilities toward different neigh-
boring nodes. Unlike the simple random walk, our method
is able to assign different weights to different paths and thus
can lead to a better proximity measure by optimizing the
two jumping probabilities. To test our method, we conduct
various experiments on the DBLP dataset [21]. With a 3-5
year training period, our method performs significantly bet-
ter than random guess in terms of minimizing the root mean
squared error.

keywords: social networks, user-item networks, per-
sonal recommendation, link prediction

1 Introduction

Recommendation systems based on historical action logs
between users and items are usually formulated as link pre-
diction problems for user-item bipartite networks, and such
problems have been studied extensively in the literature (see
e.g., [5, 9, 22, 10, 1]). In practice, there are also many
commercial websites such as Amazon [24] and Netflix [19]
that have implemented recommendation systems to provide
personal recommendations. In a recommendation system,

there are a set of users and a set of items. The interac-
tion between a user and an item, such as buying, renting,
or rating, is represented by an edge (with a certain weight)
between them, and the collection of these interactions are
then represented by a bipartite network, called a user-item
network. Based on such a bipartite network, a recommen-
dation system then comes up with a list of personal recom-
mendations for a specific user. In the literature, there are
several methods for doing this. Among them, collabora-
tive filtering (see e.g., [10] for a survey) is one of the most
frequently used techniques. Collaborative filtering can be
further separated into two categories: neighborhood-based
methods [6, 12, 24, 16] and model-based methods [11, 26].
The neighborhood-based methods use the ratings of those
users (resp. items) that are similar to the target user (resp.
item) to come up with the recommendations for the target
user (resp. item). As such, one key step for a neighborhood-
based method is to compute the proximity (similarity) mea-
sure [23] between two nodes in the bipartite network. On
the other hand, model-based methods (see e.g., [20, 2] for
surveys of these methods) use the bipartite network to learn
predictive models that can be easily represented by latent
characteristics, e.g., the principal component analysis tech-
nique [13, 19] can be used to convert the original user-item
bipartite network into another matrix with a much lower
dimension, and thus greatly reduces the computation ef-
forts for link prediction. Model-based methods in general
have better performance than neighborhood-based meth-
ods as model-based methods incorporate the whole bipartite
network into consideration instead of only using proxim-
ity (similarity) measures in neighborhood-based methods.
However, the drawback of a model-based approach is that
latent characteristics in general do not have clear physical
meanings and it is difficult to see how a model-based ap-
proach can be further improved.

As on-line social networks become popular, the informa-
tion of social interactions can also be recorded and used
for personal recommendations. As such, constructing per-
sonal recommendation systems that take on-line social in-



teractions into consideration has been a hot research topic
[3, 16, 17, 32, 29, 28, 35]. In addition to the user-item net-
work that collects historical interactions between users and
items, there is another social network (sometimes called
trust network) that characterizes the interactions among
users. The main advantage of using a social network is that
cold-start users who have very limited interactions on items
can be predicted by their trusted friends. As pointed out in
[17], combining the prediction by a traditional collabora-
tive filtering method and that by a trust-based method can
lead to much better performance than using a single method
alone.

Instead of using a combined approach, in this paper
we ask the question whether prediction can be made di-
rectly from a social user-item network (that consists of
a social network and a user-item bipartite network). As
for neighborhood-based collaborative filtering methods, the
key challenge is to identify and compute an appropriate
proximity measure between two nodes in a social user-item
network. There are many methods addressed in [23] for
computing the proximity (similarity) measures for a pair of
two nodes in a network, including methods based on node
neighborhoods and methods based on the ensemble of all
paths. However, these methods cannot be directly applied
as now we have two graphs in a social user-item network.
Since every node in a social user-item network can now
have two kinds of neighbors, a user or an item, these have to
be treated differently. In view of this, we propose a random
walk method on a social user-item network for computing
the proximity measure. Such a random walk is character-
ized by two parameters α and β that specifies the jump-
ing probabilities to these two kinds of neighbors. These
two parameters can then be chosen to optimize the perfor-
mance of our recommendation system. To test our method,
we conduct various experiments on the DBLP dataset [21]
that collects years of papers published in various confer-
ences. In this dataset, coauthors of papers are used for con-
structing the social network and the numbers of papers pub-
lished by authors in conferences are used for constructing
the user-item (author-conference) bipartite network. With a
3-5 year training period, our method performs significantly
better than random guess in terms of minimizing the root
mean squared error. Also, the value of the precision is close
to 0.25 for our top-1 predictor, and the value of recall is
close to 0.6 for our top-50 predictor.

The rest of this paper is organized as follows: In Sec-
tion 2, we describe the formulation of the problem. We then
propose the method for computing the proximity measure in
a social user-item network via a random walk in Section 3.
The experimental setup and results for the DBLP dataset are
presented in Section 4. Finally, we conclude the paper in
Section 5, where we discuss possible future research topics.

2 Problem Formulation

In this section, we describe the problem formulation of
our link prediction problem. In the literature, a user-item
network is in general referred to as a bipartite network with
users as one side of nodes and items as the other side of
nodes. In this paper, we consider a user-item network Gb

with the set of users U={u1, u2, . . . , uN} and the set of
items V ={v1, v2, . . . , vM}, where N is the number of users
and M is the number of items. The bipartite network Gb is
characterized by the N × M weighted biadjacency matrix
B = (Bij), where Bij represents the edge weight between
user ui and item vj . In practice, the edge weight could rep-
resent the price that a certain user buys a particular product,
the rating that a user gives to a specific movie, or the num-
ber of papers that an author publishes in a conference. In
addition to the user-item network, we also assume there is a
social network Gs with the set of users U as its nodes. The
social network Gs is characterized by the N ×N adjacency
matrix A = (Ai,j), where Ai,j = 1 if user ui and user uj

are friends of each other, and 0 otherwise. A social user-
item network G in this paper is then defined as the union
of the user-item network Gb and the social network Gs, i.e,
G = Gb ∪Gs.
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Figure 1: An example of a social user-item network with 5
users and 3 items.

To illustrate this, we show in Fig. 1 an example of a social
user-item network with 5 users and 3 items. On the left
hand side of Fig. 1, there is a user-item bipartite network of
5 users and 3 items. On the right hand side of Fig. 1, there
is a social network of these 5 users. The adjacency matrix
A and the biadjacency matrix B are as follows:

A =




0 1 1 1 1
1 0 1 0 1
1 1 0 0 0
1 0 0 0 0
1 1 0 0 0




, (1)
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B =




1 0 0
1 0 0
1 0 1
0 1 0
1 1 1




. (2)

As in [23], the link prediction problem of the social user-
item network considered in this paper is to infer new inter-
actions that are most likely to occur between a user and an
item in the future given a snapshot of the social user-item
network. Our approach for the link prediction problem is
also based on measures for analyzing “proximity” of nodes
in a network [23]. Specifically, we compute every pair of
a user and an item a score based on their proximity (simi-
larity) measure and then predict (or recommend) those with
high scores.

There are many methods addressed in [23] for computing
the proximity (similarity) measures for a pair of two nodes
in a network, including methods based on node neighbor-
hoods and methods based on the ensemble of all paths.
However, these methods cannot be directly applied as now
we have two graphs in a social user-item network. Specifi-
cally, every node in a social user-item network can now have
two kinds of neighbors, a user or an item. As such, methods
based on node neighborhoods such as the number of com-
mon neighbors and Jaccard’s coefficient [15] are not appli-
cable as they do not distinguish these two kinds of neigh-
bors. On the other hand, methods based on the ensemble of
all paths such as Katz’s similarity [18] do not take these two
kinds of nodes in the path into account. In view of all these,
a good proximity measure for a social user-item network
must treat these two kinds of nodes differently. Our ap-
proach for this is to use a random walk method that assigns
different jumping probabilities when the random walker are
in different kinds of nodes. Such a method will be described
in details in the next section.

We note that the random walk method has been success-
fully used in many previous works for link prediction (see
e.g., [7, 4, 16, 25, 29, 31]). There are several advantages
of using the random walk method to compute the proximity
measure in a social user-item network. These are summa-
rized below:

(i) Weighted paths: A random walk method with differ-
ent jumping probabilities could be easily used for as-
signing different weights to all the paths between two
nodes.

(ii) Sparsity: Neighborhood-based methods generally re-
quire a node to have several neighboring nodes to
achieve a good prediction. For nodes with few neigh-
boring nodes, the random walk method [14, 34] is
known to be able to alleviate the sparsity problem.

(iii) Mathematical analysis and physical meanings: Like
PageRank [7], the proximity measures derived from
random walks can be computed by solving the steady
state probabilities of Markov chains. As such, the
proximity measures by using random walks have clear
physical meanings than other latent methods [27, 33].

3 Proximity Measure by Using a Random
Walk

In this section, we propose using a random walk method
to compute the proximity measure between two nodes in
a social user-item network. Recall that a social user-item
network consists of a social graph of users and a bipartite
graph with users as one sides of nodes and items as the other
side of nodes. We use the N × N matrix A = (Ai,j) for
the adjacency matrix of the social network and the N ×
M matrix B = (Bi,j) for the biadjacency matrix of the
user-item network. Now consider a random walker on a
social user-item network. The jumping probabilities for the
random walker are specified as follows:
(R1) The walker is on a user node:

• With probability α, the walker will walk to another
user node, which is selected uniformly among all its
neighboring users.

• With probability 1−α, the walker will walk to another
item node, which is randomly selected among all its
neighboring items with the probability proportional to
the edge weight between that user and that item.

(R2) The walker is on an item node:

• With probability β, the walker will walk to a user
node, which is randomly selected among all its neigh-
boring users with the probability proportional to the
edge weight between that item and that user.

• With probability 1−β, the walker will stop at this item
node.

Clearly, if we let X(t) be the node that the random walker
visits at time t. Then {X(t), t ≥ 0} forms an absorbing
Markov chain. Let P1(u, v) be the absorbing probability
that a random walker is started from a user node u and is
absorbed by an item node v. Also, let P2(v, v′) be the ab-
sorbing probability that a random walker is started from an
item node v and is absorbed by an item node v′. Intuitively,
a large absorbing probability between a user node u and an
item node v indicates that it is very likely for user u to reach
item v. Thus, we use the absorbing probability P1(u, v) as
the proximity measure between user u and item v. Simi-
larly, we also use the absorbing probability P2(v, v′) as the
proximity measure between item v and item v′.
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To compute the absorbing probability P1(u, v), we con-
sider the following two events: (i) the first step of the
random walker is toward a user node j and (ii) the first
step of the random walker is toward an item node `. Ac-
cording to Rule (R1), the probability for the first event is
α · Au,j∑N

s=1 Au,s
and the probability for the second event is

(1 − α) · Bu,`∑M
s=1 Bu,s

. If the first step is toward a user node
j (resp. an item node `), the probability that the random
walker will be absorbed by the item node v is P1(j, v) (resp.
P2(`, v)). This then leads to

P1(u, v) = α ·
N∑

j=1

Au,j∑N
s=1 Au,s

P1(j, v)

+(1− α) ·
M∑

`=1

Bu,`∑M
s=1 Bu,s

P2(`, v). (3)

Similarly, we also have from Rule (R2) that

P2(v, v′) = β ·
N∑

`=1

B`,v∑N
s=1 Bs,v

P1(`, v′)

+(1− β) · δ(v, v′), (4)

where δ(x, y) is the delta function that is equal to 1 if x = y
and 0 otherwise. Let

WU,U (u, j) =
Au,j∑N

s=1 Au,s

, (5)

WU,I(u, `) =
Bu,`∑M

s=1 Bu,s

, (6)

and
W I,U (v, `) =

B`,v∑N
s=1 Bs,v

. (7)

Define the three matrices WU,U = (WU,U (u, j)), WU,I =
(WU,I(u, `)), and W I,U = (W I,U (v, `)). By substituting
(5), (6), and (7) into (3) and (4), we can write P1(u, v) and
P2(v, v′) in the following matrix forms:

P1 = α ·WU,U · P1 + (1− α) ·WU,I · P2, (8)
P2 = β ·W I,U · P1 + (1− β) · I. (9)

By solving these two matrix equations, we can then obtain
P1 as follows:

P1 = (1− α)(1− β) ·
(
I − (

(1− α)β ·WU,I ·W I,U + α ·WU,U
) )−1

·
WU,I . (10)

This can then be used to obtain P2 from (9).

Note that we have to calculate the inverse of an N × N
matrix in (10). The computational complexity of inverting
a matrix is O(N3) by using the Gauss-Seidel elimination.
Since N is the number of users in a recommender system,
its value could be very large and thus computing the inverse
of such a matrix could be numerically challenging. Such
a problem is commonly known as the proximity inversion
problem [30]. As described in [30], one way to compute a
good approximation for the inverse of a matrix (I − δC)−1

with δ << 1 and C being a sparse matrix is to use the
(truncated) power series representation, i.e.,

(I − δC)−1 =
∞∑

k=0

δkCk ≈
Kmax∑

k=0

δkCk,

where Kmax is a constant that is large enough to guarantee a
small error. Then one can exploit the sparsity of the matrix
C to compute Ck. However, we will not explore this further
in this paper. On the other hand, if we only would like to
make personal recommendations for a specific user u, then
we only need to compute P1(u, ·) and there is no need to
compute the whole matrix P1. In that regard, it might be
more efficient to use simulation to estimate P1(u, ·). In this
paper, we will simulate the random walks for 10000 times
for each user node u and estimate P1(u, v) by the ratio of
the number of times that the walk is absorbed by the item
node v to 10000. The simulation algorithm is described
below.

Algorithm 1 Estimating P1(u, v) by simulation

1: input: G = Gs ∪Gb, (α, β)
2: for user u ← 1 to N do
3: for TIMES ← 1 to 10000 do
4: Record the absorbing item
5: end for
6: P1(u, v) ← 1

10000 (the number of TIMES that user u
is absorbed by item v)

7: end for

4 Experiments

4.1 Experimental Setup

In this section, we conduct various experiments on the
Digital Bibliography & Library Project (DBLP) dataset
[21]. We first parse the dataset for publications of type “in-
proceedings” from 1959 to 2011 (first half-year). During
this period, there are 1,020,406 papers, 716,812 authors,
and 4,773 conferences in this dataset. By filtering out the
authors who published less than 10 papers over the past 10
years, the number of authors is reduced to 30,758.
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Table 1: Number of papers published in the 4,773 confer-
ences from 2003 to 2008

Year 2003 2004 2005 2006 2007 2008
Papers 48,348 62,408 72,271 80,741 86,564 91,520

Our objective for the link prediction problem is to use the
historical data in the DBLP dataset to predict in which con-
ference(s) a specific author will publish his/her paper(s). To
do this, we choose year 2008 as the test year and the years
from 2003 to 2008 as the training years (for generating the
social user-item network). In TABLE 1, we show the num-
ber of papers published in the 4,773 conferences from 2003
to 2008. To generate the social user-item network from
the data in the training period, we represent authors as user
nodes and conferences as item nodes. To construct the so-
cial graph Gs, we add an edge between two authors if they
coauthored at least one paper together. On the other hand,
for the user-item (author-conference) network Gb, the edge
weight between an author and a conference is the number of
papers published by that author in that conference. These
two graphs are processed in C by using the library of the
igraph [8]. Once the social user-item network is generated,
we then run Algorithm 1 to estimate the proximity measures
P1(u, v) for the N = 30, 758 authors and the M = 4, 773
conferences. For the two parameters α and β, we run all
the cases for α from 0 to 0.9 and β from 0.1 to 0.9, where
the steps of both are set to 0.1. By doing so, we obtain 90
matrices for the proximity measures. Among these 90 ma-
trices, we then compare their performance and identify the
best choice of the two parameters α and β.

4.2 Root Mean Squared Error

In the literature, the Root Mean Squared Error (RMSE)
[34] is a frequently used measure of the differences between
the predicted values and the real values. Let T (u, v) be the
number of papers that author u published in conference v
in the test year of 2008, and T (u) =

∑M
v=1 T (u, v) be

the number of papers that author u published in the test
year of 2008. Since P1(u, v) is the absorbing probability
of the random walk from user u to item v in the social user-
item network, it can be viewed as the probability that au-
thor u will publish a paper in conference v in the future. As
such, a reasonable estimate for the number of papers that
author u published in conference v in the test year of 2008
is T̂ (u, v) = P1(u, v) · T (u). Then, we compute the root
mean squared error by using the following equation:

RMSE =

√√√√
N∑

u=1

M∑
v=1

|T̂ (u, v)− T (u, v)|2, (11)

If our prediction is good, at least the root mean squared er-
ror in (11) should be much smaller than that from random

guess. The root mean squared error from random guess is
to assign each conference with an equal probability 1/M ,
i.e.,

RMSE(Random)

=

√√√√
N∑

u=1

M∑
v=1

| 1
M

T (u)− T (u, v)|2 = 396.36.(12)

In Fig. 2, we show the RMSE for various α’s and β’s
by using year 2007 as the training set. The results are not
good. For some values of α and β (when β is small), their
RMSE is even worse than that from random guess. There
are many reasons for this negatively correlated prediction:
(i) an author who published a paper in a prestigious confer-
ence (with a low acceptance ratio) may not be able to pub-
lish another one in that conference in the following year,
and (ii) an author who went to a boondoggle conference
may not want to attend the same conference in the following
year. In view of this, we extend the training period to three
years. In Fig. 3, we show the RMSE for various α’s and β’s
by using years 2005-2007 as the training set. As shown in
Fig. 3, the RMSE for various α’s and β’s are significantly
lower than that from random guess. The improvement is in-
tuitive as now we use more information for our prediction.
We then further extend the training period to five years. In
Fig. 4, we show the RMSE for various α’s and β’s by using
years 2003-2007 as the training set. The RMSE in Fig. 4
for various α’s and β’s are comparable to their counterparts
in Fig. 3. This shows that additional information may not
lead to further improvement. In fact, we also evaluate our
link prediction method for various training periods of more
than five years and their RMSEs could be worse when the
length of the training period is too long. It seems that us-
ing 3-5 years for the training period is relatively good for
this DBLP dataset. One possible explanation for this is that
researchers might change their research interest every 3-5
years and thus change their home conferences.

A generalization of our method is to assign different
weights to different years. However, it is in general very
difficult to find appropriate weight assignments. By con-
ducting various experiments with different weight assign-
ments, we find that the improvement for RMSE is quite
minor. In Fig. 5, we show the RMSE for various α’s and
β’s by setting the weights for the years 2003-2007 to be
2, 5, 4, 10, 8, respectively. As shown in Fig. 5, the improve-
ment of RMSE is only 0.7% when compared with the as-
signment with equal weights, i.e., 1, 1, 1, 1, 1. All these
suggest that using a window of 3-5 years might be good
enough for the DBLP dataset. Also, choosing α ∈ [0.2, 0.4]
and β ∈ [0.3, 0.6] leads to a low RMSE in Fig. 3 and Fig. 4.
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Figure 2: RMSE for various α’s and β’s by using year 2007
as the training set.
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Figure 3: RMSE for various α’s and β’s by using years
2005-2007 as the training set.

4.3 Precision and Recall

In addition to RMSE, precision and recall are commonly
used to evaluate the top-n predictor that predicts the n most
likely conferences for a specific author to publish his/her
papers in the test year. For the top-n predictor, we rank the
conferences for each author u according to the proximity
measure P1(u, v) and recommend the n largest ones. Also,
precision and recall for the top-n predictor are defined as
follows:

precision(n) =
# matches of top–n

n
, (13)

and

recall(n) =
# matches of top–n

n′
, (14)

where n′ is the number of conferences in which a specific
author published a paper in the test year of 2008. For ex-
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Figure 4: RMSE for various α’s and β’s by using years
2003-2007 as the training set.
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Figure 5: RMSE for various α’s and β’s by using different
weights for years 2003-2007 as the training set: (i) the solid
lines for the weights 2, 5, 4, 10, 8 and (ii) the dash lines for
equal weights.

ample, if we use the top-10 predictor and there are 3 con-
ferences that match the result, the precision is 3/10 = 0.3.
However, if the author actually published in 6 conferences
in this test year, then the recall in this situation is 3/6 = 0.5.
Once the precision and the recall for each user is computed,
the precision and the recall is then computed by averaging
over the precision and the recall for each user.

In our experiments, we evaluate the precision and recall
of the top-n predictor for n = 1, 2, . . . , 50. For these exper-
iments, we set α = 0.2 and β = 0.4. In Fig. 6 and Fig. 7,
we show the results for precision and recall as a function
of n, respectively. There are four curves in these two fig-
ures. The one marked with “2007” (resp. “3 years”, and “5
years”) is generated by using year 2007 (resp. years 2005-
2007, and years 2003-2007) for the training period. The
one marked with “5 years with weights” is generated with
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the weight assignment 2,5,4,10,8 for the five years 2003-
2007, respectively. As expected, all the curves for precision
in Fig. 6 is decreasing in n, while all the curves for recall in
Fig. 7 is increasing in n. As the results for RMSE, there is
a significant improvement of precision and recall by using
3-5 years for the training period in comparison with that by
using year 2007 alone. Also, the three curves of precision
and recall marked with “3 years”, “5 years”, and “5 years
with weights” are almost identical. In particular, the value
of the precision is close to 0.25 for the top-1 predictors, and
the value of recall is close to 0.6 for the top-50 predictors.
These also suggest that using a window of 3-5 years for the
training period is good enough for the DBLP dataset.
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Figure 6: Precision of top-n predictors.
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Figure 7: Recall of top-n predictors.

To further understand the effect of the two parameters α
and β, we evaluate the precision and recall for various top-n
predictors by using years 2003-2007 as the training period.
In Fig. 8, we show the best choices of the two parameters
α and β for these top-n predictors. The range of each bar
in this figure indicates the corresponding value of α or β.

For example, choosing α = 0.5 and β = 0.4 leads to the
best result for the top-5 predictor. One interesting finding is
that one should choose large (resp. small) α and β for small
(resp. large) n.

Figure 8: The best choices of the two parameters α and β
for various top-n predictors.

5 Conclusion

In this paper, we consider the link prediction prob-
lem for social user-item networks. In order to apply the
neighborhood-based collaborative filtering methods, one
has to identify and compute an appropriate proximity mea-
sure between two nodes in such a network. The main con-
tribution of this work is to propose a random walk method
that uses two different jumping probabilities to compute the
proximity measure of a social user-item network. Unlike
the simple random walk, our method is able to assign dif-
ferent weights to different paths and thus can lead to a better
proximity measure by optimizing the two jumping probabil-
ities. We test our method by using the DBLP dataset and our
experimental results show significant improvement in com-
parison with random guess. In addition to link prediction,
we believe our proximity measure can also be applied for
computing centralities of nodes (that can be used for rank-
ing nodes in a social user-item network). Another possible
extension of our work is to use the proximity measure for
community detection in a social user-item network.
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