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Abstract— Recently, there has been a lot of attention on the [11]-[16], buffered packet switches in [6]-[7], FIFO qusue

constructions of optical queues by using optical Switchesnal

fiber Delay Lines (SDL). In this paper, we consider the constuc-

tions of optical queues with a limited number of recirculations
through the fibers in such SDL constructions. Such a limitaton

on the number of recirculations comes from practical feasility

considerations, such as crosstalk, power loss, amplified epta-

neous emission (ASE) from the Erbium doped fiber amplifiers
(EDFA), and the pattern effect of the optical switches.

We first transform the design of the fiber delays in such SDL
constructions to an equivalent integer representation prblem.
SgJecificaIIy, gvenl < k < M, we seek for an M-sequence
d¥ = (di,da,...,dyn) of positive integers to maximize the
number of consecutive integers (starting from 0) that can
be represented by theC-transform relative to d?! such that
there are at most & 1-entries in their C-transforms. Then we
give a class of greedy constructions so thaf1,ds,...,dy are
obtained recursively and the maximum number of representake
consecutive integers by usingli,ds,...,d; is larger than that
by using di,ds,...,d;—1 for all . Furthermore, we obtain an
explicit recursive expression fords, ds, . .., da given by a greedy
construction. Finally, we show that an optimal M-sequence (in

the sense of achieving the maximum number of representable

consecutive integers) can be given by a greedy constructiomhe
solution of such an integer representation problem can be ggied
to the construction of optical 2-to-1 FIFO multiplexers with a
limited number of recirculations. We show that the complexty
of searching for an optimal construction can be greatly redeed
from exponential time to polynomial time by only considering the
greedy constructions instead of performing an exhaustiveearch.
Similar results can be obtained for linear compressors andihear
decompressors with a limited number of recirculations.

I. INTRODUCTION

in [17]—-[19], Last-In First-Out (LIFO) queues in [19], prity
qgueues in [20]-[22], and linear compressors, non-ovartaki
delay lines, and flexible delay lines in [23]-[24].

However, there are some important practical feasibility is
sues of concern that need to be addressed in the SDL construc-
tions of optical queues. As pointed out in [26]-[28], cradist
due to power leakage from other optical links, power loss
experienced during recirculations through the opticatcvas
and the fiber delay lines, amplified spontaneous emission
(ASE) from the Erbium doped fiber amplifiers (EDFA) that
are used for boosting the signal power, and the patternteffec
of the optical switches, among others, lead to a limitatian o
the number of times that an optical packet can be reciralilate
through the optical switches and the fiber delay lines. lhsuc
an issue is not taken into consideration during the design of
optical queues, then for an optical packet recirculatedufh
the optical switches and the fiber delay lines for a great rermb
of times, there is a good chance that it can not be reliably
recognized at the destined output port due to severe power
loss and/or serious noise accumulation even if it appeat®at
right place and at the right time. As such, SDL constructimins
optical queues with a limited number of recirculations tigh
the fibers is a very important practical design issue.

For certain optical queues, including 2-to-1 FIFO multiple
ers, linear compressors, and linear decompressors, thg del
x of a packet is known upon its arrival and the routing
of the packet is according to th@transform [13]C(z) =
(Ii(x), Iz(z), ..., Ipm(z)) (@ generalization of the well-known

It is well recognized that one of the most critically soughitinary representation) of the packet delaywith respect to

after technologies in all-optical packet switching is than<

the M-sequenced? = (di,da,...,dy) of the delays of

structions of optical queues for contention resolution agho the fibers in the queue. For these optical queues, there is a
packets competing for the same resources in the optigabminentroute-onceproperty that says that an optical packet
domain. Recently, there has been a lot of attention in tlean be routed through each fibermost onceSpecifically, if

literature (see e.g., [1]-[25] and the references them@inthe

I;(x) = 1 for somel < i < M, then the packet will be routed

constructions of optical queues by using optical Switche athrough thei™ fiber with delayd; once; otherwise, the packet
fiber Delay Lines (SDL) to route the optical packets to thétig will not be routed to the™ fiber. For instance, if;(z) = 1
place at the right time so as to achieve exact emulationsfof all i = 1,2, ..., M, then the packet will be routed through
the optical queues. These SDL constructions of optical gsieleach of theM fibers once.

include First-In First-Out (FIFO) multiplexers in [4]-[&nd

The problem arises if there is a limitation on the number



k of recirculations through thé/ fibers due to the practical Il. THE INTEGERREPRESENTATIONPROBLEM
feasibility considerations mentioned aboveklk M, then a
packet routed through more tha@nof the M fibers can not

be reliably recognized at the destined output port. As suu:h,be regarded as a generalization of the well-known binary

such situations the buffer size (for 2-to-1 FIFO multipleye ion for th . . f .
or the maximum delay (for linear compressors and "neg?presentatmn or the unique representation of nonnegat
decompressors) is given by theaximum representable integer'ntegers'
B(d¥; k) with respect tod}’ and k, namely, the largest _
positive integer such that each of the nonnegative integQ%f'”'t'on 1 (C-Transform) [13] Given an M-sequence
not exceeding it has @-transform (with respect td?/) with di” = (du,da, e C_lM) of positive Integers.j\;l'hé-tra_nsform
the number of 1-entries less than or equalktolt follows ©Of @ nonnegative integer with respect tod;” is defined as
that the problem of constructing the delays,ds, ...,dy, h€M-sequenc€(z) = (Ii(x), I2(x), ..., In(x)), where the
for these optical queues with a limited numblerof recir- €ntries Inr(z), Inr—1(2), ..., Ii(x), in that order, are given
culations through the fibers and with buffer size/maximufigcursively by

delay B(d}; k) is equivalent to the integer representation
Ii( ) = {

We first review theC-transform in [13] for the unique
representation of nonnegative integers. Thgansform could

problem of constructing ad/-sequencel}! with maximum :
0, otherwise

representable intege®(d/; k) with respect tod}! andk.

(1)

Given1 < k < M. Our first contribution in this paper is
to give a class of greedy constructions for thé-sequence
d}. An M-sequencel} given by a greedy construction is
obtained recursively in a greedy manner so that the maximit
representable integer is increased when edb added to the M M
already determined,,ds,...,d;—1 for all . Denote the set T = Zli(x)di, forall z =0,1,.. "Zdi’ (2)
of the M-sequences obtained by such greedy constructions as i=1 i=1
Gum k- Then we also obtain an explicit recursive expressiqpand only if the following condition in (A1) holds:
for an M-sequenced ¢ Gu i, and for the correspond- i )
ing maximum representable integét(d?/; k). Our second (Al) di = landl < dipy < 375 ,d; +1fori =
contribution is to show that the largest possible maximum 1,2,...,M -1
representable integdB(M, k) = maxqu ¢ 4,, B(dM;k) that
can be achieved by al/-sequence ind,;, whereA,, is the
set of all M-sequences satisfying the condition in (A2) (irg

_Schon ) is '”de?d achieved by d\_?f-sequence IGas e (it delaysd; < dy < --- < dj; can be operated as a 2-to-1 FIFO

® (Sj\hf‘]’c")” thatia 1s a subset ofla in Theorem 5, BameY. miplexer with buffer> ™, d; if and only if the following
M, k) = maxqpeg,, , B(di";k). This implies that an ¢, qiioq jn (A2) holds:

optimal construction (in the sense of maximizing the buffer )

size) of an optical 2-to-1 multiplexer with a limited number (A2) dy =1andd; <diyq <2d;fori=1,2,..., M—1.

of recirculations could be given by a greedy constructios. AVe note that the condition in (A2) is stronger than the

such, the complexity of searching for an optimal constarcti condition in (Al) as it has been shown in [13] that if

is greatly reduced by only considering the greedy condtost di,ds, ..., dys satisfy the condition in (A2), then they also

when compared to performing an exhaustive search (polyraatisfy the condition in (Al).

mial time vs. exponential time). Similar results can be olatd

Theorem 2 [13] Given an M-sequencel}! of positive inte-
gers. TheC-transformC(z) of = with respect tod} is the

ique representation of for all z =0,1,...,5" d;, i.e.,

In [13], it was shown that under a simple packet routing
olicy, the feedback system in Figure 1 consisting of &h+
) x (M + 2) crossbar switch and/ fiber delay lines with

for optimal constructions of linear compressors and linear 0 dm
decompressors with a limited number of recirculations, and 0 i
results along this line will be reported separately in tharne (E)dz
future. q
O 1
This paper is organized as follows. In Section II, we describ L J
the transformation of the constructions of certain optical 1 ]
gueues into an equivalent integer representation probtem i 5 5
detail. In Section Ill, we give a class of greedy construtsio :
for the M-sequencel) in the equivalent integer representa- M-l M-1
tion problem, and obtain an explicit recursive expressian f i MpE——
such an}/-sequencel}’ and for the corresponding maximum  a(t) —————» w1 M1 Departure_ )
representable intege®(d; k). In Section IV, we show that () ——————»M+2 my—Loss 1V

an optimal construction can be given by a greedy constmctio
Finally, we conclude this paper in Section V. Fig. 1. A 2-to-1 FIFO multiplexer with buffed>;, d;.



Furthermore, it was shown in [24] that if the condition in Note that from Theorem 2 we have3(d}/;k) 2

(A1) holds, then the construction in Figure 2 by a concat@(d}; M) = Y,°, d, for k > M if dM satisfies the
nation of M scaled optical memory cells with scaling factorgondition in (Al).
di,ds, ..., dy (thei™ scaled optical memory cell with scaling As we are most interested in the constructions of these

factor d; in Figure 2 is built by a2 x 2 crossbar switch and optical queues with as large buffer size/maximum delay as
a fiber delay line with delayl; for i = 1,2,..., M) can be possible, the optimal constructions (in the sense of maingi
operated as a self-routing linear compressor with maximume buffer size/maximum delay) of these optical queues with
deIayZ?i1 d;. a limited number of recirculations through the fibers is gqui
alent to the integer representation problem of constrgctin
an M-sequence that achieves the largest possible maximum

0% o % % o .
representable integer.
AR In this paper, we focus on a class of greedy constructions

of the M-sequenced! in Section lll, and show that an
Fig. 2. A construction of a linear compressor with maximurtagé" . 4; M-sequence achieving the largest possible maximum repre-
by a concatenation o scaled optical memory cells with scaling factorsgentable integeB(d{”; k) over all d{” € Ay, where Ay
di,dz,... dn- is the set of all M-sequences satisfying the condition in
A?2), could be given by a greedy construction in Section IV.
he results in this paper can therefore be applied to the
optimal constructions of 2-to-1 FIFO multiplexers with a
limited number of recirculations through the fibers. We note
that similar results can be obtained if the maximization of
3) the maximum representable integé(d’/; k) is over all M-
sequences satisfying the condition in (A1), and the resalts

wherel < i; < iy < --- < i, < M, then the packet is routed be applied to the optimal constructions of linear compresso
to the fiber with delayd; at time t. to the fiber with delay and linear decompressors with a limited number of recircula
1 1

d;, at timet +d;,, ..., and to the fiber with delay;, at time tions through the fibers.

Regarding the self-routing policy for the above two queu
suppose that the delay of a packet arriving at titrie 0 <
x < Zf‘il d; and the expression af by the C-transform of
x is

I:dil +d12++dlk7

k—1
bt 22y i . . . o I1l. A CLASS OFGREEDY CONSTRUCTIONS
The problem arises if there is a limitation on the number

of recirculations through th&/ fibers in order to ensure thata Suppose that < k < M. In this section, we give a class
packet can be reliably recognized at the destined output p&if greedy constructions of the/-sequencel}”, and obtain an
In such situations, the buffer size (for 2-to-1 FIFO mukipl explicit recursive expression fek} and for the corresponding
ers) or the maximum delay (for linear compressors and line@eximum representable integ(d}’; k).
decompressors) is given by the largest positive integen suc Consider the case with/ = 6 andk = 2. A direct construc-
that each of the nonnegative integers not exceeding it hagian of di,ds,ds, ds, ds, ds is to divide the construction into
C-transform with the number of 1-entries less than or equal %0 parts, the construction af;, d, d3 and the construction
k as a packet with delay one more than this largest positioé d4, ds, dg, SO that there is at most one nonzero entry in
integer will be routed through more thanfibers and hence {/1(z), I2(x), I3(x)} and there is at most one nonzero entry
can not be reliably recognized at the destined output pogt. W {14(x), I5(z), I¢(z)} for as many consecutive nonnegative
call such a largest positive integer the maximum represémtaintegersz as possible. For example, we can chodse=
integer with respect tal}? and k, which is formally defined 1,d> = 2,ds = 3 and achieveB(d?;1) = 3. Then we can
below. choosed, = B(d$;1) + 1 = 4,d5 = 2(B(d$;1) + 1) =
8,d¢ = 3(B(d$;1) +1) = 12. For4 < i < 6, it is
Definition 3 (Maximum Representable Integer) Given an easy to see that far = d;,d; +1,....d; + B(dj; 1), there
Y L o is at most one nonzero entry ifif;(x), I>(z), I3(z)} and

M-sequencal} of positive integers and a positive integer, :

. . M . there is exactly one nonzero entry {1,(z), Is(z), Is(z)}
k. The maximum representable intege(d,"; k) with respect specifically, I; (z) = 1). It follows that such a construction
to dM and k is defined as the largest positive integer such P o '

aB 6. > 3. —
that each of the nonnegative integers not exceeding it ha#léglrantees tha (dy; 2)6__ dﬁjB(dl’.l) . 15. Indeed, from
: : S pole | we see thaB(d?;2) = 16, which is larger than 15.
C-transform with the number of 1-entries less than or equa

to k, ie., A better construction, called a greedy construction in this
Ny paper, can be described as follows. We still divide the const
B(dM: k) = max{y : Z L(@) <k z2=0,1,...,y%. (&) tion into two parts as in the direct construction above. Fer t
= construction ofdy, ds, d3, eachd; is constructed recursively
by usingd,ds,...,d;_; that have already been determined
For obvious reasons, we also defiféd?’; k) = 0 if M =0 so thatB(d}; 1) is at least one more thaB(di~*; 1), and this
or k= 0. is possible by choosing; = B(d}™*;1) + 1 for i = 1,2, 3.



- Il(()m) 12((;”) 13(()33) I“ém) 15((;”) Iﬁém) positive integersly, do, . . ., dy recursively as follows:
1 1 0 0 0 0 0 =1,
2 0 1 0 0 0 0 doj = B(Ay i+ 1) + 1, (5)
3 0 0 1 0 0 0 ) . -
i 0 0 0 1 0 0 where0 <i < k-1, 1 <j < n;y1. In other words, we divide
5 1 0 0 1 0 0 the construction intd: parts. For the(i + 1)™ part, where
6 0 1 0 1 0 0 0 <i<k-—1,d,; is constructed recursively by using
7 0 0 1 i 0 0 ity =
5 o o 5 5 1 o di,ds,...,ds,+j—1 according to (5) forj = 1,2,..._,n1-+1.
9 1 0 0 0 1 0 We denoteGy . as the set of all/-sequencedl}’ given by
10 0 1 0 0 1 0 (5) by using sequences of positive intege{sns, . . ., n; such
o B S )
13 1 0 5 5 0 1 After dy,ds,...,ds,+; have been determined, the integers
14 0 1 0 0 0 1 0,1,...,B(d5*"'.i + 1) are representable by using at
15 0 0 1 0 0 1 mosti + 1 of the integersd;,ds, ..., ds,+;—1 according to
16 0 0 0 1 0 1 sitj—1.
the C-transform (note thatls,; > B(d] ;i+ 1) and
TABLE | henced,,.; is not used in their representations). As we
: i1, ; -
THE C-TRANSFORM OFz WITH RESPECTTOd(f =(1,2,3,4,8,12) FOR deﬁne d_Sii“j = B(di J e+ 1) +11in (5)1 Fhe Integer
2=0,1,2,...,16. B(d;7 70 4+ 1) + 1 is representable by usind, ;. If

we chooseds,+; > B(dy* 7" i+ 1) + 1, then the integer
B(d™7 71 i+1)+1 is not representable by using at mostl

of the integersly, ds, . . ., ds,+; according to the-transform,
As such,d; = B(d9;1)+1=1,dy = B(d};1)+1=2,d3 = and such a choice of,,; will have no use in increasing
B(d?;1)+1 = 3. As for the construction ody, ds, dg, eachd; the maximum representable integer. This is why we define
is also constructed recursively by usidg, ds, ..., d;_; that ds,+; = B(d;""/7";i+ 1) + 1 in (). Furthermore, ag,,
have already been determined, but nB\d:; 2) is required to is used in the representation of the integers not lessdhan
be at least one more thaBi(di~';2). Again, this is possible and the integers, 1,..., B(d;"*/~";i) are representable by

by choosingd; = B(d: *;2) + 1 for i = 4,5,6. It follows using at most of the integersiy, dz, ..., ds,+;-1, it is clear
thatds = B(d3;2) + 1 = 6,ds = B(d%;2) + 1 = 10,dg = that the integersly, s j, ds,; + 1,..., ds,4; + B(d} 77 1;4)
B(d};2)+1 = 14. From Table Il, we see thad#(dj;2) = 17, are representable by using at mast- 1 of the integers
which is larger than 16 in the direct construction above. di,ds,...,ds,+;. As such, our construction guarantees that
B(d¥i+1) > d,,j+B(d5 7" ). Indeed, in Lemma 7

2 [ L@ [ L@ [ L@ [ L@ | @) ] k) below, we show thaB(d; *7;i+1) = dy,;+B(d] ™~ '54),
(1’ (1’ 8 8 8 8 8 i.e., the maximum representable integer is increased by
itJ. iti—1.,; _ i+i—1,;
an 1 5 5 5 5 B(dy7yi+1) = By hi+ 1) = B(dyY ) + 1.
3 0 0 1 0 0 0 We call such a construction greedy construction. Intu-
4 1 0 1 0 0 0 itively, it is expected that such greedy constructions psss
2 8 é (1) (1) 8 8 certain optimal properties. Indeed, in Theorem 9 (in Sec-
7 1 0 0 1 0 0 tion 1V) we will show that every optimal construction (in the
8 0 1 0 1 0 0 sense of achieving the largest possible maximum reprdsdenta
190 8 8 é é 2 8 integer) is a greedy construction.
17 1 0 0 0 1 0 Note that forM = 1, we haved; = ds,1 = B(d{;1)+1 =
12 0 1 0 0 1 0 1 as B(d{;1) = 0 by definition. ForM > 2 andk = M,
13 0 0 1 0 1 0 we must haver; = ny =--- =nyy =1 ands; = 1,59 =
1‘5‘ (1) 8 8 8 8 i 2,...,sn = M. Asitis easy to see thak(1,2,...,n;1) =n
16 0 1 0 0 0 1 for all n > 1, it follows from (5) that
17 0 0 1 0 0 1 o
dy = d30+1 = B(dl; 1) +1=1,
TABLE Il do =dg, 41 =B(d};2)+1=d; +1=2,
THE C-TRANSFORM OFz WITH RESPECT Tod$ = (1,2, 3, 6, 10, 14) FOR 2
r=0,1,2,...,17. ds = dg,11 = B(d};3) +1 = Zdﬁ-l =22,

(=1

We can now describe our greedy constructions in a general dyr = ds,, 41 = B(d{”‘l;M) 1
setting. ForM > 1 and1 < k < M, let ny,ns,...,n; be M—1
positive integers such th@leni = M, and letsyg = 0 _ Z dp+1=2M1
ands; = > ,_,n fori = 1,2,... k. Define a sequence of = ’



whered, =1, dy = 2,..., d; = 2'~! satisfy the condition Lemma 6 Let dy,d>,...,d, be a sequence of positivesin-
in (A2) for eachi = 1,2,...,M — 1, and we have used thetegers satisfying the condition in (A2). Suppose that 0
fact thatB(di;i+ 1) = B(d};i) = >_,_, d¢. As such, inthe and ¢ = max{1 < ¢ < n: d;, < B(d};i + 1)}, namely,
following we only consider the nontrivial case witlf > 2 dy < Bdy;i+ 1) < dpq if 1 < ¢ < n-—1, and
and1l < k < M — 1. In such a nontrivial case, there musB(dy;i + 1) > d,, if ¢ =n. Then we have

exist somel < ¢ < k such thatn; > 2 as otherwise we

n. _ n—1, . L A
will have my = ny = - = ng = 1and ot n; = k< BUABTFD =BT == Bldi])
M — 1, contradicting toY._, n, = M. Furthermore, from =dp + B(d; ;1) (10)
wi(tehfollolvgg theorem, it suffices to consider only the case We remark that the condition that — max{1 < ¢ < n :
ny = 4.

d¢ < B(d};i+1)} is essential for the relatioB(d};i+1) =
dy +B(df*1;i) in Lemma 6 to hold. IfB(d};i + 1) < dy,
then obviously it is impossible thaB(d};: + 1) = dy +
B(df/*l; i). So at least we need the condition tatd?; i +

1) > dg. Even if B(d};i+ 1) > dy, it is not always true
that B(d};i+ 1) = dy +B(d{*1; i) as can be seen from the
following counterexample: fod; = 1, dy = 2, d3 = 4, and
dy = 8, we haveB(d};2) = 6 > dy and B(d};1) = 1, but
Myl = il Mirk2 = N2, Mk = Nk SUPPOSE B(d};2) # do+B(d}; 1); however, we haves < B(df;2) <

thatd;, ds,...,dy are generated by, no, ..., ng by using 9 N 4.0y o
(5), andhy, ha, ..., has are generated byn, mo, ..., my by da and B(dy; 1) = 2, and henceB(dy; 2) = ds + B(dj; 1).

using (5). Theniy = hy forall £ =1,2,..., M.

Theorem4For M > 2 and 2 < k£ < M — 1, let
ni,ne,...,n, be positive integers such that; = 1 and
S mio= M. Leti’ = min{2 < i < k: n > 2}
(note thati’ is well defined asn; = 1 and hence there
must exist som& < i < k such thatn; > 2), and let
mq :2,m2:m3:-~-:mi/,1:1,mi/ = Ny — 1,

Lemma 7 For M >2andl1 <k < M-1, Igtnl,nQ,...,nk
The proof of Theorem 4 is omitted due to the space limit€ POSitive integers sucih that > 2 and)_;_, n; = M, and

(for proof, see [29]). let so = 0ands; = > ,_,ne fori =1,2,..., k. Suppose
In the following theorem, we derive an explicit recursivéhat for somel <7 <k —1and0 < j < n;11, the sequence

expression for thel/-sequenced given by (5) by using 91,92, -, ds;+; iS given by (6) and (7). Then the sequence

positive integersi, no, .. .,y With Zf:l n; = M, and for di,ds, ..., ds,+; satisfies the condition in (A2), and we have
the corresponding maximum representable intéggt’’; k). B(d?‘*-j; i+1)=dej + B(d?‘*-j‘l;i). (11)
Theorem5For M > 2 and1 < k < M — 1, let Lemma8 ForM >2andl <k<M-1,letny,ng,...,ng
1M, T be positive integers such that; > 2 and be positive integers such thai > 2 and Zle n; = M, and
di—ini = M, and letsp = 0 ands; = doi—ine for letsy =0ands; = 3, ngfori=1,2 ...,k Suppose that
i=12,...k The M-sequenced}’ given by (5) can be for somel <i <k —1and0 < j < n;41 — 1, the sequence
expressed recursively as follows: di,ds,...,ds,+; is given by (6) and (7), and suppose that
dj =j, 1<j < s, (6) B(dy';i) = ds, +ds, + -+ ds,. (12)
dSi+j = 2ds, + (,] - 1)(d51 +ds, +-+ds, + 1)’ Then we have

<i<k-— <7< Ni11. i+J
1<i<k—1,1<j<ni. (7) B(d}™;4) = B(dS ). (13)

Furthermore, theM-sequenced?’ satisfies the condition in

(A2), and we have Proof. (Proof of Theorem 5) Clearly, it follows from (5) that

dy =dsyy1 =Bd%1)+1=0+1=1,
dy =dsyro=Bdh1)+1=1+1=2,
ds =dsy43 = B(di;1)+1=2+1=3,

B(d{;1)=j, 1<j<si, ®)
By i41) = da g+ dsy +dsy + -+ + ds,,
1<i<k—-1,1<j<niy1. (9)

Theorem 5 tells us that if thé/-sequencel}? in Figure 1
is given by (5), then it satisfies the condition in (A2) and ¢ten ds,
the feedback system in Figure 1 can be operated as a 2-tgn}
FIFO multiplexer with bufferB(d}; k) = Zle ds, under
the constraint that each packet can be routed through at most B(dy';1) = s1.
k of the M fibers by using the packet routing policy in [13].ror eachj = 1,2, ..., sy, it is easy to see that the sequence
We need the following three lemmas for the proof of — 1 g, =2 ..., d; = j satisfies the condition in (A2).
Theorem 5. Due to space limit, their proofs are omitted byferefore, we have proved that (6) and (8) hold.
can be found in [29]. In the following, we show by induction that (7) and (9) hold,
and the sequencé,ds, ..., d,,+; satisfies the condition in

=deyrs, = B 1)+ 1= (51— 1)+ 1= s,



(A2)forall 1 <i<k—1andl <j <n;yi. From (5) with As we also havel,,;; = 2d,, from the induction hypothegis,
t=1andj =1, and from (11) withi = 1 andj = 0, we it follows from (16) ands;;1 = s; + 1 that
have siv1—1 .
By i+ 1) +1=2d,, =ds,41 =ds,, - a7
ds, 41 = B(dj*;2)+1
=ds, +B(d* 1) +1
=ds, +(ds, — 1) +1 o
= 2d B, i+ ) +1

S19
_ sitnit1—1, .
where B(d;' ' 1) = s; — 1 = d,, — 1 follows from (8) and = B(d, it 1) 41

On the other hand, if;+; > 2, thenn;; —1 > 1 and from
the induction hypothesis we have

(6). Therefore, (7) holds foi = 1 and j = 1. It then follows =dsj4ni—1+ds; +dsy +---+ds, +1
from Lemma 7 that the sequende,ds,...,ds, 1 Satisfies =2ds, + (nig1 — 2)(ds, +dsy, +---+ds;, + 1)
the condition in (A2), and tdy, +dy, + - +dy, + 1
B(d}'2) = ds, 11+ B(d] 1) = dgy 1 + d, = 2ds, + (nip1 — 1)(ds, +ds, + - +ds; +1).
where B(d;*;1) = s, = d,, follows from (8) and (6). As =ds4nyyy = dsyyy- (18)

such, (9) also holds for=1 andj = 1. -

Now assume as the induction hypothesis that (7) and (‘3¥ combining (15), (17), and (18), we have
hold up to somel < i < k—-1andl < j < n;41, where Ao i1 = ds, +B(d;i+1—1;i+ 1) +1=2d
si +j < M, and the sequenag, ds, .. .,ds,+; satisfies the

condition in (A2). We need to consider the following two#hich is the desired result.
cases:; Again, we have from Lemma 7 that the sequence

Case 11 < j < n;41—1: In this case, we have < j+1 < di,da,...,ds,, 41 Satisfies the condition in (A2), and
n;+1. It follows from (5) and the induction hypothesis that B(dimﬂ;i 42 =d, b B(d i+ 1)

. _ si+J. ;
dsi+j+1 = B(dy" 50 +1) +1 =dg 41+ dsy +dsy + o+ ds, +ds,y s
:d5i+.j+d51 +d82 ++d81 +1
:2d5i +(]_ 1)(d81 +d82 ++d81 +1)

Si419

where B(d]"';i 4+ 1) = dy, + ds, + -+ + ds, + ds,y,
follows from the induction hypothesis. We have completed

tds, +dsy + -+ ds; + 1 the induction and the theorem is proved. m
=2ds, + j(ds, +ds, +---+ds, +1).
o F (s, 2 ‘ ) IV. AN OPTIMAL CONSTRUCTION IS AGREEDY
We then have from Lemma 7 that the sequence CONSTRUCTION
di,ds,.. .,dsl._ﬂ-ﬂ satisfies the condition |n_(A2), and For M > 1 and1 < k < M, let B(M, k) be the the largest
B(dy i 4 1) = dg, i + B(A5154). (14) possible maximum representable integefd’; k) over all
M H
As it is easy to see from the induction hypothesis that (151)1 € Au, i€,
holds up tos, it follows from (14),1 <i <k —-1,1<j < B(M,k) = max B(dM;k). (19)
n;41 — 1, and Lemma 8 that dMeAy
B(dS i 4 1) = dg, oy + BT 54) We call the construction of ad/-sequencel*}’ € A, an
=dg, 41 + B(d;) optimal construction if B(M, k) = B(d*; k).

In the following, we will show that every optimal construc-
= dsijr1 +dsy +ds; + 00+ s tion is a greedygconstruction. Note that ?IIM p: 1, the only
Case 2.j = n;41: Note that as we assume that+ j = sequence satisfying the condition in (A2)ds = 1, which
si+1 < M, we havei < k — 2 in this case. In this case,js also the only sequence generated by (5) as we have shown
we haves; +j + 1 = s;11 + 1, and it follows from (5), the in Section Ill. As there is only one construction in this case
induction hypothesis, and Lemma 7 that the optimal construction is also the greedy constructian. F
dopyri1= B i+2) +1 M > 2 _and_k: = M, it is easy to see that the optimal
sip1—1_ . construction is given byl; = 1, d5 = 2, dj = 2°,...,
= dayy + B(d, i+1)+ 1 (15 gz, = 2M-1_In this case, we have shown in Section Il that
If niy1 =1, thens;4; — 1 = s;. As such, we have from thed; = 1,d> = 2,ds = 22,..., dy = 2™~ 1 is the only possible
induction hypothesis, Lemma 7, and (5) that sequence generated by (5), and it then follows that the aptim
sip1—1 . si. - construction is also the greedy construction. As such, & th
B(dy™ i+ 1) +1=B(dy5i+ 1) +1 following theorem we on?y corzlsider the nontrivial case with
=d,, + B(dj i) + 1 M >2andl < k < M — 1, and show that every optimal
=ds, +(ds;, —1)+1 construction is a greedy construction.

= 2d,,. (16)

i+1



Theorem 9 Let M > 2 and1 < k < M — 1. Suppose that

B(M,k) = B(d*{; k) for somed*} € Ay Thend*}' €

Gum i In other words, every optimal construction is a greed§3(M’ k) =

construction.

Theorem 5 implies that an optimal constructidii}’ in

Figure 1 that achieves the maximum buffer size amorgmma 6, we haveB(d*y'; k) = dj,
. dM e Ay} could be given by a greedylet s, = M, then we have

{B(d}"; k)
construction, namelyd*}’ € G x. From [15], we know
that the size ofd,, grows at least witr2’’—! (exponential

As a result, we have

max B(d};k) > B(h};k) > B(M, k),
dMe Ay

and we have reached a contradiction.
(i) From B(M, k) B(d*%; k)

> dj, in (i) and
+ B Lk —1).

B(d*{* k) =di +B(d** 1k —1). (20)

growth). Also, it is easy to see that the numbekefequences Let

(ny,n2,...,ng) With ny > 2ny > 1,....,n; > 1 and
S ni = M is given by (4=2). It follows that the size of

Gur.. grows at most witf{ M —2)k~1 (polynomial growth). As

such, the complexity of searching for an optimal constarcti
can be greatly reduced from exponential time to polynomial
time by only considering the greedy constructions instefad o

performing an exhaustive search.

Proof. (Proof of Theorem 9) We divide the proof into five

parts.

(i) First we show thaB(M, k) > d},. Suppose on the con-

trary thatB(M, k) < d%,. Clearly, B(M, k) = B(d*}"; k) >
1 = d}. Therefore, we have; < B(d*}';k) < dj, and it
follows that there exists afi, wherel < ¢/ < M — 1, such
thatdy, < B(M,k) < dj_,.

Leth,=dj for¢=1,2,....¢, andh, = B(M,k)+{(—V
for ¢ = ¢ + 1,0 +2,...,M. We claim thathM € A,,.
Sinced*!’ € Ay, we haved; = 1 anddj < dj,, < 2d;
for ¢ =1,2,...,M — 1. As such, it follows fromh, = d;
for ¢ = 1,2,...,¢ thathy = 1 andhy < hgrqy < 2hy for
(=1,2,...,0'—1.Fromd;, < B(M,k) < dj,_, anddy, ., <
2d;,, we have

h[/+1 :B(M,k)+1 Z dZ/ +1> dZ/ :hg/,

sp_1=max{l <l <s—1: df <Bd** ' k—-1)},
then it follows from Lemma 6 that

B(d*$* Nk —1) = B(d*$* %k —1)

= B(d* " k- 1)
=di, , + BTk -

Sk—1

2).
By repeating the above procedure for- 1 times, we have
B3 ) = B i) = - = B')
=di + B - 1), (21)
where
si=max{1<{0<s11—1: d; < B(d*i”]_l;i)}, (22)

fori =1,2,...,k—1. From (20) and (21), it is easy to deduce
by induction on: that

B(d*{';i)=di, +d, +---+d;, i=1,2,..., k. (23)

(i) We claim thats; > 2. Suppose on the contrary that
s1 = 1. We will show by induction on thats; = 4 for all
1 = 1,2,...,k. As such, it follows fromk < M — 1 that
sy = k # M, and we have reached a contradiction.

This leads tohy < hyy1 < 2hy. Itis also easy to see from  aAgsume thats; = 1, s2 = 2,..., s; = i for somel < i <

he = B(M,k) +4¢— ¢ for £ = ¢ +1,0'+2,...,M that
hey1 =he+1foré=¢+1,0+2,...,M — 1, and hence
he < hgpr <2hgforl=0+1,0+2,....M —1.

Fromd;, < B(M,k) = B(d*{";k) < dj,,, for somel <
¢ < M -1, Lemma 6, anthy = dj for ¢ =1,2,...,¢, we
have

B(M,k) = B(d""; k) = B(d"{; k) = B(h{'; k).

It follows that the integerd,1,2,...,B(M,k) are repre-
sentable with at most of the ¢’ integershi, ho, ..., hy by

using theC-transform. AsB(M, k) < hg11 = B(M,k) +1

andhgp 1 < hgpgo < < hp, hersr, hega, ... by will not

be used in the representation of the inteders . .., B(M, k)

by using theC-transform. As such, we havé&(h}’; k)
B(M, k). Furthermore, the integer, where B(M, k) + 1
x < B(M,k)+ M — ¢, is representable by, _ (s k)1e
(x = B(M,k) +¢) + B(M,k) = ¢ = z asl +1
r—B(M, k)+¢' < M. Combining withB(h}!; k) > B(M, k)
leads toB(h}; k) > B(M,k) + M — ¢’ > B(M, k).

IN I IA TV

k — 1. Note thats; ;1 > s; +1 =i+ 1. Suppose that;; >
i+2.Thens; 1 —1>i+1andd},,d},,...,d;,  _q Wil
not be used in the representation of an integer less dian
by using theC-transform. Asd; = 1 andd; < dj,, < 2d;
fort=1,2,...,M — 1, we have

dipy < 2d7 =di +d;
<djt2d;  =dj+d}_, +d_,

<dF+di 42,

S i+ dy + 2
= B(d"y;4) + 1,

where the equality follows from (23) and =1, s =2,.. .,
s; = i. This implies that the intege$, 1,...,d;,, — 1 are
representable by using at mostof the s;.; — 1 integers

1.d5,....d;, 1 by using theC-transform. Furthermore,

df, | is clearly representable, implying thBﬂ(d*?“*l; i) >



di,,. As a result, we have from (22) that > i + 1, contra-
dicting to the induction hypothesis that = i. Therefore, we
must haves;,; = ¢ + 1, and the induction is completed.

(iv) Let so =0 andn; = s; —s;—1 fori =1,2,....k, and
letd, ds, ..., dy be the sequence generatedfyyns, ..., ng
by using (5). In the following, we show by induction dgn
thatd; < d, forall ¢ = 1,2,...,M, andd; < d, for all
e=00+1,...,Mif dj, < dy for some2 < ¢ < M (note
thatd; = d; = 1).

From the definition ofB(d*$>~'; 1), it is not difficult to
see thatB(d*;>~ ;1) = d},, where

=max{2<(l<sy—1:dy—di<1,dj—ds<1,...,
dy —dy_y <1}.(24)

In other words,?’ is the largest index if2,3,...,s2 — 1}
such that the difference betwedj andd;_, is at most one

As such, all the integetg 1, ..., d;,  ;,,—1are representa%le

by using at most + 1 of the s; 11 integersdy,d3, ..., d;,
by using theC-transform.
We claim that

A, yjn — 1 < d5 4+ B(d™T51), (27)
If d, 511 —1< d;, +;» then there is nothing to prove._On the
other hand, ifd;, ;. ; —1 > d; ,;, then cons!der an integer
z, whered; ., < x < d; ,;,;, — 1. According to theC-
transformdy, ;1. d5, 40, d5,  Will not be used in the

representation of, butd; . ; will be used. As a result, the
integerz —d;, , ;, where0 <z —dj . <d; ;. —dj ;-1
is representable by using at masof the s; + j — 1 integers
di,ds,...,ds, ,;_, by using theC-transform. This implies that

* * *Sq —1 . *Si . -
A,y — iy — 1< B 77770 4) = B(d*Y5 i),

forall £ =2,3,...,¢. (Note that’ is well defined as we have where B(d*$' ™/~ '; ) = B(d*$'; ) follows from (21).

se—1> sy > 2from (iii) and d5 —d < 2dj —dj =dj =1.)
If 2 < ¢ <sy—2,thend;,,, —d; > 2 and hencel}, ., >
di +2 = B(d*> 1) +2 > B(d*$>"';1). On the other
hand, we haveB(d*;*~';1) = d: _, if £/ = s, — 1. As such,

it follows from (22) thats; = ¢’. Asdj = 1 and the difference

betweend; andd;_, is at most one fol = 2,3,...,s;, we
then have fromi, = /¢ for / =1,2,...,s; in (6) that
dy <l=dp, £=1,2,...,81. (25)

Furthermore, ifd}, < dy = ¢' for some2 < ¢’ < s4, then
dy <dp +(U=0)<l+(U—=10)=1=dy, (26)

forall ¢ =200 +1,...,s;.
We have proved in (25) and (26) thét < d;, d5 < da, ...,
di, < ds,, anddy, < dp, djyy < deyr,. .., dy < dg, if

)

From (27), (23), and the induction hypothesis, we have

i1 S diq+ Bd5i) + 1
:d:rl-j—"_d:] +d:2 ++d:1+1

<dgij+ds +dsy +---+ds, +1.  (28)

As1l <j<mi1—1,we have2 < j+1 < n;yq. It then
follows from (28) and (7) that

:d:ri-j-l-l

Sdsri‘j—i_dsl +d82+"'+d81+1

:2d51:+(j_1)(d81 +d52+"'+d81+1)+d81
+d52+"'+d5i+1

:2d5i +j(d51 +d52 +"'+dsi +1)

*
dé-i—l

=ds;+j+1 = dpt1.

dj < dy for some2 < ¢’ < s;. Now assume as the induction

hypothesis thatl; < di, di < do,..
51 <UL<M—1,anddy, <dgy,dy  <dpiq,..

. d; < d, for some
o dy < dy if

Furthermore, ifd}, < d, for some2 < ¢’ < ¢, then we have
dy < dg, dj . < dpya,..., dj < de from the induction

%, < dy for some2 < ¢’ < £. We then consider the following hypothesis. As such, the inequality in (28) becomes a strict

two cases:
Case 1./ = s;, wherel < ¢ < k —1: As d*{w e A,

we haved; , < 2d;. In this case, we have from (7) that

der1 = ds;+1 = 2ds, = 2d,. It then follows from the
induction hypothesis that

Ay <2d; < 2dp = dyys.

Furthermore, ifd;, < d, for some2 < ¢’ < ¢, then we have
dj < dg, dj . < depya,..., dj < de from the induction
hypothesis. As such, it follows that

derl < 2dz < 2dp = dg+1.

Case 2./ = s; +j,wherel <i<k—-1andl1 < j <
ni+1 — 1: Consider an integer, where0 <z <dj ;. — L.
As s; +j+1<s;+n;41 = 8;+1, Wwe have from (23) that
—-1<d;,,, —1

e dF

Sit1

& < gy
<di, +di, +
= B(d* " i+ 1).

inequality and it then follows that
derl < dg.,.l.

(v) Finally, we show thatl; = d, forall ¢ =1,2,..., M.
From (23) andd; < d, for all ¢ = 1,2,..., M in (iv), we
have

B(M,k) = B(d*{*;k) = d: +di, + - +d,
<ds, +ds, +---+ds,. (29)
From the definition ofB(M, k) in (19) and from Theorem 5,
we have

B(M, k) = h{gleajM B(hM:k)

> BAM;k)=ds, +doy +---+ds,. (30)

As such, it follows from (29) and (30) tha@ (M, k) = ds, +
ds, +---+ds, andd}, =d,, foralli=1,2,..., k. This leads
tod; =d, forall £=1,2,..., M. Otherwise, we must have
d; < dp for some2 < ¢’ < M, and it follows from the results



in (iv) thatd; < d, forall ¢ = ¢, ¢'+1,..., M. In particular, [9]
we haved;, = dj; < dy = ds,, and a contradiction is
reached. This shows that'}’ = d}’ € Gy and we have (1
completed the proof that every optimal construction is &dye

construction. | [11]

V. CONCLUSION

In this paper, we considered the constructions of opticab)
gueues by using optical Switches and fiber Delay Lines (SDL)
with a limited number of recirculations through the fibers.
Such a limitation on the number of recirculations comes fromms]
practical feasibility considerations, such as crosstpthwer
loss, amplified spontaneous emission (ASE) from the Erbium
doped fiber amplifiers (EDFA), and the pattern effect of the4
optical switches.

We first transformed the design of the fiber delays in
such SDL constructions to an equivalent integer repreienta
problem. We then gave a class of greedy constructions {&?]
the M-sequencel} in the equivalent integer representation
problem, and obtained an explicit recursive expressiostdich [16]
an M-sequencel? and for the corresponding maximum rep-
resentable integeB(d}?; k). Finally, we showed that an opti- [7
mal construction that achieves the largest possible maximu
representable integer can be given by a greedy construction
The results can be applied to the constructions of optidat 2-118
1 FIFO multiplexers with a limited humber of recirculations
and we showed that the complexity of searching for an optinia$]
construction can be greatly reduced from exponential timne t
polynomial time by only considering the greedy construtdio [20]
instead of performing an exhaustive search. Similar resaln
be obtained for linear compressors and linear decomprses%%]
with a limited number of recirculations.
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