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Abstract— Discrete-time queues are infinite dimensional
switches in time. Ever since Shannon [22] published his paper on
the memory requirements in a telephone exchange, there have
been tremendous efforts in the search for switches with minimum
complexity. Constructing queues with minimum complexity has
not received the same amount of attention as queues are relatively
cheap to build via electronic memory. Recent advances in optical
technologies, however, have spurred interest in building optical
queues with minimum complexity.

In this paper, we develop mathematical theory of constructing
discrete-time optical FIFO queues. To our surprise, we find that
many classical constructions for switches have their counterparts
for constructing queues. Analogous to the three-stage construc-
tion of Clos networks, we develop a three-stage construction
of optical FIFO queues via Switched Delay lines (SDL). Via
recursively expanding the three-stage construction, we show that
an optical FIFO queue with buffer ��� � can be constructed by
using �� � � � switches with the total fiber length � � �

���
� �.

Index Terms— FIFO queues, optical switches, optical memory,
Clos networks, switched delay lines

I. INTRODUCTION

Discrete-time queues can be viewed as infinite dimensional
switches in time. To illustrate this, in Figure 1 we show a
typical sample path of a queue with a single input link and
a single output link. The first customer arrives at time � � �
and departs at time � � �, the second customer arrives at time
� � � and departs at time � � �, the third customer arrives at
time � � � and departs at time � � �, and so forth. As shown
in Figure 1, the queue that realizes this particular sample path
can be viewed as a switch that sets up a particular connection
pattern between the inputs and the outputs. Unlike traditional
switches, the inputs and the outputs in a queue are infinite
dimensional as ���. A natural question is then: How does
one construct a queue and how complex is it to do so?

Ever since Shannon [22] published his paper on the mem-
ory requirements in a telephone exchange, there have been
tremendous efforts in the search for switches with minimum
complexity (see e.g., the books by V. E. Benes [1], J. Hui [16],
M. Schwartz [21], F. K. Hwang [17] and S.-Y. R. Li [19], and
references therein). However, constructing queues with mini-
mum complexity has not received the same amount of attention
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Fig. 1. A typical sample path of a discrete-time queue

as constructing switches because queues are relatively cheap to
build via electronic memory. Due to recent advances in optical
technologies, the data transmission speed by photons is now
much faster than that by electrons. As it is very costly to store
information in electronic memory by converting photons into
electrons, building optical queues with minimum complexity
has become an important research topic.

The only known way to store photons without converting
them into other media is to direct photons via a set of Switches
and fiber Delay Lines (SDL) so that the photons come out
at the right place and at the right time. The development
of optical queues via switched delay lines (SDL) seems to
have started in the early 1990s. Early development seems
to have focused more on the practical side than developing
mathematical theory. It was first demonstrated by M. J. Karol
[18] that SDL elements could be used as a buffer for a shared-
memory optical packet switch. The buffer in [18] was built
by SDL elements with feedbacks (like the optical memory
cell in Section II). However, no proofs were given for exact
emulation of a shared-memory switch. A huge project (see [4],
[5]), called CORD (contention resolution by delay lines), was
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started by I. Chlamtac et al at Boston University. Once again,
no formal proofs for exact emulation of an output-buffered
switch (or multiplexer) were given in [4], [5].

It seems that J. T. Tsai and R. L. Cruz [23], [11] were
the first to construct an exact �-to-� First In First Out (FIFO)
multiplexer with SDL elements. The multiplexer in [23], [11],
named COD (Cascaded Optical Delay-Lines), only required
local information for the control of the connection patterns
of � � � switches. However, the number of � � � switches
in such an architecture is proportional to the buffer size. A
more efficient design, called Logarithm Delay-Line Switch,
was proposed by D. K. Hunter, M. C. Chia and I. Andonovic in
[13]. The �-to-� FIFO multiplexer in [13] turned out to be the
recursively expanded version of the �-to-� FIFO multiplexer
present in [9]. As addressed in [9], the number of � � �
switches needed for such an architecture is only ���	
��,
where � is the buffer size. An extension to FIFO multiplexers
with variable length bursts was reported in [8]. In [15], SLOB
(Switch with Large Optical Buffers) was proposed for the
extension of optical buffered switches with � input/output
ports �� � ��. Such an architecture relied on a special
hardware, called a primitive switching element (PSE), which
was very difficult to control. Finally, we note that a “packing”
and “scheduling” optical switch that used the framed Birkhoff-
von Neumann decomposition [2], [25] was introduced by E.
A. Varvarigos [24]. For additional references of optical packet
switches, we refer to the review papers [14], [12], [26].

One of the main contributions of our paper is to develop
mathematical theory of constructing discrete-time optical
FIFO queues. To our surprise, we find that many classical con-
structions for switches have their counterparts for constructing
queues. Analogous to the three-stage construction of Clos
networks [10], we develop a three-stage construction of optical
FIFO queues via SDL elements. Via recursively expanding the
three-stage construction, we show that an optical FIFO queue
with buffer �� � � can be constructed by using �� � � �
switches with the total fiber length � � ���� � �.

The paper is organized as follows. In Section II, we explain
the motivation of our research by introducing optical memory
cells and SDL elements. Our construction for optical FIFO
queues is given in Section III. The paper is then concluded in
Section IV.

II. OPTICAL MEMORY CELLS AND SDL ELEMENTS

There are several well-known approaches for solving the
conflicts in high speed packet switches with electronic mem-
ory. The key problem of extending these approaches to optical
switches is the lack of inexpensive optical random access
memory. A memory cell in electronic memory can be easily
implemented by a few transistors that store electrical charges.
As such, the size of electronic random access memory can be
very large, e.g., 512Mbits. Thus, the cost of using electronic
random access memory is usually assumed to be independent
of the size of memory. Such an assumption is called the
uniform cost assumption in the literature. However, it is much
more difficult to store photons. One way to implement a
memory cell for optical memory is to use a � � � optical

crossbar switch and a fiber delay line (with one unit of delay)
as shown in Figure 2. To write the information to the memory
cell, set the �� � crossbar switch to the “cross” state so that
photons can be directed to the fiber delay line. Once the write
operation is completed, the crossbar switch is then to set to
the “bar” state so that the photons directed into the fiber delay
line keep circulating through the fiber delay line. To read out
the information from the memory cell, set the crossbar switch
to the “cross” state so that the photons in the fiber delay line
can be directed to the output link. Unlike transistors, the cost
of a ��� optical crossbar switch is high in today’s technology.
Thus, it is important to build an optical queue with a minimum
number of �� � optical crossbar switches.

11 1(a) (b) (c)

Fig. 2. An optical memory cell: (a) writing information (b) circulating
information (c) reading information

A network element that is built by optical crossbar switches
and fiber delay lines as described in Figure 2 is called
a Switched Delay Line (SDL) element. In this paper, we
consider fixed size packets over optical links. Assume that time
is slotted and synchronized so that a packet can be transmitted
within a time slot. Since there is at most one packet within a
time slot, we may use indicator variables to represent the state
of a link. A link is in state 1 at time � (for some � � �� �� �� � � �)
if there is a packet in the link at time �, and it is in state
0 at time � otherwise. For instance, we show in Figure 3 a
delay line with delay �. Let ���� be the state of the input
link. Then the state of the output link is ��� � ��. Note that
at the end of the ��� time slot, the packets that arrive at time
�� � � �� � � � � � � �� � ��� are stored in the optical delay line
with delay �.

d

a(t) a(t-d)

Fig. 3. An optical delay line with delay �

One of the most important properties of SDL elements is the
following time interleaving property for scaled SDL elements.

Definition 1 (Scaled SDL element [9])A scaled SDL element
is said to be with scaling factor 	 if the delay in every delay
line is 	 times of that in the original (unscaled) SDL element.

Proposition 2 (Time interleaving property [9]) A scaled
SDL element with scaling factor 	 can be operated as time
interleaving of 	 SDL elements.

A formal argument for Proposition 2 can be found in [9].
To understand the intuition of the time interleaving property,
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Fig. 4. An optical memory cell with scaling factor 2

consider the memory cell with scaling factor 2 in Figure 4. To
see that the scaled memory cell in Figure 4 can be operated as
time interleaving of two memory cells, we partition time into
even and odd numbered time slots. For the even numbered time
slots, we can set the connection patterns of the �� � optical
crossbar switch in the scaled SDL element according to the
read/write operation described in Figure 2 for one memory
cell. Similarly, for the odd numbered time slots, we can set
the connection patterns of the �� � optical crossbar switch in
the scaled SDL element according to the read/write operation
for another memory cell.

III. FIFO QUEUES

FIFO queues are widely used in every one’s daily life. A
customer arriving at a FIFO queue joins the tail of the queue.
When a customer departs at the head of the queue, every one in
a FIFO queue moves up one position. If the buffer of a FIFO
queue is finite, then an arriving customer to a full queue is
lost. The concept of a discrete-time FIFO queue is formalized
in the following definition.

B

l(t)

d(t)a(t)

c(t)
FIFO

Fig. 5. A FIFO queue with buffer B.

Definition 3 (FIFO queue) A FIFO queue with buffer � is
a network element that has one input link, one control input
and two output links (see Figure 5). One output link is for
departing packets and the other is for lost packets. As shown
in Figure 5, let ���� be the state of the input link, 
��� be
the state of the control input, ���� (resp. ����) be state of the
output link for departing (resp. lost) packets, and ���� be the
number of packets queued at the FIFO queue at time � (at the
end of the ��� time slot). Then the FIFO queue with buffer �
satisfies the following four properties:

(P1) Flow conservation: arriving packets from the input
link are either stored in the buffer or transmitted
through the two output links, i.e.,

���� � ���� �� 
 ����� ����� ����� (1)

(P2) Non-idling: if the control input is enabled, i.e., 
��� �
�, then there is always a departing packet if there are

packets in the buffer or there is an arriving packet,
i.e.,

���� �

�
� if 
��� � � and ���� �� 
 ���� 
 �
� otherwise

�

(2)
(P3) Maximum buffer usage: if the control input is not

enabled, i.e., 
��� � �, then an arriving packet is
lost only when buffer is full, i.e.,

���� �

�
� if 
��� � �, ���� �� � � and ���� � �
� otherwise

�

(3)
(P4) FIFO: packets depart in the first in first out (FIFO)

order.

One has from (P1) and (P2) that

���� � ����� �� 
 ����� 
����� � �����

In conjunction with (P3), one further has the following Lindley
equation

���� � ��������� �� 
 ����� 
������ ��� (4)

The key difference between a 2-to-1 FIFO multiplexer in [9]
and a FIFO queue is that the delay of a packet in a 2-to-
1 FIFO multiplexer can be immediately determined upon its
arrival. This is not possible in a FIFO queue as the delay of
an arriving packet depends on the future of the control input

���. We note that the control input 
��� is also known as the
time varying capacity of the discrete-time FIFO queue in the
literature (see e.g., [6] and references therein).

A. Three-stage constructions
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Fig. 6. A three-stage construction of a FIFO queue

In Figure 6, we show a three-stage construction of a FIFO
queue with buffer �� 
 � � �. It is a concatenation of a
� � � switch, a FIFO queue with buffer � � � (tail queue),
a scaled FIFO queue with buffer � and scaling factor � (�
parallel central queues), and a FIFO queue with buffer � �
� (head queue). The � � � switch on the left acts as a 1-
to-2 demultiplexer. Its objective is for admission control. An
arriving packet is admitted only when the total number of
packets inside the network element does not exceed �� 

� � � after its admission. Otherwise, an arrival is lost and
it is routed to the loss port ���� (as shown in Figure 6). By
so doing, the maximum number of packets inside the network
element is at most �� 
� � �.

To represent the state of the head queue, we let ����� be the
state of its input link, 
���� be the state of its control input,
����� be the state of its output link for departing packets,
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����� be the state of its output link for lost packets, and �����
be the number of packets queued at the head queue at time �.
Similarly, we let �� ���, 
� ���, �� ���, �� ���, and �� ��� denote
the corresponding states in the tail queue.

From the time interleaving property for SDL elements, the
scaled FIFO queue with buffer � and scaling factor � can
be operated as � parallel queues. These � time interleaved
parallel queues are connected to the head queue and the tail
queue periodically with period �. An illustrating graph is
shown in Figure 7.

Fig. 7. An illustration of periodic connections in the three-stage construction

To simplify our presentation, we let ����� be the state of
input link of the central FIFO queue that is connected by the
head queue and the tail queue at time �. Also, let 
���� be
the state of its control input, ����� be the state of its output
link for departing packets, ����� be the state of its output link
for lost packets, and ����� be the number of packets stored in
that central queue. Let ������ be the total number of packets
stored in the � central queues at time � and

���� � �� ��� 
 ������ 
 ����� (5)

be the total number of packets stored in the network element.
To summarize, a subscript � (resp. � , �) indicates that its
is a state variable of the head (resp. tail, connected central)
queue.

From the three-stage construction in Figure 6, we have
�� ��� � ���� (if the arrival is not lost), �� ��� � �����,
����� � �����, and ���� � �����.

To operate the three-stage construction in Figure 6 as a FIFO
queue, we let the control input of the head queue 
���� to be
the control input of the overall FIFO queue 
���, i.e., 
���� �

���. To complete the operation of the network element, it
remains to specify the control input of the tail queue 
� ���
and the control input of the connected central queue 
����.

Define a busy period as the period of time that there are
packets stored in the central queues, i.e., ������ 
 �. An idle
period is the period of time that there are no packets stored
in the central queues, i.e., ������ � �. Initially, the network
element is empty and it is in an idle period.

(R1) (Idle period rule) In an idle period, the tail queue and
the central FIFO queues are always enabled as long
as the head queue is not full, i.e., 
� ��� � 
���� � �
if ������ �� � � and ����� ��� 
��� � � � �.

According to the idle period rule, the tail queue and the
scaled FIFO queue are transparent during an idle period and
the network element is completely determined by the head
queue. Thus, during an idle period, the network element is a
FIFO queue with buffer � � �.

(R2) (Initiation of a busy period) When the head queue is
full and there is an arriving packet, the packet has

to be stored in one of the central queues and this
triggers a busy period. Thus, if ����� � �� � � and
���� � �� � 
��� � � � �, then 
� ��� � � and

���� � �.

To specify the operation rules in a busy period, we need
to keep track of the shortest queue and the longest queue
(cf. the argument for a system with parallel queues in [9]).
Let ����� ��� be the number of arrivals to the central queues
between ���� �� � ��, i.e.,

����� ��� �

�����
����

������ (6)

Also, let ����� ��� be the number of departures from the
central queues between ���� �� � ��, i.e.,

����� ��� �

�����
����

������ (7)

Suppose that a busy period begins at time � . As packets are of
the same size, the joining-the-shortest-queue policy is simply
the round robin assignment of the arriving packets in a busy
period. Thus, the connected central queue at time � is the
shortest queue if and only if

��� � ����� ��� mod � � ��

Similarly, the connected central queue at time � is the longest
queue if and only if

��� � ����� ��� mod � � ��

(R3) (Serving-the-longest-queue rule) In a busy period,
there are two conditions that need to be met in order
to enable a packet to depart from the connected
central queue to the head queue: (i) there is a
buffer space in the head queue, and (ii) the central
queue being connected is indeed the longest queue.
Specifically, suppose that ����� � �� 
 �. Then

���� � � if and only if ���� � ��� 
��� � � � �
and ��� � ����� ��� mod � � �.

(R4) (Joining-the-shortest-queue rule) In a busy period,
there are two conditions that need to be met in order
to enable a packet to depart from the tail queue to
the connected central queue: (i) there is a buffer
space in the connected central queue, and (ii) the
central queue being connected is indeed the shortest
queue. Specifically, suppose that �������� 
 �. Then

� ��� � � if and only if ����� ��� 
���� � � and
��� � ����� ��� mod � � �.

In the following theorem, we prove the main result for the
three-stage construction of FIFO queues. Its proof is given in
Appendix A.

Theorem 4 Suppose that the network element in Figure 6
is started from an empty system. Under the operation rules
specified in (R1)-(R4), it is a FIFO queue with buffer �� 

� � �.

Note that the first ��� switch in the three-stage construction
in Figure 6 is only to make sure that the total number of



5

packets inside the network element does not exceed �� 

� � �. In other words, this � � � switch can be omitted in
the construction as long as the queue never exceeds its buffer
size. For this, we call a network element a pre-FIFO queue
with buffer � if it behaves exactly the same as a FIFO queue
with buffer � as long as the queue never exceeds its buffer
size, i.e., it can realize all the sample paths that do not lead
to a buffer overflow. For instance, an optical memory cell is a
pre-FIFO queue with buffer 1. As there is no internal loss in
the three-stage construction in Figure 6, the FIFO queues there
can be replaced by pre-FIFO queues. As such, one can build
a pre-FIFO queue with buffer �� 
� � � by two pre-FIFO
queues with buffer � � � and a scaled pre-FIFO queue with
buffer � and scaling factor �. Let ���� be the number of
��� switches needed for constructing a pre-FIFO queue with
buffer �. From the three-stage construction, it follows that

���� 
� � �� � ���� � �� 
����� (8)

As an optical memory cell can be used for a pre-FIFO queue
with buffer 1, we have ���� � �. Letting � � � in (8) yields

���� 
 �� � � 
����� (9)

Solving this yields

���� � �� � ��� �� (10)

In fact, the recursive expansion using � � � can be used for
building a pre-FIFO queue with buffer �� � � (see Figure 8
for an implementation of a pre-FIFO queue with buffer 7). As
one can add � � � switch in front of a pre-FIFO queue for
dropping overflowed packets, a FIFO queue with buffer ����
can be constructed by using �� �� � switches with the total
fiber length � � ���� � �.

1 2 4 2 1

Fig. 8. An implementation of a pre-FIFO queue with buffer 7 via a
concatenation of scaled optical memory cells

Even though the total number of buffers in the three-stage
construction is ��
������, it is not possible to admit more
than ��
��� packets without violating the properties of a
FIFO queue. To see this, suppose that we relax the admission
control rule by admitting at most �� 
� packets. Consider
the following scenario: the head queue and the central queues
are all full at time ���, i.e., �� ����� � ��� and �������� �
��, and the connected central queue at time � is both the
shortest queue and the longest queue. Suppose that 
��� � �,
���� � � and that ���� � 
��� � � for � � �
�� � � � � �
���.
According to the relaxed admission control rule, the packet
that arrives at time � is admitted to the tail queue and we
have �� ��� � �, ����� � � � � and ������ � ��. As the
connected central queue at time � is both the shortest queue
and the longest queue, the connected central queue and the
tail queue are not enabled for � � � 
 �� � � � � � 
 � � �.
Thus, all the subsequent arrivals have to be store at the tail

queue. Moreover, the departures from the head queue are not
replenished by the packets from the central queues. At time
�
���, we then have ����
���� � �, �����
���� � ��
and �� �� 
� � �� � � � �. Even though the last packet in
the head queue will depart at � 
� � �, we are not able to
admit the arriving packet at �
��� as the tail queue is full.
This violates the maximum buffer usage property for a FIFO
queue with buffer �� 
�.

IV. CONCLUSIONS

In this paper, we developed a three-stage construction for
FIFO queues. Recursive expansion of the three-stage construc-
tion yields an optical FIFO queue that is a concatenation of
scaled optical memory cells. In our implementation of the
three-stage construction of a FIFO queue, we need to keep
track of the longest queue and the shortest queue. It becomes
troublesome when one recursively expands the three-stage
construction. It would be of interest to look for simple control
mechanisms for FIFO queues.

We note that many classical constructions of switches can
also be used for the constructions of optical queues, including
linear compressors, non-overtaking delay lines, and flexible
delay lines. Results along this line can be found in [7]. In ad-
dition to FIFO queues, we also note that there is a construction
of priority queues in [20] using a feedback architecture.

APPENDIX

Appendix A
In this appendix, we prove Theorem 4.
To prove the three-stage construction in Figure 6 is indeed

a FIFO queue with buffer ��
���, we need to verify the
four properties in Definition 3. From (R1), the construction is
the same as a FIFO queue with buffer ��� in an idle period.
It suffices to verify these four properties in a busy period.

(P1) Flow conservation: it is easy to see that under the
serving-the-longest-queue rule in (R3), ����� � � � � for
all � and there is no loss in the head queue, i.e., ����� � �.
Similarly, under the joining-the-shortest-queue rule in (R4),
����� � � for all � and we have ����� � �. We will show in
(P3) that there is no loss in the tail queue, i.e., �� ��� � �, as
long as the total number of packets inside the network element
is not greater than �� 
� � �. As such, flow conservation
can be preserved.

(P2) Non-idling: we will prove this by contradiction. Sup-
pose that a busy period begins at time � and the non-idling
property is violated for the first time at time �� 
 � . From the
non-idling property of the head queue, the head queue must
be empty at ��� �. Moreover, a packet � in the longest queue
(called queue �) cannot be dequeued to the empty head queue
as queue � is not connected at ��. Mathematically, we have
(i) the (external) control input is enabled, i.e., 
���� � �, (ii)
the head queue is empty, i.e., ����� � �� � �, and (iii) the
central queues are not empty, i.e., ������ � �� 
 �, and (iv)
the connected central queue is not the longest queue, i.e.,

��� � � ����� ���� mod � �� �� (11)

Let �� be the time that the last packet is dequeued to the
head queue from the central queues. If no packet is dequeued
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to the head queue, let �� � � � �. Clearly, �� 
 � � �� as
it takes at least one time slot to dequeue a packet. Moreover,
queue � is the longest queue since �� 
 �. We first claim that
the longest queue (queue �) is connected at �� 
 �, i.e.,

��� 
 �� � ����� �� 
 ��� mod � � �� (12)

As such, ��
� is the first time that queue � is connected after
the last packet is dequeued to the head queue from the central
queues (if there is one). Note that (12) holds trivially if no
packet is dequeued to the head queue since the beginning of
the busy period. On the other hand, according to the serving-
the-longest-queue rule in (R3), we have

��� � � ����� ���� mod � � �� (13)

As �� is the time that the last packet is dequeued to the head
queue, we also have ���� �� 
 �� � ���� ��� 
 �. Replacing
this in (13) yields (12).

Secondly, we claim that there exists �� with ���� � �� �
�� such that queue � is connected at ��, i.e.,

��� � � ����� ���� mod � � �� (14)

As such, �� is the last time (before ��) that queue � is
connected after the last packet is dequeued to the head queue
from the central queues (if there is one). Since there is no
packet that is dequeued from the central queues to the head
queue from �� 
 � to ��, we have

���� �� 
 �� � ���� �� � ���� ��� (15)

for all ��
� � � � ��. Let 	 � ������������	, where ��	
is the floor function that returns the largest integer not greater
than �. Let

�� � �� 
 � 
	�� (16)

Since �� � � ��	 � �, we have

�� �� � �� � ��� (17)

That (14) holds then follows from (16), (15) and (12). Fur-
thermore, as ���� ��� � ���� ���, replacing this in (14) yields

��� � � ����� ���� mod � � ��

In view of (11), we know that �� �� ��. Thus, we have ���� �
�� � ��.

Now we claim that the head queue must be full at ��, i.e.,

������ � � � �� (18)

According to the serving-the-longest-queue rule in (R3), the
condition in (14) indicates that queue � would be enabled at
time �� if the other condition ����� � �� � 
���� � � � �
were satisfied. As packet � is still in queue � at time ��, this
implies that

�� ��� � ��� 
���� � � � �� (19)

As ����� � � � � for all � and 
��� is nonnegative, we have
����� � �� � � � � and 
���� � �. Thus, the head queue
remains unchanged at �� and we have ������ � �������� �
� � �.

Finally we show there is a contradiction to the empty head
queue condition �������� � �. As ���� � �� � ��, we have

�� � �� �� � � � �. Since the head queue can be decreased
by at most 1 in a time slot, we also have from (18) that

����� � �� � ������� ��� � �� ��� 
 �� (20)

This leads to a contradiction to the empty head queue condition
����� � �� � � when the non-idling property is violated.

(P3) Maximum buffer usage: once again, we will show by
contradiction that there is no loss in the tail queue as long as
the total number of packets inside the network element is not
greater than �� 
� � �, i.e., for all �

����� 
 ������ 
 �� ��� � �� 
� � �� (21)

Suppose that the maximum buffer usage property is violated
for the first time at time ��, i.e., a packet arriving at the tail
queue is lost at time ��. When this happens, we have from the
maximum buffer usage property of the tail queue that (i) the
tail queue must be full, i.e., �� ��� � �� � � � � and (ii) the
control of the tail queue is not enabled, i.e., 
� ���� � �.

Denote by packet � the head-of-line packet of the tail queue
at time ��. Let �� be the time that the last packet is dequeued
to the central queues from the tail queue. If �� is in a busy
period, let � be the beginning of that busy period. Otherwise,
let � � ��. We first claim that

��� 
 �� � ����� �� 
 ��� mod � � �� (22)

Note that if � � ��, then ���� �� 
 �� � � and (22) holds
trivially. On the other hand, if � is the beginning of a busy
period, it then follows from the joining-the-shortest-queue rule
in (R4) that

��� � � ����� ���� mod � � �� (23)

As �� is the time that the last packet is dequeued to the central
queues from the tail queue, we also have ���� �� 
 �� �
���� ��� 
 �. Replacing this in (23) yields (22).

Secondly, we claim that there exists �� with ���� � �� �
�� such that

��� � � ����� ���� mod � � �� (24)

The argument for (24) is similar to that in the proof of the
non-idling property. Since there is no packet that is dequeued
to the central queues from the tail queue from �� 
 � to ��,
we have

���� �� 
 �� � ���� �� � ���� ��� (25)

for all �� 
 � � � � ��. Let

�� � �� 
 � 
 ���� � �� � ����	�� (26)

Analogous to the argument for the non-idling property, we
have

�� �� � �� � ��� (27)

That (24) holds then follows from (26), (25) and (22).
Now we claim that packet � is in the tail queue at ��. If

packet � has not arrived at the tail queue by ��, then the tail
queue must be empty at ��, i.e., �� ���� � �, as the last packet
departs at �� � ��. Since there is at most one packet arrival
per time slot, we have from (27) that

�� ��� � �� � �� ���� 
 ��� � �� ��� � � � �� (28)
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This leads to a contradiction that �� ��� � �� � � � �.
Finally we show there is a contradiction to the maximum

number of packets inside the network element. In view of (24)
and the joining-the-shortest-queue rule in (R4), the only reason
that packet � did not depart from the tail queue at �� is that

����� � ��� 
����� � ��

This implies that the connected central queue is full, i.e.,
�������� � � and the control input of the connected central
queue is not enabled, i.e., 
����� � �. As the connected central
queue is the shortest queue, all the central queues are full, i.e.,
������ � �� � ��. As � is the beginning of a busy period,
we have

���� ��� � ���� ��� 
 ������ � �� � ���� ��� 
��� (29)

From (24), it then follows that

��� � � ����� ���� mod � � �� (30)

Thus, the connected central queue is also the longest queue.
According to the serving-the-longest-queue rule in (R3), the
condition in (30) indicates that the connected central queue
would be enabled at time �� if the other condition ����� �
���
���� � ��� were satisfied. This in turn implies that the
head queue is also full, i.e., �������� � ��� and the head
queue is not enabled at ��, i.e., 
���� � �. Since both the head
queue and the connected central queue are not enabled at � �,
they remain unchanged at ��. Thus, we have ������ � � � �
and ������� � ��. Adding packet � in the tail queue at ��,
the total number of packets inside the network element at ��
is at least �� 
�, which contradicts to (21).

(P4) FIFO: since both the tail queue and the head queue
are FIFO queues, we only need to consider the order in the
central queues. The FIFO property in the central queues is
trivially preserved from the joining-the-shortest-queue rule and
the serving-the-longest-queue rule.
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