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Abstract—In this paper we propose to model the formation
of online social networks by a duplication model. In this model
vertices are added into the network one at a time. Each vertex
is first attached to a randomly selected vertex. Each neighbor
of the attached vertex establishes an edge with the new vertex
with a probability. A main contribution of this paper is that
we derive analytically the clustering coefficient for this model.
Numerical studies show that the range of mean degree and the
clustering coefficient of the duplication model is quite large. By
properly choosing values for the parameters of our model, the
mean degree and the clustering coefficient match well with those
of popular online social networks.
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I. INTRODUCTION

Social networks have attracted a lot of attention recently
mostly because of the explosive popularity of online social
networking sites such as Facebook, Flickr, Orkut and etc.
These sites offer an integrated environment for users to make
friends, chat, distribute and share images/video, play games
and etc. In some part of the world, access to social networking
sites constitutes nearly ten percent of all access to web
sites [12]. Users may form social links with their real-life
acquaintances or online contacts who share common interests.
Networks formed in this way are called online social networks.
Online social networks receive great interests because they
offer opportunities for potentially new business models. For
instances, products or concepts are conventionally promoted
by celebrities such as movie or sports stars. However, potential
customers may be more willing to take recommendation from
friends. Thus, viral marketing over online social networks can
be a power tool for business.

Social networks have been widely studied in the past.
One of the most well known studies was due to Milgram
[14]. Milgram’s result leads to the idea of “six degrees of
separation”, a common belief that there are only six hops
between any two people in the world. This result is referred to
as the small world property. Mathematically, the small world
property says that the average diameter of a social network
is of the logarithmic order of the number of vertices in the
network. Other important properties of social networks include
[16], [20]

• large clustering coefficients;
• power law degree distributions;
• positive degree-degree correlation;
• existence of community structures.

There has been a great research interest on modeling and
understanding the micro operations that lead to the formation
of social networks. The objective is to devise a growth
model producing random networks that possess the properties
listed in the last paragraph. Such a network model helps
to understand how a social network is formed and may
be useful to the study issues, such as viral marketing, on
social networks. Long time ago social network analysts have
observed a behavior called “triadic closure” [16]. Suppose
that individual A has two friends, N and B, who are not
friends to each other as shown in Figure 1. Quite likely A
may introduce N and B to each other. N and B may become
friends as a result. On a network graph, this operation “closes”
an “open” triad of vertices by adding of an edge between
N and B. Newman [17] has showed empirical evidence of
triadic closure in scientific collaboration networks. Network
models with operations similar to triadic closure have been
proposed in the literature to model the formation of social
networks. Kumpula et al. [13] proposed a model for social
networks with community structures. In their model, at each
time each vertex with at least one neighbor performs a random
search to a second neighbor. If this second neighbor is not a
neighbor, perform a triadic closure to this second neighbor.
Kumpula et al. [13] called this operation cyclic closure or local
attachment. Each vertex with no neighbor is made to connect
to a random vertex with a probability. This operation is called
focal closure or global attachment. Finally, in Kumpula’s
model vertices and edges can be removed. In addition, edges
are weighted. Simulation methods were used to study the
model. In Davidsen’s model [5] a vertex is randomly selected
from the network. If this vertex has more than one neighbors,
randomly select two of its neighbors and connect them by
triadic closure. This operation is called transitive linking by
Davidsen et al. If the randomly selected has only one neighbor,
connect this vertex with a random vertex. Finally, randomly
select a vertex and remove all its edges. Then, connect this



vertex to a randomly selected vertex. In addition, Holme et. al.
[9] and Szabó et. al. [19] studied network formation problems
involving with preferential attachment and operations similar
to triadic closure. We refer the reader to [9], [19] for more
details.

Fig. 1. Illustration of triadic closure. Vertices N and B are not friends, but
have a common friend A. A introduces N and B. A new edge, shown in
dashed line, closes the triad.

Nearly all online social networking sites offer a section
called “people you may know”. This section contains a list
of users that the system recommends. By clicking on a user
in the list, this user becomes a friend. Since this list of users
contains mostly friend’s friends, effectively in online social
networks friend’s friends are more likely to be friends of the
new user. As illustrated also in Figure 1, suppose that N is a
new user who just signs up to an online social networking
site. Suppose that A is an initial friend of N and that B
is one of users in the “people you may know” section that
the site recommends to N . N may become a friend of B by
establishing a new edge to B. We thus propose the following
growth model for online social networks. Specifically, vertices
are added into the network one at a time. At each time, a new
vertex is added into the network. The new vertex randomly
selects and attaches to one existing vertex in the network.
Then, each neighbor of the randomly selected existing vertex
establishes an edge with the new vertex with probability a.
In fact, this network growth model that we just proposed is
also called a duplication model in the study of biological
networks [4], [3], [6], [8]. Duplication models have many
variations. Chung et al. rigorously analyzed the scale-free
degree distributions of duplication models [4], [3]. They also
established bounds on the maximum degrees. A duplication
model with edge rewiring was studied by Solè et al. [18].
Through computer simulation, Solè analyzed the clustering
coefficient and the average path length. Bhan et al. [1] con-
sidered three duplication models. Through simulations, Bhan
et al. studied the clustering coefficients, average path lengths
and exponents of scale-free degree distributions of the three
models. Ispolatov et al. [11], [10] studied the average degree
and the average number of cliques in a duplication-divergence
model. Through computer simulations Zhao et al. studied the
Pearson degree correlation coefficient for several duplication-
divergence models [22]. Boccaletti et al. [2] considered a
model similar to the duplication model. In Boccaletti’s model
a new vertex is added to the network at each time. A new
vertex randomly selects a vertex from the network and the
neighbors of the selected vertex. The new vertex establishes
m edges randomly to the selected vertex and its neighbors.

Rate equations were derived for the degree distribution and
the conditional degree-degree probability of this model.

To our knowledge, the clustering coefficient of Chung’s
duplication model has not been analytically studied. In this
paper we propose to model the formation of online social
networks by Chung’s duplication model described as follows.
Duplication model:

(i) Initially, a clique of m0 vertices is given. t← 1.
(ii) A new vertex N is introduced.
(iii) A vertex, denoted by A, is randomly chosen from

the existing network and an edge between vertex N
and vertex A is added.

(iv) For every neighbor of vertex A, an edge between
vertex N and that neighbor of vertex A is added
with probability a. This is independent of everything
else.

(v) t← t+ 1. Repeat (ii).
A main contribution of this paper is to derive a closed form
expression of the clustering coefficient as a function of time
for duplication model described above. Specifically,

C =
2τ(t)

s(t)− k(t)
, (1)

where k(t) and s(t) are the first and the second moments of
the degree of a randomly selected vertex in the network at
time t. In (1), τ(t) is the expected number of triangles that a
randomly selected vertex has at time t. Later in this paper we
shall derive differential equations for k(t), s(t), and τ(t). Our
numerical experience with this model indicates that the range
of mean degree and clustering coefficient of this model are
quite large. By properly choosing values for the parameters,
one can match the mean degrees and the clustering coefficients
of some observed online social networks.

The rest of the paper is organized as follows. In Section II
we review the definition of clustering coefficients. In Section
III, Section IV, and Section V, we derive the first and the sec-
ond moments of degree and the expected number of triangles
of a randomly selected vertex. These quantities are needed
in order to compute the clustering coefficient. Numerical and
simulation results are presented in Section VI. The conclusions
of the paper are presented in Section VII.

II. CLUSTERING COEFFICIENT

Clustering coefficients are designed as a measure of network
transitivity, which is a very important property of social
networks. Recall that there are two definitions of clustering
coefficients [16]. A network-wide definition of clustering
coefficients for a random network is

C =
(expected number of triangles)× 3

(expected number of connected triples)
. (2)

Let τ(t) be the expected number of triangles that a randomly
selected vertex has at time t. Let n(t) be the number of vertices
at time t. Since each triangle has three vertices, it follows that
the expected number of triangles of the entire network is

n(t)τ(t)/3. (3)



Consider a randomly chosen vertex and let its degree be X .
The expected total number of connected triples of the network
is

n(t)E

[(
X
2

)]
= n(t)

s(t)− k(t)

2
, (4)

where s(t) is defined as E[X2] and k(t) = E[X ]. Substituting
(3) and (4) into (2), we obtain (1). From (1), one needs
to evaluate k(t), τ(t) and s(t) in order to compute the
clustering coefficient C. We shall analyze these quantities in
the following sections.

III. EXPECTED DEGREE

Let k(t) denote the expected degree at time t. We shall
derive a differential equation for k(t). We will first derive a
difference equation by equating the total expected number of
edges in the network right before and after time t. We then
approximate the difference equation by a differential equation.

Since there are m0 + t vertices in the network at time
t, clearly the total expected degree of the entire network is
(m0 + t)k(t) at time t. Since each edge has two ends, the
expected number of edges at time t is (m0 + t)k(t)/2. The
new vertex that arrives at time t randomly selects and attaches
to an existing vertex. This produces a new edge. Additional
ak(t) edges are generated on average due to the TA operation.
Thus, on average 1 + ak(t) new edges are generated. Thus,
we have

(m0 + t+ 1)k(t+ 1)

2
=

(m0 + t)k(t)

2
+ 1 + ak(t). (5)

Eq. (5) is a difference equation. We propose to approximate
this difference equation by a differential equation. To achieve
this, we rewrite (5) as

k(t+ 1)− k(t) =
2 + (2a− 1)k(t)

m0 + t+ 1
. (6)

We approximate the left hand side of (6) by derivative k ′(t)
and obtain

k′(t) =
2 + (2a− 1)k(t)

m0 + t+ 1
(7)

with initial condition k(0) = m0 − 1. If a �= 1/2, (7) is a
separable differential equation whose solution is

k(t) = c1(m0 + t+ 1)2a−1 − 2

2a− 1
, (8)

where c1 is a constant determined by the initial condition
k(0) = m0 − 1 and

c1 = (m0 − 1 +
2

2a− 1
)(m0 + 1)1−2a. (9)

Solution (8) is not valid for a = 1/2. This special case can
also be solved easily. We omit the details.

IV. EXPECTED NUMBER OF TRIANGLES

In this section we shall first derive a difference equation for
τ(t) by equating the expected total number of triangles in the
network right before and after time t. We then approximate
the difference equation by a differential equation.

In the current model, the total number of vertices at time t
is n(t) = m0 + t. Since each triangle has three vertices, the
expected total number of triangles at time t is (m0+ t)τ(t)/3.
Thus, we reach the following identity

(m0 + t+ 1)τ(t+ 1)

3
=

(m0 + t)τ(t)

3
+ ak(t) + a2τ(t).

(10)
We now explain the last two terms in the right hand side
of (10). Suppose that at time t a new vertex N is attached
to vertex A as shown in Figure 2. With probability a, an
edge between vertex N and a neighbor of A is established.
These two new edges introduce two new triangles NAA1 and
NAA2. In addition, with probability a2 triangle NA1A2 is
formed. Thus, k(t) new triangles could be introduced. Each is
introduced with probability a independently. In addition, τ(t)
new triangles could also be introduced. Each is introduced with
probability a2 independently. We approximate τ(t+1)− τ(t)
by τ ′(t). Eq. (10) can be approximated by the following
differential equation

τ ′(t) =
3ak(t) + (3a2 − 1)τ(t)

m0 + t+ 1
(11)

with initial condition

τ(0) = (m0 − 1)(m0 − 2)/2. (12)

Fig. 2. A new vertex, denoted by vertex N , is attached to vertex A. Two new
triangles NAA1 and NAA2 are formed, each with probability a. Triangle
NA1A2 is formed with probability a2.

In general, (11) is a first-order linear differential equation
that can be solved by the technique of integrating factors.
Specifically,

τ(t) = c(m0 + t+ 1)3a
2−1 +

(m0 + t+ 1)3a
2−1

∫
3ak(t)

(m0 + t+ 1)3a2 dt, (13)

where c is a constant to be determined by the initial condition
(12). If a �= 1/2 or 2/3, substitute (8) into (13) and integrate.
We obtain

τ(t) =
3ac1(m0 + t+ 1)2a−1

2a− 3a2
− 6a

(2a− 1)(1− 3a2)

+c4(m0 + t+ 1)3a
2−1, (14)



and

c4 =
((m0 − 1)(m0 − 2)

2
− 3ac1(m0 + 1)2a−1

2a− 3a2

+
6a

(2a− 1)(1− 3a2)

)
(m0 + 1)1−3a2

. (15)

Solution (14) is not valid for a = 1/2, 1/
√
3, 2/3. For these

special values of a, the corresponding differential equation can
also be solved easily. We omit the details.

V. SECOND MOMENT OF DEGREES

In this section we shall first derive a difference equation
for s(t). We then approximate the difference equation by a
differential equation. Let X be the the degree of A. Let Y i be
the degree of the ith neighbor of A, where i = 1, 2, . . . , X .
In addition, let U1, U2, . . . , be a sequence of independent
and identically distributed Bernoulli random variables with
Pr(Ui = 1) = a. Let

φ(t)
def
= E

[
X∑
i=1

Yi

]
. (16)

Recall that s(t) is the second moment of the degree of a
random selected vertex in the network at time t. Thus, (m0 +
t)s(t) is the total second moment of degrees of the network
at time t. We need to examine all the vertices whose degrees
have changed from time t to t+ 1. Suppose that the degrees
of a vertex at time t and t+1 are k and k+Δk, respectively.
In the current model, Δk ≥ 0. This vertex contributes

E[2k ×Δk + (Δk)2] (17)

to the difference

(m0 + t+ 1)s(t+ 1)− (m0 + t)s(t). (18)

• Consider vertex A. Its degree at time t is X and the
change is one. In view of (17), A’s contribution to the
quantity in (18) is

E[2X + 1] = 2k(t) + 1. (19)

• Consider vertex N . Obviously, its contribution to (18) is

E

⎡
⎣(1 + X∑

i=1

Ui

)2
⎤
⎦ . (20)

• Consider the neighbors of A. Consider the i th neighbor
of A. Its degree at time t is Yi and the degree change is
one. Thus, its contribution to (18) is E[2Yi + 1]. Hence,
the total contribution from all neighbors of A is

E

[
X∑
i=1

(2Yi + 1)Ui

]
. (21)

We now simplify (20) and (21). We first work on (20). We
have

E

⎡
⎣(1 + X∑

i=1

Ui

)2
⎤
⎦ = E

⎡
⎣1 + 2

X∑
i=1

Ui +

(
X∑
i=1

Ui

)2
⎤
⎦

= 1 + 2E

[
X∑
i=1

Ui

]
+ E

⎡
⎣ X∑

i=1

X∑
j=1

UiUj

⎤
⎦ (22)

From the Wald’s equation [7],

E

⎡
⎣ X∑
j=1

Ui

⎤
⎦ = aE[X ] = ak(t). (23)

In addition,

E

⎡
⎣ X∑

i=1

X∑
j=1

UiUj

⎤
⎦ = E

[
X∑
i=1

U2
i

]
+E

⎡
⎣ X∑

i=1

∑
j �=i

UiUj

⎤
⎦ . (24)

The first term in the right hand side of (24) can be simplified
by Wald’s equation, which gives

E

[
X∑
i=1

U2
i

]
= ak(t). (25)

The last term in (24) can be simplified by conditioning on X .
Specifically,

E

⎡
⎣ X∑

i=1

∑
j �=i

UiUj

⎤
⎦ = E

⎡
⎣E
⎡
⎣ X∑

i=1

∑
j �=i

UiUj

∣∣∣X
⎤
⎦
⎤
⎦

= E[a2X(X − 1)]

= a2(s(t)− k(t)) (26)

Substituting (23), (24), (25) and (26) into (22), we obtain

E

⎡
⎣
(
1 +

X∑
i=1

Ui

)2
⎤
⎦ = 1 + 3ak(t) + a2(s(t)− k(t)). (27)

Next we consider (21). To analyze (21), we first obtain

E

[
X∑
i=1

YiUi

]
= E

[
E

[
X∑
i=1

YiUi

]]

= E

[
X∑
i=1

E[YiUi |X ]

]

= E

[
X∑
i=1

E[Yi|X ]E[Ui|X ]

]

= E

[
X∑
i=1

aE[Yi|X ]

]

= aE

[
E

[
X∑
i=1

Yi|X
]]

= aE

[
X∑
i=1

Yi

]
(28)



The above identity implies that

E

[
X∑
i=1

(2Yi + 1)Ui

]
= 2aφ(t) + ak(t). (29)

Considering (19), (27) and (29), we have

(m0 + t+ 1)s(t+ 1)− (m0 + t)s(t) =

(2k(t) + 1) + (1 + 2ak(t) + ak(t) + a2(s(t)− k(t)))

+(2aφ(t) + ak(t)).

Approximating s(t+1)−s(t) by s′(t), the last equation yields
the following differential equation

s′(t) =
1

m0 + t+ 1

(
(−1 + a2)s(t) + 2aφ(t) + 2

+(2− a2 + 4a)k(t)
)
. (30)

To analyze the differential equation in (30), we prove the
following proposition.

Proposition 1. If initially the network starts from a clique
with m0 vertices, then

s(t)
def
= E[X2] = E

[
X∑
i=1

Yi

]
def
= φ(t). (31)

Note that if each neighbor of A has the same number of
neighbors as A does, (31) clearly holds. Thus, the above
identity implies that the duplication model behaves as if it were
a regular network in which all vertices have the same degree.
The proof of Proposition 1 can be found in the appendix.

Substituting (31) into (30), we obtain

s′(t) =
1

m0 + t+ 1

(
(−1 + a2 + 2a)s(t) + 2

+(2− a2 + 4a)k(t)
)
. (32)

The solution of the above differential equation with k(t) in
(8) is

s(t) =
a2 − 4a− 2

a2
c1(m0 + t+ 1)2a−1

+
2a2 − 4a− 6

(2a− 1)(−a2 − 2a+ 1)

+c6(m0 + t+ 1)a
2+2a−1, (33)

where c6 is a constant determined by the initial condition
s(0) = (m0 − 1)2.

VI. NUMERICAL AND SIMULATION RESULTS

In this section we present numerical and simulation results.
First, we simulate the duplication model one hundred times
and calculate the mean degree and the expected number of
triangles per vertex. Ninety-five percent confidence intervals
were collected based on the repeated simulation of one hun-
dred times. We choose m0 = 4. The mean degree as a
function of time is shown in Figure 3 for a = 0.3 and
a = 0.6 respectively. Note that 95% confidence intervals are
also shown in these figures. From these figures we see that

t simulation confidence interval analysis

500 0.3093 [0.3053, 0.3134] 0.3082
1000 0.2967 [0.2930, 0.3004] 0.2958
1500 0.2900 [0.2866, 0.2935] 0.2897
2000 0.2864 [0.2831, 0.2897] 0.2858
2500 0.2835 [0.2802, 0.2867] 0.2830
3000 0.2814 [0.2782, 0.2845] 0.2808

TABLE I
CLUSTERING COEFFICIENTS OF THE DUPLICATION MODEL OBTAINED BY

SIMULATION AND ANALYSIS. a = 0.3

t simulation confidence interval analysis

500 0.2755 [0.2724, 0.2787] 0.2736
1000 0.2333 [0.2304, 0.2361] 0.2317
1500 0.2113 [0.2085, 0.2140] 0.2098
2000 0.1965 [0.1938, 0.1992] 0.1953
2500 0.1859 [0.1832, 0.1885] 0.1846
3000 0.1773 [0.1748, 0.1799] 0.1763

TABLE II
CLUSTERING COEFFICIENTS OF THE DUPLICATION MODEL OBTAINED BY

SIMULATION AND ANALYSIS. a = 0.6

the solution of the differential equation agree very well with
simulation results. For other values of a, simulation results
and the solutions from equations also agree very well.
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Fig. 3. Expected degree of the duplication model as a function of time with
a = 0.3 and 0.6.

We simulate the clustering coefficient and compare the
simulation result with the result obtained from (1). The result
with a = 0.3 is shown in Table I. As one can see, the
analytical result is very accurate and falls within corresponding
confidence intervals at all t. Changing a to 0.6, the result is
shown in Table II. Again we see that the simulation and the
analytical results are very close.

Finally we acquire topologies of popular online social
networks such as Flickr, Orkut and Livejournal from [15]. We
also acquire a Facebook network from [21]. We compute their
mean degrees (denoted by k̃) and global clustering coefficients
(denoted by C̃) using software package igraph. The results
along with their names and sizes are shown in the first four
rows in Table III. We remark that the data sets of Orkut
and Livejournal are too large for igraph. In order to use
igraph, we have pruned their sizes down to what are shown
in the table. The Facebook network acquired from [21] is
denoted by Facebook I in the table. We have also developed



sites Facebook I Facebook II Flickr Orkut Livejournal

size 63697 4884 1800K 400K 500K
k̃ 29.23 32.15 29.74 113.26 55.27
C̃ 0.148 0.390 0.112 0.107 0.073
m0 350 200 1700 1400 800
a 0.246 0.177 0.196 0.273 0.289
〈k〉 28.543 28.033 27.834 111.369 57.497
C 0.148 0.390 0.112 0.107 0.073

TABLE III
MEAN DEGREE AND CLUSTERING COEFFICIENT MEASURED FROM SOCIAL

NETWORKING SITES

an explorer program to perform a breadth-first search of the
facebook social network formed by users residing in Taiwan.
This network is denoted by Facebook II in the table. Since the
size of networks in our model is m0 + t at time t, parameter
t is determined by the sizes of the online social networks.
We determine the value of m0 and a in (8), (14), and (33)
by trying to match with the measured mean degree and the
clustering coefficient of online social networks. Values of m0

and a are shown in the fifth row and the sixth row of the table.
The corresponding mean degree and the clustering coefficient
are shown in the last two rows of the table. One can see
that the mean degree and the clustering coefficient of the
duplication model can match quite well with those of online
social networks. In future work, one may want to introduce
vertex removal or edge removal operations to the duplication
model or the triadic closure model so that the models resemble
more closely the real-world networks.

VII. CONCLUSIONS

In this paper we have presented a network formation model
based on triadic attachment and triadic closure for social
networks. We derive the mean degree and the clustering
coefficient for this model. We show that the parameters of
this model can be chosen such that the mean degree and the
clustering coefficient of the model match well with those of
the popular online social networks.

APPENDIX

In this appendix, we prove Proposition 1. To this end, we
shall call the first neighbors and the second neighbors of a
vertex the near neighbors of that vertex. Thus,

∑X
i=1 Yi is the

number of near neighbors of A, if we count multiple times for
vertices that are both first neighbors and second neighbors of
A. Suppose that there are n vertices in the network and their
degrees are X1, X2, . . . , Xn. The degrees of the neighbors of
vertex i are Yi,1, Yi,2, . . . , Yi,Xi . The expected total number
of near neighbors of the network is E[

∑n
i=1

∑Xi

j=1 Yi,j ]. The
expected total number of near neighbors of the network is
also equal to n · φ(t), where φ(t) is the expected number
of near neighbors of a randomly selected vertex at time t.
Similarly, the expected total squares of degrees of the network
is E[

∑n
i=1 X

2
i ], which is equal to n · s(t).

We prove Proposition 1 by induction. It is very easy to
verify that s(0) = φ(0) = (m0−1)2. Now suppose that s(t) =

φ(t) for some t. To analyze φ(t + 1), again we focus on the
difference

(m0 + t+ 1)φ(t+ 1)− (m0 + t)φ(t) (34)

which represents the change in the expected total number of
near neighbors of the network from time t to t+ 1. For each
vertex, say V , whose degree is changed from time t to t+1, the
number of near neighbors of the neighbors of V are changed.
By analyzing the change in the number of near neighbors V ’s
neighbors, we analyze the change in the total number of near
neighbors of the network. An example is illustrated in Figure
4.

Fig. 4. Two new edges, shown as dashed lines, are introduced between
(N,A) and (N,A1). The degree of A is changed from 3 to 4. As a result,
the numbers of near neighbors of A’s neighbors are all changed. Specifically,
the numbers of near neighbors of vertices A2 and A3 are increased by one.
The number of near neighbors of A1 is increased by 3.

• Consider vertex A. The degree of A increases from X
to X + 1. Each one of A’s original neighbors increases
its number of near neighbors by one. A’s new neighbor,
vertex N , increases its number of near neighbors by X+1
since the new edge between A and N was not present
before time t. Thus, the total increase of the number of
near neighbors of the network due to vertex A is

E[X · 1 + (X + 1)] = E[2X + 1]. (35)

• Consider vertex N . The degree of N changes from zero
to 1+

∑X
i=1 Ui as it is introduced into the network. Since

the edges of N are all new and were not present before
time t, each one of N ’s new neighbors changes its number
of near neighbors by 1+

∑X
i=1 Ui. Thus, the total change

is

E

⎡
⎣(1 + X∑

i=1

Ui

)2
⎤
⎦ . (36)

• Consider a first neighbor of A, say the ith first neigh-
bor of A. Call this neighbor vertex B. If vertex B is
connected with vertex N , then the degree of B changes
from Yi to Yi+1. The change of the expected number of
near neighbors due to the original neighbors of B is U i.
Vertex may have a new neighbor if the triadic attachment
to N is successful. The change of the expected number
of near neighbors due to vertex N is (Y i + 1)Ui. Thus,
the expected total change due to B is

E[YiUi + (Yi + 1)Ui · 1].



and the total expected change of the network is

E

[
X∑
i=1

(2Yi + 1)Ui

]
. (37)

Note that the increments of (m0 + t)φ(t) stated in (35), (36)
and (37) as t is incremented by one are identical to those
of (m0 + t)s(t) stated in (19), (20) and (21). This result
in conjunction with the induction hypothesis implies (31) in
Proposition 1.
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