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Abstract—In this letter, we consider the discrete-time setting
and propose a construction of an optical flexible delay line by
parallel variable optical delay lines (VODLs) under a very simple
packet routing scheme. We show that to exactly emulate an
optical flexible delay line with maximum delay d (time slots),
where d is a positive integer, it is necessary and sufficient to
have at least⌊(2d+ 1)/3⌋ VODLs with maximum delay d (time
slots) in our proposed architecture. We also show that under
a uniform traffic model, the average number of busy VODLs is
approximately d+1−(2d+1)(d/(d+1))d, which is quite close to
our simulation result. Through simulations, we further show that
if we can tolerate a loss probability of, say10−3, then we only
need at most 1.7 times of the average number of busy VODLs,
which is much smaller than the worst-case bound⌊(2d+1)/3⌋.

Index Terms—Flexible delay lines, optical buffers, optical
switches, packet-switched networks, variable optical delay lines.

I. I NTRODUCTION

ONE of the main problems in all-optical packet-switched
networks is the lack of optical buffers to resolve conflicts

among packets competing for the same resources in the optical
domain. One feasible technology for the construction of optical
buffers is to use optical crossbar Switches and fiber Delay
Lines (SDL), and recently there is a surge of research results
on the SDL designs of various types of optical buffers in the
literature (see [1]–[2] and the references therein).

In this letter, we focus on the SDL design of optical flexible
delay lines (a special type of optical buffer) [2]. As in most
works in the SDL literature, we consider the discrete-time
setting in which time is slotted and synchronized, and we
assume that packets are of the same size so that a packet can
be transmitted within a time slot (we note that variable-size
bursts can be first segmented into fixed-size packets at their
sources and then reassembled at their destinations). Formally,
a flexible delay line with maximum delayd (time slots), where
d is a positive integer, is a network element with one input
link and one output link such that the delay of every packet
is known upon its arrival and it realizes all sample paths that
satisfy the following conditions:

τa(m) 6= τa(n), for all m 6= n, (1)

τd(m) 6= τd(n), for all m 6= n, (2)

τa(n) ≤ τd(n) ≤ τa(n) + d, for all n, (3)

The authors are with the Department of Electrical Engineering and
the Institute of Communications Engineering, National Tsing Hua Uni-
versity, Hsinchu 30013, Taiwan, R.O.C. (e-mail: lds@cs.nthu.edu.tw,
cschang@ee.nthu.edu.tw, jcheng@ee.nthu.edu.tw, d929607@oz.nthu.edu.tw,
g9662521@oz.nthu.edu.tw).

whereτa(n) andτd(n), respectively, are the arrival time and
the departure time of thenth packet for alln. We note that
one application of optical flexible delay lines is to use them
as the central buffers in the architecture in [2, Section VII-B]
for exact emulation of an optical output-buffered switch.

In [2], it was shown that an optical flexible delay line can
be constructed by a layered Cantor network. However, the
routing of packets in such a layered Cantor network is very
complicated. In this letter, we propose a construction of an
optical flexible delay line by parallel variable optical delay
lines (VODLs) under a very simple packet routing scheme. A
VODL with maximum delayd (time slots) is an optical delay
line with adjustable delay so that its delay can be set as any
delay in {1, 2, . . . , d} and this can be done only when it is
free (i.e., there are no optical packets in the VODL). When a
VODL is busy (i.e., there are optical packets in the VODL),
its delay cannot be adjusted. Once the delay of a VODL is
set as a certain delay, sayx, it acts like a traditional optical
delay line with delay equal tox so that a packet entering
from its input at timet will depart from its output at time
t+ x (note that the VODL will become free at timet + x if
there are no other packets entering from its input during the
time interval [t + 1, t + x − 1]). We note that a VODL can
be implemented by using the approach based on wavelength
conversion in periodically poled lithium niobate waveguides
as proposed in [3].

This letter is organized as follows. In Section II, we show
that to exactly emulate an optical flexible delay line with
maximum delayd, it is necessary and sufficient to have at least
⌊(2d+1)/3⌋ VODLs with maximum delayd in our proposed
architecture. In Section III, we show that under a uniform traf-
fic model considered in this letter, the average number of busy
VODLs is approximatelyd+1− (2d+1)(d/(d+1))d, which
is quite close to our simulation result. Through simulations,
we further show that if we can tolerate a loss probability of,
say10−3, then we only need at most 1.7 times of the average
number of busy VODLs, which is much smaller than the worst-
case bound⌊(2d+ 1)/3⌋. Section IV concludes this letter.

II. EXACT EMULATION

In this section, we show that the architecture in Figure 1
consisting of a1 × (M + 1) optical crossbar switch, an
(M + 1) × 1 optical crossbar switch, andM VODLs with
maximum delayd can be operated as an optical flexible delay
line with maximum delayd under a simple packet routing
scheme. Specifically, consider a sample path that satisfies the
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conditions in (1)–(3). Suppose that a packet in the sample
path arrives at timet and has a requested delayx. From the
condition in (3), we have0 ≤ x ≤ d. If x = 0, then the packet
arriving at timet is routed to the output link immediately via
the 1 × (M + 1) crossbar switch, the(M + 1) × 1 crossbar
switch, and the direct link between the two switches. On the
other hand, if1 ≤ x ≤ d, then we choose a busy VODL
whose delay has already been set asx in the case that there
are such busy VODLs, and we choose a free VODL and set
its delay asx in the case that there are no busy VODLs with
delays set asx. Then the packet arriving at timet is routed to
the chosen VODL immediately via the1× (M + 1) crossbar
switch and is routed to the output link at timet + x via the
(M + 1)× 1 crossbar switch.

As we can see from the conditions in (1) and (2) that there
is at most one arrival at the input link and there is at most one
departure from the output link in every time slot, it is clear
that there are no conflicts among the packets at all times under
our packet routing scheme. The remaining problem is whether
there is always a VODL available for every arriving packet as
described in our packet routing scheme, and we answer this
question in the following theorem.
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Fig. 1. Exact emulation of an optical flexible delay line withmaximum delay
d by usingM parallel VODLs with maximum delayd.

Theorem 1 Suppose that the architecture in Figure 1 is
started from an empty system. Then it can be used to exactly
emulate an optical flexible delay line with maximum delayd
under our packet routing scheme if and only ifM ≥ ⌊ 2d+1

3 ⌋.

Proof. (Sufficiency) Consider a sample path that satisfies the
conditions in (1)–(3). Suppose that there arem busy VODLs
at time t. As we haveM ≥ ⌊(2d+ 1)/3⌋, it suffices to show
thatm ≤ ⌊(2d+ 1)/3⌋.

Number them busy VODLs at timet from 1 to m and
choose a packet from each of them busy VODLs at time
t. Let τai , τdi , and di, respectively, be the arrival time, the
departure time, and the delay of the packet chosen from the
ith busy VODL at timet for i = 1, 2, . . . ,m. Since these
packets must have arrived at the VODLs by timet and have
not departed from the VODLs at or before timet, we have

τai ≤ t < τdi , for i = 1, 2, . . . ,m. (4)

Let d′i = t−τai andd′′i = τdi − t for i = 1, 2, . . . ,m, and let
d′(i) (resp.,d′′(i)) be theith smallest element in{d′1, d

′

2, . . . , d
′

m}

(resp.,{d′′1 , d
′′

2 , . . . , d
′′

m}) for i = 1, 2, . . . ,m. As it is easy to
see from (1) and (4) thatd′1, d

′

2, . . . , d
′

m are distinct nonneg-
ative integers, and from (2) and (4) thatd′′1 , d

′′

2 , . . . , d
′′

m are
distinct positive integers, we deduce that

d′(i) ≥ i− 1 andd′′(i) ≥ i, for i = 1, 2, . . . ,m. (5)

Since it is clear thatdi = τdi −τai = (t−τai )+(τdi −t) = d′i+d′′i
for i = 1, 2, . . . ,m, it then follows from (5) that

m
∑

i=1

di =

m
∑

i=1

(d′i + d′′i ) =

m
∑

i=1

d′(i) +

m
∑

i=1

d′′(i)

≥
m
∑

i=1

(i− 1) +
m
∑

i=1

i = m2. (6)

Let d[i] be theith largest element in{d1, d2, . . . , dm} for
i = 1, 2, . . . ,m. As it is easy to see from our packet routing
scheme that1 ≤ di ≤ d for i = 1, 2, . . . ,m and the delays of
them busy VODLs at timet are different, i.e.,d1, d2, . . . , dm
are distinct, we deduce that

d[i] ≤ d− i+ 1, for i = 1, 2, . . . ,m. (7)

It then follows from (7) that
m
∑

i=1

di =

m
∑

i=1

d[i] ≤

m
∑

i=1

(d− i+ 1) = md−
m(m− 1)

2
. (8)

From (6) and (8), we immediately obtainm ≤ (2d + 1)/3,
which clearly implies thatm ≤ ⌊(2d+ 1)/3⌋.
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Fig. 2. The sample path in the proof of “necessity” of Theorem1.

(Necessity) We prove the necessity by giving a sample path
that satisfies the conditions in (1)–(3) and requires at least
⌊(2d + 1)/3⌋ VODLs, i.e., M ≥ ⌊(2d + 1)/3⌋, under our
packet routing scheme.

Suppose thatd = 3k+1 for somek ≥ 0 (the proof for the
case thatd = 3k for somek ≥ 1 or d = 3k + 2 for some
k ≥ 0 is similar). Consider the sample path (see Figure 2 for
an illustration) with

τa(n) = n, for n = 1, 2, . . . , 2k + 1, (9)

τd(n) =

{

2k + 2n, for n = 1, 2, . . . , k + 1,
2n− 1, for n = k + 2, k + 3, . . . , 2k + 1.

(10)

It is easy to see from (9) and (10) that the sample path satisfies
the conditions in (1)–(3). As it is also easy to see thatτa(n) ≤
2k+1 < τd(n) for n = 1, 2, . . . , 2k+1 and the delays of the
2k+1 packets in the sample path are distinct, it follows from
our packet routing scheme that the2k+1 packets in the sample
path are indifferentbusy VODLs at timet = 2k+1. Therefore,
we must haveM ≥ 2k + 1 = ⌊(2d+ 1)/3⌋. (Note that if we
let t = 2k+1 and letτai , τdi , di, d′i, d

′′

i , d′(i), d
′′

(i), andd[i] be
defined as in the proof of “sufficiency” fori = 1, 2, . . . , 2k+1,
then it can be seen that all of the inequalities in (5)–(8) (with
m replaced by2k + 1) hold with equalities.)
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III. N UMBER OF BUSY VODLS

In this section, we show that the number of busy VODLs
could be much smaller than the worst-case bound⌊(2d+1)/3⌋
given in Theorem 1. We consider the following uniform traffic
model: (i) There is exactly one packet arrival in every time
slot. (ii) The delay requested by any arriving packet is uni-
formly distributed over{0, 1, . . . , d} and this is independent
of everything else. (iii) If an arriving packet requests to depart
at a time that has already been scheduled for departure of an
earlier arriving packet, then the later arriving packet is not
admitted into the optical flexible delay line and is lost. It is
clear from (i), (iii), and (ii) that the conditions in (1), (2), and
(3), respectively, are satisfied.

We first calculate the average number of busy VODLs for
the uniform traffic model. For this, we need to show that the
probability that an arriving packet requesting delayi is admit-
ted into the flexible delay line is given bypi = (d/(d+1))d−i

for 1 ≤ i ≤ d. To see this, consider the packet arriving at time
t, called thetaggedpacket, and assume that it requests delay
i. As there is exactly one arriving packet in every time slot
(property (i)) and the delay requested by any arriving packet
is at mostd (property (ii)), it is clear from property (iii) that
the tagged packet is admitted into the flexible delay line if
and only if the packet arriving at timet− j does not request
delayj+ i for all j = 1, 2, . . . , d− i (i.e., no packets arriving
before timet are scheduled to depart at timet+ i). As such,
it follows from the independent uniform delay distributionin
property (ii) thatpi = (d/(d+ 1))d−i.

Let N(t) be the number of busy VODLs at timet and let
Bt,i be the event that there is a busy VODL at timet whose
delay is set asi. As the delays of the busy VODLs at any time
are different under our packet routing scheme, it follows that
N(t) =

∑d

i=1 IBt,i
, whereIBt,i

is the indicator function of
the eventBt,i, i.e.,IBt,i

= 1 if eventBt,i occurs andIBt,i
= 0

otherwise. Since the delay of a busy VODL at timet is set as
i if and only if there is at least one arrival in[t− i+1, t] that
requests delayi and is admitted into the flexible delay line, we
have from the independent uniform delay distribution in prop-
erty (ii) and Pr(an arrival requesting delayi is admitted) =
pi = (d/(d+ 1))d−i that

Pr(Bt,i) = Pr(at least one arrival in[t− i+ 1, t]

that requests delayi and is admitted)

≈ Pr(at least one arrival in[t− i+ 1, t]

that requests delayi)

×Pr(an arrival requesting delayi is admitted)

= (1− (d/(d+ 1))i) · (d/(d+ 1))d−i. (11)

We note that the event that there is at least one arrival in
[t− i+1, t] that requests delayi and the event that an arrival
requesting delayi is admitted into the flexible delay line
are not independent. Thus, (11) is an approximation. It then
follows from N(t) =

∑d

i=1 IBt,i
and (11) that

E[N(t)] = E

[

d
∑

i=1

IBt,i

]

=
d

∑

i=1

Pr(Bt,i)

≈ d+ 1− (2d+ 1)(d/(d+ 1))d. (12)

By using(1+ z
n
)n ≈ ez for largen, we can see thatE[N(t)] ≈

(1−2e−1)d+1−e−1 = 0.26424d+0.63212 for larged, which
is much smaller than the worst-case bound⌊(2d+ 1)/3⌋.

In Figure 3, we show our simulation result on the average
number of busy VODLs for the uniform traffic model. The
simulation time is108 time slots. In Figure 3, we also show
the worst-case bound in Theorem 1 and the approximation in
(12). Note that the approximation in (12) is quite close to the
simulation result.

Furthermore, we show in Figure 4 the complementary
distribution of the number, sayN , of busy VODLs. It can be
seen from Figure 4 that if we can tolerate a loss probability
of, say 10−3, then we only need at most 1.7 times of the
average number of busy VODLs, which is approximately
0.45d for large d and is much smaller than the worst-case
bound⌊(2d+ 1)/3⌋.
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Fig. 3. Average number of busy VODLs.
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IV. CONCLUSION

In this letter, we have proposed a construction of an
optical flexible delay line by parallel variable optical delay
lines (VODLs). We have obtained a worst-case bound on the
number of VODLs in our proposed architecture and have
shown through simulations that the number of busy VODLs
could be much smaller than the worst-case bound.
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