
1

A Universal Stabilization Algorithm for Multicast
Flows with Network Coding

Ching-Min Lien, Member, IEEE, Cheng-Shang Chang, Fellow, IEEE, and Duan-Shin Lee, Senior Member, IEEE

Abstract—In this paper, we consider a network that supports
multiple multicast flows with network coding. It is well-known
that network coding can be used to increase the throughput of
a delay-free network. However, as there are multiple multicast
flows in the network, packets might be delayed due to contention.
As packets from the same flow have to be synchronized for
network coding, additional buffers, known as synchronization
buffers in the literature, are required. In certain networks, such
as multistage interconnection networks in switch fabrics [17],
the size of internal buffers could be quite limited. One of the
key contributions of the paper is to propose a packet scheduling
algorithm so that synchronization buffers can be bounded by a
finite constant that only depends on the maximum hop count of
the flows. We also show that our scheduling algorithm does not
cause any throughput degradation as it can stabilize the network
for any admissible traffic. Moreover, our algorithm is universal
and it does not require to know the rates of the flows in the
network. The main idea of our algorithm is to introduce fictitious
packets in the dynamic frame sizing algorithm recently proposed
in [4], [19] for stabilizing switches and wired networks (without
network coding). By so doing, packets that might be stalled in
synchronization buffers can be flushed out. We show that the
number of fictitious packets in each frame is also bounded by a
finite constant that only depends on the maximum hop count.

Index Terms—Scheduling, Stability, Networks, Network Cod-
ing.

I. INTRODUCTION

As mentioned in numerous research results in the past
decade [1], [18], [16], network coding can be used to increase
the throughput of a delay-free network. This can be best
explained by using the classical butterfly diagram in Fig. 1(a).
Assume that each link can send at most one packet in a
single time slot, and the network is delay-free. Then, by using
the traditional store-and-forward routing network, the source
cannot send packets a and b to both sinks at the same time.
On the other hand, as shown in Fig. 1(a), one can combine
the two arrival packets at node 4 by using the XOR operation
so that nodes 6 and 7 can receive and decode both packets a
and b simultaneously.

In practice, for network coding, all the networks may not be
delay-free and the problem of synchronization is introduced.
That is, a packet transmitted in an arbitrary link might be
a mixture of packets that follow different routes and thus
experience different delays. As such, additional buffers, known
as synchronization buffers in the literature, are needed in the

C. -M. Lien, C. -S. Chang, and D. -S. Lee are all with the Institute of
Communications Engineering, No. 101, Section 2, Kuang-Fu Road, Hsinchu,
Taiwan.

E-mail: keiichi@gibbs.ee.nthu.edu.tw, cschang@ee.nthu.edu.tw,
lds@cs.nthu.edu.tw.

a+b

a,b
Source

Sink 1 Sink 2

a

a+b a+b

a

a

b

b

b a+b

a,b
Source

Sink 1 Sink 2

a

a a+b a+b
a+b

a

a

b
b
bb

b

b

Fig. 1. (a) A classical butterfly diagram (b) A unsymmetrical butterfly
diagram.

network. Again, we take the multicast traffic flow in Fig. 1(a)
as an example. Assume that packet a has arrived at node 4 in
Fig. 1(a). Then, node 4 cannot transmit packet a directly to
node 5 even though the link between them (i.e., link (4, 5))
is available to transmit. Instead, one has to wait for packet
b to arrive at node 4, combine these two packets (a and b),
and transmit the packet a+ b until the next time link (4, 5) is
available. Such a synchronization problem also occurs in fork-
join queues for modelling parallel processing systems (see e.g.,
[22], [2]).

For networks with delay, it is still theoretically feasible to
apply linear network coding as shown in [16]. However, it
is difficult to find the inverse of the polynomial matrix with
delay variable D in practice. As such, random network coding
was proposed in [10], [5]. For random network coding, each
node chooses its encoding coefficients randomly from a large
enough field, and appends the coefficients in the header of all
the packets it sends out. Then, all the nodes are able to decode
the incoming packets once it receives an enough number of
independent packets. It was analyzed theoretically [12] and
simulated [6] that random network coding guarantees 100%
throughput for networks with delay if the synchronization
buffers are unlimited. However, it might still suffer from
throughput degradation, such as removing outdated packets,
if the synchronization buffers are finite.

In certain networks, such as multistage interconnection
networks in switch fabrics, the size of internal buffers could
be quite limited. As pointed out in [8], it is thus crucial
to mitigate the problem of implementing unlimited internal
buffers. For the setting with one single traffic flow and linear



2

network coding, Wu, Zhao and You [28] showed that the
additional delay experienced by packets (and thus the sizes
of additional synchronization buffers) could be upper bounded
by the difference of path lengths of all incoming packets for
each node. Moreover, Prasad and Sundar Rajan [24] discussed
how the synchronization buffer distributes over all the nodes
(along with the packets traversing through the network) for
single traffic flow case. To see the intuition for the setting with
a single traffic flow, let us consider the example in Fig. 1(b),
where the path lengths for packets a and b to node 7 differ
from each other. If each link is of one unit delay, then it is
clear that the time difference between the arrivals of packets
a and b to node 7 is simply the difference between the lengths
of the two paths for these two packets to get to node 7. Thus,
the difference of paths lengths can be used as an upper bound
for synchroniation buffers for the setting with a single traffic
flow as shown in [28].

The question that we would like to address in this paper is
then

whether it is possible to support multiple (single-source)
multicast flows with network coding for networks with

limited internal buffers.

Our approach for this problem is to extend the dynamic
frame sizing (DFS) algorithm that was previously proposed in
[4] for CICQ switches and [19] for wired networks without
network coding. As mentioned in these two papers, the key
idea of the DFS algorithm is to emulate an ideal fluid network
by providing guaranteed rate services inside a network so that
internal buffers can be bounded. This is done by implementing
a smooth packet schedule in [9]. Such an emulation is dynamic
in every frame and it is based on the traffic load observed at
the beginning of each frame. As such, it can stabilize all the
admissible traffic without the need to know the arrival rates of
flows. However, such an emulation is not perfect and there are
a finite number of packets (at most two) that might be stalled
in the internal buffers. These packets can only be pushed out
of the network by future arrivals from the same flow.

The main difference between wired networks without net-
work coding and wired networks with network coding is that
multicast flows in networks with network coding are directed
acyclic graphs, while those in networks without network
coding are fanout trees. Notice that, even though one can apply
convolutional network coding for multicast flows with directed
cycles as shown in the literature [11], we consider only acyclic
flows in this paper. Extension from trees to directed acyclic
graphs requires synchronization in nodes where network cod-
ing is performed. This poses two challenges: (i) bounding the
size of synchronization buffers, and (ii) flushing out packets
stalled in internal buffers. The main contribution of this paper
is to address these two challenges and show that multiple
multicast flows with network coding can still be supported by
using the DFS algorithm for networks with limited internal
buffers. Specifically, for the problem of bounding the size of
synchronization buffers, we conduct a worst case analysis. We
show that the size of synchronization buffers can be bounded
by a finite constant that only depends on the maximum hop
count of flows. For the second challenge, our idea is to

introduce a finite number of fictitious packets to flush out
the stalled packets. We show that the network can still be
stabilized for any admissible traffic and that the number of
fictitious packets in every frame is also bounded by a finite
constant that only depends on the maximum hop count of
flows.

We now compare our work with some related ones in
the literature. For fork-joined queues or so-called processing
networks, Jiang et al. [15] and Huang et al. [13] proposed the
Deficit Maximum Weight (DMW) and Perturbed Max-Weight
(PMW) algorithms, respectively, to solve the buffer under-
flow problems. Both algorithms are variants of Maximum-
Weighted Matching (MWM) algorithm and can be shown
to be throughput-optimal. Compared to their algorithms, our
dynamic frame sizing algorithm guarantees not only the sta-
bility of the networks for all the admissible traffic but also
the finiteness of all the internal buffers. Moreover, in contrast
with the MWM-based scheduling algorithms, the queue length
information is needed only once a frame for our DFS algo-
rithm, and communication and computation overheads are thus
reduced considerably. On the other hand, Cogill et al. [7] and
Parag et al. [23] studied the enlargement of the capacity region
of random network coding scheme relative to the pure-routing
scheme by providing the queueing analysis. In contrast, we
focus on whether it is possible to support multicast traffic flows
with network coding with limited internal buffers or not. Thus,
in this paper, we consider the intra-flow network coding and
linear network coding only, which can be shown to maximize
the capacity region for single-source multicast traffic flows in
the literature [29].

The rest of this paper is organized as follows. First, we
describe our mathematical model in Section II. In Section III,
we propose our DFS algorithm with intra-flow linear network
coding. Later, we prove the finiteness of all internal buffers
in Section IV-A and the finiteness of the expected frame size
in Section IV-B, respectively. Then, in Section V, we perform
quantitative delay analysis by computer simulations for our
DFS algorithm. In Section. VI, we conclude this paper by
addressing some further extensions.

II. MODELING

In this section, we first introduce the mathematical model
and the notations that will be used in the paper.

A. Network as a Directed Graph

In this paper, a network is modeled as a finite directed
graph G(V,E), where V and E are the sets of nodes and
links, respectively. For an arbitrary link ℓ ∈ E, its tail end
and its head end are represented as Tail(ℓ) and Head(ℓ),
respectively. Link ℓ can be also represented as (v, w) if
Tail(ℓ) = v ∈ V and Head(ℓ) = w ∈ V . For an arbitrary
node v, link ℓ is called an incident outgoing link (resp.,
incident incoming link) of node v if v = Tail(ℓ) (resp.,
v = Head(ℓ)). Moreover, we denote Out(v) and In(v) as
the collection of incident outgoing and incoming links for
node v, respectively. In the rest of the paper, it is sometimes
more convenient to index the links numerically (e.g., links



3

1, 2, . . . , L) rather than as node-pairs (e.g., link (v, w) for
v, w ∈ V ), where L is the total number of links in the network,
namely, |E| = L.

In this paper, we consider the usual discrete-time setting by
assuming that packets are of the same size and that time is
slotted so that one packet can be transmitted within a time slot
in a link.

B. Multicast Traffic Flows with Intra-flow Network Coding

In this section, we introduce our assumptions for multicast
traffic flows.

(A1) (External arrival processes) Assume that there are J
single-source multicast flows with network coding,
indexed from 1 to J . These J flows form independent
compound Bernoulli processes when they arrive at
the network. Specifically, there are two rates for each
flow: the arrival rate λj and the multicast rate mj ,
j = 1, 2, . . . , J . With probability λj , a batch of
mj packets arrive at the network in every time slot.
This is independent of everything else. These mj

packets are then distributed from the source node
to a set of sink nodes following a specific intra
network coding scheme that can be characterized by
an acyclic subgraph Gj(Vj , Ej) of G(V,E), where
exactly one packet needs to be transmitted in every
link in Gj . Recall that, in this paper, we consider
intra-flow network coding scheme only, and thus the
packets could not be coded across different traffic
flows.

Let aj(t) be the indicator random variable for the event
that there is a batch of mj flow j packets arriving at the
network at time t. Under (A1), the sequence of random
variables {aj(t), t = 1, 2, . . .} are independent Bernoulli
random variables with parameter λj .

Note that Ej is the set of links traversed by flow j. Let
Sℓ = {j : link ℓ ∈ Ej} be the set of flows traversing link
ℓ. Hence, for an arbitrary link ℓ and flow j, it is clear that
ℓ ∈ Ej if and only if j ∈ Sℓ.

(A2) (Admissible traffic) We assume that the arrival rates
{λj}Jj=1 satisfy the following inequality

ρ = max
1≤ℓ≤L

∑
j∈Sℓ

λj < 1. (1)

That is, the aggregate arrival rate in each link does
not exceed its capacity.

Traffic that satisfies the rate condition in (1) is often called
admissible in the literature.

For all the links traversed by the same traffic flow, we call
the links traversed right before and after a particular link as its
upstream and downstream links. Specifically, for an arbitrary
link ℓ traversed by flow j, link ℓ′ is called an upstream link
of link ℓ for flow j if and only if ℓ′ is traversed by flow j and
link ℓ′ is an incident incoming link for the tail end of link ℓ.
Let U(j, ℓ) (resp., D(j, ℓ)) be the collection of upstream links
(resp., downstream links) of link ℓ for flow j. Then, we have
that ℓ′ ∈ U(j, ℓ) if and only if ℓ′ ∈ Ej and ℓ′ ∈ In(Tail(ℓ)),
or equivalently, U(j, ℓ) = Ej∩In(Tail(ℓ)). Similarly, D(j, ℓ)

is defined as D(j, ℓ) = Ej ∩Out(Head(ℓ)). If |U(j, ℓ)| > 1,
then synchronization is needed for flow j in link ℓ as it has
to wait for all the packets from its upstream links to arrive
before network coding can be performed. We now take the
acyclic graph for the classical butterfly diagram in Fig. 1(a)
as an example. For this acyclic graph, the multicast rate is 2
and there are two packets a and b in a batch. Since the packet
traversing link (4, 5) is a combination of packets traversing on
both links (2, 4) and (3, 4), both links (2, 4) and (3, 4) are the
upstream links for link (4, 5).

C. Two-Level Queueing Mechanism

Assume that per flow queueing is used in every link, i.e.,
every flow has its own queues in every link it traverses.
As mentioned before, to perform network coding, additional
buffers are placed for synchronization. In this paper, we adopt
a two-level queueing mechanism, which is similar to those
used in [27], [28]. More specifically, as flow j traverses
through link ℓ, namely, j ∈ Sℓ, both the tail and head ends
of link ℓ have one queue for flow j. The queues placed at
the tail and head ends of link ℓ for flow j are thus called the
tail queue and head queue for flow j in link ℓ, and they are
denoted as qTj,ℓ and qHj,ℓ, respectively. The tail queue {qTj,ℓ}
stores packets that wait for being transmitted through link ℓ,
and the head queue {qHj,ℓ} stores packets that wait for being
mixed and transmitted to the tail queues of its downstream
links later. In this paper, all the tail queues of the incident
outgoing links of source nodes are called ingress queues, and
all the other queues (including head and tail queues) are called
internal queues.

We assume that each queue is started from an empty system
at time 0. We now define xT

j,ℓ(t) as the number of packets in
the tail queue qTj,ℓ at time t. Then, the governing equation for
an arbitrary tail queue qTj,ℓ can be written as

xT
j,ℓ(t+ 1) = xT

j,ℓ(t) + aTj,ℓ(t+ 1)− bTj,ℓ(t+ 1), (2)

where aTj,ℓ(t) and bTj,ℓ(t) are the number of packets arriving at
qTj,ℓ and departing from qTj,ℓ at time t, respectively. Also, for an
arbitrary head queue qHj,ℓ, a

H
j,ℓ(t), b

H
j,ℓ(t) and xH

j,ℓ(t) are defined
similarly. In this paper, we assume that the number of ingress
queues for flow j is mj , which coincides with the size of the
batch of the arrival packets for flow j as in the assumption
(A1). Then, whenever a batch of mj packets arrives at the
network, each one of the mj ingress queues would receive
exactly one of these packets. Thus, if qTj,ℓ is an ingress queue
for flow j, then aTj,ℓ(t) = 1 when there is a batch of mj flow
j packets arriving at the network at time t. In other words, for
an ingress queue for flow j, we have aTj,ℓ(t) = aj(t).

D. Implementation by Linear Network Coding

In this section, we discuss how one finds the acyclic graph
Gj(Vj , Ej) that characterizes the network coding scheme for
flow j in (A1). If the multicast rate mj is not greater than the
minimum cut from the source node to each sink node, then
it is well-known (see e.g., [14]) that there is a polynomial
time algorithm for finding a linear network coding scheme



4

that provides the multicast rate mj from the source node to
each sink node. The algorithm in [14] starts from finding mj

link disjoint paths from the source node to each sink node. The
union of these link disjoint paths then forms an acyclic graph.
Following the topological order of the acyclic graph, a linear
network coding scheme can be found from the source node to
each sink node by selecting local coding coefficients at each
node (over some Galois field Fq for q larger than the number
of sinks for all the flows) so that the mj link disjoint paths
from the source node to each sink node contain mj linearly
independent packets. To illustrate this, suppose that the source
node of flow j is sj ∈ V . For a batch of mj packets from
flow j, we denote Xj,k as the kth packet in that batch. Also,
denote by Yj,ℓ as the packet transmitted on link ℓ ∈ Ej . Then,
Yj,ℓ can be represented as

Yj,ℓ =

{ ∑mj

k=1 αj,k,ℓXj,k, if Tail(ℓ) = sj ,∑
k∈U(j,ℓ) βj,k,ℓYj,k, otherwise,

(3)

where {αj,k,ℓ} and {βj,k,ℓ} are local coding coefficients for
flow j. These local coding coefficients are chosen in the way
that there are mj linearly independent packets to each sink
node. That is, the packets Yj,ℓ transmitted on the incident
outgoing links of source node sj are linear combinations of
the mj arriving packets {Xj,k}, k = 1, 2, . . . ,mj , and the
packet Yj,ℓ transmitted on other links are linear combinations
of the traffic transmitted on their corresponding upstream
links U(j, ℓ). Moreover, each sink node v can decode all the
mj arriving packets {Xj,k}, k = 1, 2, . . . ,mj , by using the
packets transmitted in its incident incoming links.

We note that for the synchronization problem, if linear
network coding is used, then it is possible that some local
encoding coefficients at a certain link are 0. Thus, it may not
be necessary to wait for all the packets from the upstream
links to arrive before network coding can be performed. In this
paper, we do not distinguish this case from the general setting
as we will show later that our algorithm can still stabilize the
network for any admissible traffic.

An implementation like the one discussed above is known
as the generation-based network coding in the literature (see
e.g., Chou and Wu in [6]). For the jth (multicast) traffic flow,
the external arriving packets are in batches of mj packets.
All the coded packets related to the same batch are said to
be in the same generation, and the packets are only mixed
within the same generation. In this paper, we will not discuss
cross-generation network coding schemes.

III. DYNAMIC FRAME SIZING ALGORITHM

In [4], [19], the dynamic frame sizing (DFS) algorithm has
been used for stabilizing queues in switches and wired net-
works without knowing the arrival rates. In the DFS algorithm,
time is partitioned into frames, where the frame size is not
fixed and is determined at the beginning of each frame. As
described in [4], [19], the main idea of the DFS algorithm
is to determine the minimum frame size at the beginning of
a frame so that the backlog observed at the ingress queue(s)
of each flow at the beginning of the frame can be cleared
by the end of the frame. To ensure the number of packets

of each flow inside the network is bounded above by a finite
constant, the DFS algorithm then provides each flow in a frame
a guaranteed rate that is proportional to the backlog observed
at the ingress queue(s) at the beginning of that frame. As
long as the expected size of each frame is finite, the expected
backlog at each queue remains finite.

As mentioned in the introduction, there are two challenges
to apply the DFS algorithm for network coding: (i) bounding
the size of synchronization buffers, and (ii) flushing out
packets stalled in internal buffers. For the problem of bounding
the size of synchronization buffers, we first derive the govern-
ing equations for synchronization in Section III-D and then
conduct a worst case analysis in Section IV-A. For the second
challenge, our idea, as described in Section III-A below, is to
adopt gated services and introduce a finite number of fictitious
packets to flush out the stalled packets.

A. Gated Services and Fictitious Packets

Unlike the DFS algorithm in [4], [19], we adopt gated
services in this paper. Specifically, packets that arrive during a
frame are stored in the ingress queues and can only be served
in the next frame. As mentioned before, one problem for the
DFS algorithm in [4], [19] is that there are a finite number
of packets (at most two) that might be stalled in the internal
buffers. These packets can only be pushed out of the network
by future arrivals from the same flow. To solve this problem,
our idea is to introduce fictitious packets in the DFS algorithm
to flush out all the real packets in the network. By doing so,
there are no real packets in the internal buffer at the beginning
of a frame and we can simply drop all the remaining packets
in the internal buffers as they are all fictitious packets. Let hj

be the maximum hop count of the acyclic graph Gj(Vj , Ej),
i.e., the length of the longest path from the source node to
any sink node. Then, prior to determining the new frame size,
additional hj − 1 fictitious packets are appended to the end of
the ingress queues of flow j if there are real packets in the
ingress queues. We will show later this is enough to flush out
all the real packets in the internal buffers.

B. Determine the Frame Size

The size of the frame is determined by the minimum
clearance time at the beginning of each frame. Denote by
τn the last time slot of the (n − 1)th frame and by τn + 1
the beginning time slot of the nth frame. Since we adopt
gated services, the number of real packets stored in the ingress
queues at the beginning of the nth frame are those arriving
in the (n − 1)th frame. This implies that all the ingress
queues for flow j have the same number of real packets at
the beginning of a frame. As such, we can use any ingress
queue for determining the size of a new frame. Now suppose
that there are xj(τn) packets (including the fictitious packets)
stored in an ingress queue for flow j at the beginning of the
nth frame. Recall that Sℓ is the collection of all the flows
traversing link ℓ, namely, Sℓ = {j|ℓ ∈ Ej}. Then, the size of
the nth frame is set to be

Tn = max
1≤ℓ≤L

∑
j∈Sℓ

xj(τn). (4)



5

Note that Tn is the minimum time T such that∑
j∈Sℓ

xj(τn) ≤ T for all ℓ = 1, 2, . . . , L. If we view
the backlogs at the ingress queues as fluids, then Tn is the
minimum time to clear all the backlogs under the constraint
that each link is of capacity one (i.e., one packet per time slot).
If there are no real packets in any of the ingress queues, we
simply set Tn = 1. Thus, we have T1 = 1 as we assume the
network is started from an empty network.

C. Smooth Scheduling

As in the original DFS algorithm, we schedule packets in
the per-flow queues with the rates proportional to their sizes at
the beginning of a frame. Specifically, for each tail queue qTj,ℓ
with ℓ ∈ Ej , we generate xj(τn) tokens in the nth frame (for
sending packets to downstream links or to sink nodes), and
the kth token in the nth frame is assigned with the eligible
time τn + 1 + ⌊(k − 1)Tn/xj(τn)⌋ and the deadline τn +
⌈kTn/xj(τn)⌉. To schedule under the constraint of eligible
times and deadlines, there is a token arbitrator at each link for
sending packets from the tail of the link to the head of the
link. In each time slot of the nth frame, i.e., the time interval
[τn + 1, τn + Tn], the ℓth link selects one eligible token with
the earliest deadline (the EDF policy in the literature) among
all the remaining tokens for all the tail queues in link ℓ, and
removes that token. Ties are broken arbitrarily. A tail queue
with a selected token is then allowed to send a packet (through
the link to its head queue) in that time slot.

As a direct consequence of the well-known result for a
smooth schedule (see e.g., Lemma 3.1 in [19]), every token is
selected not later than its deadline. In the following lemma,
we use this result to derive an upper bound and a lower bound
on the total number of tokens selected for a particular flow in
a link traversed by that flow.

Lemma 1 For each link ℓ traversed by flow j, let Cj,ℓ(t) be
the total number of tokens selected for flow j in link ℓ in the
time interval [τn, τn+t]. Under the smooth schedule described
in this section, Cj,ℓ(t) is upper and lower bounded as follows:⌊

t

Tn
xj(τn)

⌋
≤ Cj,ℓ(t) ≤

⌈
t

Tn
xj(τn)

⌉
. (5)

Proof: First, the number of tokens selected by time t
cannot be greater than the number of tokens generated by time
t. This shows the upper bound in (5). On the other hand, as
every token is selected not later than its deadline, the number
of tokens selected by time t is lower bounded by the number
of tokens with deadlines not later than t. Hence, Cj,ℓ(t) is
upper and lower bounded as shown in (5).

D. Synchronization for Network Coding

As we adopt gated services and drop all the packets in
internal buffers at the beginning of a frame, it suffices to treat
each frame separately, where every internal buffer is started
from an empty queue and there is no future arrivals at any
ingress queue (during that frame). In this paper, we assume
that the time spent for network coding is negligible (comparing

B
H
j;`A

T
j;`

B
T
j;` A

H
j;`

CodingCoding
Link `

q
T
j;`

q
H
j;`

Tail(`) Head(`)

U(j; `) D(j; `)

Fig. 2. Synchronization of the head queue and the tail queue of link ℓ for
flow j.

to the packet transmission). As such, the delay is mainly due
to synchronization and queueing.

Now we derive the governing equations for all the head
queues and tail queues. For the ease of our presentation, let
us reset the last time slot of the (n − 1)th frame, τn, to 0
and set time t as the tth time slot of the nth frame. Suppose
that link ℓ is traversed by flow j, i.e., ℓ ∈ Ej . Let AT

j,ℓ(t) and
BT

j,ℓ(t) (resp., AH
j,ℓ(t) and BH

j,ℓ(t)) be the cumulative number
of packets arriving at and departing from tail queue qTj,ℓ (resp.,
head queue qHj,ℓ) by time t, respectively. Since the departure
of a packet from a tail queue in link ℓ is an arrival to the head
queue in link ℓ (see Fig. 2), we have

AH
j,ℓ(t) = BT

j,ℓ(t). (6)

Let cj,ℓ(t) be the indicator variable for the event that the token
of the tail queue qTj,ℓ is selected. Then, the governing equation
(2) for internal tail queue qTj,ℓ can be rewritten as

xT
j,ℓ(t+ 1) = max[0, xT

j,ℓ(t) + aTj,ℓ(t+ 1)− cj,ℓ(t+ 1)]. (7)

Recursively expanding the governing equation (7) with the
initial condition xT

j,ℓ(0) = 0 yields

xT
j,ℓ(t) = max

0≤s≤t
[AT

j,ℓ(t)−AT
j,ℓ(s)− (Cj,ℓ(t)− Cj,ℓ(s))]. (8)

Since packets that have arrived at queue qTj,ℓ are either still in
the buffer or have departed from the queue, we have AT

j,ℓ(t) =

xT
j,ℓ(t) +BT

j,ℓ(t). Using this in (8), we then have

BT
j,ℓ(t) = min

0≤s≤t

[
AT

j,ℓ(s) + (Cj,ℓ(t)− Cj,ℓ(s))
]
. (9)

Note from (9) that the tail queue qTj,ℓ is in fact a work con-
serving link with a time varying capacity defined in Example
2.3.2 of the book [3]. Moreover, since BT

j,ℓ(s) ≤ AT
j,ℓ(s), it

follows from (9) that for all s ≤ t

BT
j,ℓ(t)−BT

j,ℓ(s) ≤ Cj,ℓ(t)− Cj,ℓ(s). (10)

As discussed before, network coding can only be performed
for the kth packet arriving at internal tail queue qTj,ℓ if all of
its upstream head queues in U(j, ℓ) have received at least k
packets. Since we assume the time to perform network coding
is negligible, the time that the kth packet arriving at tail queue
qTj,ℓ is exactly the time that all of its upstream head queues in
U(j, ℓ) have received at least k packets. Thus,

AT
j,ℓ(t) = min

ℓ′∈U(j,ℓ)
AH

j,ℓ′(t). (11)

Note that network coding is done simultaneously for the kth

packet in every downstream tail queue of U(j, ℓ). Thus, the



6

kth packet arrives at every downstream tail queue of U(j, ℓ)
synchronously. Moreover, once network coding is done, the
kth packet in every upstream head queue in U(j, ℓ) can be
removed from the buffer at the same time. Similarly, the kth

packet can be removed from head queue qHj,ℓ if all the head
queues pointing to the same node as link ℓ, i.e., the set of
head queues in In(Head(ℓ)) ∩ Ej , have received at least k
packets. This then leads to

BH
j,ℓ(t) = min

ℓ′∈In(Head(ℓ))∩Ej

AH
j,ℓ′(t). (12)

As mentioned before, synchronization for network coding is
carried out for every upstream head queue even though some
of the local coding coefficients in a linear coding scheme might
be 0 for coding downstream packets. For example, suppose
that flow j traverses through links 1 to 5 as shown in Fig. 3,
where we set the local coding coefficients βj,3,4 = βj,1,5 = 0.
Note that links 4 and 5 have the same set of upstream links
for flow j as U(j, 4) = U(j, 5) = {1, 2, 3} even though the
packets traversed through either link 4 or link 5 are only linear
combinations of the packets transmitted in a proper subset of
link 1, 2 and 3. Suppose that there is a flow j packet that arrives
at the head queue of link 3 at time t. Then, the head queues
of all the upstream links for flow j (i.e., qHj,1, qHj,2 and qHj,3)
are not empty at the end of time slot t (as shown in Fig. 3(a)).
As a result, for flow j, the tail queues for links 4 and 5 can
obtain a new packet as the linear combination of the packets
in head queues qHj,1, qHj,2 and qHj,3 using the corresponding local
coding coefficients. Then the head queues for links 1, 2 and 3
can remove one packet after network coding is done (as shown
in Fig. 3(b)).

Head

Tail

Head

Tail

Fig. 3. An illustrating example for synchronization (a) Before (b) After

IV. FINITE INTERNAL BUFFER AND FRAME BOUND

In Section IV-A, we show the finiteness for both internal
tail queues (for transmission) and head queues (for syn-
chronization under the setup of network coding) under the
DFS algorithm. Moreover, the proof for the finiteness for the
expected frame size under the DFS algorithm will be given in
Section IV-B.

A. Finite Internal Buffer

In this section, we show that each internal tail queue is upper
bounded by two packets and the size of an arbitrary internal
head queue is bounded by a constant that only depends on
the maximum hop count, i.e., the length of the longest path

length to the source. We now formally define the maximum
hop count of link ℓ for flow j as follows.

Definition 2 For each link ℓ traversed by flow j (i.e., ℓ ∈ Ej),
the maximum hop count hj,ℓ is defined recursively as

hj,ℓ = 1 + max
ℓ′∈U(j,ℓ)

hj,ℓ′ , (13)

where hj,ℓ = 1 if link ℓ is the first link traversed by flow j
immediately after departing from the source node, namely, an
incident outgoing link for source node sj . Notice that (13)
is well-defined according to the assumption that the graph
Gj(Vj , Ej) is acyclic.

Notice that, for fixed j, hj,ℓ can be viewed as the number
of hops of the longest path from the tail of link ℓ to the source
node. We now take the multicast flow j from source node 1 to
sink nodes 11 and 12 in Fig. 1(b) as an example. According
to (13), one can verify that hj,(3,7) = 2. Moreover, we have
that hj,(7,9) = 6 ̸= hj,(3,7) + 1 since the path along nodes
1, 2, 4, 5, 6, 7 is the longer path from the source (i.e., node 1)
to the tail end 7 of link (7, 9). We now ready to show that the
upper bounds of internal tail and head queues in the following
theorem.

Theorem 3 Let hj = maxℓ∈Ej hj,ℓ be maximum hop count
for flow j.

(i) There are at most two packets in an arbitrary internal
tail queue, namely, xT

j,ℓ(t) ≤ 2 for all ℓ ∈ Ej , j =
1, 2, . . . , J and t ≥ 0.

(ii) The cumulative number of departures from tail queue
qTj,ℓ of link ℓ for flow j by time t can be lower bounded
as follow:

BT
j,ℓ(t) ≥

⌊
t

Tn
xj(τn)

⌋
− (hj,ℓ − 1). (14)

(iii) The size of an arbitrary internal head queue is upper
bounded by the maximum hop count for flow j, i.e.,

xH
j,ℓ(t) ≤ hj (15)

for all ℓ ∈ Ej , j = 1, 2, . . . , J , and t ≥ 0,
(iv) At the end of each frame, other than the packets arrived

during this frame and gated in ingress queues, all
the packets remaining in the network are all fictitious
packets and are free to be removed at the beginning of
the next frame.

Proof: (i) First, from (8), the queue length xT
j,ℓ(t) of

internal tail queue qTj,ℓ can be represented as

xT
j,ℓ(t) = max

0≤s≤t
[(AT

j,ℓ(t)−AT
j,ℓ(s))− (Cj,ℓ(t)− Cj,ℓ(s))].

According to (11) and (6), we have that

AT
j,ℓ(t)−AT

j,ℓ(s) = min
ℓ′∈U(j,ℓ)

BT
j,ℓ′(t)− min

ℓ′′∈U(j,ℓ)
BT

j,ℓ′′(s). (16)

Assume that minℓ′′∈U(j,ℓ) B
T
j,ℓ′′(s) occurs at ℓ′′ = ℓ1 for some

ℓ1 ∈ U(j, ℓ), namely,

min
ℓ′′∈U(j,ℓ)

BT
j,ℓ′′(s) = BT

j,ℓ1(s). (17)



7

Then, it follows from (16) and (17) that

AT
j,ℓ(t)−AT

j,ℓ(s) = min
ℓ′∈U(j,ℓ)

BT
j,ℓ′(s)−BT

j,ℓ1(s)

≤ BT
j,ℓ1(t)−BT

j,ℓ1(s) ≤ Cj,ℓ1(t)− Cj,ℓ1(s),

where we use (10) in the last inequality. According to (5), we
have that

⌊
t
T xj(τn)

⌋
−

⌈
s
T xj(τn)

⌉
≤ Cj,ℓ′(t) − Cj,ℓ′(s) ≤⌈

t
T xj(τn)

⌉
−
⌊
s
T xj(τn)

⌋
for all ℓ′ ∈ Ej . Hence, it yields that(

AT
j,ℓ(t)−AT

j,ℓ(s)
)
− (Cj,ℓ(t)− Cj,ℓ(s)) ≤ 2,

for all 0 ≤ s ≤ t, and thus xT
j,ℓ(t) ≤ 2 for all ℓ ∈ Ej and

j = 1, 2, . . . , J .

(ii) We now prove (14) by induction. We first consider an
arbitrary ingress queue qTj,ℓ. As described in Section III-C for
smooth scheduling, there are xj(τn) tokens generated for qTj,ℓ
for the nth frame. Notice that, at the beginning of the nth

frame, there are totally xj(τn) packets in qTj,ℓ. Hence, every
time a token is selected in an ingress queue there is a packet
transmitted through link ℓ from qTj,ℓ to qHj,ℓ. Recall that Cj,ℓ(t)
is the cumulative number of tokens selected for flow j in link
ℓ by time t (as we have reset the time τn back to 0 for the ease
of our presentation). Then, there are at least Cj,ℓ(t) packets
departing from qTj,ℓ, and thus, from Lemma 1,

BT
j,ℓ(t) = Cj,ℓ(t) ≥

⌊
t

Tn
xj(τn)

⌋
=

⌊
t

Tn
xj(τn)

⌋
− (hj,ℓ − 1),

where we use the fact that hj,ℓ = 1 for an arbitrary ingress
queue qTj,ℓ in the last equality.

We now assume that (14) holds for all the tail queues with
hj,ℓ = 1, 2, . . . ,m as our induction hypothesis. Consider a tail
queue qTj,ℓ with hj,ℓ = m+ 1. According to (9), (11) and (6),
we have that

BT
j,ℓ(t) = min

0≤s≤t
[AT

j,ℓ(s) + (Cj,ℓ(t)− Cj,ℓ(s))]

= min
0≤s≤t

[(
min

ℓ′∈U(j,ℓ)
BT

j,ℓ′(s)

)
+ (Cj,ℓ(t)− Cj,ℓ(s))

]
.

Note from (13) that maxℓ′∈U(j,ℓ) hj,ℓ′ = m and thus hj,ℓ′ ≤ m
for all ℓ′ ∈ U(j, ℓ). According to the induction hypothesis,
we have that BT

j,ℓ′(s) ≥ ⌊xj(τn)s/Tn⌋ − (hj,ℓ′ − 1) for
all ℓ′ ∈ U(j, ℓ). Moreover, according to (5), we have that
Cj,ℓ(t) − Cj,ℓ(s) ≥ ⌊xj(τn)t/Tn⌋ − ⌈xj(τn)s/Tn⌉ for all
ℓ ∈ Ej . Hence, for all ℓ′ ∈ U(j, ℓ) and 0 ≤ s ≤ t, we
have that, (

min
ℓ′∈U(j,ℓ)

BT
j,ℓ′(s)

)
+ (Cj,ℓ(t)− Cj,ℓ(s))

≥
⌊

s

Tn
xj(τn)

⌋
−
(

max
ℓ′∈U(j,ℓ)

hj,ℓ′ − 1

)
+

⌊
t

Tn
xj(τ)

⌋
−

⌈
s

Tn
xj(τn)

⌉
.

Using the fact that ⌈x⌉ − ⌊x⌋ ≤ 1 for all x yields (14).

(iii) Also, from (6), (10) and (5), we have that

AH
j,ℓ(t) = BT

j,ℓ(t) ≤ Cj,ℓ(t) ≤
⌈

t

Tn
xj(τn)

⌉
.

On the other hand, it follow from (12) and (6) that

BH
j,ℓ(t) = min

ℓ′∈In(Head(ℓ))∩Ej

BT
j,ℓ′(t)

≥ min
ℓ′∈In(Head(ℓ))∩Ej

(⌊
t

Tn
xj(τn)

⌋
− (hj,ℓ′ − 1)

)
=

⌊
t

Tn
xj(τn)

⌋
+ 1− max

ℓ′∈In(Head(ℓ))∩Ej

hj,ℓ′ , (18)

where we use (14) in the inequality. Hence, for the head queue
qHj,ℓ, we have that

xH
j,ℓ(t) = AH

j,ℓ(t)−BH
j,ℓ(t)

≤
⌈

t

Tn
xj(τn)

⌉
−
⌊

t

Tn
xj(τn)

⌋
− 1 + max

ℓ′∈In(Head(ℓ))∩Ej

hj,ℓ′

≤ max
ℓ′∈In(Head(ℓ))∩Ej

hj,ℓ′ ≤ hj ,

where we use the fact that hj is the maximum hop count for
flow j in the last inequality.

(iv) Note that the head queues at the sink nodes are the last
queues the packets traverse through the network. Thus, we
now consider the departure process for the head queue qHj,ℓ of
an arbitrary incident incoming link ℓ of a sink node for flow
j. At the end of the nth frame (i.e., the end of time slot Tn),
we have from (18) that

BH
j,ℓ(Tn) ≥ xj(τn) + 1− max

ℓ′∈In(Head(ℓ))∩Ej

hj,ℓ′ . (19)

On the other hand, we recall that the last hj−1 packets for flow
j are all fictitious packets. Thus, in the nth frame, only the first
xj(τn)− (hj − 1) packets sent out from the source node into
the network are real packets. Then, it follows from (19) that all
the non-fictitious packets are sent out and leave the network
at the end of the nth frame. In other words, all the packets
remaining in the internal queues are all fictitious packets, and
it makes no harm to remove them from the network at the
beginning of the next frame.

B. Logarithm Frame Size

Our main result is that, for the input traffic satisfying the
assumptions in (A1) and (A2), the expectation of frame size
E[Tn] is bounded for each n under the DFS algorithm, as
shown in Theorem 4.

Theorem 4 Assume that the input traffic satisfies (A1) and
(A2). Let Smax be the maximum number of flows traversing
a single link, i.e., Smax = max1≤ℓ≤L |Sℓ| and hmax be the
maximum hop count among all the j flows, i.e., hmax =
max1≤j≤J hj . Then under the DFS algorithm, we have for
n > 1

logE[eθ
∗Tn ] ≤ θ∗ +

2 logL+ 2θ∗Smax(hmax − 1)

1− ρ
, (20)

where θ∗ is the unique positive solution of

eθ − 1

θ
=

1 + ρ

2ρ
. (21)



8

As a result, the expectation of the frame size E[Tn] is
bounded by 1 + 2 logL+2θ∗Smax(hmax−1)

θ∗(1−ρ) , and the DFS algo-
rithm achieves 100% throughput.

As a direct consequence of Theorem 4, the expected number
of packets in each ingress queue is also finite. In conjunction
with the bound for an internal queue in Theorem 3, the DFS
algorithm stabilizes the network for the compound Bernoulli
traffic described in (A1) and (A2).

Proof: From Theorem 3 (iv), the number of real packets
stored in ingress queue qTj,ℓ at the beginning of the nth frame
is the same as the number of batches that arrives during the
(n−1)th frame. Adding the hj−1 fictitious packets, we know
that the queue length of an ingress queue qTj,ℓ at the beginning
of the nth frame is bounded by the sum of the number of
batches that arrive during the (n− 1)th frame and the hj − 1
fictitious packets, i.e.,

xj(τn+1) ≤
τn+1∑

t=τn+1

aj(t) + (hj − 1). (22)

With (4) and (22), we have for θ > 0 that

eθTn+1 ≤ max
1≤ℓ≤L

exp

θ
 τn+1∑

t=τn+1

∑
j∈Sℓ

aj(t) + |Sℓ|(hj − 1)


≤

L∑
ℓ=1

exp

θ
 τn+1∑

t=τn+1

∑
j∈Sℓ

aj(t) + |Sℓ|(hj − 1)

 ,

where we use the inequality that max(x1, x2) ≤ x1 + x2

for x1, x2 ≥ 0. Since we assume that the arrival processes
are independent compound Bernoulli processes in (A1), we
know that {aj(t)}∞t=1 are i.i.d Bernoulli random variables with
parameter λj . It then follows that

E[eθTn+1 |Tn]

≤ eθSmax(hmax−1)
L∑

ℓ=1

E

exp
θ

∑
j∈Sℓ

aj(1)


Tn

,

where we use the fact Smax = max1≤ℓ≤L |Sℓ| and hmax =
max1≤j≤J hj . Note that

logE

exp
θ

∑
j∈Sℓ

aj(1)

 =
∑
j∈Sℓ

logE [exp (θaj(1))]

=
∑
j∈Sℓ

log
(
λje

θ + 1− λj

)
≤

∑
j∈Sℓ

λj

(
eθ − 1

)
, (23)

where we use log(1+x) ≤ x for nonnegative x. According to
(A2), we have that ρ = max1≤ℓ≤L

∑
j∈Sℓ

λj < 1, and thus

E[eθTn+1 |Tn] ≤ eθSmax(hmax−1)L exp(ρTn(e
θ − 1)). (24)

Taking expectation on both sides of (24) yields

E[eθTn+1 ] ≤ eθSmax(hmax−1)LE
[
exp

(
ρTn(e

θ − 1)
)]

. (25)

As θ∗ is the unique positive solution of (21), we can rewrite
(25) as

E[eθ
∗Tn+1 ] ≤ eθ

∗Smax(hmax−1)LE[eθ
∗Tn(1+ρ)/2]. (26)

Since ϕ(θ) = logE[eθTn ] is convex in θ (see e.g., [3,
Proposition 7.1.8]) and ρ < 1, we have that

logE[eθ
∗Tn(1+ρ)/2] ≤ 1 + ρ

2
logE[eθ

∗Tn ]. (27)

Using (27) and (26) yields

logE[eθ
∗Tn+1 ]

≤ logL+ θ∗Smax(hmax − 1) +
1 + ρ

2
logE[eθ

∗Tn ]. (28)

Since T1 = 1, it is easy to verify (20) from induction by using
(28). Now we use (20) to show the bound of the frame size in
Theorem 4. Since eθx is convex in x, it follows from Jensen’s
Inequality that

E[Tn] ≤
1

θ∗
logE[eθ

∗Tn ]

≤ 1 +
2 logL+ 2θ∗Smax(hmax − 1)

θ∗(1− ρ)
. (29)

Since the expected frame size is finite, it follows from the
standard theory for regenerative processes [25] that the DFS
algorithm achieves 100% throughput.

V. SIMULATION RESULTS

In this section, we perform quantitative delay analysis for
our DFS algorithm by computer simulations. For this, we
consider the network as shown in Fig. 4, where all the links
are of capacity one. The upper half of the network is basically
the same as the example in [21, Fig. 1], where it was shown
in [21] that it is impossible to achieve 100% throughput for
certain admissible multicast traffic without internal buffers in
the network. On the other hand, the lower half of the networks
are the canonical butterfly diagrams in [18], where the network
coding can be used to expand the capacity region. Similar
to [21], we assume that there are 4 multicast traffic flows
traversing on the network, labeled from 1 to 4. Flows 1 and
2 (resp. 3 and 4) are of the same source node, node 1 (resp.,
node 2), and the sets of their sink nodes are {3, 4, 5, 6} and
{7, 8, 9, 10} (resp., {3,4,7,8} and {5, 6, 9, 10}), respectively.
Also, we assume that the arrival processes of all the 4
flows are compound Bernoulli processes with the same arrival
rate, where each batch of arrival consists of two packets as
considered in (A1), Section II-B. Since each link is of capacity
one, the maximum arrival rate of each flow is thus 0.5.

21

3 4 5 6 7 8 9 10
Fig. 4. The network considered in the simulation.

We now consider three different transmission schemes for
the network: (i) our DFS algorithm, (ii) pure routing (without



9

network coding), and (iii) network coding without internal
buffers. Clearly, for the pure routing scheme, the butterfly
diagrams in the lower half network become the bottleneck
when the arrival rate exceeds 0.25 (as illustrated in [18]).
Thus, its maximum throughput is 50%. On the other hand, for
the network coding scheme without internal buffer, the upper
half of the network becomes the bottleneck when the arrival
rate exceeds 0.375 (as illustrated in [21]). Thus, its maximum
throughput is 75%. These bottlenecks are clearly shown in
our simulations in Fig. 5. In contrast, even though the average
packet delay of the DFS algorithm is slight higher than other
two schemes in light traffic, our algorithm indeed can achieve
100% throughput and all the internal buffers are guaranteed
to be finite as proved in Theorem 3.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

Arrival Rate

A
v
e
ra

g
e
 P

a
c
k
e
t 
D

e
la

y

Simulation Time: 5 ·  10
6
 time slots

 

 

DFS Algorithm

Pure Routing

Network Coding Without Internal Buffers

Fig. 5. The comparison of average packet delays for i) DFS algorithm,
ii) pure routing (without network coding), and iii) network coding without
internal buffers.

VI. CONCLUSION

One of the key problems for applying network coding to
support multiple multicast traffic flows in a network is to deal
with the issue of synchronization. To address this problem,
we proposed in this paper a universal stabilization algorithm
based on the dynamic frame sizing algorithm in [4], [19].
We showed that our algorithm indeed stabilizes the network
for any admissible traffic and this is done without the need
to know the arrival rates of the multicast flows. Moreover,
the size of synchronization buffers can be bounded by the
maximum hop count of flows. One main difference between
our algorithm and the original DFS algorithm in [4], [19] is
the use of fictitious packets to flush out real packets that might
be stalled inside the network. By so doing, every frame can be
treated separately and the proofs for the finiteness of internal
buffers are much simpler.

One possible extension of our work is to support multiple
multicast traffic flows with network coding in wireless net-
works, where only certain sets of links can transmit simultane-
ously. For such a setting, one will require to have a hierarchical
scheduler as in [20] and the bound for the synchronization
buffers might be much larger than the one obtained in this
paper. Another interesting research problem is to investigate

whether the maximum weighted matching algorithm [26],
another universal stabilization algorithm, performs well in the
setting of network coding. In the maximum weighted matching
algorithm, queue lengths are often used as the weights. Thus,
large queues tend to be served first. How one incorporates
synchronization into weights requires further study.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Informa-
tion Flow, ” IEEE Transactions on Information Theory, vol. 46, no. 4,
Jul. 2000, pp. 1204-1216.

[2] F. Baccelli, W. A. Massey, and D. Towsley, “Acyclic Fork-Join Queueing
Networks, ” Journal of the ACM, vol. 36, no. 3, 1989, pp. 615-642.

[3] C. -S. Chang, Performance Guarantees in Communication Networks,
London: Springer-Verlag, 2000.

[4] C. -S. Chang, Y. -H. Hsu, J. Cheng, and D. -S. Lee, “A Dynamic Frame
Sizing Algorithm for CICQ Switches with 100% Throughput, ” IEEE
INFOCOM 2009.

[5] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding, ” Proc.
41st Annual Allerton Conference on Communication, Control, and
Computing, Oct. 2003.

[6] P. A. Chou, and Y. Wu, “Network Coding for the Internet and Wire-
less Networks, ” IEEE Signal Processing Magazine, vol. 24, no. 5,
Sep. 2007, pp. 77-85.

[7] R. Cogill, B. Shrader, and A. Ephremides, “Stable Throughput for Mul-
ticast With Random Linear Coding,” IEEE Transactions on Information
Theory, vol. 57, no. 1, Jan. 2011, pp. 266-280.

[8] P. Giaccone, E. Leonardi, and D. Shah, “Throughput Region of Finite-
buffered Networks, ” IEEE Transaction on Parallel and Distributed
Systems, vol. 18, no. 2, Feb. 2007, pp. 251-263.

[9] S. -M. He, S. -T. Sun, H. -T. Guan, Q. Zheng, Y. -J. Zhao, and W. Gao,
“On Guaranteed Smooth Switching for Buffered Crossbar Switches, ”
IEEE/ACM Transactions on Networking, vol. 16, no. 3, Jun. 2008,
pp. 718-731.

[10] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The
Benefits of Coding over Routing in a Randomized Setting, ” IEEE
International Symposium on Information Theory, Jun. 2003.

[11] T. Ho, and D. S. Lun, Network Coding: An Introduction, Cambridge
University Press, 2008.

[12] T. Ho, and H. Viswanathan, “Dynamic Algorithms for Multicast With
Intra-Session Network Coding, ” IEEE Transaction on Information
Theory, vol. 55, no. 2, Feb. 2009, pp. 797-815.

[13] L. Huang, and M. J. Neely, “Utility Optimal Scheduling in Processing
Networks, ” Performance Evaluation, vol. 68, 2011, pp. 1002-1021.

[14] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M.
G. M. Tolhuizen, “Polynomial Time Algorithms for Multicast Network
Code Construction, ” IEEE Transaction on Information Theory, vol. 51,
no. 6, Jun. 2005, pp. 1973-1982.

[15] L. Jiang, and J. Walrand, “Stable and Utility-Maximizing Scheduling
for Stochastic Processing Networks, ” Forty-Seventh Annual Allerton
Conference on Communication, Control, and Computing, 2009.

[16] R. Koetter, and M. Medard, “An Algebraic Approach to Network
Coding, ”, IEEE/ACM Transactions on Networking, vol. 11, no. 5,
Oct. 2003, pp. 782-795.

[17] S.-Y. R. Li. Algebraic Switching Theory and Broadband Applications.
Academic Press, 2001.

[18] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding, ” IEEE
Transaction on Information Theory, vol. 49, no. 2, Feb. 2003, pp. 371-
381.

[19] C. -M. Lien, and C. -S. Chang, “Generalized Dynamic Frame Sizing Al-
gorithm for Finite-Internal-Buffered Networks, ” IEEE Communication
Letters, vol. 13, no. 9, Sep. 2009, pp. 714-716.

[20] C.-M. Lien, C.-S. Chang, J. Cheng and D.-S. Lee, “Maximizing
Throughput in Wireless Networks with Finite Internal Buffers,” Pro-
ceedings of IEEE INFOCOM 2011.

[21] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Mul-
ticast Traffic in Input-Queued Switches: Optimal Scheduling and Max-
imum Throughput, ” IEEE/ACM Transactions on Networking, vol. 11,
no. 3, Jun. 2003, pp. 465-477.

[22] R. Nelson, and A. N. Tantawi, “Approximate Analysis of Folk/Join
Synchronization in Parallel Queues, ” IEEE Transactions on Computers,
vol. 37, no. 6, Jun. 1988, pp. 739-743.



10

[23] P. Parag, and J. -F. Chamberland, “Queueing Analysis of a Butterfly
Network for Comparing Network Coding to Classical Routing,” IEEE
Transactions on Information Theory, vol. 56, no. 4, Apr. 2010, pp. 1890-
1908.

[24] K. Prasad, and B. Sundar Rajan, “Single-Generation Network Coding
for Networks with Delay, ” IEEE ICC 2010.

[25] Sheldon M. Ross, Stochastic Processes, John Wiley & Sons, Inc., 1996.
[26] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained

Queueing Systems and Scheduling Policies for Maximum Throughput
in Multihop Radio Networks,” IEEE Transactions on Automatic Control,
vol. 31, no. 12, pp. 1936–1948, 1992

[27] D. Traskov, M. Medard, P. Sadeghi, and R. Koetter, “Joint Scheduling
and Instantaneously Decodable Network Coding, ” IEEE GLOBECOM
2009.

[28] X. Wu, C. Zhao, and X. You, “Generation-Based Network Coding over
Networks with Delay, ” 2008 IFIP International Conference on Network
and Parallel Computing.

[29] R. W. Yeung, Information Theory and Network Coding, Springer,
August 2008.

PLACE
PHOTO
HERE

Ching-Min Lien (S’09-M’11) received the B.S.,
M.E. degrees, both in Electrical Engineering, and
Ph.D. degree in Communications Engineering from
the National Tsing Hua University, Hsinchu, Taiwan,
R.O.C., in 1999, 2001 and 2011, respectively. Since
1993, he has been with the Institute of Communica-
tions Engineering at National Tsing Hua University,
Taiwan, R.O.C., where he is a Postdoctoral Research
Fellow. He has been elected as an honorary member
of the Phi Tau Phi Honor Society of the Republic
of China in 2011. His current research interests

are concerned with high speed switching, communication network theory,
distributed resource scheduling, and large complex networks.

PLACE
PHOTO
HERE

Cheng-Shang Chang (S’85-M’86-M’89-SM’93-
F’04) received the B.S. degree from the National
Taiwan University, Taipei, Taiwan, in 1983, and the
M.S. and Ph.D. degrees from Columbia University,
New York, NY, in 1986 and 1989, respectively, all
in Electrical Engineering. From 1989 to 1993, he
was employed as a Research Staff Member at the
IBM Thomas J. Watson Research Center, Yorktown
Heights, N.Y. Since 1993, he has been with the
Department of Electrical Engineering at National
Tsing Hua University, Taiwan, R.O.C., where he is a

Professor. His current research interests are concerned with network science,
high speed switching, communication network theory, and mathematical
modeling of the Internet. Dr. Chang received an IBM Outstanding Innovation
Award in 1992, an IBM Faculty Partnership Award in 2001, and Outstanding
Research Awards from the National Science Council, Taiwan, in 1998, 2000
and 2002, respectively. He also received Outstanding Teaching Awards from
both the college of EECS and the university itself in 2003. He was appointed
as the first Y. Z. Hsu Scientific Chair Professor in 2002 and elected to an
IEEE Fellow in 2004. Dr. Chang received the Academic Award from the
Ministry of Education in 2011. He is the author of the book “Performance
Guarantees in Communication Networks” and the coauthor of the book
”Principles, Architectures and Mathematical Theory of High Performance
Packet Switches.” He served as an editor for Operations Research from 1992
to 1999 and an editor for IEEE/ACM Transactions on Networking from 2007
to 2009. Dr. Chang is a member of IFIP Working Group 7.3.

PLACE
PHOTO
HERE

Duan-Shin Lee (S’89-M’90-SM’98) received the
B.S. degree from National Tsing Hua University,
Taiwan, in 1983, and the MS and Ph.D. degrees
from Columbia University, New York, in 1987 and
1990, all in electrical engineering. He worked as a
research staff member at the C&C Research Labo-
ratory of NEC USA, Inc. in Princeton, New Jersey
from 1990 to 1998. He joined the Department of
Computer Science of National Tsing Hua University
in Hsinchu, Taiwan, in 1998. Since August 2003, he
has been a professor. He received a best paper award

from the Y.Z. Hsu Foundation in 2006. His research interests are network
science, switch and router design, and performance analysis of communication
networks. He is a senior IEEE member.


