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Abstract In this paper we present a generalization of the classical configu-
ration model. Like the classical configuration model, the generalized configu-
ration model allows users to specify an arbitrary degree distribution. In our
generalized configuration model, we partition the stubs in the configuration
model into b blocks of equal sizes and choose a permutation function h for
these blocks. In each block, we randomly designate a number proportional to
q of stubs as type 1 stubs, where q is a parameter in the range [0, 1]. Other
stubs are designated as type 2 stubs. To construct a network, randomly select
an unconnected stub. Suppose that this stub is in block i. If it is a type 1 stub,
connect this stub to a randomly selected unconnected type 1 stub in block
h(i). If it is a type 2 stub, connect it to a randomly selected unconnected
type 2 stub. We repeat this process until all stubs are connected. Under an
assumption, we derive a closed form for the joint degree distribution of two
random neighboring vertices in the constructed graph. Based on this joint
degree distribution, we show that the Pearson degree correlation function is
linear in q for any fixed b. By properly choosing h, we show that our con-
struction algorithm can create assortative networks as well as disassortative
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networks. We present a percolation analysis of this model. We verify our
results by extensive computer simulations.

keywords: configuration model, assortative mixing, degree correlation

1 Introduction

Recent advances in the study of networks that arise in field of computer
communications, social interactions, biology, economics, information systems,
etc., indicate that these seemingly widely different networks possess a few
common properties. Perhaps the most extensively studied properties are
power-law degree distributions [2], the small-world property [40], network
transitivity or ”clustering” [40]. Other important research subjects on net-
works include network resilience, existence of community structures, synchro-
nization, spreading of information or epidemics. A fundamental issue relevant
to all the above research issues is the correlation between properties of neigh-
boring vertices. In the ecology and epidemiology literature, this correlation
between neighboring vertices is called assortative mixing.

In general, assortative mixing is a concept that attempts to describe the
correlation between properties of two connected vertices. Take social networks
for example. vertices may have ages, weight, or wealthiness as their proper-
ties. It is found that friendship between individuals are strongly affected by
age, race, income, or languages spoken by the individuals. If vertices with
similar properties are more likely to be connected together, we say that the
network shows assortative mixing. On the other hand, if vertices with differ-
ent properties are likely to be connected together, we say that the network
shows disassortative mixing. It is found that social networks tend to show
assortative mixing, while technology networks, information networks and bi-
ological networks tend to show disassortative mixing [32]. The assortativity
level of a network is commonly measured by a quantity proposed by Newman
[31] called assortativity coefficient. If the assortativity level to be measured is
degree, assortativity coefficient reduces to the standard Pearson correlation
coefficient [31]. Specifically, let X and Y be the degrees of a pair of randomly
selected neighboring vertices, the Pearson degree correlation function is the
correlation coefficient of X and Y , i.e.

ρ(X,Y )
def
=

E(XY )− E(X)E(Y )

σXσY
, (1)

where σX and σY denote the standard deviation of X and Y respectively.
We refer the reader to [31, 32, 19, 41, 33, 21, 28] for more information on
assortativity coefficient and other related measures. In this paper we shall
focus on degree as the vertex property.
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Researchers have found that assortative mixing plays a crucial role in the
dynamic processes, such as information or disease spreading, taking place
on the topology defined by a network. Boguñá et al. [20] studied epidemic
spreading in correlated networks. Boguñá et al. [21] and Egúıluz [39] studied
the epidemic threshold in correlated networks with scaled-free degree distri-
butions. Moreno et al. [28] proposed a numerical method to solve epidemic
models in large correlated networks, where Monte Carlo simulations are dif-
ficult. Schläpfer et al. [22] studied the propogation speed in a correlated
scale-free network. Johnson et al. [15] showed that disassortative networks
arise naturally from maximum entropy principles. Braha et al. [7] and Braha
et al. [6] showed the important dynamic role of node-node correlations and
assortativity in engineering directed networks. Pomerance et al. [34] exam-
ined the role of assortative mixing in the context of genetic Boolean networks
and the effect of assortativity on the stability of Boolean networks. Assorta-
tivity also has a fundamental impact to the network resilience as the network
loses vertices or edges [1]. In order to study information propagation or net-
work resilience, researchers may need to build models with assortative mixing
or disassortative mixing. Callaway et al. [9] proposed a growing network, in
which at each time step a vertex is added and with a probability two ver-
tices are chosen randomly and are connected by an edge. The authors showed
that the network possesses positive degree correlation. Catanzaro et al. [11]
proposed a growing model based on preferential attachment. The authors
showed that the growing network possesses positive degree correlation. Zhou
et al. [42] proposed another growing network model generated as assorta-
tively as possible based on a greedy algorithm. Methods in [9, 11, 42] have
time complexity of O(n), where n is the number of vertices. However, they
cannot produce disassortatively mixed networks. Users have no explicit con-
trol of the level of correlation. Ramezanpour et al. [35] analyzed the edge-dual
graphs of configuration models. They showed that the edge-dual graphs pos-
sess non-zero degree correlations and large clustering coefficients. The time
complexity of transforming a graph to its edge-dual graph is O(m), where m
is the number of edges in the network. However, it seems not possible to tell
if the degree correlation is positive or negative analytically. In addition, the
degree distribution of the edge-dual graphs can not be determined indepen-
dently. Newman [31] and Xulvi-Brunet et al. [41] proposed algorithms to gen-
erate networks with assortative mixing or disassortative mixing by rewiring
edges. These algorithms are iteration based and their execution time seems
uncontrolled. Bassler et al. [3] proposed an algorithm to construct a random
graph for a given joint degree matrix. The time complexity of the algorithm
is O(nm).

In this paper we propose a method to generate random networks that
possess either assortative mixing property or disassortative mixing property.
Our method is based on a modified construction method of the configuration
model. Bender et al. [5], Bollob́as [4] and Molloy et al. [25, 26] laid down a
mathematical foundation for random networks with a given degree distribu-
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tion. Newman et al. [29] proposed a construction algorithm for this class of
random graphs. Later, graphs so constructed are commonly referred to as the
configuration models. Our modified construction method is as follows. Recall
that in the construction of configuration models each edge has two “stubs”.
We sort and arrange the stubs of all vertices according to degrees. We divide
the stubs into blocks and choose a permutation among blocks. To connect
stubs, stubs are either randomly connected to a stub in the associated block,
or are randomly connected to any stub available. The details of our construc-
tion algorithm are presented in Section 2. Our method has an advantage
that specified degree distributions are preserved in the constructed networks.
In addition, our method allows us to derive a closed form for the Pearson
degree correlation function for two random neighboring vertices under an
assumption. The time complexity of our construction algorithm is O(m).

In this paper we present an application of the proposed random graph
model. We consider a percolation analysis of the generalized configuration
model. Percolation has been a powerful tool to study network resilience under
breakdowns or attacks. Cohen et. al [12] studied the resilience of networks
with scale-free degree distributions. Particularly, Cohen et. al studied the
stability of such networks, including the Internet, subject to random crashes.
Percolation has also been used to study disease spreading in epidemic net-
works [10, 27, 37]. Percolation has been used to study the effectiveness of
immunization or quarantine to confine a disease. Schwartz et al. [38] studied
percolation in a directed scale-free network. Newman [30] and Vázquez et al.
[1] studied percolation in networks with degree correlation. Vázquez et al. as-
sumed general random networks, their solution involves with the eigenvalues
of a D ×D matrix, where D is the total number of degrees in the network.
The percolation analysis of our model involves with solving roots of a simul-
taneous system of b nonlinear equations, where b is the number of blocks in
the generalized configuration model. Since b is typically a small integer, we
have significantly reduced the complexity.

The rest of this paper is organized as follows. In Section 2 we present our
construction method of a random network. In Section 3 we derive a closed
form for the joint degree distribution of two randomly selected neighboring
vertices from a network constructed by the algorithm in Section 2. In Section
4, we show that the Pearson degree correlation function of two neighbor-
ing vertices is linear. We then show how permutation function h should be
selected such that a constructed random graph is associatively or disassor-
tatively mixed. In Section 5 we present a percolation analysis of this model.
Numerical examples and simulation results are presented in Section 6. Finally,
we give conclusions in Section 7.
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2 Construction of a Random Network

Research on random networks was pioneered by Erdős and Rényi [13]. Al-
though Erdős-Rényi’s model allows researchers to study many network prob-
lems, it is limited in that the vertex degree has a Poisson distribution asymp-
totically as the network grows in size. The configuration model [5, 25] can
be considered as an extension of the Erdős and Rényi model that allows gen-
eral degree distributions. Configuration models have been used successfully
to study the size of giant components. It has been used to study network
resilience when vertices or edges are removed. It has also been used to study
the epidemic spreading on networks. We refer the readers to [32] for more
details. In this paper we propose an extension of the classical configuration
model. This model generates networks with specified degree sequences. In
addition, one can specify a positive or a negative degree correlation for the
model. Let there be n vertices and let pk be the probability that a randomly
selected vertex has degree k. We sample the degree distribution {pk} n times
to obtain a degree sequence k1, k2, . . . , kn for the n vertices. We give each
vertex i a total of ki stubs. There are 2m =

∑n
i=1 ki stubs totally, where m

is the number of edges of the network. In a classical configuration model, we
randomly select an unconnected stub, say s, and connect it to another ran-
domly selected unconnected stub in [1, 2m]−{s}. We repeat this process until
all stubs are connected. The resulting network can be viewed as a matching
of the 2m stubs. Each possible matching occurs with equal probability. The
consequence of this construction is that the degree correlation of a randomly
selected pair of neighboring vertices is zero. To achieve nonzero degree corre-
lation, we arrange the 2m stubs in ascending order (descending order will also
work) according to the degree of the vertices, to which the stubs belong. We
label the stubs accordingly. We partition the 2m stubs into b blocks evenly.
We select integer b such that 2m is divisible by b. Each block has 2m/b
stubs. Block i, where i = 1, 2, . . . , b, contains stubs (i − 1)(2m/b) + j for
j = 1, 2, . . . , 2m/b. Next, we choose a permutation function h of {1, 2, . . . , b}.
If h(i) = j, we say that block j is associated with block i. In this paper we
select h such that

h(h(i)) = i,

i.e., if blocks i and h(i) are mutually associated with each other. In each
block, we randomly designate d2mq/be stubs as type 1 stubs, where q is a
parameter in the range [0, 1). Other stubs are designated as type 2 stubs.
Randomly select an unconnected stub. Suppose that this stub is in block i.
If it is a type 1 stub, connect this stub to a randomly selected unconnected
type 1 stub in block h(i). If it is a type 2 stub, connect it to a randomly
selected unconnected type 2 stub in [1, 2m]. We repeat this process until all
stubs are connected. The construction algorithm is shown in Algorithm 1.

We make a few remarks.
Remarks.
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Inputs: degree sequence {ki : i = 1, 2, . . . , n};
Outputs: graph (G,V,E);
Create 2m stubs arranged in descending order;
Divide 2m stubs into b blocks evenly. Initially, all stubs are unconnected. For
each block, randomly designate d2mq/be stubs as type 1 stubs. All other
stubs are designated as type 2 stubs;

while there are unconnected stubs do
Randomly select a stub. Assume that the stub is in block i;
if type 1 stub then

connect this stub with a randomly selected unconnected type 1 stub
in block h(i);

else
connect this stub with a randomly selected unconnected type 2 stub
in [1, 2m];

end

end

Algorithm 1: Construction Algorithm

1. First, note that in networks constructed by this algorithm, there are mq
edges that have two type-1 stubs on their two sides. These edges create
degree correlation in the network. On the other hand, there are m(1− q)
edges in the network that have two type-2 stubs on their two sides. These
edges do not contribute towards degree correlation in the network. We
remark that the graphs produced by our construction algorithm preserve
user’s degree distributions. Under an assumption to be stated in Section
3, we shall derive a simple expression (Eq. (19) in Theorem 2) for the
degree correlation coefficient of the constructed graphs. This expression
allows users to to specify a targeted level of correlation. Specifically, users
choose q to control the level of correlation. Function h controls the sign of
correlation, i.e., assortative mixing versus disassortative mixing.

2. Recall that the ensemble of a random graph consists of all matchings of
stubs. For configuration models, all matchings of stubs are equally likely,
which implies that all graphs in the ensemble occur with the same prob-
ability. In contrast, the distribution of graphs produced by our construc-
tion algorithm is quite complicated. It requires further investigations in
future work. The ensemble of the generalized configuration model consists
of groups of random networks. Each group corresponds to a particular
assignment of types to stubs. In a particular group in the ensemble, a
randomly selected stub connects to another randomly selected stub in the
associated block with probability q. With probability 1−q, a stub connects
to a randomly selected stub in [1, 2m].

3. Note that standard configuration models can have multiple edges connect-
ing two particular vertices. There can also be edges connecting a vertex to
itself. These are called multi-edges and self edges. In our constructed net-
works, multi-edges and self edges can also exist. However, it is not difficult
to show that the expected density of multi-edges and self edges approaches
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to zero as n becomes large. Due to space limit, we shall not address this
issue in this paper.
We also remark that since we allow multi-edges and self edges, our con-
struction algorithm is simple, efficient, and unbiased. If multi-edges and
self edges are not allowed, the construction can either take extremely long
time or a bias is introduced. Klein-Hennig et al. [16] showed that the bias
can persist even as networks grow in size.

3 Joint Distribution of Degrees

Consider a randomly selected edge in a random network constructed by the
algorithm described in Section 2. In this section we analyze the joint degree
distribution of the two vertices at the two ends of the edge.

We randomly select a vertex and let Z be the degree of this vertex. Since
the selection of vertices is random,

Pr(Z = ki) =
1

n

for i = 1, 2, . . . , n. Thus, the expectation of Z is

E(Z) =

∑n
i=1 ki
n

=
2m

n
.

The expectation of Z can also be expressed as

E(Z) =

∞∑
k=0

kpk. (2)

The expected number of stubs of the network is E(Z) · n. We would like to
evenly allocate these stubs into b blocks such that each block has nE(Z)/b
stubs on average. We make the following assumption.

Assumption 1 The degree distribution {pk} is said to satisfy this assump-
tion if one can find mutually disjoint sets H1, H2, . . . ,Hb, such that

b⋃
i=1

Hi = {0, 1, 2, . . .}

and ∑
k∈Hi

kpk = E(Z)/b (3)

for all i = 1, 2, . . . , b. In addition, we assume that the degree sequence
k1, k2, . . . , kn sampled from the distribution {pk} can be evenly placed in b
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blocks. Specifically, there exist mutually disjoint sets H1, H2, . . . ,Hb that sat-
isfy

1.
⋃b
i=1Hi = {1, 2, . . . , n},

2. ki 6= kj for any i ∈ H`1 , j ∈ H`2 , `1 6= `2, and
3.
∑
j∈Hi

kj = 2m/b for all i = 1, 2, . . . , b.

We randomly select a stub in the range [1, 2m]. Denote this stub by t. Let
v be the vertex, with which stub t is associated. Let Y be the degree of v.
Now connect stub t to a randomly selected stub according to the construction
algorithm in Section 2. Let this stub be denoted by s. Let u be the vertex,
with which s is associated, and let X be the degree of u. Since stub t is
randomly selected from range [1, 2m], the distribution of Y is

Pr(Y = k) =
nkpk
2m

=
kpk
E(Z)

, (4)

where Z is the degree of a randomly selected vertex.
To study the joint pmf of X and Y , we first study the conditional pmf

of X, given Y , and the marginal pmf X. In the rest of this section, we
assume that Assumption 1 holds. Suppose x is a degree in set Hi. The total
number of stubs which are associated with vertices with degree x is nxpx. By
Assumption 1, all nxpx stubs are in block i. We consider two cases, in which
stub t connects to stub s. In the first case, stub t is of type 1. This occurs
with probability q. In this case, stub t must belong to a vertex with a degree
in block h(i). With probability

qnxpx
2mq/b− δi,h(i)

, (5)

the construction algorithm in Section 2 connects t to stub s. In (5) δi,j is the
Kronecker delta, is equal to one if i = j, and is equal to zero otherwise. In
the second case, stub t is of type 2. This occurs with probability 1−q. In this
case, stub t can be associated with a degree in any block. With probability

(1− q)nxpx
2m(1− q)− 1

(6)

the construction algorithm connects stub t to stub s. Combining the two
cases in (5) and (6), we have

Pr(X = x|Y = y) =
q2nxpx

2mq/b− δi,h(i)
+

(1− q)2nxpx
2m(1− q)− 1

, (7)

for y ∈ Hh(i). If y ∈ Hj for j 6= h(i),

Pr(X = x|Y = y) =
(1− q)2nxpx
2m(1− q)− 1

. (8)
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Now assume that the network is large. That is, we consider a sequence of
constructed graphs, in which n→∞, m→∞, while keeping 2m/n = E(Z).
Under this asymptotics, Eqs. (7) and (8) converge to

Pr(X = x|Y = y)→

{
qb+(1−q)

E(Z) xpx, y ∈ Hh(i)
1−q
E(Z)xpx, y ∈ Hj , j 6= h(i).

(9)

From the law of total probability we have

Pr(X = x) =
∑

y∈Hh(i)

Pr(X = x|Y = y) Pr(Y = y)

+
∑
j 6=h(i)

∑
y∈Hj

Pr(X = x|Y = y) Pr(Y = y). (10)

Substituting (4) and (9) into (10), we have

Pr(X = x) =
∑

y∈Hh(i)

qb+ (1− q)
E(Z)

xpx
ypy
E(Z)

+
∑
j 6=h(i)

∑
y∈Hj

1− q
E(Z)

xpx
ypy
E(Z)

. (11)

Since the partition of stubs is uniform,∑
y∈Hj

nypy = 2m/b

and thus, ∑
y∈Hj

ypy = E(Z)/b

for any j = 1, 2, . . . , b. Substituting this into (11), we have

Pr(X = x) =
xpx
E(Z)

. (12)

From (9) we derive the joint pmf of X and Y

Pr(X = x, Y = y) = Pr(X = x|Y = y) Pr(Y = y)

=

{
(bq + 1− q) xpx

E(Z)
ypy
E(Z) , y ∈ Hh(i), x ∈ Hi

(1− q) xpxE(Z)
ypy
E(Z) , x ∈ Hi, y ∈ Hj , j 6= h(i)

= Cij
xypxpy
(E(Z))2

, (13)

where

Cij =

{
bq + 1− q, h(i) = j
1− q, h(i) 6= j.

(14)

We summarize the results in the following theorem.
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Theorem 1. Let G be a graph generated by the construction algorithm de-
scribed in Section 2 based on a sequence of degrees k1, k2, . . . , kn. Randomly
select an edge from G. Let X and Y be the degrees of the two vertices at the
two ends of the edge. Then, the marginal pmf of X and Y are given in (12)
and (4), respectively. The joint pmf of X and Y is given in (13).

Finally, we present some remarks on Assumption 1.
Remarks.

1. We first note that Assumption 1 is very restrictive. It is assumed only for
the sake of mathematical cleanness. Distributions functions rarely satisfy
this assumption. Without Assumption 1, it is possible that probability
masses of some degrees are across boundaries of blocks. That is, part of
some probability masses can be in one block and part of the masses is in a
neighboring block. One needs to keep track of how probability masses are
split across boundaries. Without Assumption 1, all analyses reported in
this paper still can be done. However, the result can be very messy. This
additional complexity not only offers no further insights, but may also clog
the readability of this paper. For degree sequences that do not satisfy As-
sumption 1, the analyses in Sections 3, 4 and 5 are only approximate. In
Section 6, we shall compare simulation results of models constructed with-
out Assumption 1 with analytical results. We shall see that the difference
is very small.

2. We also remark that from (2) one can view

p̃k =
kpk
E(Z)

as a probability mass function. Eq. (3) can be equivalently be expressed
as ∑

k∈Hi

p̃k = 1/b

for all i = 1, 2, . . . , b. We can equivalently say that distribution {p̃k} sat-
isfies Assumption 1.

3. Finally, we remark that a common way to generate stubs from a degree
distribution is to first generate a sequence of uniform pseudo random vari-
ables over [0, 1]. Then, transform the uniform random variables using the
inverse cumulative distribution function of the degree distribution [8]. This
approach would encounter difficulties as far as Assumption 1 is concerned,
because the stubs produced are not likely to be evenly allocated among
blocks. If the network is large, the following approach based on propor-
tionality can be used. Specifically, for degree k with probability mass pk,
create npk vertices and nkpk corresponding stubs. If n is large, the strong
law of large numbers ensures that this approach and the inversion method
produce approximately the same number of stubs. Using this approach,
the probability masses of the degree distribution and the stubs sampled
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from the degree distribution both satisfy Assumption 1 and can be placed
evenly in blocks at the same time.

4 Assortativity and Disassortativity

In this section, we present an analysis of the Pearson degree correlation func-
tion of two random neighboring vertices. The goal is to search for permutation
function h such that the numerator of (1) is non-negative (resp. non-positive)
for the network constructed in this section.

From (12), we obtain the expected value of X

E(X) =
∑
x

xPr(X = x) =

b∑
i=1

∑
x∈Hi

x2px
E(Z)

=
1

E(Z)

b∑
i=1

ui, (15)

where
ui

def
=
∑
x∈Hi

x2px. (16)

Now we consider the expected value of the product XY . We have from (13)
that

E(XY ) =
∑
x

∑
y

xyPr(X = x, Y = y) =

b∑
i=1

b∑
j=1

∑
x∈Hi

∑
y∈Hj

Cijx
2y2pxpy

(E(Z))2

=
∑
i

∑
j

Cijuiuj
(E(Z))2

=
1

(E(Z))2

(1− q)
∑
i

∑
j

uiuj + qb
∑
i

uiuh(i)

 .(17)

Note from (15) and (17) that

E(XY )− E(X)E(Y ) =
q

(E(Z))2

(
b
∑
i

uiuh(i) −
∑
i

∑
j

uiuj

)
. (18)

Based on (18), we summarize the Pearson degree correlation function in the
following theorem.

Theorem 2. Let G be a graph generated by the construction algorithm in
Section 2. Randomly select an edge from the graph. Let X and Y be the
degrees of the two vertices at the two ends of this edge. Then, the Pearson
degree correlation function of X and Y is

ρ(X,Y ) = cq, (19)

where
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c =
b
∑
i uiuh(i) −

∑
i

∑
j uiuj

σXσY (E(Z))2
,

and σX and σY are the standard deviation of the pmfs in (12) and (4).

In view of (19), the sign of ρ(X,Y ) depends on the constant c. To generate
assortative (resp. disassortative) mixing random graphs we sort ui’s in de-
scending order first and then choose the permutation h that maps the largest
number of ui’s to the largest (resp. smallest) number of ui’s. This is formally
stated in the following corollary.

Corollary 1. Let π(·) be the permutation such that uπ(i) is the ith largest
number among ui, i = 1, 2, . . . , b, i.e.,

uπ(1) ≥ uπ(2) ≥ . . . ≥ uπ(b).

(i) If we choose the permutation h with h(π(i)) = π(i) for all i, then the
constructed random graph is assortative mixing.

(ii) If we choose the permutation h with h(π(i)) = π(b + 1 − i) for all i,
then the constructed random graph is disassortative mixing.

The proof of Corollary 1 is based on the famous Hardy, Littlewood and Pólya
rearrangement inequality (see e.g., the book [23], pp. 141).

Proposition 1. (Hardy, Littlewood and Pólya rearrangement in-
equality) If ui, vi, i = 1, 2, . . . , b are two sets of real number. Let u[i]
(resp. v[i]) be the ith largest number among ui, i = 1, 2, . . . , b (resp. vi,
i = 1, 2, . . . , b). Then

b∑
i=1

u[i]v[b−i+1] ≤
b∑
i=1

uivi ≤
b∑
i=1

u[i]v[i]. (20)

Proof. (Corollary 1) (i) Consider the circular shift permutation σj(·) with
σj(i) = (i + j − 1 mod b) + 1 for j = 1, 2, . . . , b. From symmetry, we have
σj(i) = σi(j). Thus,

b∑
i=1

b∑
j=1

uiuj =
b∑
i=1

b∑
j=1

uiuσi(j) =
b∑
j=1

b∑
i=1

uiuσj(i). (21)

Using the upper bound of the Hardy, Littlewood and Pólya rearrangement
inequality in (21) and h(π(i)) = π(i) yields

b∑
i=1

uiuσj(i) ≤
b∑
i=1

u[i]u[i] =

b∑
i=1

uπ(i)uh(π(i)) =

b∑
i=1

uiuh(i). (22)

In view of (18) and (21), we conclude that the generated random graph is
assortative mixing.



5 An Application: Percolation 13

(ii) Using the lower bound of the Hardy, Littlewood and Pólya rearrangement
inequality in (21) and h(π(i)) = π(b+ 1− i) yields

b∑
i=1

uiuσj(i) ≥
b∑
i=1

u[i]u[b+1−i] =

b∑
i=1

uπ(i)uh(π(i)) =

b∑
i=1

uiuh(i). (23)

In view of (18) and (21), we conclude that the generated random graph is
disassortative mixing.

5 An Application: Percolation

In this section we present a percolation analysis of the generalized configu-
ration model.

We consider node percolation of a random network with n vertices. Recall
that we define Z to be the degree of a randomly selected vertex in the network.
Let pk = Pr(Z = k) be given and let E(Z) be the expected value of Z.

Let φ be the probability that a node stays in the network after the per-
colation. That is, 1 − φ is the probability that a node is removed from the
network. In the literature of percolation analysis, φ is called the occupation
probability. We assume that φ ∈ (0, 1). Let αi be the probability that along
an edge with one end attached to a stub in block i, one can not reach a giant
component. Let ηi be the probability that a randomly selected vertex from
block i is in a giant component after the random removal of vertices. Then,

ηi = φ
∑
k∈Hi

pk
(
1− αki

)
. (24)

Let η be the probability that a randomly selected vertex is in a giant com-
ponent after the random removal of vertices. Then,

η =

b∑
i=1

ηi
∑
k∈Hi

pk. (25)

We now derive a set of equations for αi, i = 1, 2, . . . , b. We randomly select
an edge. Call this edge e. Let D be the event that e does not connect to a
giant component. Let Bi be the event that one end of this edge is associated
with a stub in block i. Suppose that the other end of e is attached to a vertex
called v. Then by the law of total probability we have

Pr(D|Bi) =

b∑
j=1

∞∑
k=1

Pr(D|Y = k,Bj , Bi) Pr(Y = k,Bj |Bi), (26)
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where Y is the degree of v and Bj is the event that vertex v is in block j.
According to (9), we have

Pr(Y = k,Bj |Bi) =

{
qb+(1−q)

E(Z) kpk, k ∈ Hh(i),
1−q
E(Z)kpk, k ∈ Hj , j 6= h(i).

(27)

If vertex v is removed from the network through percolation, then edge e
does not lead to a giant component. This occurs with probability 1−φ. With
probability φ, vertex v is not removed. Conditioning on Y = k, edge e does
not lead to a giant component if all the k − 1 edges of v do not. In addition,
conditioning on Bj , event D is independent from event Bi. Combining these
facts together, we have

Pr(D|Y = k,Bj , Bi) = Pr(D|Y = k,Bj)

= 1− φ+ φαk−1j . (28)

Substituting (27) and (28) into (26), we have

αi =
∑

k∈Hh(i)

(
1− φ+ φαk−1h(i)

) (bq + 1− q)kpk
E(Z)

+

b∑
j=1,j 6=h(i)

∑
k∈Hj

(
1− φ+ φαk−1j

) (1− q)kpk
E(Z)

. (29)

Let

gi(x) =
∑
k∈Hi

kpkx
k−1

E(Z)
(30)

for i = 1, 2, . . . , b. Combining constant terms, we rewrite (29) in terms of
gi(z), i.e.

αi = 1− φ+ φ

(bq + 1− q)gh(i)(αh(i)) + (1− q)
b∑

j=1,j 6=h(i)

gj(αj)

 . (31)

Expressing (31) in the form of vectors, we have

α = f(α), (32)

where α is a vector in [0, 1]b and f is a vector function that maps from [0, 1]b

to [0, 1]b. In this section, we use boldface letters to denote vectors. The i-th
entry of f(α) is denoted by



5 An Application: Percolation 15

fi(α) = 1−φ+φ

(bq + 1− q)gh(i)(αh(i)) + (1− q)
b∑

j=1,j 6=h(i)

gj(αj)

 . (33)

Solutions of (32) are called the fixed points of the function f .
Note that αi = 1 for all i = 1, 2, . . . , b, is always a root of (32). Denote

point (1, 1, . . . , 1) by 1. We are searching for a condition under which α = 1
is the only solution of (32) in [0, 1]b, and a condition under which (32) has
additional solutions. Define

J(a) =


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)∂xb
∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)∂xb

...
...

. . .
...

∂fb(x)
∂x1

∂fb(x)
∂x2

. . . ∂fb(x)∂xb


∣∣∣∣∣∣∣∣∣∣
x=a

, (34)

where a = (a1, a2, . . . , ab) is a point in [0, 1]b. Matrix J(a) is called the
Jacobian matrix of function f(x). For function f defined in (33), the Jacobian
matrix has the following form

J(a) = φ(bqH + (1− q)1b×b)D{g′1(a1), g′2(a2), . . . , g′b(ab)}, (35)

where 1b×b is a b × b matrix of unities, and D{g′1(a1), g′2(a2), . . . , g′b(ab)} is
a diagonal matrix. In (35), matrix H is a permutation matrix whose (i, j)
entry is one if j = h(i), and is zero otherwise. Let φλ1, φλ2, . . . , φλb be the
eigenvalues of J(1) with

|λ1| ≥ |λ2| ≥ . . . ≥ |λb|.

Since gj is a power series with non-negative coefficients for all j, g′j is strictly
increasing and g′j(1) > 0. Thus, J(1) is a positive matrix. According to the
Perron-Frobenius theorem [24, 18], φλ1 is real, positive and strictly larger
than φλ2 in absolute value. In addition, there exists an eigenvector v associ-
ated with the dominant eigenvalue that is positive component-wise.

The existence of roots of (32) is summarized in the following main result.

Theorem 3. Let
φ? = 1/λ1. (36)

The solution of (32) can be in one of two cases.

1. If 0 < φ < φ?, point 1 is an attracting fixed point. In addition, it is the
only fixed point in [0, 1]b.

2. If φ? < φ < 1, point 1 is either a repelling fixed point or a saddle point
of the function f in (32). There exists another fixed point in [0, 1)b. This
additional fixed point is an attracting fixed point.

The proof of Theorem 3 is presented in the appendix. Note that in case 1
of Theorem 3, the only root is α = 1. From (24), ηi = 0 for all i = 1, 2, . . . , b.
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It follows that η = 0 and the network has no giant component. In case 2, the
network has a giant component whose size is determined by the additional
fixed point.

We first study the behavior of f in the neighborhood of 1. We consider
the following iteration

xn+1 = f(xn), n = 0, 1, 2, . . . (37)

where the initial vector x0 is in the neighborhood of the fixed point 1. Assume
that gi(x) can be linearized, i.e. gi(x) can be approximated by keeping two
terms in its Taylor expansion around one

gi(x) ≈ gi(1) + g′i(1)(x− 1) (38)

for all i = 1, 2, . . . , b. Now substituting (38) into (37) and noting that

gi(1) = 1/b

(bq + 1− q)gh(i)(1) + (1− q)
b∑

j=1,j 6=h(i)

gj(1) = 1.

for all i = 1, 2, . . . , b, we obtain the following matrix equation

xn+1 − 1 = J(1)(xn − 1), (39)

where we recall that J(1) is the Jacobian matrix stated in (35). Substituting
(39) repeatedly into itself, we obtain

xn − 1 = (J(1))n(x0 − 1).

If the dominant eigenvalue φλ1 < 1, xn − 1→ 0 and 1 is an attracting fixed
point. If all eigenvalues are greater than one in absolute value, x moves away
from 1. In this case, 1 is a repelling fixed point. Suppose that some eigenvalues
are greater than one and some are less than one in absolute values. In this
case, point 1 is called a saddle point. Point xn is attracted to 1, if x0 − 1 is
a linear combination of the eigenvectors associated with eigenvalues smaller
than one in absolute values. Otherwise, xn moves away from 1.

6 Numerical and Simulation Results

We report our simulation results in this section. Recall that we derive the
degree covariance of two neighboring vertices based on Assumption 1. As-
sumption 1 is extremely restrictive. For degree sequences that do not satisfy
Assumption 1, the analyses in Sections 3 and 4 are only approximate. In this
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section, we compare simulation results with the analytical results in Section
4.

We have simulated the construction of networks with 4000 vertices. We
use the batch mean simulation method to control the simulation variance.
Specifically, each simulation is repeated 100 times to obtain 100 graphs. Eq.
(1) was applied to compute the assortativity coefficient for each graph. One
average is computed for every twenty repetitions. Ninety percent confidence
intervals are computed based on five averages. We have done extensive num-
ber of simulations for uniform and Poisson distributed degree distributions.
We have found that simulation results on Pearson degree correlation coeffi-
cient agree extremely well with (19) for a wide range of b and q. Due to space
limit, we do not present these results in the paper. We have also simulated
power-law degree distributions. Specifically, we assume that the exponent of
the power-law distribution is negative two, i.e., pk ≈ k−2 for large k. We
first fix b at six. The degree correlations for power-law degree distributions
are shown in Figure 1 and Figure 2 for an assortatively mixed network and
a disassortatively mixed network, respectively. The discrepancy between the
simulation result and the analytical result is quite noticeable in Figure 1 when
q is large, while the two results agree very well in Figure 2. This is because
power-law distributions can generate very large sample values for degrees. As
a result, Assumption 1 may fail in this case. We decrease b to two, which in-
creases the block size. The corresponding Pearson degree correlation function
for an disassortatively mixed network is presented in Figure 3. One can see
that the approximation accuracy is dramatically increased as the block size
is increased.
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Fig. 1 Degree correlation of an assortative model. Power-law degree distribution and
b = 6



18 Duan-Shin Lee and Cheng-Shang Chang and Miao Zhu and Hung-Chih Li

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

q

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t

 

 

simulation

analysis

Fig. 2 Degree correlation of a disassortative model. Power-law degree distribution
and b = 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

q

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t

 

 

simulation

analysis

Fig. 3 Degree correlation of a assortative model. Power-law degree distribution and
b = 2

For percolation analysis, we study the critical value of φ. We assume that
degrees are geometrically distributed. However, geometrical distributions do
not satisfy Assumption 1. Assumption 1 is essential. Without this assump-
tion, 1 is not a fixed point and numerical calculations would fail. We must
adjust the probability masses to make Assumption 1 hold. We illustrate this
modification for the b = 2 case. We start with a geometric degree distribution
(1− p)pk, where k = 0, 1, . . ., and p = 2/3. The corresponding E(Z) = 2. We
thus have

p̃k = k(1− p)pk/2, k = 0, 1, . . .
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We move part of the probability mass from p̃4 to p̃5. After this modification,
the distribution {p̃k} becomes

p̃k =

k(1− p)pk/2 k ≥ 0, k 6= 4, k 6= 5;
2(1− p)p4 − 0.0782 if k = 4;
5(1− p)p5/2 + 0.0782 if k = 5.

(40)

Let H1 = {0, 1, 2, 3, 4} and H2 = {k : k ≥ 5}. It is easy to verify that {p̃k}
satisfies Assumption 1.

We study b = 2 and b = 3. Note that (40) is modified for b = 2. For
b = 3, one needs to adjust two probability masses. We omit the details for
space reason. In both cases, we study two permutations of blocks suggested
in Section 4 for assortativity and disassortativity. For assortative networks,
h(i) = i. For disassortative networks, h(i) = b+1− i. In the case of b = 3, we
have also studied a rotational permutation, i.e., h(i) = ((i+ 1) mod b) + 1.
The critical values of φ obtained using (36) are shown in Table 1. We also
numerically calculate the critical values of φ. In this numerical study, we
gradually decrease φ until (32) fails to have a solution in the interior of
[0, 1)b. From these results, we see that the critical values of φ obtained from
(36) agree very well with those obtained numerically.

Finally, we study the giant component sizes of the generalized configura-
tion models. We numerically solve (32) to obtain vector α, and then compute
η using (25). In this study, we continue to assume that degrees are geomet-
rically distributed as we did in the study of Table 1. The giant component
sizes are shown in Figure 4. From this figure, we see that assortative networks
have smaller percolation thresholds than disassortative networks. Hence, gi-
ant components emerge more easily in assortative networks. However, disas-
sortative networks tend to have larger giant component sizes than assortative
networks for large φ. The effect of assortativity and disassortativity to the gi-
ant component sizes and the percolation thresholds observed in this example
agrees with that observed in Newman [30]. For the effect of q, larger values of
q decrease the percolation thresholds and the giant component sizes of assor-
tative networks. On the other hand, larger values of q increase the percolation
thresholds and the giant component sizes of disassortative networks.

7 Conclusions

In this paper we have presented an extension of the classical configuration
model. Like a classical configuration model, the extended configuration model
allows users to specify an arbitrary degree distribution. In addition, the model
allows users to specify a positive or a negative assortative coefficient. We
derived a closed form for the assortative coefficient of this model. We verified
our result with simulations.
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q = 0.2 q = 0.5 q = 0.8

b = 2, assortativity
φ? 0.22662 0.19518 0.16692
numerical 0.22662 0.19513 0.16688

b = 2, disassortativity
φ? 0.26715 0.29237 0.31231
numerical 0.26711 0.29237 0.31229

b = 3, assortativity
φ? 0.22252 0.18095 0.14540
numerical 0.22251 0.18092 0.14537

b = 3, disassortativity
φ? 0.27442 0.30784 0.32967
numerical 0.27438 0.30782 0.32965

b = 3, rotator
φ? 0.26572 0.29682 0.33182
numerical 0.26571 0.29682 0.33181

Table 1 Critical values of φ.

Fig. 4 Size of the giant component vs. φ.
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Appendix
In this appendix we prove Theorem 3. To achieve this, we need a matrix

version of the mean value theorem. We state the result in the following lemma.

Lemma 1. Suppose that x and y are two points in [0, 1]b. Then, there exists
constants ci in the open intervals (min(xi, yi),max(xi, yi)), such that

f(x)− f(y) = J(c)(x− y), (41)

where c = (c1, c2, . . . , cb).

Proof (Lemma 1). Suppose that x and y are two points in [0, 1]b. Consider
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fi(x)− fi(y) = φ(bq + 1− q)
(
gh(i)(xh(i))− gh(i)(yh(i))

)
+φ(1− q)

b∑
j=1,j 6=h(i)

(gj(xj)− gj(yj)) . (42)

Since function gj is continuous and differentiable in (0, 1), by the mean value
theorem there is a cj , where min(xj , yj) < cj < max(xj , yj), such that

g′j(cj) =
gj(xj)− gj(yj)

xj − yj
(43)

for all j. Substituting (43) into (42) and expressing (42) in matrix form, we
immediately prove (41).

The proof of Theorem 3 also needs the Poincaré-Miranda Theorem, which
is a gereralization of the intermediate value theorem. We quote the Poincaré-
Miranda Theorem from [17]. Let Ib = [0, 1]b be the b-dimensional cube of the
Euclidean space Rb. For each i ≤ b denote

I−i
def
= {x ∈ Ib : xi = 0}, I+i

def
= {x ∈ Ib : xi = 1}

the i-th opposite faces.

Proposition 2. (Poincaré-Miranda Theorem) Let f : Ib → Rb, f =
(f1, f2, . . ., fb), be a continuous map such that for each i ≤ b, fi(I

−
i ) ⊂

(−∞, 0] and fi(I
+
i ) ⊂ [0,+∞). Then, there exists a point c ∈ Ib such that

f(c) = 0.

Now we prove Theorem 3.

Proof (Theorem 3). Now we analyze the first case in Theorem 3. We have
shown that fixed point 1 is attracting. We now show that there is no other
fixed point in [0, 1]b. Suppose not. Assume that there is another distinct fixed
point. Denote it by x. From Lemma 1, we have

1− x = J(c)(1− x). (44)

Since gi is a power series with non-negative coefficients, gi is monotonically
increasing, differentiable and g′i is also increasing. Thus,

J(c) = φ(bqH + (1− q)1b×b)D{g′1(c1), g′2(c2), . . . , g′b(cb)}
≤ φ(bqH + (1− q)1b×b)D{g′1(1), g′2(1), . . . , g′b(1)} (45)

= J(1)

component-wise. Inequality (45) is due to the fact that H, 1b×b and the two
diagonal matrices are all non-negative. Substituting the inequality above into
(44), we have
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1− x ≤ J(1)(1− x).

Substituting the last inequality repeatedly into itself, we have

1− x ≤ J(1)n(1− x)→ 0,

as n → ∞, since the dominant eigenvalue of J(1) is strictly less than one.
We thus reach a contradiction to the assumption that x is distinct from 1.

Now we consider the second case. We first show that there exists a point
x in [0, 1]b such that

x− f(x) ≥ 0.

Denote such a point by η. We choose

η = 1− εv, (46)

where ε is a small positive number and v is the eigenvalue of J(1) associated
with the dominant eigenvalue φλ1. For small ε, we have

f(η) = f(1− εv) ≈ f(1)− J(1)(εv) = 1− J(1)(εv).

It follows from the above equation that

η − f(η) ≈ (J(1)− I)(εv), (47)

where I is the b × b identity matrix. Since v is an eigenvector of J(1) asso-
ciated with φλ1, (47) reduces to

η − f(η) = (φλ1 − 1)εv.

Since φλ1 > 1 and v > 0 entry-wise, we have

η − f(η) > 0 (48)

for some ε > 0.
Next we shall show that (32) has another fixed point in [0, 1)b. To apply

Proposition 2, we transform system (32) by changing variables. That is, for
any xi ∈ [0, ηi], where ηi is the i-th entry of η defined in (46). We define
yi = xi/ηi, for i = 1, 2, . . . , b. Then, we define function F : [0, 1]b → [0, 1]b,
where the i-th entry of F is

Fi(y) = ηiyi − fi(η1y1, η2y2, . . . , ηbyb).

We now show that for any y ∈ I−i ,

Fi(y)

= −fi(η1y1, η2y2, . . . , ηbyb)
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= −(1− φ)− φ

(bq + 1− q)gh(i)(ηh(i)yh(i)) + (1− q)
∑
j 6=h(i)

gj(ηjyj)


≤ 0,

since gj(ηjyj) ≤ 1/b for all j. Next, consider y in I+i . In this case,

Fi(y) = ηi − fi(η1y1, . . . , ηi−1yi−1, ηi, ηi+1yi+1, . . . , ηbyb)

≥ ηi − fi(η1, . . . , ηi−1, ηi, ηi+1, . . . , ηb) (49)

≥ 0, (50)

where (49) follows from the monotonicity of gj for all j, and (50) follows from
(48). From Proposition 2, F (y) = 0 has a root in [0, 1]b. Equivalently, (32)
has a root in [0, 1)b. We denote this root by z.

We now show that fixed point z is attracting. From (41) since both 1 and
z are fixed points, we have

1− z = J(c)(1− z), (51)

where zi < ci < 1. From (51), the unity is an eigenvalue of J(c) and 1 − z
is the associated eigenvector. Since J(c) is a positive matrix and 1 − z is a
positive vector component-wise, by the Perron-Frobenius theorem, the unity
is the dominant eigenvalue of J(c) [24]. By the definition in (30), g′i is strictly
increasing for all i. It follows that g′i(ci) > g′i(zi) and from (35) we have

J(c) = φ(bqH + (1− q)1b×b)D{g′1(c1), g′2(c2), . . . , g′b(cb)}
> φ(bqH + (1− q)1b×b)D{g′1(z1), g′2(z2), . . . , g′b(zb)}
= J(z) (52)

component-wise. Recall that we assume q < 1. With φ > 0, it is clear that
both J(c) and J(z) are irreducible matrices. From Theorem 9 of [36] (see
also [14]), (52) implies that the spectral radius of J(z) is strictly less than
that of J(c). This implies that z is an attracting fixed point.
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