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Abstract—In this paper we propose a new model for binary
opinion dynamics in a (fully-connected) structurally balanced
network. In a structurally balanced network, agents are classified
into two clusters and two agents in the same cluster (resp.
different clusters) are connected with a positive (resp. negative)
edge. Initially, every agent is assigned with one of the two opinions
randomly. In every time slot, three agents are randomly selected
to have their opinions updated. If the three agents belong to the
same cluster, the majority rule is used to update their opinions.
On the other hand, if the three agents belong to two different
clusters, with probability p a consensus is reached by the majority
rule, and with probability 1− p a polarization (in line with the
signs of the three edges) is reached. The probability p, called
the rationality probability, plays a significant role for measuring
how rational the agents in a network behave when they encounter
different opinions. By applying a fluid limit theorem for jump
Markov processes, we derive a system of differential equations
for the density functions of opinions for large networks. We
show that the equilibrium points corresponding to consensus and
polarization are the only stable equilibrium points. All other
equilibrium points are all unstable. As such, as time goes on
the network eventually reaches a consensus or a polarization,
depending on the rationality probability and the initial state of
the network.
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I. INTRODUCTION

With the advent of online social networking services, re-

search on social networks gains popularity beyond social

scientists, and receives attention among physicists, mathemati-

cians and computer scientists. Opinion dynamics is one of

the most important topics in the study of social networks.

Agreement and disagreement occur in our daily life all the

time. For instance, we may agree with a friend and adopt

his/her opinions. Alternatively, we may disagree with someone

whom we are not fond of, and thus keep a different opinion.

Research on opinion dynamics ranges from the mechanism of

update to the algorithms to maximize the influence. We refer

the reader to Castellano et. al. [1] for a plethora of studies in

this area. We also refer the reader to [2], [3] for recent studies

on opinion dynamics.

Recently a model was proposed to study iterative and

hierarchical debates on issues [4][5]. In this model n agents,

endowed with binary opinions, form a complete graph of social

contacts. At each iteration, r agents are randomly selected.

These agents form a discussion group and at the end of

discussion all agents take the majority opinion in the group.

This model was called the majority rule (MR) model and it

was solved in the mean field approximation by Krapivsky and

Redner [6] in 2003 with a fixed r. Lambiotte [7] investigated

the MR model on networks with community structure in 2007.

Chen and Redner [8] extended the MR model to multi-state

opinions and plurality rule. We refer the reader to Castellano

et. al. [1] for more extensions of the MR model. In this

paper, we extend the MR model to signed structurally balanced

networks. We refer the reader to [9], [10], [11] for references

on structurally balanced networks. Li et. al. [12] modeled

the spreading of opinions in structurally balanced networks

by a Susceptible-Infectious-Recovery (SIR) epidemic process.

Singh et. al. [13] proposed a three-state model, in which both

opinions and edge signs update with time.

In political science, the term polarization generally refer to

the observation that individuals’ opinions or view points are

often ideologically aligned with a political party [14]. Polar-

ization between two political parties has long been observed

in many democratic countries, such as the United States of

America [14], [15], [16], [17], [18], [19]. For instance, the

Democrat and the Republican parties in the United States of

America have relatively opposite ideological point of views.

It is often observed that bills are voted in a polarized way

in the Congress of the United States. Specifically, nearly all

the congressmen in the two political parties vote similarly.

However, the vote by the congressmen in one party is different

from that by the other party. In fact, in Taiwan nearly all bills

are polarized.

In this paper we shall extend the MR model to study

political polarization. We consider a static structurally bal-

anced signed network, in which two opinions dynamically

update. We shall show that local polarization or consensus

in a triad leads to a global polarization or consensus in opin-

ions. To distinguish between polarization and consensus, we

introduce a parameter called rationality probability. The larger

the rationality probability, the more likely a global consensus

is reached eventually. For networks with a finite size, we
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formulate the extended MR model as a discrete-time Markov

chain with absorbing states corresponding to polarization or

consensus. We observe a phase transition from polarization

to consensus. Specifically, there exists a threshold on the

rationality probability. If the rationality probability is less than

this threshold, polarization will occur. Otherwise, consensus

will occur. The larger the network is, the more obvious the

phase transition is. Applying a fluid limit theorem for jump

Markov processes, we scale both space and time linearly

to obtain a system of differential equations for the density

functions of opinions. We show that the equilibrium points of

the system corresponding to polarization and consensus can

be stable under certain conditions. Other equilibrium points

are always nonstable.

The rest of the paper is organized as follows. In Section

II we present our model. In Section III we present a Markov

chain analysis on networks with a finite size. In Section IV

we apply a fluid limit theorem to derive a nonlinear system of

differential equations. We present our study of the equilibrium

points of this system in this section. In Section VI we present

our numerical study on the model. We draw our conclusions

in Section VII.

II. THE MODEL

In this paper, we propose a new model for binary opinion

dynamics in a fully connected signed network with n1 + n2

vertices (or agents). Each vertex is associated with one of

two opinions, opinion 0 and opinion 1. We assume that this

network is clusterable and has two clusters. The sizes of the

two clusters are n1 and n2 vertices, respectively. Specifically,

any edge that connects two vertices in the same cluster is a

positive edge. On the other hand, any edge that connects two

vertices in different clusters is a negative edge.

For such a network, we say a triad (with three vertices) is

stable if (i) their opinions are the same, or (ii) their opinions

are in line with the signs of the three edges, i.e., two vertices

connected by a positive (resp. negative) edge have the same

opinion (resp. different opinions). For the first case, the stable

triad is said to be in consensus. On the other hand, the stable

triad for the second case is said to be in polarization as their

opinions are polarized by the signed edges.

Consider a Poisson process with rate 1. At every arrival

epoch of the Poisson process, we randomly select a triad and

perform the following update to the opinions of the three

vertices in the triad.

(i) The selected triad is a stable triad: nothing is done.

(ii) The selected triad is not a stable triad:

1) The three selected vertices are in the same cluster: The

opinions of the three vertices are modified according to

the majority rule. By doing so, the triad is in consensus.

2) The three vertices belong to different clusters and the

two vertices in the same cluster have different opinions

(see panel (a) in Figure 1): With probability p, the

opinions in the triad are modified according to the

majority rule (see panel (b) in Figure 1). The opinions

in the triad in panel (a) then reach a consensus. On the

other hand, with probability 1− p, the triad is changed

in the way that the two vertices in the same cluster have

the same opinion that is different from the (original)

opinion of the vertex in the other cluster (see panel (c)

in Figure 1). By doing so, the opinions in panel (c)

reaches polarization.

The reader might wonder why we did not address the case

that the three vertices belong to different clusters and the two

vertices in the same cluster have the same opinion. This is

because in such a case, the triad is stable as it is either in

consensus or in polarization. Also, we note from the above

micro-rule that there is at most one vertex that changes its

opinion in each update of a randomly selected triad. The

probability p is called the rationality probability in this paper

as it measures how rational the vertices in a network behave

when they encounter different opinions. If they are rational,

then the majority rule should be used. On the other hand, if

they are irrational, then their opinions are influenced by their

relationships with other people.

We can extend the concept of consensus and polarization for

a triad to the whole network. Specifically, we say the network

is in consensus if all the vertices have the same opinion,

and in polarization if all the vertices in one cluster have one

opinion while all the vertices in the other cluster have the other

opinion. Through the above micro-rule for opinion updates in

randomly selected triads, we will show later that the whole

network will be either in consensus or in polarization in the

long run, depending on the rationality probability p and the

initial state of the network.

Fig. 1: Opinion update in a triad.

III. THE GENERATOR OF THE MARKOV PROCESS

Let N1(t) denote the number of vertices with opinion 1

in cluster 1 at time t. Similarly, let N2(t) be the number

of such vertices in cluster 2. Clearly, the process N(t) =
(N1(t), N2(t)) is a continuous-time Markov process with

the state space {(i, j) : 0 ≤ i ≤ n1, 0 ≤ j ≤ n2}.

This Markov process has four absorbing states, namely states

(0, 0), (n1, 0), (0, n2) and (n1, n2). States (0, 0) and (n1, n2)
correspond to the case that vertices in the network reach

consensus. States (0, n2) and (n1, 0) imply that the network

is polarized. We are particularly interested in the probability

that polarization occurs.
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Before we derive the generator of this Markov process,

we introduce some probabilities. Consider the state (i, j) and

randomly pick three vertices from the network. For ℓ = 0, 1, 2
or 3, let gℓ(o1, o2, o3) be the probability that the opinions of

the three randomly selected vertices are o1, o2 and o3, and

the vertices with the opinions o1, o2, . . . , oℓ are drawn from

cluster 1. For example, supposing that the state is (i, j) with

i ≥ 3, g3(1, 1, 0) is the probability that the three vertices are

drawn from cluster 1 and two of them have opinion 1 and the

other one has opinion 0. Specifically,

g3(1, 1, 0) =

(

i
2

)(

n1 − i
1

)

(

n1 + n2

3

) . (1)

As another example, in state (i, j)

g2(0, 1, 0) =
i · (n1 − i) · (n2 − j)
(

n1 + n2

3

) .

Now we derive the state transition rate from state (i, j) to

state (i+1, j). Denote the state transition rate by q(i,j),(i+1,j).

Then, since the Poisson process in our opinion dynamics has

rate 1, we have

q(i,j),(i+1,j) = g3(1, 1, 0)+g2(1, 0, 1) ·p+g2(1, 0, 0) · (1−p).
(2)

To see (2), we note that there are three cases in which the

number of vertices with opinion 1 in cluster 1 can increase.

First, the three randomly selected three vertices are all from

cluster 1 and two of them have opinion 1 and the third vertex

has opinion 0. In this case, the opinions are modified according

to the majority rule and as a result, the number of opinion 1

in cluster 1 is increased by one. The probability of this case is

g3(1, 1, 0) and it is the first term on the right side of (2). In the

second case, two out of the three randomly selected vertices

are chosen from cluster 1 and the third vertex is chosen from

cluster 2. The opinions of the two vertices in cluster 1 are 0

and 1, while the opinion of the vertex in cluster 2 is 1. In this

case, if the vertices behave rationally (with probability p), the

vertex with opinion 0 in cluster 1 changes its opinion to 1. The

number of vertices with opinion 1 is thus increased by one.

The probability of this case is g2(1, 0, 1)·p and it is the second

term on the right side of (2). The third case is similar to the

second case, where two vertices are drawn from cluster 1 and

one vertex is from cluster 2. However, in the third case, the

opinion of the vertex in cluster 2 is 0. If the vertices behave

irrationally (with probability 1− p), the vertex with opinion 0

in cluster 1 changes its opinion to 1. The probability of this

case is g2(1, 0, 0) · (1− p) and it is the third term on the right

side of (2).

Other transition rates can be similarly derived. We only list

them without giving detailed derivations.

q(i,j),(i,j+1) = g0(1, 1, 0) + g1(1, 1, 0) · p

+g1(0, 1, 0) · (1− p) (3)

q(i,j),(i−1,j) = g3(1, 0, 0) + g2(1, 0, 1) · (1− p)

+g2(1, 0, 0) · p (4)

q(i,j),(i,j−1) = g0(1, 0, 0) + g1(1, 1, 0) · (1− p)

+g1(0, 1, 0) · p. (5)

As there is at most one vertex that can change its opinion, we

then have

q(i,j),(i,j) = −q(i,j),(i+1,j) − q(i,j),(i,j+1)

−q(i,j),(i−1,j) − q(i,j),(i,j−1). (6)

For the Markov processes N(t), there is an embedded

Markov chain at each arrival epoch. Let Q be the (n1 · n2)×
(n1·n2) generator matrix of N(t) with the states being ordered

in the lexicographic order. As the underlining Poisson process

is with rate 1, the state transition probability matrix P of the

embedded Markov chain is simply I + Q, where I is the

(n1 · n2)× (n1 · n2) identity matrix.

Once the transition probabilities of the embedded Markov

chain are obtained, it is a standard procedure to calculate

absorption probabilities. We refer the reader to [20] for a

discussion of Markov chains with absorbing states. Suppose

that a Markov chain has t transient states and r absorbing

states and that the one-step transition probability matrix can

be written in the form of a block matrix
(

P t R

0 Ir

)

,

where the t × t matrix P t contains transition probabilities

among transient states, matrix R contains transition probabil-

ities from transient states to absorption states. Matrix Ir is

an r× r identity matrix, where r is the number of absorption

states. Then, the absorption probability from state k1 to state

k2 is given in the (k1, k2)
th entry of the t×r matrix η, where

η = (It − P t)
−1R. (7)

However, computing the absorption probabilities for large

networks by using (7) is difficult as it needs to invert a large

matrix. To tackle this problem, we shall consider the fluid limit

for large networks in the next section.

IV. THE FLUID LIMIT OF LARGE NETWORKS

In this section we derive the fluid limit for the opinion

dynamics in large networks. For this, we consider a sequence

of networks that scale with n. In the nth network, we set

n1 = n and n2 = ⌈an⌉, where a is a parameter that denotes

the asymptotic ratio of the sizes of these two clusters. Using

Kurtz’s fluid limit theorem for jump Markov processes [21],

we have the following theorem.

Theorem 1. Suppose that n1 = n and n2 = ⌈an⌉ and that we

start the opinion dynamics with N1(0) = ⌈nx0⌉ and N2(0) =
⌈any0⌉ for some 0 ≤ x0 ≤ 1 and 0 ≤ y0 ≤ 1. As n → ∞,
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the sequence of stochastic processes (N1(nt)/n1, N2(nt)/n2)
converges to (x(t), y(t)) that is the solution of the following

system of first order differential equations with the initial

condition (x0, y0):

x′(t) = µ1(x, y) =
3

(1 + a)3
x(1− x)

×(2x− 1 + 2a(1− 2p)(1− 2y)), (8)

and

y′(t) = µ2(x, y) =
3a2

(1 + a)3
y(1− y)

×(2y − 1 + 2a−1(1− 2p)(1− 2x)). (9)

Specifically, for any ǫ > 0,

lim
n→∞

P

(

sup
0≤s≤t

[|
N1(nt)

n1
−x(t)|+ |

N2(nt)

n2
− y(t)|] ≥ ǫ

)

= 0.

(10)

Note that N1(nt)/n1 (resp. N2(nt)/n2) is the density of

the number of vertices that have opinion 1 in cluster 1

(resp. cluster 2) at time nt. The fluid limit theorem shows

that the density processes follow a deterministic trajectory

characterized by (x(t), y(t)) if we scale the space and time

properly in large networks.

Proof. To prove (8) and (9), one needs to compute the drift

of the process (N1(nt)/n1, N2(nt)/n2). Specifically, let

µn(x, y) = (µn,1(x, y), µn,2(x, y)), (11)

where for ℓ = 1 and 2,

µn,ℓ(x, y)

= lim
∆t→0

E[∆Nℓ(nt)|N(nt) = (nx, nay)]

nℓ∆t
. (12)

Note that we abuse the notations a bit for clarity and nx and

nay in (12) should be ⌈nx⌉, ⌈nay⌉ as Nℓ(nt), ℓ = 1 and 2
are integers.

In view of Theorem 2.11 in [21] (for density dependent

family of Markov chains), it suffices to show that as n → ∞,

µn,ℓ(x, y) converges to µℓ(x, y) for ℓ = 1 and 2. For the

Markov process N(nt), its generator matrix is nQ as it is

speeded up n times in comparison with the original Markov

process N(t). In view of (2) and (4), it follows that

E[∆N1(nt)|N(nt) = (nx, nay)]

= n(q(nx,nay),(nx+1,nay) − q(nx,nay),(nx−1,ny))∆t

+o((∆t)2)

= n
(

g3(1, 1, 0)− g3(1, 0, 0) + p(g2(1, 0, 1)− g2(1, 0, 0))

+(1− p)(g2(1, 0, 0)− g2(1, 0, 1))
)

∆t+ o((∆t)2).

(13)

Similarly, we have from (3) and (5) that

E[∆N2(nt)|N(nt) = (nx, nay)]

= n(q(nx,nay),(nx,nay+1) − q(nx,nay),(nx,nay−1))∆t

+o((∆t)2)

= n
(

g0(1, 1, 0)− g0(1, 0, 0) + p(g1(1, 1, 0)− g1(0, 1, 0))

+(1− p)(g1(0, 1, 0)− g1(1, 1, 0))
)

∆t+ o((∆t)2).

(14)

Recall that n1 = n and n2 = ⌈an⌉. For the state (nx, nay),
we have from (1) that as n → ∞

g3(1, 1, 0) =
nx(nx−1)

2 (n1 − nx)
(n1+n2)(n1+n2−1)(n1+n2−2)

3·2·1

→
3x2(1− x)

(1 + a)3
. (15)

Similarly, as n → ∞,

g3(1, 0, 0) =
nx (n1−nx)(n1−nx−1)

2
(n1+n2)(n1+n2−1)(n1+n2−2)

3·2·1

→
3x(1− x)2

(1 + a)3
, (16)

g2(1, 0, 0) =
(nx)(n1 − nx)(n2 − nay)
(n1+n2)(n1+n2−1)(n1+n2−2)

3·2·1

→
6ax(1− x)(1− y)

(1 + a)3
, (17)

and

g2(1, 0, 1) =
(nx)(n1 − nx)nay

(n1+n2)(n1+n2−1)(n1+n2−2)
3·2·1

→
6ax(1− x)y

(1 + a)3
. (18)

Using (15)–(18) in (13) yields

lim
n→∞

µn,1(x, y) = µ1(x, y).

To show that limn→∞ µn,2(x, y) = µ2(x, y), one first ob-

serves that

g0(1, 1, 0) →
3a3y2(1− y)

(1 + a)3
, (19)

g0(1, 0, 0) →
3a3y(1− y)2

(1 + a)3
, (20)

g1(0, 1, 0) →
6a2(1− x)y(1− y)

(1 + a)3
, (21)

g1(1, 1, 0) →
6a2xy(1− y)

(1 + a)3
. (22)

Then use these in (14) and (12) to show limn→∞ µn,2(x, y) =
µ2(x, y).
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V. STABILITY

In this section we study the stability of the fluid limit of

large networks. For this, we need to consider the equilibrium

points of the system of first order differential equations in

(8) and (9), i.e., the solutions of µ1(x, y) = µ2(x, y) = 0.

From (8) and (9), it is clear that the equilibrium points are the

solutions of

x(1− x)(2x− 1 + 2a(1− 2p)(1− 2y)) = 0, (23)

y(1− y)(2y − 1 + 2a−1(1− 2p)(1− 2x)) = 0. (24)

Both the identities in (23) and (24) contain three factors. As

we can choose a factor from each identity to solve a system of

two linear equations, there are 9 solutions of (23) and (24) and

thus 9 equilibrium points. Clearly, (0,0), (1,1), (0,1), and (1,0)

are solutions of Eqs. (23) and (24). In addition, the solution

of the linear system

x = 0

2y − 1 + 2a−1(1− 2p)(1− 2x) = 0

is a solution of Eqs. (23) and (24). This implies that (0, 1/2−
(1 − 2p)/a) is a solution. For this solution to lie in the unit

square, p and a must satisfy 0 ≤ 1/2− (1− 2p)/a ≤ 1. This

implies that

−
a

2
≤ 1− 2p ≤

a

2
. (25)

Similarly,
(

1,
1

2
+

1− 2p

a

)

,

(

1

2
−

1− 2p

a
, 0

)

, and

(

1

2
+

1− 2p

a
, 1

)

are also equilibrium points. Finally, the solution of the linear

system

2x− 1 + 2a(1− 2p)(1− 2y) = 0 (26)

2y − 1 + 2a−1(1− 2p)(1− 2x) = 0 (27)

is an equilibrium point. If p 6= 1/4 and p 6= 3/4, the above

system has a unique solution (1/2, 1/2). If p = 1/4 or p =
3/4, the two straight lines in (26) and (27) coincide. In this

case any point on the straight line (26) is also an equilibrium

point.

One common approach for analyzing the stability of an

equilibrium point (x∗, y∗) is to use linearization. Specifically,

one first obtain Taylor’s expansions for µ1(x, y) and µ2(x, y)
around the equilibrium point, i.e., for ℓ = 1 and 2,

µℓ(x, y) = µℓ(x
∗, y∗) +

∂µℓ(x, y)

∂x

∣

∣

∣

x∗,y∗

(x− x∗)

+
∂µℓ(x, y)

∂y

∣

∣

∣

x∗,y∗

(y − y∗)

+ o(
√

(x− x∗)2 + (y − y∗)2). (28)

Note that µℓ(x
∗, y∗) = 0 as (x∗, y∗) is an equilibrium point.

Then consider the 2× 2 matrix

A(x∗,y∗) =





∂µ1(x,y)
∂x

∣

∣

∣

x∗,y∗

∂µ1(x,y)
∂y

∣

∣

∣

x∗,y∗

∂µ2(x,y)
∂x

∣

∣

∣

x∗,y∗

∂µ2(x,y)
∂y

∣

∣

∣

x∗,y∗



 . (29)

The system of first order differential equations in (8) and

(9) can be approximated by
(

x′(t)
y′(t)

)

= A(x∗,y∗)

(

x(t)− x∗

y(t)− y∗

)

+o(
√

(x(t)− x∗)2 + (y(t)− y∗)2).(30)

Thus, the equilibrium point (x∗, y∗) is stable if the real parts

of both eigenvalues of the matrix A(x∗,y∗) are negative. Such

an equilibrium point is called a node sink. On the other hand,

if the real parts of both eigenvalues of the matrix A(x∗,y∗) are

positive, then such an equilibrium point is called a node source

and it is unstable. Finally, if the real parts of both eigenvalues

of the matrix have different signs, then it is called a saddle

point and it is also unstable.

Our main result of this section is the following stability

result.

Theorem 2. Assume that p 6= 1/4 and p 6= 3/4. The

classification of the 9 equilibrium points of the system of

first order differential equations in (8) and (9) are shown in

Table I. Except the four equilibrium points, (0,0), (1,1), (0,1),

and (1,0), the other equilibrium points are not stable for any

choices of a and p.

One important corollary of this theorem is that for large

networks, the opinions of all the vertices are either in con-

sensus or in polarization in the long run. In particular, if

1− 2p < −(2a)−1, then the opinions will reach a consensus

for every initial state. On the other hand, if 1− 2p > (2a)−1,

then the opinions will be polarized for every initial state. For

−(2a)−1 < 1− 2p < (2a)−1, whether the opinions of all the

vertices will be in consensus or in polarization depends on the

initial state. Numerical results for this will be given in Section

VI-B.

Now we prove Theorem 2.

Proof. First we consider the origin. Note that

A(0,0) =

(

−3
(1+a)3 + 6(1−2p)a

(1+a)3 0

0 −3a2

(1+a)3 + 6(1−2p)a
(1+a)3

)

.

(31)

Since A(0,0) is diagonal, its eigenvalues are the diagonal

entries. It is easy to verify that if 1 − 2p > a/2, both

eigenvalues are positive. If 1−2p < 1/(2a), both are negative.

If 1/(2a) < 1− 2p < a/2, one eigenvalue is positive and the

other is negative. In the first case, the origin is a nodal source

and the system is unstable. In the second case, the origin is

a nodal sink and the system is stable. In the third case, the

origin is a saddle point and the system is again unstable.

We now study the stability of points (1, 1)T , (1, 0)T and

(0, 1)T . It is easy to verify that A(1,1) = A(0,0). Thus, the

equilibrium point (1, 1)T has identical stability properties as

that of the origin. It is also easy to verify that

A(1,0) = A(0,1)

=

(

−3
(1+a)3 − 6(1−2p)a

(1+a)3 0

0 −3a2

(1+a)3 − 6(1−2p)a
(1+a)3

)

.(32)
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TABLE I: Stability conditions of the equilibrium points

equilibrium point nodal sink nodal source saddle point

(1/2, 1/2)T 1/4 < p < 3/4 p < 1/4 or p > 3/4

(0, 0)T and (1, 1)T 1− 2p < (2a)−1 1− 2p > a/2 (2a)−1 < 1− 2p < a/2

(0, 1)T and (1, 0)T 1− 2p > −(2a)−1 1− 2p < −a/2 −a/2 < 1− 2p < −(2a)−1

(0, 1/2− (1− 2p)/a)T and 3/4 < p < min(1/2 + a/4, 1) or otherwise

(1, 1/2 + (1− 2p)/a)T and max(1/2− a/4, 0) < p < 1/4
(1/2− (1− 2p)/a, 0)T and

(1/2 + (1− 2p)/a, 1)T

It is easy to verify that the two eigenvalues of the matrix in

(32) are both positive if 1− 2p < −a/2. The two eigenvalues

are both negative if 1 − 2p > −1/(2a). The two eigenvalues

have different signs if

−a/2 < 1− 2p < −1/(2a).

Suppose that p 6= 1/4 and p 6= 3/4. We now determine the

stability property of the equilibrium point (1/2, 1/2).

A(1/2,1/2) =

(

1
(1+a)3

3
2

−3(1−2p)a
(1+a)3

−3(1−2p)a
(1+a)3

a2

(1+a)3
3
2

)

.

Since A(1/2,1/2) is symmetric, its eigenvalues must be real.

The characteristic equation of A(1/2,1/2) is

s2 −
3(1 + a2)

2(1 + a)3
s+

9a2

4(1 + a)6
−

9(1− 2p)2a2

(1 + a)6
= 0. (33)

If p < 1/4 or p > 3/4, then (1 − 2p)2 > 1/4. In this case,

the constant term on the left of (33) is negative. Thus, the two

roots of (33) must be real and have different signs. It implies

that point (1/2, 1/2)T is a saddle point and is unstable. If

1/4 < p < 3/4, it is easy to verify that the constant term

on the left of (33) is positive. In addition, the derivative of

the characteristic polynomial in (33) at s = 0 is negative.

Hence, the two roots are both positive. This implies that the

equilibrium point (1/2, 1/2)T is a nodal source and thus, is

unstable.

We now analyze the stability property of point (0, 1/2 −
(1− 2p)/a). We have

A(0,1/2−(1−2p)/a)

=

(

9−48p+48p2

(1+a)3 0
3(2+a−4p)(−2+a+4p)(−1+2p)

a(1+a)3
3(a2−4(1−2p)2)

2(1+a)3

)

.

(34)

The two eigenvalues of the matrix in (34) are

λ1 =
3(−3 + 4p)(−1 + 4p)

(1 + a)2
(35)

λ2 =
3(2 + a− 4p)(−2 + a+ 4p)

2(1 + a)2
. (36)

We now analyze the two eigenvalues. Note that λ1 is a convex

function of p, while λ2 is a concave function of p. Eigenvalue

λ1 is negative if 1/4 < p < 3/4. Eigenvalue λ2 is positive if

1

2
−

a

4
< p <

1

2
+

a

4
. (37)

Recall that we assume that a ≥ 1. Thus, the interval (1/4, 3/4)
is contained in the interval (1/2− a/4, 1/2 + a/4). Note that

condition (37) is identical that (25), which is required in order

for the equilibrium point (0, 1/2−(1−2p)/a) to lie in the unit

square. These facts imply that the two eigenvalues are either

both positive, or one negative and one positive. In either case,

the equilibrium point (0, 1/2− (1− 2p)/a) is unstable. If

1

2
−

a

4
< p <

1

4
or

3

4
< p <

1

2
+

a

4
,

the equilibrium point is a nodal source. Otherwise, it is a

saddle point.

The stability analysis of points (1/2 − (1 − 2p)/a, 0),
(1, 1/2 + (1 − 2p)/a) and (1/2 + (1 − 2p)/a, 1) is similar.

We omit the details.

In Theorem 2 we did not consider the cases in which p =
1/4 or p = 3/4. We now consider these two special cases.

Recall that in these special cases the linear system in (26) and

(27) is degenerate. We first consider p = 1/4. We substitute

(8) into (9) and obtain

y′

y(1− y)
= (−a)

x′

x(1− x)
. (38)

Integrate both sides of (38) and we obtain

y =
c1(1− x)a

xa + c1(1− x)a
, (39)

where constant c1 is

c1 =
y0

1− y0

(

x0

1− x0

)a

.

Eq. (39) describes the trajectory along which the solution of

(8) and (9) moves. From (39) it is clear that if the initial

point (x0, y0) is not on the straight line (26) the solution

converges to either (0,1) or (1,0). If the initial condition is on

the straight line (26), it stays there forever, since the derivatives

x′ and y′ are both zero. In Figure 2 we show the trajectories

corresponding to p = 1/4, a = 1, 2 and (x0, y0) = (0.2, 0.1),
(0.2, 0.5) and (0.2, 0.9). The two straight lines correspond to

(26) with a = 1 and 2. For any value of a, the corresponding

straight line bisections the unit square into two regions. Any

initial point moves along the curve described in (39) to point

(1, 0) or (0, 1) without intersecting with the straight line.

Similarly, the trajectories corresponding to p = 3/4 always

reach (0, 0) or (1, 1), unless the initial points lie on the straight

line (26).
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Fig. 2: Trajectories described in (39).

VI. NUMERICAL RESULTS

In this section we present our numerical results. In Section

VI-A, we show the numerical results for the polarization

probabilities of the Markov process. In Section VI-B, we plot

the basins of attraction for the fluid limit of large networks to

further understand the effects of parameters and initial states.

In Section VI-C, we make an attempt to apply our model for

the interaction among members of congress or parliament.

A. Absorption probabilities of the Markov process

In this section, we show various numerical results for the

Markov process derived from our model of binary opinion

dynamics. We are particularly interested in the probability that

polarized opinions occur in a network. In our numerical study

we assume that at time zero with probability p(i, j), there

are i and j vertices respectively in clusters 1 and 2 that have

opinion 1. Suppose that starting from state (i, j) the probability

of absorption into state (0, n2) (resp. state (n1, 0)) is denoted

by η(i,j),(0,n2) (resp. η(i,j),(n1,0)). We define the probability of

polarization

n1
∑

i=0

n2
∑

j=0

p(i, j)
(

η(i,j),(0,n2) + η(i,j),(n1,0)

)

. (40)

In a special case, in which each vertex independently chooses

opinion 1 with probability q and opinion 0 with probability

1− q, the initial distribution p(i, j) is
(

n1

i

)

qi(1− q)n1−i

(

n2

j

)

qj(1− q)n2−j . (41)

We first show the probability of polarization (as a function

of the rationality probability p) for five different combinations

of n1 and n2 in Figure 3. From this figure, it is clear that the

smaller the difference between the sizes of the two clusters,

the more likely that polarization occurs (when n1 + n2 is

fixed). We then study the probability of polarization with

(n1, n2) = (20, 30). We consider five values of q. The

result is presented in Figure 4, which clearly indicates that

the smaller the difference between the expected number of

opinions initially, the more likely polarization occurs.

We show the probability of polarization for q = 1/2 and

q = 4/5 in Figure 5 and Figure 6, respectively. In these figures,

we consider five network sizes with constant a = 3/2. From

Fig. 3: Probability of polarization with q = 1/2 and five

different combinations of n1 and n2 with n1 + n2 = 50.

Fig. 4: Probability of polarization with (n1, n2) = (20, 30)
and five different values of q.

these figures, it seems clear that the network exhibits a phase

transition where polarization occurs with high probability

when the rationality probability p is less than a threshold value.

When p is more than this threshold, polarization is unlikely

to occur. From the figures, it shows that as the network

size grows, this phase transition becomes more eminent and

eventually reaches a binary outcome as predicted by the fluid

limit of large networks.

Fig. 5: Probability of polarization with q = 1/2 and four

different combinations of n1 and n2 with a = 3/2.

B. Basins of attraction for the fluid limit

In this section, we show numerical results for the fluid

limit of large networks. Recall that the parameter a is the

the asymptotic ratio of the sizes of these two clusters. To

understand the effect of the two parameters a and p, we plot in

Figure 7 the basins of attraction for a = 1 and p = 0.4, 0.5 and

0.6. Note that the basin of attraction is the set of points in the

space of system variables such that initial conditions chosen in
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Fig. 6: Probability of polarization with q = 4/5 and a = 3/2.

this set dynamically evolve to a particular equilibrium point.

Each arrow at a point (x, y) in these figures is drawn in line

with the direction of (µ1(x, y), µ2(x, y)) so that one can see

how an initial state in a basin of attraction is attracted to

its corresponding equilibrium point. As shown in this figure,

increasing the rationality probability p enlarges the basins of

attraction for the equilibrium points (0, 0) and (1, 1). Thus, it

is more likely to reach a consensus for a random chosen initial

state.

In Figure 8, we plot the basins of attraction for p = 0.45 and

a = 2 and 4. From this figure, one can see that the trajectory

from any initial state moves first to the vicinity of a boundary

and then converges to one of the stable equilibrium points.

For instance, consider a trajectory hits y = 1 at some point x̂.

Then this trajectory will move to its left if µ1(x, y)|x̂,1 < 0
and to its right if µ1(x, y)|x̂,1 > 0. From (8), we know that this

trajectory will move to (1, 1) along the line y = 1 if x̂ > (1+
2a(1−2p))/2 and (0, 1) if x̂ < (1+2a(1−2p))/2. For a = 2
(resp. a = 4) and p = 0.45, we have (1+2a(1−2p))/2 = 0.7
(resp. 0.9) and that matches extremely well to the boundary

between the two basins of attraction for (1, 1) and (0, 1) at

y = 1 in Figure 8a (resp. Figure 8b). In Figure 8c we further

increase a to 8. In this case, equilibrium points (0, 0) and

(1, 1) cease to be stable. The only stable equilibrium points

are (0, 1) and (1, 0), and the system approaches polarization

as time goes to infinity.

C. Applications

Finally, we attempt to model the interaction among members

of congress or parliament. In nearly all democratic countries

parliament consists of two major political parties. Parliament

members who belong to the same political party tend to have

similar political opinions, while the two parties tend to have

opposite views in most issues. As a result, votes on many bills

tend to be polarized. In this section, we use voting records

to determine the rationality probability p for two democratic

countries and compare the polarization probability obtained by

our model with that of the voting records. First we consider

the Legislative Yuan in Taiwan. This is the organization that

makes laws in Taiwan. It is equivalent to the congress in the

United States and the parliament in the United Kingdom. We

consider two consecutive sessions of length 3 years each. The

first session, denoted by session I from now on, began in

February 22, 2008 and ended in January 20, 2012. The second

session, denoted by session II from now on, began in January

24, 2012 and is still on going at the time when this paper

is being written. For session II we consider bills that were

voted before February 24, 2015. There were 128 members in

session I. For various reasons, such as lawsuits or taking up

new positions in the government, some members in session II

left the Legislative Yuan. As a result, the number of members

was reduced and became 113 in session II. Similar to those

of most democratic countries, the political ecology in Taiwan

consists of two major political parties and several small ones.

In this study we focus on the two major political parties and

ignore the small parties. In session I , the two major parties had

85 and 36 members respectively. In session II , the two major

parties had 65 and 40 members as shown in Table II. Some

Legislative Yuan members may not appear to cast ballots for

some bills and some may even cast invalid ballots. Thus, we

consider only those parliament members who cast valid ballots

for 80% or more of all bills in the sessions. Those members

who meet this criteria are called effective and those who did

not meet this criteria are ignored in the study. The numbers of

members of the two parties who meet this criteria in session

i are denoted by ni
1 and ni

2 respectively for i = I and II . A

bill that all effective members have voted is said to be a major

bill. In this study we consider only major bills and non-major

bills are ignored. In Table II we list the number of effective

legislators of the two parties followed by the total number of

legislators. In this table, we also list the number of major bills

followed by the total number of bills.

We estimate the rationality probability p in the following

way. We consider all combinations of triads, in which two

parliament members belong to one party and the other member

belongs to a different party. For a particular triad we count

the number of major bills that the triad votes unanimously in

session II . We also count the number of major bills where

the vote of the triad is polarized. We accumulate those two

numbers for all the triad combinations. We approximate p
by the fraction of unanimous votes to the total number of

unanimous votes and polarized votes. The value of p is shown

in Table III.

We now describe how the initial distribution of opinions

for session II is obtained. Note that we have determined nI
1

and nI
2. In session I, there were 75 major bills. For any point

(i, j) in the rectangle RI = {(i, j) : i = 0, 1, . . . , nI
1, j =

0, 1, . . . , nI
2}, p(i, j) is the fraction of major bills in the total

number of major bills that i and j members in the two parties

have voted favorably. We then re-scale the range of the two-

dimensional probability mass function p(i, j) from RI to rect-

angle RII = {(i, j) : i = 0, 1, . . . , nII
1 , j = 0, 1, . . . , nII

2 }.

With the rationality probability p and the initial distribution

p(i, j) we compute the probability of polarization using (40)

with n1 and n2 replaced by nII
1 and nII

2 respectively. The

result is presented in the third column of Table III. We say

that a bill is polarized if 80% or more of the effective members

in both parties cast the same votes, while the majorities of the

two parties vote differently. We say that a bill is unanimous if
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(a) a = 1 and p = 0.4. (b) a = 1 and p = 0.5. (c) a = 1 and p = 0.6.

Fig. 7: Basins of attraction for a = 1.

(a) a = 2 and p = 0.45. (b) a = 4 and p = 0.45. (c) a = 8 and p = 0.45.

Fig. 8: Basins of attraction for p = 0.45.
Country information source session I session II

number of legislators number of bills number of legislators number of bills

Taiwan vote.ly.gov.tw (32,2)/(85,36) 75/490 (53,38)/(65,40) 53/405

United States www.govtrack.us (74,26)/(245,200) 1069/1600 (72,28)/(237,202) 533/762

TABLE II: Information on the Legislative Yuan of Taiwan and the Congress of the United States. The third column and the

fifth column are the number of effective legislators of two parties followed by the total number of legislators. The fourth

column and the sixth column are the number of major bills followed by the total number of bills.

80% or more of the effective members in both parties cast the

same vote. There were totally 405 bills voted in session II , out

of which 53 bills were major. Out of the 53 major bills, 52 bills

were polarized and one bill was unanimous. Thus, the fraction

of polarized bills is 52/53 = 0.9811. This number is presented

in the last column of Table III. Note that we compute the

rationality probability and the initial opinion distribution based

on statistics collected in session I. Our model then predicts the

probability of polarization in session II.

Similarly, we analyzed the voting record of the 112-nd and

the 113-rd United States Congress. As before, we consider

only a subset of legislators and bill. The number of effective

legislators of the United States is very large. There were

nearly 400 effective legislators. Recall that the calculation of

absorption probabilities in (7) is based on matrix multiplication

and inversion. The most efficient matrix multiplication and

inversion algorithm has a complexity of O(n2.373) [22], where

n = (n1 + 1)(n2 + 1) is the dimension of the matrix. The

storage complexity of matrices is O(n2). The size of the

Congress causes very large matrices in the calculation of

Country p probability of fraction of
polarization polarized bills

Taiwan 0.0878 0.9867 0.9811

United States 0.2721 0.89 0.779

TABLE III: Rationality probability and polarization probabil-

ity.

absorption probabilities. Either specialized numerical method

or special computer with large amount of memory is needed.

We decide to reduce the number of effective legislators to

100. Specifically we sort the legislators in descending order

of the number of bills that they have voted and we consider

the top 100 legislators. Other procedure remains the same. The

rationality probability p is 0.2721. The probability of polar-

ization obtained using (7) is 0.89. There were 533 major bills

voted in session II, out of which there were 82 unanimous bills

and 289 polarized bills. The rest bills are neither unanimous

nor polarized. The fraction of polarized bill is 289/533. These

numbers are presented in Table III.

In this paper, we use parliamentary voting records as a

case study of opinion spreading in signed networks. We can
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also study the dynamics of opinions in web news sites or

product-rating sites, such as Slashdot and Epinions [11], using

our model. We note that our model may also be used to

study the phenomenon of consensus verses polarization in

other applications, such as spread of technologies or adoption

of conventions in a signed network. For instance, it is well

known that international relations can be friendly or hostile,

and exhibit structural balance [10]. Although there are many

technologies that are unanimously adopted by all countries in

the world, there are examples where adoption is polarized. For

example, NTSC and PAL are two video recording standards

on cassettes. Nearly half of the countries adopt NTSC and

nearly the other half adopt PAL. As another example, adoption

of traffic regulations is polarized between right-hand traffic

and left-hand traffic. There are evidences that adoption of

technologies or conventions by a country can be affected by

its friendly neighbors as well as its hostile neighbors.

VII. CONCLUSIONS

In this paper we have proposed a new model for binary

opinion dynamics in a static structurally balanced network.

For networks with a finite size, we apply the technique of

Markov chains with absorbing states to analyze the probability

of polarization. We observe that the probability of polarization

exhibits a phase transition phenomenon. For networks of

an infinite size, we apply a fluid limit theorem to derive

a nonlinear system of differential equations. We present an

analysis on the stability of the equilibrium points of the

system.

During the revision process of this paper, the associate

editor pointed out reference [13] to us. We were not aware

of this reference during the writing of this paper. We now

highlight [13] and briefly discuss the differences between the

two papers. We believe that relationship between two actors

is relatively stable and can only change in a long time frame.

It is less likely that this relationship changes frequently and

abruptly in the adoption process of one opinion. Rather, it

is more likely that the relationship between two actors is

the accumulative result of appreciation/depreciation of many

issues. Thus, in this paper we have assumed a static fully-

connected structurally balanced network. The update process

of opinions in this network randomly chooses triads. Opinions

in the chosen triad are updated according to different rules

depending on whether members of the triads are friendly or

hostile to each other.

Singh et. al. [13] propose a signed network model with

three types of opinions. Specifically, there are two extreme

opinions, the leftists and rightists, and a median opinion,

the centrists. Extremists are connected by negative edges and

edges connecting other opinion types are all positive. In their

model, both the opinions and the edge signs update with time.

At each time slot, either a vertex is randomly chosen, or a

triad is chosen. If a vertex is chosen and if the vertex is an

extremist, it is converted to a centrist. If a triad is chosen and

the triad is unbalanced, the authors propose rules to balance

the triad by converting either an extremist to a centrist, or

vice versa. Edge signs are updated accordingly, since edges

between a leftist and a rightist are negative and all other edges

are positive. The network converges to either a consensus of

centrist state, or a polarization between leftist state and rightist

states. The authors derive a system of differential equations for

the density of leftists and that of rightists. Depending of the

values of the parameters, the system of differential equations

can have only one stable equilibrium point, which corresponds

to an all-centrist consensus, or three equilibrium points. In the

latter case, two are stable and the third point is an unstable

saddle point. In the limit of the update process, if a polarization

is formed, the two clusters of the structurally balanced network

have an equal size. The authors also discuss the convergence

time of the update process.
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