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Abstract—Based on Newman’s fast algorithm [13], in this
paper we develop a general probabilistic framework for de-
tecting community structure in a network. The key idea of
our generalization is to characterize a network (graph) by a
bivariate distribution that specifies the probability of the two
vertices appearing at both ends of a randomly selected path in the
graph. With such a bivariate distribution, we give a probabilistic
definition of a community and a definition of a modularity index.
To detect communities in a network, we propose a class of
distribution-based clustering algorithms that have comparable
computational complexity to that of Newman’s fast algorithm.
Our generalization provides the additional freedom to choose a
bivariate distribution and a correlation measure. As such, we
obtain significant performance improvement over the original
Newman fast algorithm in the computer simulations of random
graphs with known community structure.

keywords: large complex networks, graph partitioning,
clustering algorithms

I. INTRODUCTION

There has been a surge of interest on detecting community
structure in large complex networks since the first paper in the
physics literature by Girman and Newman [9]. In the literature,
networks are commonly modelled by (mathematical) graphs
and the problem of detecting community structure in large
complex networks is also known as the graph partitioning
problem that divides a graph into several disjoint subgraphs,
called clusters or communities. As pointed out in the recent
review papers in [11] and [20], many algorithms have been de-
veloped by researchers among various research communities,
including physicists, biologists, and computer scientists. These
algorithms might be classified as follows: (i) divisive algo-
rithms [15], [21], [26], [6], [22], (ii) agglomerative algorithms
[13], [2], (iii) graph partitioning and clustering algorithms [4],
[16], and (iv) data compression algorithms [23], [24]. Various
comparison studies of these algorithms can be found in [5],
[17].

In spite of all the efforts in developing community detection
algorithms, there are still many questions that we do not have
satisfactory answers. For instance, what is a community in
a network? Even with a definition of a community, what
would be the right index for measuring the performance of
a graph partition? Based on Newman’s fast algorithm [13], in

this paper we will provide a general probabilistic framework
for these questions. The key idea of our framework is to
characterize a graph by a bivariate distribution that specifies
the probability of the two vertices appearing at both ends of a
“randomly” selected path in the graph. With such a bivariate
distribution, we can then define a community as a set of
vertices with the property that it is more likely to find the
other end in the same community given one of the two ends
in a randomly selected path is already in the community. To
detect communities, we define a class of correlation measures
that can be used for measuring how two vertices (and two com-
munities) are related. Two communities are positively (resp.
negatively) correlated if the value of a correlation measure
for these two communities is positive (resp. negative). As a
generalization of Newman’s fast algorithm, we propose a class
of distribution-based clustering algorithms for community de-
tection. Like most agglomerative algorithms, our distribution-
based clustering algorithms start from viewing each vertex
as a solely member in a community and then repeatedly
merge the two most positively correlated communities into
a new community until all the remaining communities are
negatively correlated. There are two theoretic results that can
be proved for a distribution-based clustering algorithm: (i) it
guarantees that every community detected by the algorithm
satisfies the definition of a community under certain technical
conditions for the bivariate distribution, and (ii) the algorithm
increases an index in each merge of two positively correlated
communities. Such an index is also called a modularity index
in this paper as it is a generalization of the original modularity
index in [13] and it might be used as a performance index
for a graph partition. Once the bivariate distribution is given,
the computation complexity of a distribution-based clustering
algorithm is O(n? logn) for a graph with n vertices and it can
be reduced to O(n(logn)?) following the implementation in
[2] by exploiting the “sparseness” of the bivariate distribution.

One of the well-known problems of Newman’s fast algo-
rithm is its resolution limit in detecting communities [12].
Our general probabilistic framework might provide a solution
for this problem. Note that for each choice of the bivariate
distribution there is one corresponding definition of a commu-
nity and one corresponding definition of a modularity index.



Newman’s fast algorithm simply corresponds to the special
case that the bivariate distribution is obtained from uniformly
selecting a path with length 1. As such, its resolution is
quite limited. To improve the resolution, it seems plausible
to consider bivariate distributions that have nonzero probabil-
ities for selecting paths with length greater than 1. Such an
observation is verified via extensive computer simulations for
randomly generated graphs with 128 vertices and four known
communities in this paper.

In addition to the choice of the bivariate distribution for
the problem of resolution limit, there is another choice of the
correlation measure that might lead to performance improve-
ment. In this paper, we propose three correlation measures: (i)
covariance, (ii) correlation and (iii) mutual information. The
first one corresponds to the original measure used in New-
man’s fast algorithm. From our simulation results, the last two
perform better than the first one when we consider a bivariate
distribution that has nonzero probabilities for selecting paths
with length greater than 1.

The rest of the paper is organized as follows. In Section
II, we first give a brief review of Newman’s fast algorithm.
We then provide a probabilistic interpretation of Newman’s
fast algorithm in Section III. The general framework is given
in details in Section IV. We show how one can obtain a
bivariate distribution from the adjacency matrix of a graph
in Section IV-A, define correlation measures in Section IV-B,
propose the class of distribution-based clustering algorithms in
Section IV-C, and define a community and a modularity index
in Section IV-D. We report our simulation results in Section
V. The paper is concluded in Section VI, where we address
possible extensions of our work.

II. REVIEW OF NEWMAN’S FAST ALGORITHM

In the literature, a network is commonly modelled by a
graph G(V, E), where V denotes the set of vertices in the
graph and E denotes the set of edges in the graph. The problem
of detecting community structure in a network is to find a
function that assigns every vertex in the graph to a community
(also known as a graph partitioning problem in [7], [25]). In
this paper, we are particularly interested in Newman’s fast
algorithm [13] for finding such an assignment, and we will
start from giving a brief review of Newman’s fast algorithm.

Let n = |V| be the number of vertices in the graph and
index the n vertices from 1,2, ..., n. Then the graph G(V, E)
can also be characterized by an n X n adjacency matrix A,
where

L,
A’U’LU - { 0’

Let m = |E| be the number of edges in the graph and k, be
the degree of vertex v. From the adjacency matrix, we then
have

if vertices v and w are connected,
otherwise.

(D
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v=1w=1

and
kv = Z Avw~ (3)

Let ¢, be the community of vertex v and d(c,,%) be the
d-function that equals to 1 if ¢, = ¢ and O otherwise. Then
the fraction of ends of edges that are attached to the vertices
in community ¢, denoted by a;, can be represented as follows:

1 n
P= — : AR 4
a; Zm;kué(cu,w “4)
Let

n n
iy = 5 30 Auudlen, )3(cus ). s)
v=1w=1
When ¢ = j, e;; is the fraction of edges that join the vertices
in community ¢, and when % # j, e;; is one-half of the fraction
of edges that join the vertices in community ¢ and the vertices
in community j.
In [15], Newman and Girvan proposed a modularity index
Q as follows:

Q=> (eii—aj). 6)

As explained in [13], if the fraction of within-community
edges is the same as what we would expect for a randomized
network, then this quantity is zero. Nonzero values represent
deviations from randomness. The objective of a community-
detecting algorithm is then to find an assignment for each
vertex so that the modularity index () can be maximized.
However, it was shown in [1] that finding such an optimal
assignment is NP-complete in the strong sense.

In [13], Newman proposed a heuristic approach for the
problem based on an agglomerative hierarchical clustering
method (see e.g., the books [7], [25] for more references on ag-
glomerative hierarchical clustering algorithms). The algorithm
starts with a state in which each vertex is the sole member in its
community. Then one repeatedly joins communities together
in pairs by choosing at each step the join that results in the
greatest increase (or smallest decrease) in the modularity index
Q. To see how the algorithm works, suppose that there are C'
communities in a certain step with

Q= (enn —af) + -+ (e —af) +---
+(ej; —a3) + -+ (eco — ag).

Now suppose we group community ¢ and community j to
form a new community k. As e is the fraction of edges
that joins the vertices in communities ¢ and j and ay, is the
fraction of ends of edges that are attached to the vertices in
communities ¢ and j, it is easy to see that ey, = e;;+2¢e;;+¢;;
and a, = a; + a;.

Thus, the modularity index @) after grouping community &
and community j to form a new community k is

Q= (ex1—af)+ -+ (exx —az) + -+ + (ecc — agy),



where

(exr — ai) = (eii + €5 + 2ei5) — (ai + a;)?
= (eis — a3) + (ej5 — af) + 2(es; — azay).

This shows that the change of the modularity index, denoted
by AQ;j, can be easily computed as follows:

AQij = 2(eij — aiaj). (7)

Newman’s fast algorithm then chooses the pair of com-
munity ¢ and community j and group them to form a new
community so that AQ);; is maximized in each step.

ITII. A PROBABILISTIC INTERPRETATION OF NEWMAN’S
FAST ALGORITHM

To further understand the intuition behind Newman’s fast
algorithm, we provide a probabilistic interpretation for New-
man’s fast algorithm in this section.

Consider the graph G(V, E) as described in the previous
section. Suppose that an edge is selected uniformly from the m
edges of the graph. Let (V, W) be the bivariate random vector
that represents the vertices at the two ends of the random
selected edge. Then we have

P((V, W) = (Uv w))

s+ if vertices v and w are connected,
= 2 ; ®)
0, otherwise.
From (8), it follows that
n k’v
P(V=v)= P((V,W) = = — 9
V=)= 3PV =) =52 O
where k, is the degree of vertex v. Similarly,
n kw
P — — P = = —. 10
(W =w) =Y P((V,W) = (v,w)) 5 (10)

v=1
Let S; be the set of nodes in community ¢ and X; (resp. Y;)

be the indicator variable for the event that V' is in community
i (resp. W is in community 7). Specifically,

1, Ves;,
and
. 1, We Sj,
n={0 wes, a2
Using (9) yields
k
PX;=1)=P(VeS)=)Y -~
veS; 2m
1 .
- % kva(cvﬂz) = Q;, (13)

v

where we use (4) in the last identity. Similarly, we also have

P(ij :1):P(W€S’j)=aj, (14)

and

P(X;=1Y;,=1)=P(Ves;,Wes))

1 n n . |
= o33 AwblenDlew ) = e (19)

v=1w=1
Using (13)-(15), one can then compute the covariance of
X, and Y; as follows:
Cov(X;,Y;) = E[X;Yj] — E[Xi]E[Y;
=P(X;=1Y;=1) - P(X; = )P(Y; = 1)

= €ij — a;a;.

(16)

The covariance of two random variables is commonly used
in the literature to measure how these two random variables
are related. A positive (resp. negative) covariance indicates that
these two random variables are positively (resp. negatively)
correlated. For two indicator random variables (like those in
(16)), they are independent if and only if their covariance is
Zero.

In view of (16) and (7), we have a very intuitive proba-
bilistic interpretation for Newman’s fast algorithm. Basically,
one characterizes how two communities are related by a
covariance matrix obtained by using (16) for all pairs of
two communities. In each step, the two communities that
has the largest covariance are selected and grouped into a
new community. The covariance matrix is then updated. The
process is repeated until either there is only one community
left or all the remaining pairs of communities are negatively
correlated.

IV. A GENERAL PROBABILISTIC FRAMEWORK

The probabilistic interpretation of Newman’s fast algorithm
inspires us to develop a general probabilistic framework for
detecting community structure in a network. Instead of char-
acterizing a network by a graph, we characterize a network
by a bivariate distribution. Specifically, for a network with the
set of nodes {1,2,...,n}, it is characterized by a bivariate
distribution p(v, w), v,w = 1,2, ..., n, for randomly selecting

a pair of two nodes V and W, i.e.,
PV =0v,W=w)=p(v,w). a7

Let py (v) (resp. pw(w)) be the marginal distribution of the
random variable V' (resp. W), i.e.,

pV('U) = Zp(v7w)7 (18)
w=1
and "
pw(w) =Y p(v,w). (19)
v=1

If p(v,w) is symmetric, then py(v) = pw(v) for all v, and
py (v) is the probability that a randomly selected node is v. In
case that p(v,w) is not symmetric, we can find a symmetric
bivariate distribution p(v,w) by letting

5o, w) = 5 (60, 0) + plw,v))



A. From a graph to a bivariate distribution

As mentioned before, a network is commonly modelled
by a graph G(V, E), which in turn is characterized by an
adjacency matrix A. The question is how one obtains a
bivariate distribution characterization from a graph model. A
direct approach is to follow the probabilistic interpretation in
Section III that maps an adjacency matrix A to a bivariate
distribution in (8). Let o(A) be the sum of all the elements in
a matrix A, i.e.,

Then one can rewrite (8) as follows:
1
P(V =, W = 'IU) = mAvw. (21)

One problem of using the adjacency matrix is the resolution
limit in community detection. As argued in [12], optimizing
the modularity index () in [15] may fail to detect communities
smaller than a scale that depends on the size of the network
and the degree of interconnectedness of the communities. This
motivates us to consider a more general approach that maps a
graph to a bivariate distribution.

Recall that the bivariate distribution in (21) is the probability
for the two ends of a randomly selected edge in a graph.
Our idea is to generate the needed bivariate distribution by
randomly selecting the two ends of a path. For this, we
first consider a (matrix) function f that maps an adjacency
matrix A to another matrix f(A). Then we define a bivariate
distribution from f(A) by

1
a(f(4))
This idea is further illustrated in the following example for

randomly selecting two ends of a path with length not greater
than 2.

PV =v,W=w)=

f(A)vw. (22)

Example 1: (A random selection of a path with length
not greater than 2) Consider a graph with an n x n adjacency
matrix A and

F(A) = Mol + M A+ X\ A%, (23)

where I is the n x n identity matrix, and \g, A1, and Ay are
three nonnegative constants. Then the two random variables V'
and W in (22) represents the two ends of a randomly selected
path with length not greater than 2. To see this, note that there
are n paths with length O (for the n vertices), a(A) paths with
length 1, and «(A?) paths with length 2. Since

a(f(A) = Xoa(I) + Ara(A) + Aaa(A?),

a path with length £ is selected with probability Ay/a(f(A))
for £ = 0,1, and 2.

We note that the computation complexity of A2 is O(mn)
for a sparse n X n matrix with at most m nonzero elements and
there exist other fast sparse matrix multiplication algorithms
in the literature (see e.g., [27]).

Another approach to generate a bivariate distribution from
the adjacency matrix A from a graph is to consider a random
walk on a graph (see e.g., [3]).

Example 2: (A random walk on a graph) Consider a
graph with an n x n adjacency matrix A. As in (2) and (3), let
m be the total number of edges and k, be the degree of vertex
v. A random walk on such a graph can be characterized by
a Markov chain with the n X n transition probability matrix
R = (Ry,w), where
1
k.,
is the transition probability from vertex v to vertex w. The
stationary probability that the Markov chain is in vertex v,
denoted by m,, is k,/2m. Let 3, be the probability that
we select a path with length ¢, ¢ = 1,2,.... Then the
probability of selecting a random walk (path) with vertices
V="v1,02,y...,

Rv,w = A’uw (24

Voy1 =W 18

0
ﬂé'/Tvl H Rvi,vi+1 M (25)
i=1
From this, we then have the bivariate distribution
RO SO DS 3| LSS

ve 1=1
Since A is a symmetric matrix, it is easy to see that

1 1
71411 w — 7Aw
2m 2m
for all v and w, and the Markov chain is thus a reversible
Markov chain [19]. This implies that

4 14
Moy H Ry, vy = T, H Ry v,
i=1 i=1

and p(v,w) = p(w,v) is thus a symmetric bivariate distribu-
tion. To randomly select a path with length not greater than
2, we can simply let 5, = 0 for all £ > 2 and this leads to

ﬁl 6 = v v2 v v Lug,w
2m T z:: ’ @7

'/TvRv,w = v Wwa,v

p(v,w) =

B. Correlation measures

As discussed in Section III, Newman’s fast algorithm uses
covariance to measure how positively two indicator random
variables are related. In this section, we extend this to a more
general setting by considering “correlation measures” defined
below.

Definition 3: For any two indicator random variables X and
Y, p(X,Y) is called a correlation measure in this paper if

(CO) p(X,Y) is solely determined by the bivariate distri-

bution of X and Y,

(Cl) p(X,Y)=0ifand only if X and Y are independent,

ie.,

(28)



and
(C2) p(X,Y) > 0if and only if X and Y are positively
correlated, i.e.,

PX=1Y=1)>PX=1PY =1). (29

From (C1) and (C2), we also know that p(X,Y") < 0 if and
only if X and Y are negatively correlated, i.e.,

PX=1Y=1)<P(X=1)PY =1).  (30)

We note that the bivariate distribution of two indicator random
variables X and Y is determined once P(X = 1,V = 1),
P(X =1) and P(Y = 1) are given. As such, we only need to
store P(X =1,Y =1), P(X =1) and P(Y = 1) in memory
for the algorithms developed in the next section.

Example 4: (Covariance) For two indicator random vari-
ables X and Y, we have

Cov(X,Y)=P(X=1,Y =1) - P(X =1)P(Y = 1).

Clearly, the covariance of X and Y is a correlation measure.

Example 5: (Correlation) Note that the correlation of two
random variables X and Y, denoted by Correl[ X, Y], can be
computed as follows:

Cov[X,Y]
Var(X)+/Var(Y)’
where Var(X) (resp. Var(Y)) is the variance of X (resp. Y).
For two indicator random variables X and Y, we then have

Correl[X,Y] = (31

Var(X) =P(X =1) — (P(X = 1)), (32)
Var(Y) =P(Y =1) — (P(Y =1))?, (33)
Correl[X, Y]
_PX=LY=1-PX=1DP(Y =1) 34)
Var(X)y/Var(Y)

Clearly, the correlation of X and Y is also a correlation
measure. In comparison with the covariance of X and YV
in Example 4, the correlation of X and Y always has a
value between —1 and 1, and could be more suitable for our
computation later.

Example 6: (Mutual information) The mutual information
of two random variables X and Y (see e.g., [3]), denoted by
I(X;Y), can be computed as follows:

PX,Y(xvy)

I(X;Y) =) Pxy(z,y)log PP (a)’

z,y

(35)

where Px y(x,y) is the bivariate distribution of X and Y,
Px(z) is the marginal distribution of X, and Py (y) is the
marginal distribution of Y. The mutual information I(X;Y),
also known as a special case of the Kullback-Leibler dis-
tance [3], is commonly used as a measure for the distance
between the bivariate distribution Px y (x,y) of two random
variables X and Y and the bivariate distribution if they

were independent. When X and Y are independent, we have
Px y(x,y) = Px(x)Py(y). Thus I(X;Y) = 0 if and only if
X and Y are independent. Let Sgn(z) be the sign function,
ie., Sgn(z) =1if z > 0 and Sgn(x) = —1 if z < 0. Then it
is easy to verify that

p(X,Y) = Sgn(Cov(X,Y)) - I(X;Y)  (36)

is also a correlation measure.

C. Distribution-based clustering algorithms

In the following, we propose a class of distribution-based
clustering algorithms. Like Newmans’s fast algorithm [13],
our algorithms also fall in the category of agglomerative
hierarchical clustering algorithms (see e.g., [7], [25]).
Distribution-based clustering algorithms:

(P0) Input a bivariate distribution p(v, w), v,w =1,2,...,n
that characterizes the two randomly selected nodes V' and W,
and a correlation measure p(X,Y") for two indicator random
variables.

(P1) Initially, there are n communities, indexed from 1 to
n, with each community containing exactly one node. Specifi-
cally, let S; be the set of nodes in community ¢. Then .S; = {i},
i1=1,2,...,n.

(P2) Let X; (resp. Yj) be the indicator random variable for
the event that V' is in community ¢ (resp. W is in community
7). Then

P =1) = 3 pr(v) = pv (i),
veS;

PV;=1)= > pw(w) =pw(),
wES;

P(Xi = 17Yj = 1) = p(v,w) :p(iaj)'

>

vES;, WES;

Compute p(X;,Y;) for all 7 and j.

(P3) Find the two (distinct) communities that have the largest
correlation measure. Group these two communities into a new
community. Suppose that community ¢ and community j are
grouped into a new community k. Then S, = S; U .S; and
update

P(Xy=1)=P(X; =1)+P(X; =1), 37)
PYi=1)=PY;=1)+P(Y; =1), (38)
P(Xr=1,Y,=1)
=PX;=1Y,=1)+P(X;=1Y;=1)
+P(X;=1Y,=1)+P(X; =1Y;=1). (39
Moreover, for all £ # k, update
P(Xr=1Y,=1)
=PX,=1Y,=1)+P(X;=1,Y,=1), (40
P(X,=1,Y,=1)
=PX,=1Y,=1)+P(X,=1Y;=1). (4])

(P4) For all ¢ # k, compute p(Xg,Y?) and p(Xy, Yz).



(P5) Repeat (P3) until either there is only one community
left or all the remaining pairs of communities have negative
correlation measures, i.e., p(X;,Y;) < 0 for all ¢ # j.

Distribution-based clustering algorithms are generalizations
of Newmans’s fast algorithm. In each iteration, the distribution
is updated and then used for computing the new correlation
measures. This is different from most distance-based clus-
tering algorithms [7], [25], where the new distance between
clusters is updated directly. Note that there are at most n — 1
iterations in the above algorithm and there are O(n) updates
for the measures in (P4) for each iteration. The hard part is
to find the two communities that have the largest correlation
measure in (P3). If we simply use a linear search to find the
two communities that have the largest correlation measure in
each iteration, then its computational complexity is O(n?) and
the overall computational complexity for the above algorithm
is O(n?). To reduce the computational complexity, one can
implement a sorted list for the measures in (P2) and then insert
every measure update into the sorted list. As each insertion of
a new update takes O(log(n)) steps (by using a binary search)
and there are O(n) updates in each iteration, the computational
complexity in each iteration can be reduced to O(nlog(n))
and that yields O(n? log(n)) computational complexity for the
above algorithm. One can further reduce the computational
complexity by exploring the “spareness” of the bivariate
distribution. Suppose that we stop the algorithm in (P5) once
all the remaining pairs of communities do not have positive
measures, i.e., p(X;,Y;) < 0 for all ¢ and j. In this case,
we only need to maintain the list of measures with positive
values. From (C2) in Definition 3, it suffices to maintain the
pair of communities 7 and j with P(X; = 1,Y; = 1) > 0.
Two communities ¢ and j are said to be connected if either
PX; =1Y; =1) > 0o P(X; = 1Y, =1) > 0.
Suppose that there are only O(m) connected pairs of them
at the beginning. In view of (P2), we only need to maintain
(and update) the pair of connected communities. As such,
instead of having O(n) updates, one only needs O(|i| + |j])
updates in each iteration, where |i| (resp. |j]) is the number
of communities connected to community 4 (resp. |j|). Thus,
each iteration takes O((]¢|+|j|) logn) steps. Analogous to the
argument in [2], each connected pair contributes at most 2d
updates till the end of the algorithm, where d the is depth of
the dendrogram. Thus, the overall computational complexity
for the above algorithm is O(mdlogn), In practice, we often
have m = O(n) and d = O(logn) and the computational
complexity of the distribution-based clustering algorithm is
O(n(logn)?) as in [2].

D. A probabilistic definition of a community

Up to this point, we have not defined what a commu-
nity means. In the literature, there are many definitions for
communities based the adjacency matrix of the graph that
characterizes a network (see e.g., [21], [10]).

Here we provide a probabilistic definition of a community
based on our framework.

Definition 7: A set of nodes S is a community in a proba-
bilistic sense if

PV eSWeS)>PVeS)P(WeS). (42)
If P(W € S) > 0, then this is equivalent to
PV eSWeS)>PVebs). (43)

For a symmetric bivariate distribution p(v,w), P(V € S) is
simply the probability that a randomly selected node is in
the community. In comparison with the event that a randomly
selected node is in the community, it is more likely to find
the other node in the same community given that one of
a randomly selected pair of two nodes is already in the
community.

Analogous to the definition of the modularity index @ in
[15], we define a modularity index based on our probabilistic
framework.

Definition 8: Consider a bivariate distribution p(v,w) with
v,w = 1,2,...,n. Let S¢, ¢ = 1,2,...,C, be a partition
of {1,2,...,n}, ie, S. N S is an empty set for ¢ # ¢’ and
u%,S. ={1,2,...,n}. The modularity index Q with respect
to the partition S., c=1,2,...,C, is

C
3 (P(V € S., W eS,)—P(VeS)PW e sc>). (44)

c=1

In the following theorem, we show (under certain technical
conditions) that the modularity index is non-decreasing in
every iteration of any distribution-based clustering algorithm
and it indeed detects communities in the probabilistic sense
defined in Definition 7.

Theorem 9: Suppose that p(v,w) is symmetric.

@) Then for any distribution-based clustering algorithm
described in Section IV-C, the modularity index is
non-decreasing in every iteration.

@ii)  If, furthermore,

p(v,v) = (pv (v))?%,

for all v = 1,2,...,n, then every community de-
tected by any distribution-based clustering algorithm
described in Section IV-C is a community in the
probabilistic sense defined in Definition 7.

(45)

Proof. (i) Since we assume that p(v,w) is symmetric, it
suffices to show that

C
> (P(V €S, We S~ (P(V € 5,)?)

c=1

(40)

is non-decreasing in every iteration. Suppose that community
¢ and community j are selected and grouped into a new
community k in some iteration. Thus, we have a new partition
of {1,2,...,n} with S = S; U S;. To prove that the
modularity index in (46) is non-decreasing after grouping



community ¢ and community j into a new community k, we
need to show that
P(V € Sk, W € Sk) — (P(V € 5))?
>P(VeS,WesS;)—(P(VeS))?

+P(V S Sj, W e SJ) — (P(V S Sj))Q. (C9))

Since S = S; US; and S; N .S is an empty set, we have

P(V €Sk, W e Sk)
=P(VeS,WebS,)+P(Ves,Wes;)
+P(V S Sj, W e Sl) + P(V S Sj, W e Sj), (48)

and

P(VeSy) =P(VeS,)+PVeSs;). (49)

Since community ¢ and community j are selected, we know
from (P5) in the distribution-based clustering algorithm that
p(X;,Y;) > 0. In view of (C1) and (C2) in Definition 3, we
have

P(V es;,We S]) = P(Xl = 1,}/.7* = 1)
> P(X; = )P(Y; = 1) = P(V € S;)P(W € 5;).

From the symmetric property of p(v,w), it follows that

P(V € Sj,W S SZ) = P(V €S, W e S])

In view of (48), (49) and (50), it is straightforward to verify
the inequality in (47).
(ii) We prove this by induction. Initially, we have S; = {i}.
It then follows from the assumption in (45) and the symmetric
property of p(v,w) that
P(V e S, We Sl) = P(VZ’L,WZZ) :p(i,i)
> (pv(9)* = pv ()pw (i) = P(V € S;))P(W € 5;).
(5D
In view of (51), we know all the initial n communities are
communities in the probabilistic sense defined in Definition 7.
As the induction hypothesis, suppose that all the com-
munities are communities in the probabilistic sense defined
in Definition 7 up to the ¢** iteration. Now suppose that
community ¢ and community j are selected and grouped into

a new community k at the (¢ 4+ 1)*" iteration. Thus, we have
Sk = S; U S;. From the induction hypothesis, we know that

P(VesS,WesS;)>P(VeS)P(WeS,),
P(V S Sj, W e S]) > P(V S SJ)P(W € SJ)

It then follows from the symmetric property of p(v,w) and
(47) that

P(V € Si, W € Si) > (P(V € Si))?

=P(V € Sp)P(W € Sg). 52)

Thus, community & is also a community in the probabilistic
sense defined in Definition 7. [ ]

We note that the condition in (45) is not satisfied for the
choice of the bivariate distribution in (8). Thus, Newman’s fast
algorithm may not guarantee that every detected community
is a community in the probabilistic sense defined in Definition
7.

In (P5), when p(X,;,Y;) < 0 for all the remaining pairs
of communities ¢ # j, we know from Theorem 9(i) that the
modularity index () in Definition 8 cannot be further improved
and this yields the best structure (in terms of the modularity
index () by any distribution-based clustering algorithm (for
a symmetric bivariate distribution). In practice, one might
continue the process until there is only one community. In
that case, a distribution-based clustering algorithm generates
a dendrogram (an ordered binary tree) that specifies the order
for two communities to be grouped into a new one in each
step.

V. SIMULATION RESULTS

In this section, we report our simulation results. We will
consider three distribution-based clustering algorithms: (i)
covariance algorithm with the correlation measure in Example
4, (ii) correlation algorithm with the correlation measure in
Example 5, and (iii) mutual information algorithm with the
correlation measure in Example 6. To map a graph with an
adjacency matrix A to a bivariate distribution p(v,w), we
also consider the following three types of functions in (23)
of Example 1: (i) (Ao, A1,A2) = (0,1,0), ie.,, f1(4) =
A, (iAo, A, X2) = (1,1,0), ie., fo(A) = I+ A and
(ii)(Xo, A1, X2) = (1,0.5,0.25), ie., f3(A) = I+ 0.5A4 +
0.25A2.

A. Random graphs with known community structure

In this section, we report our simulation results for a large
number of random graphs with known community structure.
For each random graph, there are n = 128 vertices and they
are divided into four known communities with 32 vertices
each (as in [13]). Let z;, be the parameter that represents
the average number of edges from a vertex to the other
vertices in the same community. Also, let z,,,; be the parameter
that represents the average number of edges from a vertex
to the other vertices in different communities. Let k£ be the
average degree of a vertex. Then k£ = 2z;, + 2oyt In our
simulations, we fix k = 16 and vary z,,: from 0 to 8.
Once k and z,,: are chosen, we generate the Erdos-Rényi
[8] types of random graphs by connecting two vertices within
the same communities with probability p;, and two vertices
in different communities with probability p,,:. We choose
the probabilities p;, = %Zijl and po: = 28 so that the

the average number of edges from a vertex to the other
vertices in the same community is z;, and the the average
number of edges from a vertex to the other vertices in different
communities IS Zyy-

For each generated random graph, we detect the commu-
nity structure by using the three algorithms and the three
types of bivariate distributions described at the beginning of
Section V. In our experiments for random graphs, we run
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Performance of fi1(A), f2(A) and f3(A) under the covariance

the distribution-based clustering algorithms until there are
exactly four communities left. To evaluate the performance
of these algorithms, we compute the percentage of nodes
that are correctly assigned. For this, we first identify the
largest subset of vertices that are assigned to each of the
four known communities. If two or more of these subsets
belong to the same community, then all vertices in these
subsets are considered incorrectly classified. Otherwise, the
vertices in the four subsets are considered correctly classified.
In Figure 1 (resp. Figure 2, Figure 3), we show the percentage
of nodes that are correctly classified under the covariance
(resp. correlation, mutual information) algorithm as a function
of z,y:. Each point in these figures is an average over 100
random graphs. In these figures, we also show 95% confidence
intervals for all data points. From these three figures, it is
clear that the choice of using f3(A) = I+ 0.5A + 0.25A42
significantly outperforms the other two choices, especially
when z,,; is large. The intuition behind this can be explained
by considering the illustrating example in Figure 4. In the
figure, there are two clearly separated communities A and B.
But it is difficult to see whether vertex C' should be classified
to community A by considering paths with length not greater
than 1 (as vertex C has exactly one path with length 1 to each
community). However, if we consider paths with length 2, then
it is obvious that we should classify vertex C' to community
A.

When we choose f3(A) = I+ 0.5A + 0.25A42%, we note
from these three figures that the performance of using the
correlation algorithm and that of using the mutual information
algorithm are comparable. But they both are much better than
the covariance algorithm. This shows that the choice of the
correlation measure might also affect the performance.

B. Karate club

Now, we apply our framework to a well-known set of real-
world network data, called “karate club.” The set of data was
observed by Wayne Zachary [28] over the course of two years
in the early 1970s at an American university. During the course
of the study, the club split into two groups because of a dispute
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within the organization, and the members of one group left to
establish their own club. The network of friendships between
each other in the karate club observed by Zachary is shown
in Figure 5.

In Figure 6, we show the dendrogram generated by using the
covariance algorithm with f3(A) = I+0.54+0.25A2. The al-
gorithm is run until there is only one community left. As such,
we can cut through the dendrogram at different levels to give
divisions of the network into larger or smaller communities. As
shown in Figure 6, the dendrogram generated by our algorithm
matches perfectly to original structure observed by Zachary.

Fig. 4. An illustrating example for vertices that are difficult to classify by
considering paths with length not greater than 1.



Fig. 5. The network of friendships between each other in the karate club
observed by Zachary.
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Fig. 6. The dendrogram of the karate club by using the covariance algorithm
with f3(A) =1+ 0.5A + 0.2542.

This is better than the original Newman'’s fast algorithm, where
vertex 10 is classified incorrectly. The intuition behind this is
exactly the same as explained by the illustrating example in
Figure 4.

VI. CONCLUSION

Based on Newman’s fast algorithm, in this paper we
developed a general probabilistic framework for detecting
community structure in a network. The key idea of our
framework is to characterize a graph by a bivariate distribution
that specifies the probability of the two vertices appearing
at both ends of a randomly path in the graph. We gave a
probabilistic definition of a community and a definition of
a modularity index. We also proved a couple of theoretical
results for the class of distribution-based clustering algorithms.
In comparison with the original Newman fast algorithm, our
framework has the additional freedom to choose a bivariate
distribution and a correlation measure that can be used for
performance improvement. From our simulations, the choice
of a bivariate distribution from a randomly selected path
with length not greater than 2 performs much better than
the original Newman’s fast algorithm (in which an edge is
selected uniformly). Finally, we note that our framework can
also be easily extended to weighted networks [14] and directed
networks [18]. We believe this general framework can also

be used for other classes of algorithms, in particular the data
compression algorithms in [23], [24].
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