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Abstract

In this paper, we make an attempt to develop a formal framework for what a good community should
look like and how strong a community is (community strength). Through this framework we can
not only provide more physical insights and unified interpretations for various structural analyses
of networks such as centralities and communities, but also develop efficient algorithms for local
community detection with guaranteed community strength.

One of the key innovations of our framework is to incorporate the concept of relative centrality
into structural analysis of networks. In our framework, relative centrality is a (probability) measure
that measures how important a set of nodes in a network is with respect to another set of nodes,
and it is a generalization of centrality that only measures (or ranks) how important a set of nodes
in a network is with respect to the whole set of nodes in the network. Building on top of relative
centrality, the community strength for a set of nodes is measured by the difference between its
relative centrality with respect to itself and its centrality. A community is then a set of nodes with a
nonnegative community strength. With such a definition of community, we are able to prove several
mathematically equivalent statements of a community that can be intuitively explained by their social
meanings. There are also several interesting interpretations for the community strength. In particular,
we show that our community strength is related to conductance that is commonly used for measuring
the strength of a small community. We then define the modularity for a partition of a network (graph)
as the average community strength of the community to which a randomly selected nodes belongs.
Such a definition generalizes the original modularity in (Newman & Girvan, 2004) and recovers the
stability in (Lambiotte, 2010; Delvenne et al., 2010) as special cases.

For the local community detection problem, we develop agglomerative algorithms that guarantee
the community strength of the detected local community. There are two nice features of our local
community detection algorithms: (i) local search: only nodes in the neighboring set need to be ex-
plored, and (ii) recursive update: the relative centralities can be efficiently updated by using recursive
formulae. As such, our algorithms not only are as efficient as the algorithm in (Clauset, 2005) in terms
of computational complexity, but also take the clustering coefficient into account by looking beyond
the first neighbors in local search. We test our algorithms on the dataset of the American football
games (Girvan & Newman, 2002). Our experimental results show that those conferences with strong
community strengths can be detected with 100% precision and 100% recall.

keywords: network science, local community detection, centrality, modularity, cluster-
ing algorithms
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1 Introduction

Network science, as an emerging field of research, has received a lot of attention lately
from many researchers in various fields, including physicists, mathematicians, computer
scientists, biologists, and sociologists. As these researchers are from different fields and
published their papers in different areas of journals, the terminology and the focus of their
works could be quite different. In particular, physicists put more emphasis on the discovery
of new physical insights such as phase transition and percolation, while mathematicians
stress the importance of the mathematical proofs for these newly discovered phenomenons.
For computer scientists, the efficiency, in terms of computational complexity, of the al-
gorithms that lead to these new findings is the main interest of their research. On the
other hand, biologists and sociologists apply the algorithms to the networks from their
data and seek meaningful explanations for their findings. In order for researchers from
various research disciplines to carry out their scientific research, it is thus essential to have
a foundation for network science (Brandes et al., 2013).

Laying a foundation for network science on top of a huge amount of papers published
in the area of network analysis is a challenging task. The main difficulty is that researchers
from different fields have different viewpoints. In particular, for the community detection
problem (or the graph clustering problem), people have different opinions on what a good
community should look like. There are several widely accepted notions for this: (i) a good
community should have more edges within the community than the edges going outside the
community (see e.g., (Radicchi et al., 2004; Hu et al., 2008)) and thus conductance might
be a good measure (see e.g., (Andersen et al., 2006; Andersen & Lang, 2006; Leskovec
et al., 2008)), (ii) a good community should be well connected and thus it should be dense
(Fortunato, 2010) and have a high clustering coefficient (Watts & Strogatz, 1998) or lots of
k-cliques (Palla et al., 2005), (iii) a graph with a good community structure should behave
quite differently from random graphs and thus modularity and the null model (Newman,
2004; Mucha et al., 2010) can be used for measuring how well a graph is partitioned, (iv)
a good community should be cohesive and cannot be easily divided into disconnected
components (Karrer et al., 2008; Leskovec et al., 2010; Yang & Leskovec, 2012), (v)
a good community should have a high probability to trap a random walker inside the
community for a certain period of time and thus one can use either data compression
techniques for describing the path of the random walker inside the community (Rosvall
& Bergstrom, 2007; Rosvall & Bergstrom, 2008) or stability (Lambiotte, 2010; Delvenne
et al., 2010) for measuring how well a graph is partitioned, and (vi) rumors are spread
fast within a good community (Boyd et al., 2005). Based on these viewpoints, many
algorithms (see the review papers in (Fortunato, 2010) and (Porter et al., 2009)) have
been developed in the literature and they might be classified as follows: (i) divisive al-
gorithms (betweenness, spectral partitioning, sweep) (Newman & Girvan, 2004; Radicchi
et al., 2004; Wu & Huberman, 2004; Duch & Arenas, 2005; Raghavan et al., 2007; Yang
& Leskovec, 2012), (ii) agglomerative algorithms (Newman, 2004; Clauset et al., 2004;
Lancichinetti et al., 2009), (iii) statistic and machine learning methods (spectral learning
(Kamvar et al., 2003), kernel-based clustering algorithms (Dhillon et al., 2004; Kulis
et al., 2009), exponential families (Long et al., 2007; Karrer & Newman, 2011)), (iv) data
compression algorithms (Rosvall & Bergstrom, 2007; Rosvall & Bergstrom, 2008) and
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(v) clique percolation methods (Palla et al., 2005). Various comparison studies of these
algorithms can be found in (Danon et al., 2005; Lancichinetti & Fortunato, 2009; Leskovec
et al., 2010).

Unlike the recent efforts in (Yang & Leskovec, 2012) for defining communities based
on various metrics of ground-truth, in this paper we make an attempt to develop a formal
framework for what a good community should look like and how strong a community is
(community strength). Through this framework we can not only provide more physical
insights and unified interpretations for various structural analyses of networks such as
centralities and communities, but also develop efficient algorithms for local community
detection with guaranteed community strength. Our view of a good community, more like
what it literally means in English, is

a group of people (nodes) who consider themselves much more important to themselves
than to random people on the street.

In social network analysis, centralities (Freeman, 1977; Freeman, 1979; Newman, 2009)
have been widely used for ranking the importance of nodes. For instance, movie stars who
have a lot of fans can be easily identified as important nodes in social networks by using the
degree centrality. However, we generally do not consider movie stars important persons to
us. On the contrary, family members or friends are much more important to us. In view of
this, we extend the concept of centrality and incorporate the concept of relative centrality
into structural analysis of networks. In our framework, relative centrality is a (probability)
measure that measures how important a set of nodes in a network is with respect to another
set of nodes, and it is a generalization of centrality that only measures (or ranks) how
important a set of nodes in a network is with respect to the whole set of nodes in the
network. A set (of nodes) that has a much larger relative centrality with respect to itself
than its centrality can thus be viewed as a community.

As mentioned before, people have different views. As such, relative centrality can only
be formally defined on top of a specific viewpoint. To obtain a viewpoint of a network, one
typical method is to “sample” the network, e.g., edge sampling, random walks, diffusion
(Mucha et al., 2010), or random gossiping (Boyd et al., 2005). Mathematically, each
sampling method renders a (probability) measure for a network that enables us to carry
out further analysis. As in the probabilistic framework in (Chang et al., 2011), we model a
network as a graph G and “sample” the graph to generate a bivariate distribution p(·, ·) for a
pair of two nodes. The bivariate distribution can be viewed as a normalized similarity mea-
sure (Liben-Nowell & Kleinberg, 2003) between a pair of two nodes. A graph G associated
with a bivariate distribution p(·, ·) is then called a sampled graph. In this paper, we only
consider the case that the bivariate distribution is symmetric. Under this assumption, the
two marginal distributions of the bivariate distribution are the same and they represent the
probability that a particular node is selected in the sampled graph. As such, the marginal
distribution can be used for defining the centrality of a set as the probability that a selected
node is in this set. The larger the centrality of a node is, the larger probability the node
is selected. We show that our centrality measure recovers various centrality measures in
the literature as special cases, including the degree centrality and the Katz centrality (Katz,
1953), as they simply correspond to various methods of sampling a graph.
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An an extension of centrality, the concept of relative centrality of a set of nodes S1 with
respect to another set of nodes S2 in our framework is formally defined as the conditional
probability that one node of the selected pair of two nodes is in the set S1 given that the
other node is in the set S2. When the set S2 is taken to be the whole set of nodes in the
graph, then the relative centrality of S1 with respect to S2 is simply reduced to the centrality
of S1, which is the probability that one node of the selected pair of two nodes is in the
set S1. We note that Bell (Bell, 2012) recently developed an independent framework for
relative centrality that is quite different from ours. In our framework, the domain for a
relative centrality measure is the set of all the nodes in a network, while the domain of a
local centrality measure in (Bell, 2012) is only restricted to a certain subset of nodes in a
network.

Since our view for a community is a group of people (nodes) who consider themselves
much more important to themselves than to random people on the street, the community
strength for a set of nodes S is defined as the difference between its relative centrality with
respect to itself and its centrality. Moreover, a set of nodes with a nonnegative commu-
nity strength is called a community. With such a definition of community, we are able to
prove several mathematically equivalent statements of a community that can be intuitively
explained by their social meanings. There are also several interesting interpretations for
the community strength. In particular, we show that our community strength for a certain
sampled graph is related to conductance that is commonly used for measuring the strength
of a small community (Andersen et al., 2006; Andersen & Lang, 2006; Leskovec et al.,
2008). Also, for a certain sampled graph, it is related to the probability that a random
walker is trapped inside the community for a certain period of time (Rosvall & Bergstrom,
2007; Rosvall & Bergstrom, 2008).

The original modularity in (Newman & Girvan, 2004) is a measure to quantify the
strength of community structure in a partition of a graph and such a measure has been
widely accepted for analyzing community structure in the literature. One of the well-
known problems of Newman’s modularity is its resolution limit in detecting communities
(Fortunato & Barthelemy, 2007). As such, there are other measures, such as stability in
(Lambiotte, 2010; Delvenne et al., 2010), that were proposed for quantifying the strength
of community structure in a partition of a graph. However, when the communities in a net-
work span a wide range of sizes, it is not possible to find an optimal value of the resolution
parameter to identify simultaneously all the communities in a network (Lancichinetti &
Fortunato, 2011; Granell et al., 2012). In our framework, we define the modularity for a
partition of a sampled graph as the average community strength of the community to which
a randomly selected nodes belongs. As such, a high modularity for a partition of a graph
implies that there are communities with strong community strengths. We then show that
the original modularity in (Newman & Girvan, 2004) and stability in (Lambiotte, 2010;
Delvenne et al., 2010) are special cases of our modularity for certain sampled graphs.

Based on our framework, we also develop efficient algorithms for local community
detection. The problem of local community detection for a seed node w0 is generally
formulated as a problem to find a community S that contains the seed node w0 (Clauset,
2005). There have been many methods proposed in the literature for the local community
detection problem. One approach for local community detection is to map a graph into a
Markov chain (either by a random walk or by diffusion). Since a Markov chain converges to
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its steady state exponentially fast (Diaconis & Stroock, 1991), one can deduce that there is a
cut of the Markov chain if the Markov chain (mapped from the graph) does not converge as
fast as expected (the mixed or cut lemma in (Spielman & Teng, 2004)). Such a cut can then
be found by performing a sweep over an ordered transient state probabilities (Andersen
et al., 2006; Andersen & Lang, 2006; Yang & Leskovec, 2012). The main difficulty of such
an approach is the need to compute the transient state probabilities as it requires the knowl-
edge of the transition probability matrix of the Markov chain and thus the adjacency matrix
of the graph. As such, local community detection cannot be done locally. Another approach
is the agglomerative approach (Clauset, 2005; Lancichinetti et al., 2009; Xu et al., 2012;
Huang et al., 2013) that repeatedly adds a “relatively important” node to the community
until the maximum size of the community is reached. An agglomerative approach for local
community detection is more computationally efficient as such an approach only needs to
explore the network locally. Since the concept of relative centrality can be formally defined
for a sampled graph in our framework, the agglomerative approach for local community
detection can be generalized and mathematically scrutinized on top of our foundation. For
a sampled graph, we then propose local community detection algorithms that can guarantee
the community strength of the detected local community. There are two key features of our
local community detection algorithms: (i) local search: only nodes in the neighboring set
need to be explored, and (ii) recursive update: the relative centralities can be efficiently
updated by using recursive formulae. The computational complexity of our algorithms is
O(k1,max · k2,max · (smax)2), where smax is the maximum size of the community, k1,max is
the computational complexity for computing relative centrality for a pair of two nodes,
and k2,max is the maximum size of a neighboring set. This is of the same order as that in
(Clauset, 2005) (when k1,max is a constant). Unlike the agglomerative approach in (Clauset,
2005; Lancichinetti et al., 2009; Xu et al., 2012; Huang et al., 2013) that only works for
a specific objective function, our local community detection algorithm has the freedom to
choose the “viewpoint” to sample a graph. In particular, we consider sampling a graph with
a random walk that has a path length not greater than 2. Such a sampling method allows
us to look beyond the first neighbors so that we can take the clustering coefficient into
account. We test such a sampling method on the dataset of the American football games
(Girvan & Newman, 2002). Our experimental results show that those conferences with
strong community strengths can be detected with 100% precision and 100% recall. On the
other hand, for those conferences with very weak community strengths, our algorithm does
not achieve high precision and recall.

Though our framework is built upon that in (Chang et al., 2011), the new contributions
of this paper are (i) the new notion of relative centrality and its associated theory, and (ii)
a local community detection algorithm based on the notion of relative centrality. Through
this framework, we show that various existing notions and methods in network analysis,
such as centralities, conductance, modularity, and stability, can have unified interpretations
by choosing appropriate bivariate distributions. However, this does not mean every existing
notion for network analysis can be unified in this framework. In particular, the betweenness
centralities, defined as the number of geodesic paths traversing through nodes, cannot be
directly applied in our framework.

The rest of the paper is organized as follows. In Section 2, we introduce the concept
of relative centrality. Based on relative centrality, we then define the community strength
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and modularity in Section 3 and address their connections to the previous works in the
literature. We propose our local community detection algorithms in Section 4 and test these
algorithms in Section 5. The paper is concluded in Section 6, where we address possible
extensions of our work.

2 Relative centrality

In this section, we introduce the concept of relative centrality. Such a concept will be
used as the basic building block for the whole paper.

2.1 Sampling a network

As mentioned in Section 1, relative centrality is defined on top of a specific viewpoint
and a viewpoint of a network can be obtained by sampling the network. For this, we first
briefly review the probabilistic framework in (Chang et al., 2011) that describes how a
network is sampled.

In the literature, an undirected network is commonly modelled by an undirected graph
G(Vg,Eg), where Vg denotes the set of vertices (nodes) in the graph and Eg denotes the set
of edges (links) in the graph. Let n = |Vg| be the number of vertices in the graph and index
the n vertices from 1,2, . . . ,n. Then the graph G(Vg,Eg) can also be characterized by an
n×n adjacency matrix A, where

Avw =
{

1, if vertices v and w are connected,

0, otherwise.
(1)

Let m = |Eg| be the number of edges in the graph and kv be the degree of vertex v. From
the adjacency matrix, we then have

m =
1
2

n

∑
v=1

n

∑
w=1

Avw, (2)

and

kv =
n

∑
w=1

Avw. (3)

The main idea of the probabilistic framework in (Chang et al., 2011) is to sample
a network by randomly selecting two nodes V and W according to a specific bivariate
distribution p(·, ·). Specifically, for a network with the set of nodes {1,2, . . . ,n}, we have

P(V = v,W = w) = p(v,w). (4)

Let pV (v) (resp. pW (w)) be the marginal distribution of the random variable V (resp. W ),
i.e.,

pV (v) =
n

∑
w=1

p(v,w), (5)

and

pW (w) =
n

∑
v=1

p(v,w). (6)
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If p(v,w) is symmetric, then pV (v) = pW (v) for all v, and pV (v) is the probability that a
randomly selected node is v.

Definition 2.1
(Sampled graph) A graph G(Vg,Eg) that is sampled by randomly selecting two nodes V
and W according to a specific bivariate distribution p(·, ·) in (4) is called a sampled graph
and it is denoted by the two tuple (G(Vg,Eg), p(·, ·)).

For a given graph G(Vg,Eg), there are many methods of to generate sampled graphs by
specifying the needed bivariate distributions. One particular method is to generate V and
W as the two end nodes of a uniformly selected edge from the graph G(Vg,Eg). For this
edge sampling method, we have

P(V = v,W = w) =
1

2m
Avw, (7)

where m is the number of edges in the graph G(Vg,Eg).
A more general method is to generate the needed bivariate distribution by randomly

selecting the two ends of a path. This can be done by randomly selecting a path via mapping
the adjacency matrix. Specifically, one can first choose a (matrix) function f that maps an
adjacency matrix A to another nonnegative matrix f (A). Then one can define a bivariate
distribution from f (A) by

P(V = v,W = w) =
1

|| f (A)||1
f (A)vw, (8)

where || f (A)||1 = ∑v ∑w | f (A)vw| is usual ”entrywise” matrix norm of the matrix f (A).
As described in (Liben-Nowell & Kleinberg, 2003), this can also be viewed as a way to
compute the ”similarity” score between a pair of two nodes v and w. In fact, if there is a
bounded similarity measure sim(v,w) that gives a high score for a pair of two ”similar”
nodes v and w, then one can map that similarity measure to a bivariate distribution p(v,w)
as follows:

p(v,w) =
sim(v,w)−MINsim

∑
n
x=1 ∑

n
y=1

(
sim(x,y)−MINsim

) , (9)

where

MINsim = min
1≤x,y≤n

sim(x,y), (10)

is the minimum value of all the similarity scores. As such, one can view a sampled graph
(G(Vg,Eg), p(·, ·)) as a graph G(Vg,Eg) associated with a normalized similarity measure
p(·, ·).

2.2 Definition and properties of relative centrality

In social network analysis, centralities (Freeman, 1977; Freeman, 1979; Newman, 2009)
have been widely used for ranking the most important or central nodes in a network.
Intuitively, an important node in a graph has a higher probability of being “spotted” than
an arbitrary node. Since V and W are two randomly selected nodes in a sample graph
(G(Vg,Eg), p(·, ·)) via the bivariate distribution p(·, ·), it seems plausible to define the
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centrality of a node as the probability that a node is selected. This leads us to define the
centrality of a set of nodes in a sampled graph in Definition 2.2 below.

Definition 2.2
(Centrality) For a sampled graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate distribu-
tion p(·, ·), the centrality of a set of nodes S, denoted by C(S), is defined as the probability
that a node in S is selected, i.e.,

C(S) = P(V ∈ S) = P(W ∈ S). (11)

Note that

P(W ∈ S) = P(W ∈ S|V ∈Vg). (12)

Another way to interpret the centrality of a set of nodes S is the conditional probability that
the randomly selected node W is inside S given that the random selected node V is inside
the whole set of nodes in the graph. As p(·, ·) can be viewed as a normalized similarity
measure, such an observation leads us to define the relative centrality of a set of nodes
S1 with respect to another set of nodes S2 as the conditional probability that the randomly
selected node W is inside S1 given that the random selected node V is inside S2. Intuitively,
a node w is relatively important to a set of node S2 if the node w has a high probability of
being ”spotted” from the set of nodes in S2. Such a definition is formalized in Definition
2.3 below.

Definition 2.3
(Relative centrality) For a sampled graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate
distribution p(·, ·), the relative centrality of a set of nodes S1 with respect to another set of
nodes S2, denoted by C(S1|S2), is defined as the conditional probability that the randomly
selected node W is inside S1 given that the random selected node V is inside S2, i.e.,

C(S1|S2) = P(W ∈ S1|V ∈ S2). (13)

In particular, when S2 = Vg is the set of all the nodes in the graph, the relative centrality of
a set of nodes S1 with respect to Vg is reduced to the centrality of the set of nodes S1, i.e.,

C(S1|Vg) = P(W ∈ S1|V ∈Vg) = P(W ∈ S1) = C(S1). (14)

Note that

C(S1|S2) = P(W ∈ S1|V ∈ S2) =
P(V ∈ S2,W ∈ S1)

P(V ∈ S2)

=
∑v∈S2 ∑w∈S1

p(v,w)
∑v∈S2

pV (v)
, (15)

where PV (v) is the marginal distribution of V in (5). Also,

C(S1) = P(W ∈ S1) = ∑
w∈S1

P(W = w) = ∑
w∈S1

pW (w), (16)

where PW (w) is the marginal distribution of W in (6). Since we assume that p(·, ·) is
symmetric, we also have

C(S1) = P(V ∈ S1) = ∑
w∈S1

pV (w). (17)
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In the following, we show several properties of relative centrality.

Proposition 2.1
For a sampled graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·), the
following properties for the relative centrality defined in Definition 2.3 hold.
(i) 0≤C(S1|S2)≤ 1 and 0≤C(S1)≤ 1. Moreover, C(Vg|S2) = 1 and C(Vg) = 1.
(ii) (Additivity) If S1 and S′1 are two disjoint sets, i.e., S1∩S′1 is an empty set, then C(S1∪
S′1|S2) = C(S1|S2)+C(S′1|S2) and C(S1∪S′1) = C(S1)+C(S′1).
(iii) (Monotonicity) If S1 is a subset of S′1, i.e., S1 ⊂ S′1, then C(S1|S2) ≤ C(S′1|S2) and
C(S1)≤C(S′1).
(iv) (Reciprocity)

C(S1)C(S2|S1) = C(S2)C(S1|S2).

As a result, C(S1)≥C(S2) if and only if C(S2|S1)≤C(S1|S2).

Proof
Since the relative centrality is a conditional probability and the centrality is a probability,
the properties in (i),(ii) and (iii) follow trivially from the property of probability measures.

(iv) From the symmetric property of p(·, ·), the definitions of relative centrality and
centrality in (13) and (11), it follows that

C(S1)C(S2|S1) = P(W ∈ S1)P(W ∈ S2|V ∈ S1)

= P(V ∈ S1)P(W ∈ S2|V ∈ S1) = P(V ∈ S1,W ∈ S2)

= P(V ∈ S2,W ∈ S1). (18)

Similarly, we also have

C(S2)C(S1|S2) = P(V ∈ S1,W ∈ S2) = P(V ∈ S2,W ∈ S1). (19)

Thus,

C(S1)C(S2|S1) = C(S2)C(S1|S2).

2.3 Illustrating examples

In this section, we provide several illustrating examples for relative centrality, including
the degree centrality, the Katz centrality, and the continuous-time random walk.

Example 2.1
(Degree centrality) Consider the bivariate distribution in (7), i.e.,

p(v,w) = P(V = v,W = w) =
1

2m
Avw. (20)

Thus, we have from (15) and (20) that

C(S1|S2) =
∑v∈S2 ∑w∈S1

Av,w

∑v∈S2
kv

. (21)
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In particular, when S1 contains a single node w and S2 = Vg is the set of all the nodes in the
graph, the centrality of w, i.e., C({w}), is simply P(W = w). From (20), we have

C({w}) = P(W = w) =
kw

2m
. (22)

Thus, C({w}) is the usual (normalized) degree centrality that counts the number of edges
connected to the node w.

As another illustrating example, we show that Katz’s centrality can also be derived as a
special case of the sampled graph.

Example 2.2
(Katz centrality) For an undirected graph G(Vg,Eg), Katz centrality (Katz, 1953) is based
on the assumption that the importance of a vertex is the sum of a fixed constant and the
“discounted” importance of vertices it connects to. Specifically, let xv be the Katz centrality
of vertex v. Then

xv =
n

∑
w=1

λAvwxw +1, (23)

where λ is the discount factor. Let x = (x1,x2, . . . ,xn)T be the vector of Katz centralities
and 1 = (1,1, . . . ,1)T be the n-vector of all 1’s. Then we can write (23) in the matrix form
x = λAx+1 and solve for x to yield

x = (I−λA)−1 ·1, (24)

where I is the n× n identity matrix. To show that the Katz centrality is the centrality of a
particular sampled graph, we choose

f (A) =
∞

∑
i=0

(λA)i = (I−λA)−1 (25)

in (8) and thus we have

p(v,w) =
1

||(I−λA)−1||1
(I−λA)−1. (26)

The matrix (I−λA)−1 in (25) is called the “Katz similarity” in (Newman, 2009) and the
bivariate distribution in (26) can thus be viewed as the normalized Katz similarity. Since
A is the adjacency matrix of an undirected graph, we have A = AT and thus p(v,w) is
symmetric. This then leads to

C({w}) = pW (w) = pV (w) =
eT

w

||(I−λA)−1||1
(I−λA)−1 ·1, (27)

where ew is the column vector that has 1 in its wth element and 0 otherwise. Thus, C({w})
is the (normalized) Katz centrality of node w. For this example, we also have from the
symmetry of A, (15), and (26) that

C(S1|S2) =
eT

S2
· (I−λA)−1 · eS1

eT
S2
· (I−λA)−1 ·1

, (28)

where eS is the column vector that has 1 in the elements of the set S and 0 otherwise.
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Example 2.3
(Continuous-time random walk on an undirected graph) A continuous-time random
walk on an undirected graph G = (Vg,Eg) is a continuous-time Markov process with the
transition rate from vertex v to vertex w being Avw/kv. Let γv(t) be the probability that the
continuous-time random walk is at vertex v at time t when the walk is started from vertex
w at time 0. Since that the transition rate from vertex v to vertex w is Avw/kv, it then follows
that

dγv(t)
dt

=
n

∑
w=1

Awv

kw
γw(t)− γv(t) =

n

∑
w=1

Avw

kw
γw(t)− γv(t), (29)

where we use A = AT in the last equality. Let πv be the steady probability that the continuous-
time random walk is at vertex v. In view of (29),

πv = lim
t→∞

γv(t) =
kv

2m
. (30)

Let γ(t) = (γ1(t), . . . ,γn(t))T and L = (Lv,w) be the normalized graph Laplacian, i.e.,

Lv,w =
Avw

kw
−δv,w. (31)

We can rewrite (29) in the matrix form as follows:

dγ(t)
dt

= Lγ(t). (32)

This then leads to

γ(t) = etL
γ(0). (33)

Since we start from vertex w at time 0, i.e., γw(0) = 1, we then have

γv(t) = (etL)vw. (34)

Now we choose the two nodes V and W as the two ends of a path of length t in a stationary
continuous-time random walk. Specifically,

p(v,w) = P(V = v,W = w) = P(W = w)P(V = v|W = w)

= πwγv(t) = (etL)vw
kw

2m
, (35)

where we use (34) and (30) in the last identity. Since a stationary continuous-time random
walk is a reversible Markov process, we also have

p(v,w) = P(V = v,W = w) = P(V = w,W = v) = p(w,v).

For this example, we then have

C(S1|S2) =
∑v∈S2 ∑w∈S1

(etL)vw
kw
2m

∑v∈S2
kv
2m

, (36)

C(S1) = ∑
w∈S1

kw

2m
. (37)

We note that our definition for relative centrality can also be applied to other centrality
measures that are based on similarity measures, e.g., the harmonic mean closeness central-
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ity of a node w (Newman, 2009) is defined as 1
n−1 ∑v6=w 1/dv,w, where dv,w is the length of

a geodesic path from vertex v to vertex w. However, betweenness centralities, defined as
the number of geodesic paths traversing through nodes, cannot be directly applied.

3 Community strength and modularity

In this section, we define community strength and modularity based on relative centrality.
We will show that our definition generalizes the original Newman’s definition (Newman,
2004) and unifies various other generalizations, including stability in (Lambiotte, 2010;
Delvenne et al., 2010).

3.1 Community strength

Intuitively, a community in a social network includes a group of people who consider
themselves much more important to themselves than to random people on the street. In
view of this, one might consider a community as a group of nodes that have high rela-
tive centralities to each other than to random nodes. As such, we propose the following
definition of community strength based on relative centrality.

Definition 3.1
(Community strength) For a sample graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate
distribution p(·, ·), the community strength of a subset set of nodes S ⊂ Vg, denoted by
Str(S), is defined as the difference of the relative centrality of S with respect to itself and
its centrality, i.e.,

Str(S) = C(S|S)−C(S). (38)

In particular, if a subset set of nodes S ⊂ Vg has a nonnegative community strength, i.e.,
Str(S)≥ 0, then it is called a community.

To understand the definition of the community strength, let us consider the continuous-
time random walk in Example 2.3. Let X(t) be the node that the continuous-time random
walk visits at time t. Then

C(S|S)−C(S)

= P(W ∈ S|V ∈ S)−P(W ∈ S)

= P(X(t) ∈ S|X(0) ∈ S)−P(X(t) ∈ S). (39)

The first term in (39) is the conditional probability that the continuous-time random walk
is ”trapped” in the set S given that it is started from that set, while the second term is the
steady state probability that the random walk is in the set S. In view of (39), the continuous-
time random walk is more likely being ”trapped” in a set with a strong community strength.
Of course, the large the set is, the more likely the random walk will be ”trapped” in that
set. As such, the community strength has to take into account the steady state probability
that the random walk is in the set. By so doing, for the whole set of nodes in the graph, i.e.,
Vg, the community strength is normalized to 0 as it should not contain any information for
the strength of this trivial community.
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To further understand the physical meaning of the concept of community strength, we
show how it is related to conductance for a small community. In the literature, conductance
has been widely used for testing whether a community (cut) is good (see e.g., (Andersen
et al., 2006; Andersen & Lang, 2006; Leskovec et al., 2008)) when the community (cut)
is relatively small comparing to the whole graph. The conductance of a set S, denoted by
φ(S), is defined as

∑v∈S ∑w6∈S Av,w

min[∑v∈S kv,∑v 6∈S kv]
. (40)

When S is relatively small comparing to the whole graph, we usually have

∑
v∈S

kv ≤∑
v 6∈S

kv

and the conductance of S is reduced to

φ(S) =
∑v∈S ∑w6∈S Av,w

∑v∈S kv
. (41)

In view of (41), a small community S with a small conductance can be viewed as a good
community. Now let us consider the bivariate distribution in (7), where V and W represent
the two ends of a uniformly selected edge. For this case, we have from (22) that

C(S) = ∑v∈S kv

2m
,

where m is the total number of edges. For a small community, we expect ∑v∈S kv << m
and C(S)≈ 0. Then, we have from (21) in Example 2.1 that

Str(S)≈C(S|S) =
∑v∈S ∑w∈S Av,w

∑v∈S kv

= 1− ∑v∈S ∑w6∈S Av,w

∑v∈S kv
= 1−φ(S). (42)

In view of (42), a small community S with a large community strength has a small conduc-
tance and thus can be considered as a good community.

We note from (39) that the definition of a community, i.e., a set with a nonnegative
community strength, is a generalization of the definition of a community in (Chang et al.,
2011). The concept of community strength based on relative centrality enables us to look
at the definition of a community from various perspectives. For instance, we know from
(38) that a community is a set (of nodes) with its relative centrality to itself not less than its
centrality. In addition to this, there are other various equivalent statements for a community
that can be explained by their social meanings. These are as shown in Theorem 3.1 below.
The proof of Theorem 3.1 is given in Appendix A.

Theorem 3.1
Consider a sample graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·),
and a set S with 0 < C(S) < 1. Let Sc = Vg\S be the set of nodes that are not in S. The
following statements are equivalent.

(i) The set S is a community, i.e., Str(S) = C(S|S)−C(S)≥ 0.
(ii) The relative centrality of S with respect to S is not less than the relative centrality of S

with respect to Sc, i.e., C(S|S)≥C(S|Sc).
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(iii) The relative centrality of Sc with respect to S is not greater than the centrality of Sc,
i.e., C(Sc|S)≤C(Sc).

(iv) The relative centrality of S with respect to Sc is not greater than the centrality of S,
i.e., C(S|Sc)≤C(S).

As mentioned before, the social meaning for the first statement in Theorem 3.1(i) is
that a community is a group of people who consider themselves much more important
to themselves than to random people on the street. The second statement in Theorem
3.1(ii) says that a community is a a group of people who consider themselves much more
important to themselves than to the other people not in the community. The third statement
in Theorem 3.1(iii) says that the other people not in a community are much less important
to the people in the community than to random people on the street. Finally, the fourth
statement in Theorem 3.1(iv) says that people in a community are much less important to
the other people not in the community than to random people on the street.

3.2 Modularity

In (Newman, 2004), Newman proposed using modularity as a metric that measures the
quality of a division of a network from the global perspective. Such an index has been
widely accepted for analyzing community structure in the literature. By using community
strength, we propose a (generalized) modularity index and our index will be shown to
recover the original Newman’s modularity and stability in (Lambiotte, 2010; Delvenne
et al., 2010) as special cases. Since community strength is a metric that measures the
quality of the structure of a community from the perspective of the nodes inside the com-
munity, it seems reasonable to define modularity as the average community strength of the
community to which a randomly selected nodes belongs.

Definition 3.2
(Modularity) Consider a sampled graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate
distribution p(·, ·). Let Sc, c = 1,2, . . . ,C, be a partition of {1,2, . . . ,n}, i.e., Sc ∩ Sc′ is an
empty set for c 6= c′ and ∪C

c=1Sc = {1,2, . . . ,n}. The modularity index Q with respect to the
partition Sc, c = 1,2, . . . ,C, is defined as the weighted average of the community strength
of each subset with the weight being the centrality of each subset, i.e.,

Q =
C

∑
c=1

C(Sc) ·Str(Sc). (43)

As the centrality of a set Sc is the probability that a randomly selected node is in the set
Sc, the modularity index Q in (43) is the average community strength of the community
to which a randomly selected node belongs. Such a definition is also the same as that in
(Chang et al., 2011) as

C

∑
c=1

C(Sc) ·Str(Sc) =
C

∑
c=1

(
P(V ∈ Sc,W ∈ Sc)−P(V ∈ Sc)P(W ∈ Sc)

)
.

It was shown in (Chang et al., 2011) that the (generalized) modularity in Definition 3.2 is
in fact a generalization of the original modularity index in (Newman, 2004) by choosing
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the bivariate distribution p(v,w) in (7), i.e.,

P(V = v,W = w) =
1

2m
Avw. (44)

For such a choice, the modularity index Q in (43) is

C

∑
c=1

∑
v∈Sc

∑
w∈Sc

( 1
2m

Avw−
kv

2m
kw

2m

)
. (45)

One of the well-known problems of using Newman’s modularity in (45) is its resolution
limit in detecting communities (Fortunato & Barthelemy, 2007) smaller than a certain
scale. This motivated many researchers to propose multi-scale methods, including the
stability in (Lambiotte, 2010; Delvenne et al., 2010). In the following example, we show
that stability can also be derived as a special case of a sampled graph.

Example 3.1
(Stability in (Lambiotte, 2010; Delvenne et al., 2010)) If we choose the bivariate distri-
bution p(v,w) as in (35), i.e.,

p(v,w) = p(w,v) = (etL)vwπw = (etL)vw
kw

2m
, (46)

then the modularity index Q in (43) is simply the stability previously defined in (Lambiotte,
2010; Delvenne et al., 2010), i.e.,

C

∑
c=1

∑
v∈Sc

∑
w∈Sc

(
(etL)vw

kw

2m
− kv

2m
kw

2m

)
. (47)

Since V and W in this example are the two ends of a randomly selected path via a continuous-
time random walk with time t, the parameter t serves as a multi-scale resolution parameter
for the size of the communities. Intuitively, a large (resp. small) resolution parameter t tends
to identify large (resp. small) communities. Also, it is further illustrated in (Lambiotte,
2010; Delvenne et al., 2010) that stability is in fact a generalization of other multi-scale
methods in (Reichardt & Bornholdt, 2006a; Arenas et al., 2008).

4 Local community detection

The problem of local community detection for a seed node w0 is generally formulated
as a problem to find a community S that contains the seed node w0. There have been many
methods proposed in the literature for the local community detection problem (see e.g.,
(Spielman & Teng, 2004; Palla et al., 2005; Clauset, 2005; Andersen et al., 2006; Andersen
& Lang, 2006; Lancichinetti et al., 2009; Yang & Leskovec, 2012; Huang et al., 2013)).

Our approach for local community detection is an agglomerative approach like those
in (Clauset, 2005; Lancichinetti et al., 2009; Huang et al., 2013). We start from a seed
node and repeatedly add a node to the local community until either the size of community
is reached or no more nodes can be added. The criterion of choosing the added node
is to make sure the community strength can be maintained and the added node has the
largest relative centrality with respect to the current community. One crucial point of this
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approach, as pointed out in (Clauset, 2005), is to explore the graph locally. Typically, this
is done by visiting neighboring nodes. In the following section, we introduce the notions
of positively correlated sets and neighboring sets that allow us to explore a sample graph
locally.

4.1 Positively correlated sets and neighboring sets

The concept of positively correlated sets are quite similar to two groups of people who
are friendly to each other, i.e., they are nicer to each other than to random people on the
street. Such a concept is formally defined below.

Definition 4.1
Consider a sampled graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·).
Two sets of nodes S1 and S2 are said to be positively correlated if the relative centrality of
S1 with respect to S2 is not smaller than the centrality of S1, i.e.,

C(S1|S2)≥C(S1). (48)

Note from the reciprocity in Proposition 2.1(iv) that (48) is equivalent to

C(S2|S1)≥C(S2). (49)

In order to maintain the community strength of a growing community, it is intuitive
to only invite people who are friendly to the current community to join. In the following
lemma, we show that such an intuition can be formally proved by merging two positively
correlated and disjoint sets. We show the new set has the community strength not less than
the minimum of the community strengths of these two sets. This key lemma is an important
step in our agglomerative approach as it enables us to add a positively correlated node to a
community without weakening its community strength. The proof of Lemma 4.1 is given
in Appendix B.

Lemma 4.1
Consider a sampled graph (G(Vg,Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·).
Suppose that S1 and S2 are two disjoint sets.
(i) For an arbitrary set S3, the relative centrality of S3 with respect to S1 ∪ S2 can be
computed as follows:

C(S3|S1∪S2) =
C(S1) ·C(S3|S1)+C(S2) ·C(S3|S2)

C(S1)+C(S2)
. (50)

(ii) The community strength of S1∪S2 can be computed as follows:

Str(S1∪S2)

=
C(S1)

(
Str(S1)+2(C(S2|S1)−C(S2))

)
C(S1)+C(S2)

+
C(S2) ·Str(S2)
C(S1)+C(S2)

. (51)

If, furthermore, S1 and S2 are positively correlated, then

Str(S1∪S2)≥min[Str(S1),Str(S2)]. (52)

In order to explore a sampled graph locally, we introduce the notion of neighboring sets
below.
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Definition 4.2
(Neighboring sets) The neighboring set of a set of nodes S, denoted by Nei(S), is the set
of nodes that are not in S and has positive relative centrality with respect to S, i.e.,

Nei(S) = {w : w 6∈ S, C({w}|S) > 0}. (53)

In the following proposition, we show that only nodes in the neighboring set of a set S
can be positively correlated to S. As such, if we would like find nodes that are positively
correlated to a set S, we only need to explore the nodes in its neighboring set. Furthermore,
we also show how the neighboring set of a set S is updated when a new node is added to S.
The proof of Proposition 4.1 is given in Appendix C.

Proposition 4.1
Suppose that C(S) > 0 for any nonempty set S.

(i) Any node w that is not in Nei(S)∪S cannot be positively correlated to S.
(ii) Suppose that a node w∗ is not in S. Then

Nei(S∪{w∗}) =
(

Nei(S)\{w∗}
)
∪

(
Nei({w∗})\(S∪Nei(S))

)
. (54)

(iii) Suppose that a node w∗ is not in S. Then for a node w in Nei({w∗})\(S∪Nei(S)),

C({w}|S∪{w∗}) =
C({w∗}) ·C({w}|{w∗})

C(S)+C({w∗})
. (55)

4.2 Local community detection algorithm

In this section, we propose local community detection algorithms for sampled graphs.
Given a specific node w0 with community strength not less than γ , the algorithm generates
a community that contains the node w0 with community strength not less than γ . There
are three ideas of the algorithm. Our first idea is to start from w0 and recursively add
a node that is both positively correlated to the local community and has the community
strength not less that γ . According to Lemma 4.1(ii), such a merging procedure will yield
a new community that contains w0 and has community strength not less than γ . Such a
merging procedure is repeated until either there are no more nodes that can be added or the
community size is reached. To reduce the computational complexity, our second idea is to
use Proposition 4.1 to limit the size of the nodes that need to be explored in every iteration.
According to Proposition 4.1, only the neighboring set of the newly added nodes needs to
be explored. Finally, we use Proposition 2.1 (ii) and Lemma 4.1(i) for recursive updates of
the needed centralities and relative centralities.
Local community detection algorithm:
(P0) Input a sampled graph (G(Vg,Eg), p(·, ·)) with three (external) functions: the first
function Ce({w}) with input w can be called to compute the centrality of node w, and the
second function Ce({w}|{v}) with inputs w and v can be called to compute the relative
centrality of {w} with respect to {v}, and the third function Neie({w}) with input w can be
called to compute the neighboring set of node w. Given a seed node w0 with Str({w0})≥ γ

and the maximum size smax of the local community (with smax≤ n), the algorithm generates
a community containing w0 that has the community size not greater than smax and the
community strength not less than γ .
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(P1) (Initialization) Initially, the local community S is an empty set and set C(S) = 0 and
Nei(S) to be an empty set. Set the chosen node w∗ to be the seed node w0, i.e, w∗← w0.
(P2) (Exploring new neighbors) Update the neighboring set by using (54) in Proposition
4.1(ii), i.e.,

Nei(S)← (Nei(S)\{w∗})∪
(

Neie({w∗})\(S∪Nei(S))
)
.

For every node w in Neie({w∗})\(S∪Nei(S)), compute and store the relative centrality of
{w} with respect to S by using (55) in Proposition 4.1, i.e.,

C({w}|S)← Ce({w∗}) ·Ce({w}|{w∗})
C(S)+Ce({w∗})

. (56)

Compute and store the centrality of {w} by

C({w})←Ce({w}). (57)

Compute and store the community strength of {w} by

Str({w})←Ce({w}|{w})−Ce({w}). (58)

Extend the local community S by adding w∗ into the local community, i.e.,

S← S∪{w∗}.

Update the centrality of S by

C(S)←C(S)+Ce({w∗}).

(P3) (Finding candidates among neighbors) Find the set of candidate nodes S+ in Nei(S)
that have community strength not less than γ and are positively correlated to S, i.e.,

S+ = {w : w ∈ Nei(S), Str({w})≥ γ, C({w}|S)−C({w}) > 0}.

(P4) (Stopping criteria) If either the set of candidate nodes S+ is empty or the maximum
size smax is reached, i.e., |S| = smax, return the set S as the detected local community.
Otherwise, do (P5).
(P5) (Optimal selection) Choose the node w∗ in S+ that has the largest relative centrality
with respect to S, i.e.,

w∗ = arg maxw∈S+C({w}|S). (59)

(P6) (Updating relative centralities) For every node w in Nei(S)\{w∗}, update its relative
centrality with respect to S by using the rule in (50), i.e.,

C({w}|S)← C(S) ·C({w}|S)+C({w∗}) ·Ce({w}|{w∗})
C(S)+C({w∗})

. (60)

(P7) Repeat (P2).

Theorem 4.1
The set S returned by the local community detection algorithm above has community
strength not less than γ , i.e., Str(S)≥ γ . If particular, if γ ≥ 0, then S is a community.

Proof
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As the seed node w0 has community strength not less than γ (as described in P(0)), the
community strength of S = {w0} in (P2) is not less than γ . From (P3), we know that every
node w in S+ has community strength not less than γ and it is also positively correlated to
S. As a result of (52) in Lemma 4.1, the set S∪{w∗} also has community strength not less
than γ . Repeating the same argument shows that the set S returned by the local community
detection algorithm has community strength not less than γ .

Now we analyze the computational complexity of the above algorithm by assuming that
all the three (external) functions take at most k1,max steps and that there are at most k2,max

neighboring nodes of a node. Note from (P4) that there are at most smax iterations in the
above algorithm. In (P2), there are at most k2,max new nodes that need to be explored.
The computation for the relative centralities in (56) requires O(k1,max) steps. Thus, the
computational complexity for (P2) is O(k1,max ·k2,max). In each iteration, the computational
complexity in (P3), (P5), and (P6) is proportional to the size of Nei(S). Since there are at
most k2,max neighboring nodes of a node, the size of Nei(S) is not greater than k2,max · smax

and the computational complexity in (P3), (P5), and (P6) is O(k1,max · k2,max · smax) (as
there is an external function call in (P6)). Thus, the overall computational complexity for
the above algorithm is

O(k1,max · k2,max · (smax)2).

We note that our algorithm can be easily extended to the local community detection
problem with a seed set S0. To see this, suppose that the seed set S0 contains k nodes
w1,w2, . . . ,wk. Then we can simply set the chosen node w∗ to be wi in the ith iteration for
i = 1,2 . . . ,k. After that, we resume the process of selecting the optimal node in (P5).

5 Experiment results

In this section, we perform various experiments on real-world networks by using the
local community detection algorithm in the previous section.

5.1 Selecting the bivariate distribution

Though there are many choices of the bivariate distribution p(·, ·) for computing relative
centralities, not every one of them is suitable for the purpose of local community detec-
tion. For instance, the bivariate distributions in Example 2.2 and Example 2.3 require the
complete knowledge of the adjacency matrix A of the graph and they defeat the purpose
of exploring the graph locally. On other hand, the degree centrality in Example 2.1 only
requires the local information that contains the first neighbors of v and w for computing
the needed relative centralities. However, exploring a graph by only looking at the first
neighbors might lead to a very limited view that sometimes prohibits us to tell the differ-
ence among all the first neighbors. For example, as shown in Figure 1, all the three nodes
w1,w2 and w3 have the same relative centrality to the node v when the degree centrality
in Example 2.1 is used. If we further take the second neighbors into consideration, we see
that the three nodes w1, w2 and v forms a triangle. As such, it seems that w1 and w2 should
have larger relative centralities with respect to v than that of w3. This motivates us to use



ZU064-05-FPR RelativeCentralityNetSciBLINDThirdRevisionNAME 16 May 2015 14:48

20 C.-S. Chang et al.

random walks with path length not greater than 2 for computing the relative centralities in
our local community detection algorithm.

Example 5.1
(A random walk with path length not greater than 2) A random walk with path length
not greater than 2 can be generated by the following two steps: (i) with the probability
kv/2m, an initial node v is chosen, (ii) with probability βi, i = 0,1,2, a walk from v to w
with length i is chosen. As such, we have

p(v,w) =
β0kvδv,w

2m
+

β1

2m
Av,w +

β2

2m

n

∑
v2=1

Av,v2Av2,w

kv2

, (61)

where β0 +β1 +β2 = 1 and βi ≥ 0, i = 1,2,3. Thus,

C({w}|{v}) = P(W = w|V = v)

=

(
β0kvδv,w +β1Av,w +β2 ∑

n
v2=1

Av,v2 Av2 ,w
kv2

)
kv

, (62)

and

C({w}) =
kw

2m
. (63)

In view of (62), we know that C({w}|{v}) = 0 if node w is neither a first neighbor nor a
second neighbor of v. Thus, the neighboring set of a node v, Nei({v}), is simply the union
of its first neighbors and second neighbors.

Also, observe that

C(S|S) = P(W ∈ S|V ∈ S) =
P(W ∈ S,V ∈ S)

P(V ∈ S)

=
∑v∈S ∑w∈S

(
β0kvδv,w +β1Av,w +β2 ∑

n
v2=1

Av,v2 Av2 ,w
kv2

)
∑v∈S kv

= β0 +β1
∑v∈S ∑w∈S Av,w

∑v∈S kv
+β2

∑v∈S ∑w∈S ∑
n
v2=1

Av,v2 Av2 ,w
kv2

∑v∈S kv
. (64)

For a small community with C(S) << 1, the community strength of a set S can be repre-
sented by (64), where the first term is simply a constant β0 (for normalizing the community
strength), the second term is equal to β1(1−conductance), and the third term is related the
clustering coefficient (in terms of the number of triangles) in the set S. In view of this, using
a random walk with path length not greater than 2 to sample a network seems to be a good
compromise between the viewpoint from conductance (Andersen et al., 2006; Andersen
& Lang, 2006; Leskovec et al., 2008) and the viewpoint of clustering coefficient (Watts &
Strogatz, 1998).

As β0 is only a constant for normalizing the community strength, one can increase the
community strength of a node by increasing β0. Note that

Str({w}) = C({w}|{w})−C({w})≥ β0−
kw

2m
. (65)
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Thus, if we choose β0 ≥ kmax
2m (with kmax = maxv∈Vg kv being the maximum degree), then

Str({w}) ≥ 0 for every node w in the sampled graph. In our experiments, we use the
following coefficients: β2 = 0.25, β0 = kmax /2m, and β1 = 1− β0− β2. As such, every
single node has a nonnegative community strength and thus a community by itself.

Fig. 1. An illustrating example with three nodes.

5.2 College football games

Fig. 2. The network of American football games between Division IA colleges during regular
season Fall 2000.

Our first dataset is the American football games between Division IA colleges during
regular season Fall 2000 (Girvan & Newman, 2002), where nodes represent teams and
edges represent regular-season games between two teams. The teams are divided into 12
conferences (See Fig. 2). As shown in Figure 2, the competitions (edges) in the same con-
ference are more intense than those between two different conferences. We first compute
the community strengths of these 12 conferences to see how strong these conferences (as
communities) are. These results are shown in the second column of Table 1 and there are
several conferences that have small community strengths, in particular conference 5 only
has the community strength 0.04 (note that we have added β0 in our algorithm to ensure
that every node has a nonnegative community strength).
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To evaluate our algorithm, we take every team as a seed node and run our local commu-
nity detection algorithm with the maximum size being set to the size of its conference. We
then compute the average precision and recall for each conference in Table 1. As expected,
conferences with larger community strengths are easier to be detected. In particular, for
conferences 0,1,2,3,6,7,8, and 9, our local community detection algorithm achieves 100%
precision and recall. All these conferences have community strengths larger than 0.52. On
the other hand, our algorithm does not achieve high precision and recall for conference
5, which has the lowest community strength 0.04 among all the conferences. To further
understand this, we plot the edges within conference 5 in Figure 3. There is only one
edge between two teams in this conference! We also plot the edges within conferences 10
and 11 in Figure 4 and Figure 5, respectively. These two conferences also have relative
low community strengths and low precision and recall results. As shown in Figure 4,
Conference 10 is formed by a single edge between a clique of four nodes and another
clique of three nodes. As such, our algorithm detects this conference as two communities
and thus achieves roughly 50% of precision and recall. As for conference 11, there is one
team that did not play any games with any other teams in the same conference. As such,
our algorithm is not able to detect that team for conference 11 and that results in poor
precision and recall results.

Fig. 3. Edges within conference 5 of American football games.

Table 1. Precision and recall for college football

Conference Strength Precision(%) Recall(%)

0 0.63 100.00 100.00
1 0.54 100.00 100.00
2 0.57 100.00 100.00
3 0.60 100.00 100.00
4 0.46 82.00 82.00
5 0.04 24.00 24.00
6 0.59 100.00 100.00
7 0.52 100.00 100.00
8 0.60 100.00 100.00
9 0.61 100.00 100.00

10 0.24 51.02 51.02
11 0.43 66.00 66.00
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Fig. 4. Edges within conference 10 of American football games.

Fig. 5. Edges within conference 11 of American football games.

5.3 Zachary karate club

Fig. 6. The network of friendships in the Zachary karate club.

Our second dataset is the Zachary karate club dataset (Zachary, 1977) that has been used
for benchmarking various community detection algorithms in the literature. The karate club
split into two groups due to a dispute in the club. Some members of the club left the original
club and established another new club. In Fig. 6, we reproduce the network of friendships
in the karate club, where nodes represent members and edges represent friendships.

As described in our experiments for the American football games, we take every member
as a seed node and run our local community detection algorithm with the maximum size
being set to the size of his/her club. In Table 2, we show the precision and recall results for
the Zachary karate club. Our algorithm achieves 100% precision for 22 nodes and 91.67%
precision for another 11 nodes. The results for recall are not as good as those for precision.
Only 5 nodes have 100% recall and another 15 nodes have 94.44% recall. There is one
node, node 9 in Figure 6, that has poor precision and recall. This is because node 9 is at
the boundary of these two clubs and there is only one link from node 9 to each club. As
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such, both node 2 and node 33 have the same relative centrality with respect to node 9. For
our algorithm, we break the tie by choosing the node with a smaller index and thus node 9
chooses node 2 in the first step. Clearly, this then leads to the wrong clustering of node 9
to the other club.

5.4 LFR benchmark graphs

Both the dataset for the American football games and the dataset for the Zachary karate
club are quite small. In order to test the scalability of the local community detection algo-
rithm, we consider the LFR benchmark graphs (Lancichinetti et al., 2008) with n = 5000
nodes. In the LFR benchmark graphs, both the degree and the community size distributions
are power laws, with exponents γ and β , respectively. As in (Lancichinetti et al., 2008),
the average degree of a node is denoted by 〈k〉. In addition to these three parameters, the
mixing parameter µ is used for characterizing how the built-in communities in a graph are
mixed. Specifically, for each node, a fraction 1−µ of its links are with the other nodes of
its community and a fraction µ of its links are with the other nodes of the graph.

In each of our experiments, 20 realizations of LFR graphs are generated. For each built-
in community in a realization, we then randomly choose a node as a seed node and run our
local community detection algorithm with the maximum size being set to the size of the
built-in community. By doing so, we have the same number of (overlapping) communities
as that of the built-in communities. We then compute the normalized mutual information
measure (NMI) by using a built-in function in GitHub (McDaid et al., 2011; Lancichinetti
et al., 2009). In Figure 7, we show our experimental results for four pairs of the exponents
(γ,β ) = (2,1),(2,2),(3,1),(3,2), and three values of the average degree 〈k〉= 15,20,25.
Each curve (marked with RC) shows the variation of the NMI with respect to the mixing
parameter µ .

Table 2. Precision and recall for the Zachary karate club

Maximum relative centrality

Precision(%) Recall(%) Number of nodes

100.00 100.00 5
100.00 94.44 15
100.00 77.78 2
91.67 68.75 11
8.33 5.56 1



ZU064-05-FPR RelativeCentralityNetSciBLINDThirdRevisionNAME 16 May 2015 14:48

Relative Centrality and Local Community Detection 25

Fig. 7. Test of the local community detection algorithm on the LFR graphs. The number of
nodes n = 5000. Each point corresponds to an average over 20 graph realizations.

To compare with other existing community detection methods, we also perform the same
experiments by using the modularity optimization method (Blondel et al., 2008) (marked
with FU in Figure 7) and the Potts model (Reichardt & Bornholdt, 2006b) (marked with
PM in Figure 7) implemented in igraph (Csardi & Nepusz, 2006). We note the numerical
results for the modularity optimization method and the Potts model are slightly different
from those in (Lancichinetti et al., 2008). This is mainly due to the fact that the normalized
mutual information measure (NMI) used here allows overlapping communities and it is
different from that in (Lancichinetti et al., 2008). As can be seen from Figure 7, our
local community detection algorithm gives better results in these experiments. To see the
intuition behind this, let us consider the case with the mixing parameter µ = 0.6 and
〈k〉 = 25. In this case, the average number of links connected to the other nodes within
the same community is 25∗ (1−0.6) = 10. On average, the other 15 links are distributed
to a large number of communities. In our experiments, the average number of built-in
communities is 154.5. As the LFR graphs are generated by using the configuration model,
the probability that a node has more links to the other communities than its own community
is quite small. As such, local search based on relative centrality can be very effective. On
the other hand, if the average degree 〈k〉 is small, it is more likely for the local community
detection algorithm to include a wrong node at the early stage of the algorithm and that
might lead to a chain effect to include much more wrong nodes in the end. Finally, we
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note that these numerical results in terms of the NMI measures should not be regarded as
a fair comparison with the modularity optimization method and the Potts model as these
two methods are intrinsically different from our local community detection algorithm. For
instance, in our experiments, we run our local community detection algorithm with the size
equal to the size of the built-in community. Such information is in general not available.

5.5 Large real networks

In this section, we perform our experiments by using the Amazon dataset and the DBLP
dataset (Leskovec & Krevl, 2014). These two datasets are considerably larger than the
American football games and the Zachary karate club that we used in the previous exper-
iments. As indicated in (Leskovec & Krevl, 2014), the Amazon dataset was collected by
crawling the Amazon website. In such a network, an undirected edge between product i
and product j is added if product i is frequently co-purchased with product j. Each product
category provided by Amazon defines each ground-truth community. Also, each connected
component in a product category is regarded as a separate ground-truth community. In the
Amazon dataset (Leskovec & Krevl, 2014), the number of nodes is 334863, the number of
edges is 925872, and the number of ground-truth communities is 5000.

On the other hand, the DBLP computer science bibliography provides a comprehensive
list of research papers in computer science. A co-authorship network is constructed by
adding an edge between two authors if they publish at least one paper together. Publica-
tion venue, e.g, journal or conference, defines an individual ground-truth community and
authors who published to a certain journal or conference form a community. Also, each
connected component in a group is regarded as a separate ground-truth community. In the
DBLP dataset (Leskovec & Krevl, 2014), the number of nodes is 317080, the number of
edges is 1049866, and the number of ground-truth communities is 5000.

In our experiments, we only test the largest 110 communities among the 5000 ground
truth communities in both datasets. For the parameters needed for the random walk with
path length not greater than 2, we choose β0 = 0, β2 = 0 and β1 = 1. In other words, we only
use the information of the degree of a node in our local community detection algorithm.
Instead of starting from a single node in our local community detection algorithm, we start
from an initial seed set that contains more than one node. The initial seed set S0 of each
ground-truth community S is the set of nodes that contains the minimum number of nodes
so as to satisfy C(S0|S)≥ αC(S|S). Such a seed set can be viewed as a core of a set S and
the parameter α determines the size of the core. In our experiment, the parameter α is 0.9.
The main objective of these experiments is to see whether our local community detection
algorithm is effective in detecting large ground truth communities by starting from a core
of a community.

In Figure 8, we show the experimental results for the Amazon dataset in terms of
community strength, community size and precision. The precision for each ground-truth
community S in Figure 8 is the number of nodes that are correctly detected in the set
S\S0 divided by the size of the set S\S0. As in the LFR benchmark graphs, we can see
from Figure 8 that precision is positively correlated with community strength, especially
for those communities with small community sizes. However, for communities with very
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Fig. 8. Experimental results for the Amazon dataset.

Fig. 9. Experimental results for the DBLP dataset.
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large community sizes, the correlation between community strength and precision is not
that clear.

In Figure 9, we show the experimental results for the DBLP dataset. To our surprise, the
correlation between community strength and precision is not clear even for communities
with small community sizes. A careful examination of the ground truth communities in
the DBLP dataset reveals that the Jaccard similarity index between the cores of a pair of
two ground truth communities in the DBLP dataset could be high sometimes. In other
words, the ground truth communities in the DBLP dataset are overlapping communities
with significant amounts of overlaps in their cores. This might due to the fact that there
are overlapping conference attendees in conferences on similar or related topics. In such
a setting, greedy local community detection algorithms do not perform well. To see this,
consider two sets S1 and S2 in Figure 10 that have significant overlaps in their cores. If we
start from the core in S1, we might end up with detecting the set S2 by using a greedy local
community detection algorithm. In such a scenario, the precision is quite low. To summa-
rize, unlike the LFR benchmark graphs, the DBLP dataset have overlapping communities
that have significant overlaps in their cores. As such, greedy local community detection
algorithms like the one presented in this paper may not be effective in detecting a specific
community that contains a core of that community. One tentative solution is not to use
the greedy selection in (P5) of our local community detection algorithm. But this requires
keeping track of more candidate nodes and thus increases computational complexity in the
local community detection algorithm. On the other hand, we also note that the community
detection algorithms in (Blondel et al., 2008; Reichardt & Bornholdt, 2006b) are designed
for finding a partition of a network. As such, they are also not applicable for detecting
overlapping communities.

Fig. 10. Greedy local community detection algorithms do not perform well when the cores of the
two sets S1 and S2 are similar.
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6 Conclusion

In this paper, we make an attempt to lay a foundation for structure analysis of networks.
For this, we introduced the concept of relative centrality for a sampled graph. We then
developed the associated framework on top of that and illustrated its connections to many
early works in the literature. In particular, the community strength of a set of nodes is de-
fined as the difference between the relative centrality of the set with respect to itself and its
centrality, and a community is then a set of nodes with a nonnegative community strength.
We showed there are several equivalent statements for a community in our framework. We
also defined the modularity as the average community strength of the community to which
a randomly selected nodes belongs. Such a notion generalized the previous modularity in
(Newman & Girvan, 2004) and stability in (Lambiotte, 2010; Delvenne et al., 2010).

For the local community detection problem, we developed agglomerative algorithms
that guarantee the community strength of the detected local community. There are two
key features of our local community detection algorithms: (i) local search: only nodes in
the neighboring set need to be explored, and (ii) recursive update: the relative centralities
can be efficiently updated by using recursive formulae. As such, they are as efficient
as the algorithm in (Clauset, 2005) in terms of computational complexity. As our local
community detection algorithm has the freedom to choose the “viewpoint” to sample a
network, we propose sampling the graph with a random walk that has a path length not
greater than 2. Such a sampling method allows us to look beyond the first neighbors so that
we can take the clustering coefficient into account.

There are several possible extensions for our work:

(i) Sampling with bivariate distributions that are not symmetric: here we assume that the
bivariate distribution associated with a sampled graph is symmetric. Such a condition
might be too strong for sampling directed networks. A possible extension is to consider
bivariate distributions that have the same marginal distributions.

(ii) Link prediction: as addressed in (Liben-Nowell & Kleinberg, 2003), similarity mea-
sures can also be used for link prediction. The concept and the framework developed for
relative centrality here might be used for more complicated types of link prediction, e.g.,
Would some products be more preferable to one group of people than another group of
people?

(iii) Community detection: we note our algorithm is for the local community detection
problem and it is different from the community detection problem. The local community
detection problem is to find a community that contains a specific node(s). As such, one
first needs to define what a community is (as we did in the paper). Also, one only needs
the local information around that node and it is independent of the size of a network
once some global statistics are known, e.g., the total number of nodes and the total
number of edges. On the other hand, the community detection problem is to partition
the whole network into communities. These are two different problems and it would not
be a fair comparison between a local community detection algorithm and a community
detection algorithm. For the community detection problem, it might have the scalability
issue. However, for the local community detection problem, there is no scalability issue
once the size of the community that one would like to find is specified. One possible
application of our local community detection algorithm is to develop an app on an on-
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line social network so that the app can automatically generate a list of friends to invite for
a party. For such an app, there is no need to know the whole on-line social network. For
the community detection problem, especially for detecting overlapping communities,
we refer to the survey paper (Xie et al., 2013) for a comparative study and (Yang &
Leskovec, 2013) for scalable detection of large overlapping communities.

Appendices

Appendix A

In this section, we prove Theorem 3.1.
(i) ⇒ (ii): Note from Proposition 2.1 (i) and (ii) that C(S|S)+C(Sc|S) = C(Vg|S) = 1

and C(S)+C(Sc) = C(Vg) = 1. It then follows from the reciprocal property in Proposition
2.1(iv) that

C(Sc)(C(S|S)−C(S|Sc))

= C(Sc)C(S|S)−C(Sc)C(S|Sc)

= (1−C(S))C(S|S)−C(S)C(Sc|S)

= (1−C(S))C(S|S)−C(S)(1−C(S|S))

= C(S|S)−C(S) = Str(S)≥ 0.

As we assume that 0 < C(S) < 1, we also have 0 < C(Sc) < 1. Thus,

C(S|S)−C(S|Sc)≥ 0.

(ii)⇒ (iii): Since we assume that C(S|S) ≥C(S|Sc), we have from C(S|S)+C(Sc|S) =
C(Vg|S) = 1 that

1 = C(S|S)+C(Sc|S)≥C(S|Sc)+C(Sc|S).

Multiplying both sides by C(Sc) yields

C(Sc)≥C(Sc)C(S|Sc)+C(Sc)C(Sc|S).

From the reciprocal property in Proposition 2.1(iv) and C(S) + C(Sc) = C(Vg) = 1, it
follows that

C(Sc) ≥ C(S)C(Sc|S)+C(Sc)C(Sc|S)

= (C(S)+C(Sc))C(Sc|S)

= C(Sc|S).

(iii)⇒ (iv): Note from the reciprocal property in Proposition 2.1(iv) that

C(S)C(Sc|S) = C(Sc)C(S|Sc). (66)

It then follows from C(Sc|S)≤C(Sc) that C(S|Sc)≤C(S).
(iv) ⇒ (i): Since we assume that C(S|Sc) ≤ C(S), it follows from (66) that C(Sc|S) ≤

C(Sc). In conjunction with C(S|S)+C(Sc|S) =C(Vg|S) = 1 and C(S)+C(Sc) =C(Vg) = 1,
we have

C(S|S)−C(S) = C(Sc)−C(Sc|S)≥ 0.
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Appendix B

In this section, we prove Lemma 4.1.
(i) Since S1 and S2 are disjoint, we have from the reciprocity property and the additivity

property in Proposition 2.1 (iv) and (ii) that

C(S1∪S2) ·C(S3|S1∪S2)

= C(S3) ·C(S1∪S2|S3)

= C(S3) ·C(S1|S3)+C(S3) ·C(S2|S3)

= C(S1) ·C(S3|S1)+C(S2) ·C(S3|S2).

From the additivity property in Proposition 2.1 (ii) for two disjoint sets, we also have

C(S1∪S2) = C(S1)+C(S2).

Thus,

C(S3|S1∪S2) =
C(S1) ·C(S3|S1)+C(S2) ·C(S3|S2)

C(S1)+C(S2)
.

(ii) From the definition of community strength in (38), we have that

Str(S1∪S2) = C(S1∪S2|S1∪S2)−C(S1∪S2), (67)

Str(S1) = C(S1|S1)−C(S1), (68)

and

Str(S2) = C(S2|S2)−C(S2). (69)

Using (i) of this lemma and the additivity property in Proposition 2.1 (ii) for two disjoint
sets yields

C(S1∪S2|S1∪S2)

=
C(S1) ·C(S1∪S2|S1)+C(S2) ·C(S1∪S2|S2)

C(S1)+C(S2)

=
C(S1) ·C(S1|S1)+C(S1) ·C(S2|S1)

C(S1)+C(S2)
+

C(S2) ·C(S1|S2)+C(S2) ·C(S2|S2)
C(S1)+C(S2)

.(70)

In view of the reciprocity property in Proposition 2.1 (iv),

C(S1) ·C(S2|S1) = C(S2) ·C(S1|S2). (71)

Thus,

C(S1∪S2|S1∪S2)

=
C(S1) ·C(S1|S1)+2C(S1) ·C(S2|S1)

C(S1)+C(S2)
+

C(S2) ·C(S2|S2)
C(S1)+C(S2)

. (72)

From the additivity property in Proposition 2.1 (ii) for two disjoint sets, we also have

C(S1∪S2) = C(S1)+C(S2). (73)

Using (72), (73), (68) and (69) in (67) yields the result in (51).
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If, furthermore, S1 and S2 are positively correlated, then it follows from (49) and (51)
that

Str(S1∪S2)

≥ C(S1) ·Str(S1)+C(S2) ·Str(S2)
C(S1)+C(S2)

≥ min[Str(S1),Str(S2)]. (74)

Appendix C

In this section, we prove Proposition 4.1,
(i) If w is not in Nei(S)∪ S, we have C({w}|S) = 0. Since C({w}) > 0, it follows that

C({w}|S)−C({w}) < 0. Thus, w is not positively correlated to S.
(ii) Since w∗ is not in S, we know that {w∗} and S are disjoint. From Lemma 4.1 (i), it

follows that

C({w}|S∪{w∗}) =
C(S) ·C({w}|S)+C({w∗}) ·C({w}|{w∗})

C(S)+C({w∗})
. (75)

Since C(S) > 0 and C({w}) > 0, C({w}|S∪{w∗}) > 0 if and only if either C({w}|S) > 0
or C({w}|{w∗}) > 0. For any node w not in S∪{w∗}, we then have C({w}|S∪{w∗}) > 0
if and only if w is in Nei(S) or w is in Nei({w∗}). As such,

Nei(S∪{w∗}) =
(

Nei(S)∪Nei({w∗})
)
\(S∪{w∗}). (76)

Write

Nei(S)∪Nei({w∗}) = Nei(S)∪
(

Nei({w∗})\Nei(S)
)
.

From (76), we then have

Nei(S∪{w∗})

=
(

Nei(S)\(S∪{w∗})
)
∪

(
(Nei({w∗})\Nei(S))\(S∪{w∗})

)
=

(
Nei(S)\{w∗}

)
∪

(
Nei({w∗})\(S∪Nei(S))

)
,

where we use the fact that a node in Nei(S) (resp. Nei({w∗}) is not in S (resp. {w∗}) in the
last identity.

(iii) If a node w is in Nei({w∗})\(S∪Nei(S)), then w is not in Nei(S) and S. Thus,
C({w}|S) = 0. The result in (55) then follows directly from (75).
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