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Abstract—Output-buffered switches are known to have better
performance than other switch architectures. However, output-
buffered switches also suffer from the notorious scalability prob-
lem, and direct constructions of large output-buffered switches
are difficult. In this paper, we study the problem of constructing
scalable switches that have comparable performance to output-
buffered switches. For this, we propose a new concept, called
quasi-output-buffered switch. Like an output-buffered switch, a
quasi-output-buffered switch is a deterministic switch that delivers
packets in the FIFO order and achieves 100% throughput. Using
the three-stage Clos network, we show that one can recursively
construct a larger quasi-output-buffered switch with a set of
smaller quasi-output-buffered switches. By recursively expanding
the three-stage Clos network, we obtain a quasi-output-buffered
switch with only 2×2 switches. Such a switch is called a packet-
pair switch as it always transmits packets in pairs. By computer
simulations, we show that packet-pair switches have better delay
performance than most load-balanced switches with comparable
construction complexity.

Index Terms—output-buffered switches, load-balanced
switches, packet-pair switches, delay performance.

I. INTRODUCTION

It is known that an output-buffered switch achieves 100%
throughput and has the best delay performance among all
switch architectures. However, this is at the cost of N times
speedup for an N × N output-buffered switch. The required
speedup somehow limits us to construct a large output-
buffered switch. There are several studies in the literature that
achieve exact emulation of an output-buffered switch, e.g.,
the crosspoint-buffered switch [1], the parallel-buffered switch
[13], and the combined input-output queue [15], [23]. How-
ever, all these have either non-scalable hardware complexity,
or computation and communication overheads.

One of the key problems in high speed switching is whether
one can construct scalable switches with comparable perfor-
mance to output-buffered switches. Recent advances in load-
balanced switches (see e.g., [6], [9], [14], [17]) have shed
some light on that problem. A typical load-balanced switch
consists of two stages: the first stage is for load-balancing
that converts incoming traffic into the uniform traffic, and the
second stage is for switching of the uniform traffic. Moreover,
the connection patterns in the switches of both stages are
deterministic and periodic. It is shown that various load-
balanced switches have comparable performance to output-
buffered switches. As such, they can achieve 100% throughput

with O(1) computation and communication overheads.
One of the main contributions of this paper is to identify

the key ingredients in load-balanced switches that enable us
to construct large switches with comparable performance to
output-buffered switches. For this, we propose a new concept,
called quasi-output-buffered switch. Like an output-buffered
switch, a quasi-output-buffered switch is a deterministic switch
that delivers packets in the First-in First-out (FIFO) order and
achieves 100% throughput. Using the three-stage Clos network
[11], we show that one can recursively construct a larger quasi-
output-buffered switch with a set of smaller quasi-output-
buffered switches. To our best knowledge, such a result on
quasi-output-buffered switches seems to be the first result that
allows recursive constructions of switches with comparable
performance to output-buffered switches. Analogous to the
construction of a Benes network [2], we recursively expand
the three-stage Clos network to obtain a quasi-output-buffered
switch with only 2 × 2 switches. Such a switch is called a
packet-pair switch as it always transmits packets in pairs. The
packet-pair switch has several nice features: 100% throughput,
FIFO delivery of packets, deterministic connection patterns
for 2 × 2 switches, self-routing of packets, and no need for
communication and computation. By computer simulations,
we also show that packet-pair switches have better delay per-
formance than most load-balanced switches with comparable
construction complexity.

The key theory behind our constructions of quasi-output-
buffered switches is a refined calculus based on a traffic
characterization in [8]. Such a traffic characterization allows
us to describe a flow of packets by a single “rate.” It is shown
that the aggregated flow has the “rate” equal to the sum of
the “rate” of each individual flow. Round-robin splitting of a
flow yields several subflows with smaller “rates.” Moreover,
a departing flow has the same “rate” as that of the arriving
flow provided that the system is “stable.” Unlike the theory of
effective bandwidth (see e.g., [16] and references therein), the
refined calculus does not need the independent assumption on
the flows.

The paper is organized as follows: in Section II, we intro-
duce the traffic characterization and its associated calculus.
Then we define the concept of a quasi-output-buffered switch.
In Section III, we propose the three-stage construction of
a quasi-output-buffered switch. The packet-pair switches are
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introduced in Section IV. Finally, the paper is concluded in
Section V, where we address possible extensions and future
research problems.

II. QUASI-OUTPUT-BUFFERED SWITCHES

A. Traffic characterization

A flow is commonly known as a sequence of packets
that have the same source and destination pair in a switch
(or a network of switches). In most switching papers, traffic
characterizations for flows in a switch (or a network of
switches) are usually assumed to follow certain traffic models,
e.g., Bernoulli arrival processes and Markov processes. These
traffic models are too specific for our constructions of quasi-
output-buffered switches. Instead, we will use a much more
general traffic characterization for a flow of packets in [8].
Throughout this paper, we only consider the discrete-time
setting and make the following assumptions:

(A1) Time is slotted and synchronized in every link.
(A2) Packets are of the same size and they can be trans-

mitted in a time slot.
Definition 1: (i) A stochastic process {Q(t), t ≥ 0}

is said to have a finite moment generation function
if there exists a θ > 0 such that

sup
t

E[eθQ(t)] < ∞. (1)

(ii) For a flow A, we will use A(t) to denote the cumu-
lative number of packets that arrives by time t for
that flow. Flow A is said to be λ-moment generating
function bounded from above (λ-m.b.f.a.) if for every
ε > 0, the stochastic process {Q(t), t ≥ 0} defined
below has a finite moment generation function:

Q(t) = max
0≤s≤t

[A(t)−A(s)− (λ + ε)(t− s)]. (2)

With Q(0) = 0, we note that Q(t) in (2) is in fact the
recursive expansion of the Lindley equation [18]

Q(t) = max[0, Q(t− 1) + a(t)− (λ + ε)], (3)

where a(t) = A(t) − A(t − 1) is the number of packets that
arrive at time t. In view of (3), Q(t) is simply the number of
packets (or more precisely bits with Q(t) being a real number)
at time t when we feed flow A to a work conserving link
with capacity λ+ ε. It is known from the Loynes construction
[20] that {Q(t), t ≥ 0} converges in distribution to a steady
state random variable Q(∞) if the sequence {a(t), t ≥ 1}
is stationary and ergodic with a mean rate not greater than
λ. However, traffic characterization by the mean rate of a
stationary and ergodic sequence is not strong enough to have a
finite moment generation function of the steady state random
variable Q(∞). For this, we need a stronger condition in [3].
Let

a∗(θ) = lim sup
t→∞

1
θt

sup
s≥0

log E[eθ(A(t+s)−A(s))] (4)

be the minimum envelope rate (MER) with respect to θ > 0
(or known as the effective bandwidth function, see e.g., [16]).
When

Q(t) = max
0≤s≤t

[A(t)−A(s)− (a∗(θ) + ε)(t− s)], (5)

it was shown in Theorem 3.8 in [3] that

sup
t

E[eθQ(t)] < ∞, (6)

This shows that flow A is a∗(θ)-m.b.f.a. for any θ > 0. One
can further choose the best traffic characterization by letting
ρ = infθ>0 a∗(θ) and thus flow A is ρ-m.b.f.a. We note that
for many stochastic processes, the value ρ is simply the mean
arrival rate, as illustrated in the following example for the
Bernoulli arrival process.

Example 2: Consider the Bernoulli arrival process with
mean ρ, i.e., with probability ρ there is an arriving packet
in a time slot and this is independent of everything else. For
such an arrival process,

a∗(θ) =
1
θ

log(ρeθ + (1− ρ)), (7)

and
inf
θ>0

a∗(θ) = lim
θ→0

a∗(θ) = ρ. (8)

Thus, the Bernoulli arrival process with mean ρ is ρ-m.b.f.a.

In view of Example 2, our traffic characterization is only
slightly stronger than the traffic characterization by the mean
arrival rate. The additional assumption on the bounded mo-
ment generation functions lead to the following three impor-
tant properties: the superposition property in Lemma 3, the
splitting property in Lemma 4 and the departure property in
Lemma 5. The proofs of Lemma 3, Lemma 4 and Lemma 5
are omitted due to space limitation and they can be found in
the full report [4].

In the following lemma, we derive the superposition prop-
erty for two flows.

Lemma 3: (Superposition)
(i) If both {Q1(t), t ≥ 0} and {Q2(t), t ≥ 0} have

finite moment generating functions, then {Q1(t) +
Q2(t), t ≥ 0} also has a finite moment generating
function.

(ii) If flow A1 is λ1-m.b.f.a. and flow A2 is λ2-m.b.f.a.,
then the superposition of the two flows A1 and A2

(defined by A1(t) + A2(t)) is λ1 + λ2-m.b.f.a.
We note that the proof of Lemma 3 is based on the Cauchy-

Schwartz inequality and Q1(t) and Q2(t) in Lemma 3(i)
(resp. A1 and A2 Lemma 3(ii)) need not be independent. As
discussed before, if we can view λ1 as the “mean” rate for flow
A1 and λ2 as the “mean” rate for flow A2, then the aggregated
flow has the “mean” rate λ1 + λ2.

The second property is the splitting property.
Lemma 4: (Round-robin splitting) Consider a flow A.

Suppose that we split flow A in the round robin fashion into
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p sub-flows A1, A2, . . . , Ap with

Am(t) = dA(t)−m + 1
p

e, m = 1, 2, . . . , p. (9)

If flow A is λ-m.b.f.a., then for all m = 1, 2, . . . , p, flow Am

is λ/p-m.b.f.a.
The intuition of Lemma 4 is quite obvious. If we view λ

as the “mean” rate for flow A, then flow Am, obtained from
round-robin splitting, has the “mean” rate λ/p.

The third property is the departure property.
Lemma 5: (Departure) Consider a flow A that is fed into

a system (along with possible other flows). Let flow B be the
departure flow of flow A, i.e., B(t) is the cumulative number
of flow A packets that depart from the system by time t. Also,
let Q(t) be the total number of packets (including packets from
flow A and other flows) in the system at time t. If (i) flow
A is λ-m.b.f.a., and (ii) {Q(t), t ≥ 0} has a finite moment
generation function, then flow B is also λ-m.b.f.a.

The departure property shows that if flow A has the “mean”
rate λ, then flow B, the departure flow of flow A, also has
the “mean” rate λ provided that the system is “stable” (in the
sense of bounded moment generation function). As we shall
see later, the superposition property, the splitting property, and
the departure property provide us a simple calculus for our
traffic characterization in a network of switches.

We note that it is difficult to obtain the departure property
in Lemma 5 if one uses weaker traffic characterizations,
such as stationarity and ergodicity. On the other hand, it is
possible to obtain such a departure property by using stronger
traffic characterizations, such as the (σ, ρ)-deterministic traffic
characterization in the network calculus [12]. However, such
a deterministic traffic characterization cannot be used for
stochastic analysis needed in our later development.

B. Output-buffered switches

A switch that has M input links and N output links is called
an M ×N switch. A (local) flow in an M ×N switch is the
sequence of packets that have the same input link and output
link. As there are M inputs and N outputs, there are MN
flows for an M ×N switch.

Let flow Ai,k be the flow from input i to output k, and
Ai,k(t), i = 1, 2, . . . ,M , k = 1, 2, . . . , N , be the cumulative
number of packets that arrives by time t for that flow. Also, let
Bk(t), k = 1, 2, . . . , N , be the cumulative number of packets
that depart from output k by time t, and Qk(t) be the number
of packets stored at the kth output at time t.

Definition 6: (Output-buffered switch) An M ×N switch
is called an output-buffered switch if it satisfies the following
two properties when it is started from an empty system at time
0 (i.e., Q(0) = 0):

(i) packets destined for the same output depart in the
First-in First-out (FIFO) order, and

(ii) for all k = 1, 2, . . . , N ,

Qk(t) = max[0, Qk(t− 1) +
M∑
i=1

ai,k(t)− 1], (10)

where ai,k(t) = Ai,k(t)− A,k(t− 1) is the number
of flow Ai,k packets that arrive at time t.

Equation (10), known as the Lindley recursion, says that
all the packets that arrive at time t from flows Ai,k, i =
1, 2, . . . ,M , are sent to the output buffer of the kth output
port at the same time. If there are packets in that output buffer,
then one packet will depart from the output port. We note that
in the worst case there might be packets arriving from all the
M flows at the same time. In that case, each output buffer
is required to have the capability of receiving M packets at
the same time. As such, each output buffer needs to speed up
(at least) M times and that causes the notorious scalability
problem for an output-buffered switch.

By recursively expanding the Lindley equation in (10) with
Qk(0) = 0 yields

Qk(t) = max
0≤s≤t

[
M∑
i=1

(Ai,k(t)−Ai,k(s))− (t− s)]. (11)

Since Qk(t) =
∑M

i=1 Ai,k(t)−Bk(t), it then follows that

Bk(t) = min
0≤s≤t

[
M∑
i=1

Ai,k(s) + (t− s)]. (12)

Note that from the FIFO property and (12) of an output-
buffered switch, the departure of a packet at time t is uniquely
determined by all the packets that arrive by time t. As such, if
the arrival times of all the packets are delayed by a constant
c, then the departure times of all the packets are also delayed
by the same constant c.

To ensure the stability of an output-buffered switch, we
introduce the following no overbooking condition.

Definition 7: (No overbooking condition) Consider an
M × N switch. The input traffic is said to satisfy the no
overbooking condition if

(i) for all i = 1, 2, . . . ,M , k = 1, 2, . . . , N , flow Ai,k

is λi,k-m.b.f.a., and
(ii) for all k = 1, 2, . . . , N ,

M∑
i=1

λi,k < 1. (13)

Intuitively, the no overbooking condition in (13) indicates
that the total “mean” rate to a particular output port cannot
exceed 1. Under the no overbooking condition, we show that
an output-buffered switch is stable in the sense of having a
finite moment generation function.

Lemma 8: For an M × N output-buffered switch, if the
input traffic satisfies the no overbooking condition in Defini-
tion 7, then (i) {Qk(t), t ≥ 0} has a finite moment generation
function, k = 1, 2, . . . , N , and (ii) {Q(t), t ≥ 0} has a finite
moment generation function, where Q(t) =

∑N
k=1 Qk(t) is

the total number of packets in the switch at time t.
Such a property is called the universal stability property

(in the sense of the existence of a finite moment generating
function for the total number of packets in a switch).
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Proof. (i) Using the superposition property in Lemma 3(ii),
the aggregated flow to the kth output is

∑M
i=1 λi,k-m.b.f.a.

The result in (i) then follows directly from (13) and Definition
1.

(ii) This is a direct consequence of the superposition prop-
erty in Lemma 3(i).

C. Definition of quasi-output-buffered switches

As discussed before, output-buffered switches do not scale
due to the needed speedup. As such, it is difficult to construct
a large output-buffered switch directly. The natural question
is then whether one can construct a larger switch using a
set of smaller output-buffered switches. We will show in this
paper that this is possible by extracting and preserving some
key properties in output-buffered switches. The switches that
satisfy these key properties are called quasi-output-buffered
switches (defined below), i.e., they behave like output-buffered
switches but they are not exactly the same as output-buffered
switches.

Definition 9: (Quasi-output-buffered switch) An M ×N
switch is called a quasi-output-buffered switch if it satisfies the
following properties when it is started from an empty system
at time 0:

(P1) Deterministic mapping: the departure time of every
packet is a deterministic function of the arrival times
of all the packets. This implies that if the arrival
times of all the packets are delayed by a constant c,
then a quasi-output-buffered switch can be operated
in a way (by shifting the starting time of the switch)
so that the departure times of all the packets are also
delayed by the same constant c.

(P2) FIFO: packets of the same flow depart in the FIFO
order.

(P3) Universal stability: let Q(t) be the total number of
packets in the switch. If the input traffic of the switch
satisfies the no overbooking condition in Definition
7, then {Q(t), t ≥ 0} has a finite moment generation
function.

Clearly, an output-buffered switch is a quasi-output-buffered
switch (from Lemma 8). These include the set of switches
that achieve exact emulation of output-buffered switches (e.g.,
the CIOQ switch in [15]). Various versions of load-balanced
Birkhoff-von Neumann switches, including the Uniform Frame
Spreading (UFS) in [17], the Padded Frame in [14], and the
CR switch in [24], are shown to have a constant bound when
comparing to the total number of packets in the correspond-
ing output-buffered switch. Thus, they are also quasi-output-
buffered switch. However, it is not clear whether an input-
buffered switch with maximum weight matching (MWM) [21]
is a quasi-output-buffered switch as the universal stability
property in (P3) has not been proved in the literature yet.
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Fig. 1. A three-stage construction of a quasi-output-buffered switch

III. A THREE-STAGE CONSTRUCTION OF A
QUASI-OUTPUT-BUFFERED SWITCH

A. Operation rules

In this section, we show how one can construct a larger
quasi-output-buffered switch by using a set of smaller quasi-
output-buffered switches. In Figure 1, we show a three-stage
construction of an N×N quasi-output-buffered switch, where
N = p × q. In the first stage, there are q p × p input-
buffered switches. Each input buffer at an input link of a
switch in the first stage has N virtual output queues (VOQ).
The second stage consists of p q × q quasi-output-buffered
switches. Finally, in the third stage, there are also q p × p
input-buffered switches. Each input buffer at an input link of
a switch in the third stage has p VOQs. As in a standard Clos
network [11], the switches in the first stage and those in the
second stage are connected by the perfect shuffle exchange,
i.e., for m = 1, 2, . . . , p, ` = 1, 2, . . . , q, the mth output from
the `th switch in the first stage is connected to the `th input of
the mth switch in the second stage. Similarly, the switches in
the second stage and those in the third stage are also connected
by the perfect shuffle exchange, i.e., for m = 1, 2, . . . , p,
` = 1, 2, . . . , q, the `th output from the mth switch in the
second stage is connected to the mth input of the `th switch
in the third stage.

The main idea of the three-stage construction is to accumu-
late packets in the first stage to form a frame. Then use the
uniform frame spreading (UFS) scheme in [17] to distribute
the packets in a frame evenly to the quasi-output-buffered
switches in the second stage. Finally, packets in a frame are
”re-assembled” in the last stage.

To do this, the connection patterns of the p× p switches in
the first stage and the third stage are specified by the symmetric
TDM switch in [7]. Recall that a p×p symmetric TDM switch
implements the following periodic connection patterns: input
i is connected to output j at time t if and only if

(i + j) mod p = (t + 1) mod p. (14)

In other words, for any positive integer f , input i is connected
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to output 1 at time i + (f − 1)p, output 2 at time i + 1 +
(f − 1)p,..., and output p at time i− 1 + fp. Also, it is clear
from (14) that every connection pattern in a symmetric TDM
switch is symmetric (as input i is connected to output j if and
only if input j is connected to output i). As such, output i
is connected to input 1 at time i + (f − 1)p, input 2 at time
i + 1 + (f − 1)p,..., and input p at time i− 1 + fp.

Now we specify the operation rules in these three stages.
(R1) Uniform frame spreading (UFS) for the switches in
the first stage:

There are N VOQs at an input of a symmetric TDM switch
at the first stage. When a packet destined for output j arrives, it
is placed in the jth VOQ, j = 1, 2 . . . , N . The switches in the
first stage are operated in a frame-based manner as in the UFS
scheme [17]. Every frame consists of p consecutive time slots.
However, the beginning time slots of frames are different for
different inputs. Specifically, frame f of input i of a switch in
the first stage begins at the f th time when input i is connected
to the first quasi-output-buffered switch in the second stage.
As such, we have from (14) that frame f of input i consists of
time slots i+(f−1)p, . . . , i−1+fp. If the number of packets
in a VOQ is not less than p, that VOQ is called a full-framed
VOQ. At the beginning of a frame, if an input of a switch
in the first stage has at least one full-framed VOQ, then the
switch selects one full-framed VOQ and sends p consecutive
packets from that VOQ in that frame. As such, these p packets
are distributed to the p q × q quasi-output-buffered switches.
Otherwise, it does nothing during that frame.
(R2) Time shifted operations for the quasi-output-buffered
switches in the second stage:

From the UFS scheme in (R1), we know that if there is
a packet destined for output j arrives at the ith input of the
first switch in the second stage at time t, then there is also
a packet destined for output j arrives at the ith input of the
`th switch in the second stage at time t + `− 1, ` = 2, . . . , p.
In other words, the arrival process to the `th switch in the
second stage is simply a time shifted version of that to the
first switch in the second stage. Thus, they can be made to
be identical if we run the clock in the `th switch by the new
time t′ = t − ` + 1. As there is a unique routing path to
an (external) output from an input of a switch in the second
stage, we know from the deterministic mapping property in
(P1) that the departure process from the first switch in the
second stage and that from the `th switch in the second stage
are also identical with respect to the new clocks. As such, if
there is a packet destined for output j arrives at the first input
of the kth switch in the third stage at time t, then there is also
a packet destined for output j arrives at the `th input of the
kth switch in the third stage at time t + `− 1, ` = 2, . . . , p.
(R3) Inverse uniform frame spreading in the third stage:

There are p VOQs at an input of a symmetric TDM switch
in the third stage. When a packet destined for output j arrives,
it is placed in the k(j)th VOQ, where k(j) = j−b(j−1)/pc∗p.
The switches in the third stage are operated in a frame-based
manner as those in the first stage. Every frame consists of p
consecutive time slots. However, the beginning time slots of

frames are different for different outputs. Specifically, frame f
of output i of a switch in the third stage begins at the f th time
when output i is connected to the first input of that switch.
As such, we have from (14) that frame f of output i consists
of time slots i + (f − 1)p, . . . , i − 1 + fp. During a frame
of output i, every input sends a packet from its ith VOQ to
output i (if its ith VOQ is not empty).

Theorem 10: The three-stage construction described above
is indeed an N ×N quasi-output-buffered switch.

We note there are several early works in the literature (see
e.g., [5], [10]) that also used the three-stage Clos network to
construct a larger switch. To our best knowledge, it seems
that Theorem 10 on quasi-output-buffered switches is the first
result that allows recursive constructions of switches with
comparable performance to output-buffered switches.

Clearly, as the switches in the first stage and the third
stage are symmetric TDM switches, they are deterministic. As
the quasi-output-buffered switches in the second stage satisfy
the deterministic mapping property in (P1), the three-stage
construction also satisfies the deterministic mapping property.
Also, from the UFS scheme in (R1) and the inverse UFS in
(R3), packets of the same flow depart in the FIFO order. Thus,
(P2) of the three-stage construction is satisfied. It remains to
show the universal stability property in (P3). This will be done
in the following section.

B. Universal stability

In this section, we show the universal stability property
for the three-stage construction. Denote by flow Ai,k, i, k =
1, 2, . . . , N , the sequence of packets from input i to output k.
For the proof of the universal stability property, we assume
that the no-overbooking condition in Definition 7 is satisfied,
i.e., for all i, k = 1, 2, . . . , N , Ai,k is λi,k-m.b.f.a., and for all
k = 1, 2, . . . , N ,

N∑
i=1

λi,k < 1. (15)

As the switches in the first stage are operated under the
UFS scheme, it is well known (see e.g., [17], [24]) that the
number of packets stored in an input buffer of a switch in the
first stage is bounded above by a finite constant. This is stated
in the following proposition.

Proposition 11: The total number of packets in an input
buffer of a switch in the first stage is bounded above by Np.

Now we show the universal stability property for the
switches in the second stage. As the switches in the second
stage are quasi-output-buffered switches, the key step is then to
verify that the no-overbooking condition is satisfied for every
quasi-output-buffered switch in the second stage.

Let flow B1
i,k be the departing flow of flow Ai,k from

the first stage. Then it follows from Proposition 11 and the
departure property in Lemma 5 that B1

i,k is also λi,k-m.b.f.a.
Consider the mth switch in the second stage. Let A2

i,k,m(t) be
the cumulative number of packets from flow Ai,k that arrive
at that switch by time t. As the switches in the first stage
are operated under the uniform frame spreading scheme, the
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packets from the same flow are distributed in a round-robin
fashion to the switches at the second stage. Thus,

A2
i,k,m(t) = d

B1
i,k(t)−m + 1

p
e. (16)

It then follows from the splitting property in Lemma 4 that
flow A2

i,k,m is λi,k/p-m.b.f.a.
Let flow A2

j,` be the local flow of packets that traverse from
the jth input link of the mth switch in the second stage to
the `th output link of that switch. Clearly, flow A2

j,` is the
aggregated flow of the set of flows A2

i,k,m, i = (j − 1)p +
1, (j−1)p+2, . . . , jp, k = (`−1)p+1, (`−1)p+2, . . . , `p. As
flow A2

i,k,m is λi,k/p-m.b.f.a., we have from the superposition
property in Lemma 3(ii) that the local flow A2

j,` is then∑jp
i=(j−1)p+1

∑`p
k=(`−1)p+1 λi,k/p-m.b.f.a.

Note that
q∑

j=1

jp∑
i=(j−1)p+1

`p∑
k=(`−1)p+1

λi,k/p

=
N∑

i=1

`p∑
k=(`−1)p+1

λi,k/p

=
1
p

`p∑
k=(`−1)p+1

N∑
i=1

λi,k < 1, (17)

where we use (15) in the last inequality. As such, the no-
overbooking condition for the mth switch in the second stage
is satisfied. In view of the definition of a quasi-output-buffered
switch and the superposition property in Lemma 3(i), we then
have the following proposition.

Proposition 12: (i) Let Q2
m(t) be the total number

of packets in the mth switch in the second stage at
time t. Then {Q2

m(t), t ≥ 0} has a finite moment
generating function.

(ii) Let

Q2(t) =
p∑

m=1

Q2
m(t) (18)

be the total number of packets in the second stage at
time t. Then {Q2(t), t ≥ 0} also has a finite moment
generating function.

Now we show the universal stability property for the
switches in the third stage. Consider the switch in the third
stage that contains the kth output. Let A3

i,k,m(t) be the
cumulative number of flow Ai,k packets that arrive at that
mth input buffer of that switch by time t. Since flow A3

i,k,m

is simply the departure process of flow A2
i,k,m, we have from

Proposition 12(ii) and Lemma 5 that flow A3
i,k,m is also

λi,k/p-m.b.f.a.
Let flow A3

k,m be the aggregated flow of the set of flows
A3

i,k,m, i = 1, 2, . . . , N . Then we have from the superposition
property in Lemma 3(ii) that the aggregated flow A3

k,m is∑N
i=1 λi,k/p-m.b.f.a.
Let Q3

k,m(t) be the total number of packets destined for
the kth output that are stored in the mth input buffer of the

switch in the third stage that contains the kth output. Also, let
C3

k,m(t) be the cumulative number of time slots that the mth

input of that switch is connected to output k by time t. As
the connection pattern of that switch is periodic with period
p, we have

C3
k,m(t)− C3

k,m(s) ≥ b(t− s)/pc ≥ (t− s)/p− 1. (19)

Moreover, we have from the Lindley equation (with
Q3

k,m(0) = 0) that

Q3
k,m(t) = max[0, Q3

k,m(t− 1) + A3
k,m(t)−

A3
k,m(t− 1)− (C3

k,m(t)− C3
k,m(t− 1))]

= max
0≤s≤t

[A3
k,m(t)−A3

k,m(s)− (C3
k,m(t)− C3

k,m(s))].

(20)

Since the aggregated flow A3
k,m is

∑N
i=1 λi,k/p-m.b.f.a., it

then follows from the no overbooking condition in (15) that
{Q3

k,m(t), t ≥ 0} has a finite moment generating function.
Using the superposition property in Lemma 3(i), we then
derive the following result.

Proposition 13: Let

Q3(t) =
N∑

k=1

p∑
m=1

Q3
k,m(t) (21)

be the total number of packets in the third stage at time t. Then
{Q3(t), t ≥ 0} also has a finite moment generating function.

Let Q(t) be the total number of packets inside the three-
stage construction at time t. From Proposition 11, Proposition
12, Proposition 13 and the superposition property in Lemma
3(i), we then conclude that {Q(t), t ≥ 0} also has a finite
moment generation function.

IV. PACKET-PAIR SWITCHES

A. Architecture

In the case that N is a power of 2, we can recursively
construct an N×N quasi-output-buffered switch by the three-
stage construction in Section III (as in the construction of
a Benes network [2]). To do this, we first note that for
N = 2 we can simply choose p = 2 and q = 1 in
the three-stage construction in Section III. Since a 1 × 1
switch can be simply replaced to a single link, the three-
stage construction for this is equivalent to the (two-stage)
load-balanced Birkhoff-von Neumann switch with the uniform
frame spreading scheme. For such a switch, the frame size is 2
and packets are transmitted in pairs under the uniform frame
spreading scheme. Now we can define packet-pair switches
recursively as follows:

Definition 14: (Packet-pair switches)
(i) A 2 × 2 packet-pair switch is the 2 × 2 load-

balanced Birkhoff-von Neumann switch with the
uniform frame spreading scheme.

(ii) An N ×N packet-pair switch is constructed by the
three-stage construction in Section III with p = 2
and q = N/2, i.e., there are N/2 2×2 input-buffered
switches in the first stage, two N

2 × N
2 packet-pair
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Fig. 2. An 8× 8 packet-pair switch

switches in the second stage, and N/2 2 × 2 input-
buffered switches in the third stage.

By recursively expanding the N×N packet-pair switch, we
have a network of 2 log2 N stages with each stage consisting
of N/2 2×2 switches. In Figure 2, we show an 8×8 packet-
pair switch.

The operations of a packet-pair switch can also be specified
in details by recursively expanding the operations in (R1) and
(R3). In the following, we describe the detailed operations of
an N×N packet-pair switch with N = 2n. For the ease of the
presentation, we index the inputs/outputs from 0, 1, 2, . . . , 2n−
1. Also, the N/2 switches at each stage are indexed from
0, 1, 2, . . . , 2n−1 − 1.
(R4) Uniform frame spreading for the first n stages:

For j = 1, 2, . . . , n, the mth 2 × 2 switch in the jth stage
consists of 2n−j+1 VOQs at each input. These 2n−j+1 VOQs
are indexed from 0, 1, 2, . . . , 2n−j+1 − 1. The connection
patterns of the switch are periodic with period 2. It is set
to the “bar” state when

t +
j∑

`=2

bm mod 2n−`+2

2n−`+1
c

is an odd number and to the “cross” state otherwise. Suppose
a packet destined for output k arrives at a switch in the jth

stage. Let bnbn−1 . . . b1 be the binary presentation for k, i.e.,
k =

∑n
`=1 b`2`−1. The packet is routed to the k1(j)th VOQ,

where k1(j) =
∑n−j+1

`=1 b`+j−12`−1. A VOQ is called a full-
framed VOQ if the number of packets in that VOQ is not
less than 2. When an input is connected to the first output at
time t, it selects a full-framed VOQ and sends two consecutive
packets (packet-pair) from that VOQ at time t and t + 1.
(R5) Self-routing for the last n stages:

For j = n + 1, 2, . . . , 2n, the mth 2 × 2 switch in the jth

stage consists of two VOQs at each input, indexed by 0 and
1. Its connection patterns are the same as those of the mth

switch in the 2n + 1 − jth stage. Suppose a packet destined
for output k arrives at the switch. Let bnbn−1 . . . b1 be the
binary presentation for k, i.e., k =

∑n
`=1 b`2`−1. The packet

is routed to the k2(j)th VOQ, where k2(j) = b2n−j+1. When
the switch is in the “bar” state at time t, VOQ 0 is selected
and its head-of-line packet is transmitted at time t. Otherwise,
VOQ 1 is selected and its head-of-line packet is transmitted
at time t.

Note that the 2 × 2 switches in the first n stages of the
N ×N packet-pair switch is operated under the UFS scheme
with frame size 2. From Proposition 11, it follows that the
total number of packets in an input buffer of a switch in the
jth stage, j = 1, 2, . . . , n, is bounded above by 2n−j+1 × 2.
Moreover, we have from the deterministic mapping property
that the arrival process to any input buffer of a 2 × 2 switch
in the n + 1th stage is simply a time shifted version of the
arrival process to the first input buffer of the first switch in
the n + 1th stage. In view of this, the first n stages in fact
perform load balancing for the incoming traffic at the N ×N
packet-pair switch.

Now we consider the Bernoulli arrival traffic in Example 2.
With probability 0 ≤ ρ < 1, there is a packet that arrives at
an input of the N×N packet-pair switch. This is independent
of everything else. With probability ri,k, an arriving packet at
input i is destined for output k. This is also independent of
everything else. Note that from the law of total probability,
we must have

N∑
k=1

ri,k = 1, (22)

for all i = 1, 2, . . . , N . For such a model, flow Ai,k (the
sequence of packets from input i to output k) is a Bernoulli
arrival process with mean ρri,k. From Example 2, flow Ai,k

is λi,k-m.b.f.a., where

λi,k = ρri,k. (23)

In view of (22), we have
N∑

k=1

λi,k < 1, (24)

for all i = 1, 2, . . . , N . As the N × N packet-pair switch
is a quasi-output-buffered switch, we then have the following
universal stability result.

Theorem 15: For the Bernoulli arrival traffic described
above, there exists a θ > 0 such that

sup
t

EeθQ(t) < ∞, (25)

where Q(t) is the total number of packets in the N×N packet-
pair switch.

In summary, the packet-pair switch has the following nice
features:

1) It achieves 100% throughput.
2) It delivers packets in the FIFO order.
3) It only contains 2 × 2 switches and the connection

patterns of these 2 × 2 switches are deterministic and
periodic with period 2.

4) Packets are self-routed through the network of 2 × 2
switches.

5) No communication and computation is needed.
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B. Delay analysis

To gain some intuition on the delay performance of the
packet-pair switch, let us consider the uniform Bernoulli
traffic, i.e., ri,k = 1/N for all i and k in the Bernoulli traffic.

For a 2× 2 switch in the first stage, there are N VOQs at
each input. Recall that the operation of a 2 × 2 switch at an
input is to transmit a full-framed VOQ when it is connected to
the first output of the 2×2 switch. A full-framed VOQ in this
case is simply a VOQ that contains at least two packets. As
such, we can implement the N VOQs by two parts: the first
part for storing packets that have not been“paired,” and the
second part for storing packets that have been “paired.” For
this, there are N queues with buffer size 1 in the first part,
indexed from 1 to N , and two VOQs (for the two outputs of
the 2×2 switch) in the second part. Suppose a packet of flow
k arrives at the switch. If the kth queue in the first part is
empty, the arriving packet is placed in the kth queue. On the
other hand, if the kth queue is not empty, the arriving packet
and the packet stored in the kth queue are “paired” and they
can be moved to the two VOQs in the second part (at the
beginning of the next frame).

In view of the two-part implementation of the N VOQs, the
delay at a switch in the first stage consists of two parts: (i) the
delay for “pairing” and (ii) the queueing delay for transmitting
through the 2×2 switch. To compute the “pairing” delay, note
that only the odd numbered packets in a flow need to wait for
“pairing,” and the “pairing” delay for an odd numbered packet
is simply the interarrival time of the next packet. Under the
uniform Bernoulli traffic, the expected interarrival time of a
flow is N/ρ. Thus, the expected “pairing” delay is N/2ρ. For
the queueing delay, we approximate the arrival process to the
two VOQs in the second part by the Bernoulli arrival traffic
with arrival rate ρ. As the connection pattern is periodic with
period 2, this model is a special case of the uniform Bernoulli
traffic model in [6] (with N = 2). Thus, the expected queueing
delay can be approximated by 1/2(1− ρ). Adding these two
parts of delay, the expected delay through a switch in the first
stage can be approximated by

N

2ρ
+

1
2(1− ρ)

. (26)

If we approximate the arrival process to every input of a
2×2 switch in the packet-pair switch by the uniform Bernoulli
traffic with arrival rate ρ, then using the same argument as
that in the first stage yields the following approximation for
the expected delay through a switch in the jth stage:

N

2jρ
+

1
2(1− ρ)

, j = 1, 2, . . . , n, (27)

1
2(1− ρ)

, j = n + 1, . . . , 2n, (28)

as there is no “pairing” delay for the last n stages.
Summing up the delay in (27) and (28), we can approximate

the expected delay through the N ×N packet-pair switch by

N − 1
ρ

+
log2 N

(1− ρ)
. (29)

In Figure 3, we compare our approximation in (29) with
computer simulation. As shown in Figure 3, our approximation
(APPR) is a conservative estimate of the delay of the packet-
pair switch (PP). The reason for that is the arrival process
to every input of a 2 × 2 switch in the packet-pair switch
is not the uniform Bernoulli traffic. In fact, it is much more
regular (less random) than the uniform Bernoulli traffic. This
is because “pairing” takes time and it is less likely to have
two consecutive pairs with the same destination.

To reduce the “pairing” delay of the packet-pair switch in
light traffic, we can also use the idea proposed in the padded
frame scheme [14]. At the beginning of a frame, if there is no
full-framed VOQ in an input-buffer of a switch in the first n
stages, we can pad a fake packet to a VOQ with only one
packet to form a padded frame (with frame size 2). Then
the padded frame is transmitted inside the packet-pair switch.
Clearly, it is most beneficial to generate padded frames in the
first stage. The gain starts to diminish as the number of stages
is increased. For this, we define a parameter n+ as the number
of stages that allow padded frames to be generated. To ensure
stability, the number of padded frames inside the packet-pair
switch has to be restrained. For this, we only allow padded
frames to be generated when the total number of packets in the
first input-buffer of the first switch in the n + 1th stage does
not exceed a threshold TH . Such an enhancement is called a
packet-pair-plus (PP+) switch in this paper.

C. Simulations

In this section, we perform various simulations for packet-
pair switches. In all our simulations, the switch size N is cho-
sen to be 32. Each simulation run contains 106 time slots. In
Figure 3, we consider the uniform Bernoulli traffic model and
plot the delay of the packet-pair switch (PP), the packet-pair-
plus switch (PP+), the ideal output-buffered switch (OB), the
uniform frame spreading scheme (UFS) in [17], the padded
frame scheme (PF) in [14], and the Contention and Reservation
switch (CR) in [24]. Certainly, the output-buffered switch has
the best delay performance (at the cost of N times speedup).
The packet-pair switch outperforms both the UFS scheme and
the padded frame scheme. It also beats the CR switch in
heavy traffic. However, its delay is higher than that in the CR
switch in light traffic. This is because the CR switch uses the
contention mode in light traffic, while the packet-pair switch
wastes a lot of time to form a frame of two packets in light
traffic. In this simulation, the packet-pair-plus switch is run
with n+ = 3 and TH = 2, i.e., only the first 3 stages are
allowed to generate padded frames when the total number of
packets in the first input-buffer of the first switch in the 6th

stage does not exceed 2. The delay of the PP+ switch is
much better than that of the PP switch in light traffic and is
comparable to that of the PP switch in heavy traffic. Similar
results are also shown in Figure 4 under the uniform Pareto
traffic model in [6].
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Fig. 3. Delay comparison for the uniform Bernoulli traffic model
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V. CONCLUSIONS

In this paper, we proposed a new concept, called quasi-
output-buffered switch. Like an output-buffered switch, a
quasi-output-buffered switch is a deterministic switch that de-
livers packets in the FIFO order, and achieves 100% through-
put. Using the three-stage Clos network, we showed that
one can recursively construct a larger quasi-output-buffered
switch with a set of smaller quasi-output-buffered switches.
By recursively expanding the three-stage network, we obtained
a packet-pair switch with only 2 × 2 switches. By computer
simulations, we showed that packet-pair switches have better
delay performance than most load-balanced switches with
comparable construction complexity.

There are several problems that require further study:
(i) As argued in (29), the N×N packet-pair switch has O(N)
delay. It is shown in [22] that it is possible to obtain O(log N)
delay in an N×N input-buffered crossbar switch (though this
is at the cost of non-scalable communication and computation
overheads by using Birkhoff-von Neumann decomposition).
It would be of interest to find a scalable switch architecture
that achieves O(log N) delay without any computation and
communication.

(ii) We note that it is possible to replace the deterministic
2×2 switches in a packet-pair switch by fixed interconnecting
networks. As such, one might be able to embed a packet-pair
switch inside a fixed interconnecting network, e.g., a DWDM
network. The problem is then how to do this efficiently.
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