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Abstract—In this paper, we consider the construction of an ¢ = 1,...,k, andd; = 1fori =k+1,...,2k — 1, then
optical priority queue with a single (M + 1) x (M + 1) switch  jt was shown in [8] that such a system can be used for exact
and M fiber delay lines. The M fiber delay lines are connected emulation of a priority queue with buffezle d;. The proof

from M outputs of the switch back to M inputs of the switch, . gl i ite elaborated. A simpl i ided |
leaving one input (resp. output) of the switch for the input (resp. in [8] is quite elaborated. A simpler proof was provided in

output) of the priority queue. It was known in [8][9] that with  [9]- The key idea of the approach in [9] was to use a sorter to
an appropriate choice of the lengths of the delay lines, such a sort packets according to their priorities. By so doing, there is
construction can be used for exact emulation of an optical priority - a total order for the packets at the outputs of the sorter, and it
queue with O(M~) buffer size. In this paper, we show that the .5, then be used for delaying packets before their departures.

buffer size can be further extended toO(M?) using the same . .
construction. The improvement relies on establishing gpartial It was further shown in [9] that it/ = 2k — 1, then one

ordering for all the packets stored in the delay lines. can choosel; = i for i = 1,...,k andd; = 2k — i for
L i=k+1,...,2k—1 for exact emulation of an optical queue
. INTRODUCTION i M
obucTIO with buffer 3.7, d;.

One of the main problems for optical packet switching is the
lack of optical buffers. As optical packets, composed of a train
of photons, cannot be easily stopped, stored, and forwarded, Qdu
the only known way to construct optical buffers is to direct
optical packets through a set of optical Switches and fiber Od2
Delay Lines (SDL) so that optical packets come out at the Odi
right place and at the right time. Recent advances in the SDL
constructions have shown various interesting results, including
first-in-first-out (FIFO) multiplexers in [1]-[5], FIFO queues
in [6], linear compressors, non-overtaking delay lines, and
flexible delay lines in [7], and priority queues in [8][9].

In this paper, we focus on the constructions of optical
priority queues. In a priority queue, every packet is associated
with a label, called priority. The packet with the highest
priority is always the next one to depart. Both FIFO queues
and LIFO queues are special cases of priority queues as one ) o ) ) ) ]
can simply use the arrival time of a packet as its priority. AFI%S.L A construction of a priority queue via a single switch and fiber delay
such, the construction of an optical priority queue is much
more difficult than that of an optical FIFO/LIFO queue.

The first construction of an optical priority queue was pro- Both the constructions in [8] and [9] showed that one can
posed by Sarwate and Anantharam [8]. In [8], they considerednstruct an optical priority queue witt(1?) buffer size
a feedback system as shown in Figure 1. In such a feedbading the feedback system in Figure 1. Our main contribution
system, there is affM + 1) x (M + 1) crossbar switch in this paper is to show that the buffer size can in fact
and M fiber delay lines with delaysl;, i = 1,2,...,M. be extended toO(M?3) using the same feedback system.
If M = 2k — 1 for some positive integek, d; = ¢ for Specifically, we show that if for somé < m < [M/2],

oo o

M+l M+] [——




we choosel; = dpy 41 =i foralli=1,2,...,m, and

m<di =dyri <i+ Y [((6—M+2m—45+1)/2)*"]
j=2

for all i = m +1,...,[M/2], then the feedback system
in Figure 1 can be operated as a priority queue with buffer
Zf‘il d;. The improvement relies on establishingpartial
ordering for all the packets stored in the buffer. The partial
ordering is derived from thdotal ordering for the packets
at the outputs of the sorter in [9] and the fact that the
relative order for these packets (at the outputs of the sorter)
is preserved as time evolves. By numerical computation, we
find that the optimal choice af: to maximize the buffer size
is approximately0.433M for large M. For such a choice, the
buffer size is roughly0.0009290/2 for large M. These are
further verified by approximating sums by integrals.

The paper is organized as follows. In Section II, we intro- (P3)
duce the definitions of priority queues and the constructions
of priority queues in [9]. We then present our main results
in Section Il and the proofs in Section IV. The paper is
concluded in Section V, where we summarize our results.

(P1)

(P2)

Il. REVIEW OF KNOWN RESULTS
In this section, we give a brief review of known results.

A. Priority Queues and Complementary Priority Queues (P4)

We first introduce some basic assumptions and concepts for
Switches and fiber Delay Lines (SDL).

® Packets are of the same size.

(i)  Time in all our optical links is slotted and synchro-
nized so that a packet can be transmitted within a
time slot.

(PS)

(i) A fiber delay line with delayl is an optical link that
requiresd time slots for a packet to traverse through.
(iv)  An M x M crossbar switch is a network element with

M input links andM output links that realizes all
the M! permutations between its inputs and outputs.

In the following, we introduce the definition of a (discrete-
time) priority queue with buffe3 in [9].

Definition 1 (Priority queues [9]) A priority queue with

buffer B is a network element that has one input link, on
control input link, and two output links (see Figure 2). One
output link is for departing packets and the other is for Io%

with a label, calledpriority. We assume that there is a total
order for the priorities of all the packets. As shown in Figure
let ¢(t) be the state of the control input at time When
c(t) = 1, we say the priority queue is enabled at time
On the other hand, the priority queue is disabled at tiimé
c(t) = 0. Also, leta(t) be the set of the packet arriving at
timet (if any!), d(¢) be the set of the packet departing at tim
t (if any), £(t) be the set of the lost packet at timdif any),

a(t) ————»

() ———»

and ¢(t) be the set of packets queued at the priority queue at
timet (at the end of the!” time slot). Then the priority queue
with buffer B satisfies the following five properties:

Flow conservation: arriving packets from the input
link are either stored in the buffer or transmitted
through the two output links, i.e.,

q(t) = (q(t = 1) Ua(®))\ (d(t) U L(2)). @)

Non-idling: if the control input is enabled, i.e:(t) =

1, then there is always a departing packet if there are
packets in the buffer or there is an arriving packet,
ie.,

ld(t)] =
{ 1, if c(t)=1and|q(t — 1) Ua(t)] > 0,
07

otherwise.
Maximum buffer usage: if the control input is not
enabled, i.e.¢(t) = 0, then there is a lost packet only
when buffer is full and there is an arriving packet,
ie.,

1£(t)] =
1, ife(t)=0and|q(t —1)Ua(t)] > B,
0, otherwise.

Priority departure: if there is a departing packet
at time ¢, the departing packet is the one with the
highest priority among all the packets ift — 1) U
a(t).

Priority loss: if there is a lost packet at timg the
lost packet is the one with the lowest priority among
all the packets iny(t — 1) U a(t).

)

®3)

[¢e—— B ——

> d(t)

Priority queue

(1)

Fig. 2. A priority queue with buffer3.

The following concept of a complementary priority queue
Was introduced in [9] that reduces the five properties for a
riority queue into two simple properties. As such, it is much

) . ._easier to verify a construction of a complementary priorit
packets. When a packet arrives at the queue, it is assomaheudzu e fy P yp y

2Deﬁnition 2 (Complementary priority queues [9]) A com-
plementary priority queue with buffeB is a network element
that has one input link, one control input link, and one output
link (see Figure 3). As in a priority queue, every packet is
associated with a label, callegriority, and there is a total
Brder for the priorities. At time 0, there arB packets stored

in the network element. Unlike a priority queue, there is always

1This means thai(t) is an empty set if there is no packet arriving at time2ll arriving packet and a departing packet in every time slot.

t, and is a singleton otherwise.

As shown in Figure 3, let(¢) be the state of the control input,



a(t) be the set of the packet arriving at time)(t) be the set of
the packet departing at time and ¢°(t) be the set of packets od

gueued at the complementary priority queue at tinat the U: od J
[ ]
[ ]
[ ]

end of thet!” time slot). Then the complementary priority
gueue with buffelB satisfies the following two properties:
(C1) Flow conservation: arriving packets from the input
link are either stored in the buffer or transmitted
through the the output link, i.e.,

1 highest 1

2 2 > 2 2

Sorter [ J Shifter

» M M > M M
M+l lowest M+1 - M1 M+

q°(t) = (¢°(t — 1) Ua(t))\ b(t). 4) Input T Output

(C2) Complementary priority departure: if(t) = 1, then Control input
the departing packet is the one with theghest
priority among all the packets ig°(t — 1) U a(t). FigMS. A construction of a complementary priority queue with buffer

On the other hand, it(t) = 0, then the departing Li=1di:
packet is the one with thewestpriority among all
the packets iny“(t —1) U a(t). connected back to the the correspondirignputs of the sorter
via M fiber delay lines with delayd;, i = 1,2,..., M. For
a fiber delay line with delayl, there are at mosi packets
B stored in that delay line. As such, there are at njost | d;
a(t) » > b(0) packets stored in th&/ fiber delay lines. It was shown in [9]
Complementary if one chooses
priority queue
«® g 0 < d; < minfi, M +1— ] ®)

forall ¢ =1,2,..., M, then the construction in Figure 5 can
be operated as a complementary priority queue with buffer

It was shown in [9] that a priority queue with buffé@ can Y di. For M = 2k — 1, the maximum buffer size that can
be constructed by a concatenation of a complementary priofty achieved by (5) is to set; = i for i = 1,2,..., k, and
queue with bufferB and al x 2 switch (see Figure 4). The key®i = 2k —i fori =k +1,k+2,...,2k — 1. For this, one has
idea in [9] was to view empty time slots distitious packets Duffer size ;=" d; = k2. And for M = 2k, the maximum
that have priorities lower than those of real packets. MoreovBffer size that can be achieved by (5) is to get= i for
the priorities among the fictitious packets are decreasing in= 1,2;---.k, andd; = 2k + 1 —i fors =k + 1,k +
the order of their arrival times. As such, there is a total order- - - 2k- For this, one has buffer siZe;;_, d; = k* + k. As
among all the packets, including both the real packets and #fé¢ can combine the two crossbar switches into a single one,
fictitious packets. At time 0, there arB fictitious packets the condition in (5) implies that one can construct a priority
stored in the complementary priority queue. To emulate ®/€ue WithO(1/?) buffer size via a singléM +1) x (M +1)

priority queue, the input of thé x 2 switch in Figure 4 is SWitch. o
connected tal(t) (resp.£(t)) whene(t) = 1 (resp.c(t) = 0). To emulate a complementary priority queue, the construc-
tion in Figure 5 is operated in a way so that the following

le—— B —» assumption is satisfied all the time:
(A1) All the packets stored in all the fiber delay lines in
a0 T Complementary —» d(t) Fi_gure 5 cannot be eithgr the packet with the highest
<0 _ priority queuc L 1) priority or the packet with the lowest priority until

o they appear at the inputs of the sorter.

A From (Al), the packets that appear at the inputs of the sorter
contain both the packet with the highest priority and the packet
with the lowest priority. The function of the sorter on the left
hand side is to sort the packets at the+ 1 inputs (in the
. o order of their priorities) so that the packet with the highest
B. A Construction of a Complementary Priority Queue oty appears at the first output and the packet with the

Now we introduce the construction of a complementafpwest priority appears at th@\/ + 1)* output.
priority queue with bufferzfvi1 d; in [9]. This is also the  The function of the shifter on the right hand side is then to
construction that we will use in this paper. In Figure 5, themdirect the packet with the lowest (resp. highest) priority to the
are two (M + 1) x (M + 1) crossbar switches: a sorter (oroutput wherc(t) = 0 (resp.c(t) = 1), and keep the remaining
the left hand side) and a shifter (on the right hand side). Thié packets in decreasing order of their priorities. For this, its
M outputs of the shifter, indexed from= 1,2,..., M, are connection pattern is realized by th&/+1) x (M +1) identity

Fig. 3. A complementary priority queue.

Fig. 4. A construction of a priority queue with buffét via a concatenation
of a complementary priority queue with buffé& and al x 2 switch.



matrix whenc(t) = 0. On the other hand, whet{t) =1, its foralli=m +1,...,[M/2]. Then

connection pattern is realized by thé/ + 1) x (M + 1) N

circular-shift matrix, i.e., the matri¥’ = (P;;) with P; ; = 1 Zd’
for i = (j mod (M +1)) +1 and P, ; = 0 otherwise. —
Consider a packet at the thi& output of the shifter and it [M/2]
is about to enter th&” delay line. Call this packet the tagged > Z d;
packet. A sufficient condition for (A1) to hold is as follows: B i=[M)3]41
(A2) There are at least; — 1 packets that have priorities [M/2]  [M/3]
higher than the priority of the tagged packet, and > > > [((i— M +2[M/3] — 45 +1)/2)"]
there are at least; — 1 packets that have priorities i=[M/3]+1 j=2
lower than the priority of the tagged packet. [M/2] | M/192]

This is because there is exactly one departure in a time slot = Z Z [((G =M +2[M/3] = 4j +1)/2)"]
from a complementary priority queue. As such, the tagged ~ ‘=[3M/8I+1 =2

packet cannot be either the packet with the highest priority or [M/2] [M/192]

the packet with the lowest priority until it appears at the input = > > [((BM/8]+1-M

of the sorter if the condition in (A2) holds. i=[3M/8]+1  j=2
To see that the condition in (A2) holds under (5), note that +2[M/3] — 4[M/192] +1)/2)*]
the priorities of the packets at th/ outputs of the shifter, [M/2]  [M/192]
indexed from1,2, ..., M, are decreasing. As such, there are > Z Z [M/96].
i — 1 (resp. M — i) packets that have priority higher (resp. i=[3M/8]+1 j=2

lower) than the priority of the tagged packet. Thus, there are. M . 3 .
at leastmin[i, M + 1 —i] — 1 packets that have priority higherT‘%IS shows thab _;_, d; is at leastO(M”) for such a choice,

Lo In Table I, we numerically compute the buffer size in
resp. lower) than the priority of the tagged packet.
(resp ) P y ggeap Theorem 3 by choosing the optimal. In the second column,

we list the buffer size obtained by (5). The increment of the
I1l. MAIN RESULTS buffer size using Theorem 3 is shown in the third column and
the optimal choice ofn is shown in the fourth column. It

We have known that the construction in Figure 5 can be usifdinteresting to see from this table that the optimal choice
as a priority queue wittO(M?) buffer size. This is still far 7 iS roughly0.433M for large M. To see this, note that the
from the exponential upper bour@(2") in [8]. The question increment of the buffer size using Theorem 3 is

is whether it is possible to further increase the buffer size under M/2 m
the same construction in Figure 5. The answer to the question 9 Z Z[((i — M +2m —4j +1)/2)1] 7
is affirmative. In this section, we show that one can increase i1 j—2

the buffer size fromO(M?) to O(M?3). The result is stated
in the following theorem and its proof is deferred to the ne
section.

)When M is even. For largeM, if we replacem by aM,
j/M by x, andi/M by y, the double sum in (7) can be
approximated by the following double integral

1/2 ra
Theorem 3 For some0 < m < [M/2], if we keepd; = M3/ / (y — 1+ 20 — da) Y dady
dyvs1—;=iforalli=1,2,...,m, and « 1/3 (y—1420)/4
= M3 / / (y — 14 20 — 4a)dxdy.(8)
a 0

LA ’ With z = y — 1 + 2q, the integral in (8) can be simplified as
<i4 Y [(i-M+2m—4+1)/2*]  (6) follows:
j=2

m < d; = dpy1—i

MS 2a—1/2 9 M3 3 3
— zdz = — (20— 1/2)° = B — 1)°).  (9)
forall i = m+1,...,[M/2], then the construction in Figure 5 8 /3 24

is still a complementary priority queue with buﬁ@f\il di.  The optimala that maximizes (9) fory in [0,1] is

1446
38
Using the optimakv in (10) for (9), we show that the maximum
m increment of the buffer size using Theorem 3 is roughly
di=dy1i =i+ Y _[((i—M+2m—4j+1)/2)"]  0.000920M for large M.
j=2

a—1

To see thaty"™ d; in Theorem 3 isO(M?3), we may

: ~ 0.433. (20)
simply choosen = [M/3] and



M Buffer size by (5) Increment by using Theorem 3 Optimal m

127 4096 = (MLFL)2 1563 ~ 0.000763 M3 56 ~ 0.441M time ¢,. Call this packet the tagged packet. We would like
25 | vessi = (o) 15991 ~0.000saan® [ i~ o4 | to find & bound on the number of packets that have priorities
511 65536 = (—5—) 118236 =~ 0.000886 M 222 =~ 0.434M . .

w05 | zomaa = (ML TR ——— SYrReTwreLy higher than or equal to that of the tagged packet at any time

2047 1048576 = (%)2 7875590 ~ 0.000918 M3 887 &~ 0.433M t. For thiS, we Ietpm (t) =1 if the priority of the packet in
a5 | 194304 = (PLE)? | 63423364 ~ 0.000024m% [ 1773 ~0.a33M | the (4, 7)t" cell at timet is higher than or equal to the priority
8191 16777216 = (%)2 509065684 ~ 0.000926 M3 3546 ~ 0.433M f th t d k t _ 0 th -
16383 | 67108864 = (%)2 4079247391 &~ 0.000928 M3 7092 =~ 0.433M 0 € ag_ge packe ar}d,j (t) - otherwise.
According to the operation rule of the complementary

TABLE | priority queue, we know that the priorities of the packets

INCREMENT OF BUFFER SIZE BY THE OPTIMAL CHOICE INTHEOREM 3. at the inputs of the\/ fiber delay lines are sorted according
to their priorities. As such, we have for allthat

p11(t) = p2a(t) > = para(t). (11)
Since the packet in théi, ;)" cell at timet is also in the
i,j— 1)t cell at timet — 1, we havep; ;(t) = p; j—1(t — 1),
and in general

IV. PROOF OFTHEOREM 3

As discussed in Section 1I-B, it suffices to show that th
condition in (A2) holds for all time.

Our proof for Theorem 3 relies on establishingpartial
qrdering among _aII the packets stored in the buffer. In Sec- pij(t) =pijat—1) = =pi1(t—(j—1)). (12)
tion 1I-B, there is a total order for thé/ packets at the ]
outputs of the sorter, and this was used in [9] to derive (3)S We assume that; = j for all j =1,2...,m, using (12)
By using the partial ordering among all the packets storéfd (11), we have for alf = 1,2,...,m that

in the buffer, we can obtain better bounds for the number

) ) > pig () > > (). 13
of packets with priorities higher (or lower) than that of the Pig(t) 2 P () 2 o 2 para—j () (13)
packet entering thé" delay line fori =m +1,...,[M/2]. The inequalities in (13) form the base of the partial ordering

To establish the partial ordering, we view a fiber delay linthat we need in the proof of Theorem 3.

with delay d as a “sequential” buffer that consists éfcells Forj=1,2,...,m, let

with each cell capable of holding a packet. We index theh cells MA41—j

from the input of a fiber delay line. Specifically, th@, j)? () = o

cel, i =1,2,....,.M, j =1,2,...,d;, (see Figure 6 for an P3 (%) z i) (14
illustration) is thej*" cell (from the input) of thei?” fiber _

delay line in Figure 5. As a fiber delay line is a “sequential?® the total number of packets in the cells of & column

buffer, a packet entering thé" delay line at timet will be in Figure 6 that have priorities higher than or equal to that of
stored in the(4, 7)™ cell at timet + j — 1. the tagged packet at tinte Note that the definition fop; (),

j =1,2,...,m, is feasiblebecause we assume thgt= i
fori=1,2,...,m,andd; >mfori=m+1,..., M +1—
(m+1). Asp, ;(t) only has two values, i.e., 0 and 1, we have

=]

(1,1)

2:2) 20 the following inequalities:
L 4 . .
e 0<pi(t)<M-2(j-1), j=12....m (15)
° In the following lemma, we derive an upper bound on
() e o o S pj—1(t — 1) in terms ofp;(t).
| (m-l,*)l [ N N ] (m+1,m) [ ] [ ] [ (m+1,2) (m+1,1) )
p . o Lemma 4 For j =2,...,m, if p;(t) < M —2(j — 1), then
o o [ ]
® ° ® pj—1(t—1) < p;(t) + 1. (16)
| (Mfm,k)l e®O®| (nm e o o M-, 2) | (Mem, 1) Proof. Sincep;(t) = Ziﬁjli] pij(t) for j =1,2,...,m,
ol @ e @ | ool oo we have from (12) that
o M+1—j M+1—j
o pit) = > pii()= > pija(t—1)
® i=j i=j
(M-1,2) (M-1,1) M+1-(j-1)
o = Z pij-1(t—1) —pj_1,;-1(t — 1)
i=j—1

—PM4+1—(j—1),j—1(t = 1)
= pj—1t—1)—pj-1;-1(t—1)
Now consider a packet enters t@éh delay line at some —PM41—(j—1),j—1(t —1).

Fig. 6. The cells of the delay lines.



Thus, Note from the partial ordering in (13) that
pj—1(t—1) (17) Piv1—i(t —1) <pii(t —1)
=2i() +pj—1j-1t =)+ parpr--1 1= 1) gor = 1,2,...,m. Thus, we have from (18) that

Now we show (16). Ip;(t) < M —2(j—1), thenp; ;(¢t) =0 m
for somei. From (13), we havey1-;;(t) = 0. By (12), pi(t) < 2Zpi,i(t —1)+M+1-2m
we also haveyys41—;,—1(t —1) = 0. Using (13) again yields i=1
PM+1—(j—1),j—1(t—1) = 0. Thus, we have from (17) that for <2(t—-1)+M+1-2m.

pi(t) <M —2(j 1) This proves the upper bound.
pi—1(t —1) =pj(t) + pj_1,;-1(t — 1) < p;i(t) + 1. To see _the Iower bound, note that there is at most one
departure in every time slot. Thus,

The proof is completed. | .

In the following lemma, we derive some key inequalities 0> 1 1
that will be used in the proof of Theorem 3. pit) 2 ;(p“( )+ Parr—salt = 1))

m M+1—(m+1)

Lemma 5 Letz(t) = >0 | pii(2). + Z pia(t—1)—1

() z(t) <z(t—-1)4+1. i=m+1

(i) =2@¢-1)-1<pi(t)<2z2(t—1)+M+1-2m. m

@iy a(t—-1)<pjt)+2j—1forj=23,...,m. > Zpi,i(t_ 1)—1=a(t-1)-1

=1

Proof. (i) Using the fact thap; ;(t) = p;—1(t — 1) in (12)

D)= g (E—1) < m.
and the partial ordering; 1 ;—1(t—1) > p; ;—1(t—1) in (13), (iify Note thatx(t — 1) = 5 iy pii(t — 1) < m. If

we have that pi(t) =M —2(j — 1),
- - then
z(t) = pii(t) =p1a1(t) + ) pia(t
(0= 3pial®) = a0 + 3pisl0 42 LM a1
— pia(t) + zm:p. (t—1) Thus, it suffices to consider the case that
=2 pi(t) <M —2(j —1).
<pra(t) + Zpiq,iq(t -1) In this case, we have from (16) that
1=2
m—1 pi—1(t—1) <p;t)+1
=palt) + > pailt = 1) <M-2G-1)+1
o < M—2(j —2).
< prat) + me(t -1 As such, we can apply (16) again to show that
=1
) M <M-2(G[-2)+1
(i) Note thatp;(t) = > ., ps,1(t) is the total number of
packets in the cell§l, 1), (2,1),..., (M, 1) at timet that have <M —-2(j-3).

priorities higher than or equal to that of the tagged pack(ﬁ

TheseM packets can only come from the arriving packet atepeatlng the same argument yields

time ¢ and those packets stored at time- 1 in the cells pj_j(t—3)<pj_jit—35 +1)+1
(i,7) and (M + 1 —4,4) for ¢ = 1,2,...,m, and (i,d;) for )
i=m+1,...,M+1—(m+1). Thus, forall j=1,...,j—1. Summing up forall’ = 1,...,j—1,
. we derive
pr(t) < (piilt — 1) + prrsr—ii(t — 1)) pit—(—1) <pj(t)+j—1 (19)
i=1
MA+1—(m+1) From the lower bound in (ii) of this lemma and (19), it follows
+ > piat—1)+1 that
w 2= <pt—G-1)+1<p(t)+j.  (20)

<D (piilt = 1) + piarpa-i(t = 1)) + M +1—=2m. On the other hand, we have from (i) of this lemma that
=1

(18) zt-1)<z{t-2)+1<---<z(@-j5)+j—-1. (21)



Using (21) in (20) yields V. CONCLUSIONS

_ , . In this paper, we considered the construction of an optical
wt=D<p(t)+2i -1 (22) priority queue with a singléM + 1) x (M + 1) switch and
The proof is completed. Hm M delay lines. By establishing partial ordering for all the
Proof. (Proof of Theorem 3) It suffices to consider the taggeplckets stored in the delay lines, we showed that such a
packet that enters th‘g“’ delay line at time,,, wherem+1 < construction can be used for exact emulation of an optical
i, < [M/2]. Note from the definition op;(t) in (14) that the priority queue withO(M?) buffer size. Even though we have
total number of packets with priorities higher than or equal iacreased the buffer size from(1/2) in [8][9] to O(M?), it
the priority of the tagged packet is at Ie@t;”zlpj(tp). From is still much worse than the exponential upper bodh@*!)
Lemma 5(iii), the upper bound in Lemma 5(ii), and the faaderived in [8]. As commented in [9], if a priority queue only

thatz(t, — 1) is an integer, it follows that has K priority classes of packets, then the exponential bound
m in [8] can be achieved by using FIFO queues for these
ij(tp) K classes of packets. This is possible because a FIFO queue
= with buffer B can be constructed witR(log B) 2 x 2 crossbar
m switches (see e.g., [6]). However, for a general priority queue
=pi(ty) + ij(tp) like the one considered in this paper, it still requires further
j=2 study to go beyond th&(M?3) buffer size.
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foralli = m+1,...,[M/2], the tagged packet cannot be
either the packet with thlighestpriority or the packet with
lowest priority until it reaches thei,,“" input of the sorter.
This shows that the construction in Figure 5 is indeed a
complementary priority queue with buﬁ@ﬁl d;. ]



