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Abstract— Queueing theory is generally known as the theory
to study the performance of queues. In this paper, we are
interested in another aspect of queueing theory, the theory to
construct queues via switched delay lines. We consider three
types of discrete-time queues: linear compressors, non-overtaking
delay lines and flexible delay lines. These three types of queues
correspond to certain conditional nonblocking switches and
(strict sense) nonblocking switches in switching theory. Analogous
to their counterparts in switching theory, there exist multistage
constructions for these three types of queues. Specifically, we
develop a two-stage construction of a linear compressor and a
three-stage construction of a non-overtaking delay line. Similarly,
there is a three-stage construction of a flexible delay line.
Moreover, a flexible delay line can also be constructed by a
layered Cantor network.

I. INTRODUCTION

Queueing theory and switching theory are closely related.
Queueing theory is generally known as the theory to study
the performance of queues. On the other hand, switching
theory is regarded as the theory to construct switches. Up to
present, both queueing theory and switching theory have been
studied extensively in the literature. In fact, queueing theory
has been constantly applied to switching theory for analyzing
the performance of switches.

In this paper, we are interested in another aspect of queueing
theory, the theory to construct queues. We will show how
switching theory can be applied to this aspect of queueing
theory. Intuitively, a sample path of a discrete-time queue with
a single input link and a single output link can be viewed
as a mapping from the arrivals (at the input link) to the
departures (at the output link). This is similar to the mapping
that connects the inputs of a switch to the outputs of a switch.
The difference is that the arrivals at a queue is progressive in
time and can be infinite. On the other hand, the inputs of a
switch is usually finite and they can be wrapped around (or
permuted in any manner).

Despite the difference, switching theory is quite useful in
constructing queues considered in this paper. There are three

types of discrete-time queues in this paper: linear compressors,
non-overtaking delay lines and flexible delay lines. In the
queueing context, a linear compressor is a First In First Out
(FIFO) queue with vacations. A non-overtaking delay line
is a FIFO queue with known departure times upon arrivals.
A flexible delay line is a queue with an infinite number
of servers. In the switching context, a linear compressor
corresponds to a conditional nonblocking switch that satisfies
a certain monotone and consecutive condition. In fact, such
a conditional nonblocking switch is also called a linear com-
pressor in switching theory (see e.g., the book by Li [23]).
A non-overtaking delay line also corresponds to a conditional
nonblocking switch that satisfies a monotone condition. Such
a switch is called a UU (Unimodal-Unimodal) nonblocking
switch in [23]. A flexible delay line corresponds to a (strict
sense) nonblocking switch.

Our approaches for constructing these queues are inspired
by the early works in [24], [28], [21], [27] that map rear-
rangeable nonblocking switches to time slot interchanges. As
the two-stage construction for a linear compressor in switching
theory, we show that there is also a two-stage construction of
a linear compressor in our setting. Moreover, via recursive ex-
pansion of the two-stage construction, one can then construct
a linear compressor via a banyan type of network. Analogous
to the three-stage construction of a UU nonblocking switch,
we show that there is a three-stage construction of a non-
overtaking delay line. This is a generalization of the two-stage
construction of a non-overtaking line in our previous paper [8].
Similarly, there is a three-stage construction of a flexible delay
line. Such a result is analogous to the three-stage Clos network
for a nonblocking switch. It is known that the Cantor network
[5] can be used for constructing a nonblocking switch with
less complexity than that by the Clos network. We show that
this is also the case by modifying the Cantor network to the
queueing setting.

Our interest in constructing queues originates from optical
packet switching. For optical packet switching, one has to



build optical queues that store optical packets. The only known
way to store optical packets without converting them into other
media is to direct optical packets via a set of Switches and
fiber Delay Lines (SDL) so that the optical packets come out
at the right place and at the right time.

There are already several papers in the literature that ad-
dressed the issues of optical queues via switched delay lines.
It was first demonstrated by Karol [22] that SDL elements
could be used as a buffer for a shared-memory optical packet
switch. A huge project (see [6], [7]), called CORD (contention
resolution by delay lines), was started by Chlamtac et al at
Boston University. Cruz and Tsai [12] constructed a 2-to-
1 FIFO multiplexer with SDL elements. Hunter, Chia and
Andonovic [16] constructed a 2-to-1 FIFO multiplexer with
less complexity. In [18], SLOB (Switch with Large Optical
Buffers) was proposed for the extension of optical buffered
switches with N input/output ports (N ≥ 2). Varvarigos [31]
proposed a “packing” and “scheduling” optical switch. Re-
cently, Sarwate and Anantharam [29] addressed the complexity
of a priority queue. For additional references of optical packet
switches, we refer to the review papers [17], [15], [33]. For
the introduction of switching theory, we refer to the books by
Benes [3], Hui [19], Schwartz [30], Hwang [20], Li [23], and
references therein.

The paper is organized as follows. In Section II-A, we
introduce basic definitions and prior works for linear compres-
sors, non-overtaking delay lines, and flexible delay lines. We
develop the two-stage construction for a linear compressor in
Section III. We then move on to the three-stage construction of
a non-overtaking delay line in Section IV. For the construction
of flexible delay lines, we show the three-stage construction
in Section V and the construction by the Cantor network in
Section VI. The paper is concluded in Section VII, where we
summarize our results and address some problems for future
research.

II. BASIC DEFINITIONS AND PRIOR WORKS

A. SDL elements

In this paper, we consider fixed size packets over optical
links. Assume that time in all our optical links is slotted and
synchronized so that a packet can be transmitted within a time
slot. Our constructions will be based on network elements that
are built by optical crossbar switches and fiber delay lines.
Such network elements are called Switched Delay Line (SDL)
elements in the literature (see e.g., [22], [6], [12], [16], [10]).
As addressed in our previous paper [8], a typical example of
an SDL element is an optical memory cell in Figure 1. An
optical memory cell is constructed by a 2× 2 optical crossbar
switch and a fiber delay line with one time slot (unit) of delay.
To write a packet to the memory cell, set the 2 × 2 crossbar
switch to the “cross” state so that the packet can be directed
to the fiber delay line with one time slot of delay. Once the
write operation is completed, the crossbar switch is then set to
the “bar” state so that the packet directed into the fiber delay
line keeps circulating through the fiber delay line. To read out
the information from the memory cell, set the crossbar switch

to the “cross” state so that the packet in the fiber delay line
can be directed to the output link.

11 1(a) (b) (c)

Fig. 1. An optical memory cell: (a) writing information (b) circulating
information (c) reading information

One of the most important properties of SDL elements is the
following time interleaving property for scaled SDL elements
in [10].

Definition 1 (Scaled SDL element [10]) A scaled SDL ele-
ment is said to be with scaling factor m if the delay in every
delay line is m times of that in the original (unscaled) SDL
element.

Proposition 2 (Time interleaving property [10]) A scaled
SDL element with scaling factor m can be operated as time
interleaving of m SDL elements.

The intuition of the time interleaving property, as explained
in [8], can be easily understood by considering the scaled
optical memory cell with scaling factor 2 in Figure 2. Note
that the length of the delay line in Figure 2 is twice of that in
the original optical memory cell in Figure 1. As such, every
packet directed into the delay line takes two units of time to
circulate back to the 2× 2 optical crossbar switch. To operate
the scaled optical memory cell with scaling factor 2, one first
partitions time into even and odd numbered time slots. For the
even numbered time slots, one can set the connection patterns
of the 2×2 optical crossbar switch in the scaled SDL element
according to the read/write operation for one memory cell.
Similarly, for the odd numbered time slots, one can set the
connection patterns of the 2× 2 optical crossbar switch in the
scaled SDL element according to the read/write operation for
another memory cell.

B. Flexible and non-overtaking delay lines

In this section, we introduce the concepts of flexible delay
lines and non-overtaking delay lines in [8].

Definition 3 (Flexible delay line [8]) A flexible delay line is
a network element with one input link and one output link.
Let τa(n) be the arrival time of the nth packet at the input
link and τd(n) be the departure time of the nth packet at the
output link. Suppose that the departure time of a packet is
known upon its arrival. A flexible delay line with the range of
delay [d1, d2] realizes the set of mappings (or sample paths)
that satisfy

τa(n) + d1 ≤ τd(n) ≤ τa(n) + d2, for all n, (1)



and
τd(m) �= τd(n), for all m �= n. (2)

In particular, if d1 = 0, then it is called a flexible delay line
with maximum delay d2.

A non-overtaking delay line (defined below) is a special
case of a flexible delay line that do not allow a packet to
overtake its previous packet.
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Fig. 2. An optical memory cell with scaling factor 2

Definition 4 (Non-overtaking delay line [8]) A non-
overtaking delay line is a network element with one input link
and one output link. Suppose that the departure time of a
packet is known upon its arrival. A non-overtaking delay line
with the range of delay [d1, d2] realizes the set of mappings
that satisfy (1) and

τd(n) < τd(n + 1) for all n. (3)

In particular, if d1 = 0, then it is called a non-overtaking
delay line with maximum delay d2.

A linear compressor (defined below) is a special case of a
non-overtaking delay line that satisfies a certain monotone and
consecutive condition.

Definition 5 (Linear compressor [8]) Suppose that the de-
parture time of a packet is known upon its arrival. A network
element with a single input link and a single output link is
called a linear compressor with the range of delay [d1, d2] if
it realizes the set of mappings that satisfy (1) and the following
monotone and consecutive condition: τd(n) = τd(n − 1) + 1
whenever τa(n) ≤ τd(n− 1). In particular, if d1 = 0, then it
is called a linear compressor with maximum delay d2.

As pointed in [8], the name, linear compressor, originates
from its counterpart for space switches (see e.g., [19], [23]).
The condition τa(n) ≤ τd(n − 1) means that the nth packet
arrives before the n − 1th packet departs. If one defines a
busy period of a linear compressor as the period of time that
there are packets in the linear compressor, then the monotone
and consecutive condition implies that the departures in a busy
period are monotone and consecutive. Note that the packet that
initiates a busy period can have an arbitrary delay (as long as
its delay is not greater than the maximum delay).

Definition 6 (Mirror image [8]) The mirror image of an SDL
element is an SDL element that reverses the direction of every

link in the original SDL element. By so doing, the inputs (resp.
outputs) of the original SDL element become the outputs (resp.
inputs) of its mirror image.

One key property of the mirror image is the following
proposition in [8].

Proposition 7 If a sample path can be realized by an SDL
element, then its time reversed sample path can also be
realized by the mirror image of the SDL element.

The mirror image of a linear compressor is known as a
linear decompressor defined below.

Definition 8 (Linear decompressor [8]) Suppose that the
departure time of a packet is known upon its arrival. A network
element with a single input link and a single output link is
called a linear decompressor with the range of delay [d1, d2]
if it realizes the set of mappings that satisfy (1), (3) and
the following inverse monotone and consecutive condition:
τa(n) = τa(n − 1) + 1 whenever τa(n) ≤ τd(n − 1). In
particular, if d1 = 0, then it is called a linear decompressor
with maximum delay d2.

It is shown in [8] that a self-routing linear compressor with
maximum delay 2k −1 can be constructed by using the 2-to-1
multiplexer with buffer 2k−1 in [10]. As a linear decompressor
is the mirror image of a linear compressor, a self-routing
linear decompressor can be obtained by mirroring the 2-to-
1 multiplexer in [10]. Furthermore, it is shown in [8] that
a non-overtaking delay line with maximum delay d can be
constructed by a concatenation of a linear compressor with
maximum delay d and a linear decompressor with maximum
delay d. As such, a self-routing non-overtaking delay line
with maximum delay 2k − 1 can be constructed by the 2-to-1
multiplexer with buffer 2k −1 in [10] and its mirror image. In
the following two sections, we will generalize the results in [8]
by developing multistage constructions of linear compressors
and non-overtaking delay lines. We will show how they can
be constructed by optical memory cells.

III. A TWO-STAGE CONSTRUCTION OF A LINEAR

COMPRESSOR

In Figure 3, we consider a two-stage construction of a
linear compressor with maximum delay BK − 1. The first
stage is a linear compressor with maximum delay K − 1. The
second stage is a scaled linear compressor with maximum
delay B − 1 and scaling factor K. From the time interleaving
property in Proposition 2, we note that the scaled linear
compressor at the second stage can be operated as K time
interleaved linear compressors. As shown in Figure 4, these
K time interleaved linear compressors are connected to the
output link of the linear compressor at the first stage and the
output link of the network element periodically with period
K. Moreover, as the delay in each delay line of the scaled
linear compressor at the second stage is K times of that
in the original linear compressors, these K time interleaved



linear compressors, when connected, only allow delay that is
an integer multiple of K, i.e., d = 0,K, 2K, . . . , (B − 1)K.

Linear compressor with
maximum delay K-1

Linear compressor with
maximum delay B-1 and

scaling factor K

     a (n)     c (n)     d(n)

Fig. 3. A two-stage construction of a linear compressor

Fig. 4. An illustration of periodic connections in the two-stage construction

Now we specify the operation rule for the two-stage con-
struction. As shown in Figure 3, let τa(n) be the arrival time
of the nth packet, τ c(n) be its departure time from the linear
compressor at the first stage, and τd(n) be its departure time.

(R1) Initially, we set

τ c(1) = τa(1) +
(
(τd(1) − τa(1)) mod K

)
.

If τ c(n − 1) < τa(n), then we set

τ c(n) = τa(n) +
(
(τd(n) − τa(n)) mod K

)
.

Otherwise, we set τ c(n) = τ c(n − 1) + 1.

Theorem 9 If the network element in Figure 3 is started from
an empty system, then under (R1) the two-stage construction
is a linear compressor with maximum delay BK − 1.

Proof. According to Definition 5 for a linear compressor, we
need to show that the network element in Figure 3 can realize
all the mappings (or sample paths) that satisfy

τa(n) ≤ τd(n) ≤ τa(n) + BK − 1, (4)

τd(n) = τd(n − 1) + 1,
whenever τa(n) ≤ τd(n − 1). (5)

In other words, if (4) and (5) hold for all n, then under the
assignment rule in (R1)

τa(n) ≤ τ c(n) ≤ τa(n) + K − 1, (6)

τ c(n) = τ c(n − 1) + 1,
whenever τa(n) ≤ τ c(n − 1), (7)

τ c(n) ≤ τd(n) ≤ τ c(n) + (B − 1)K, (8)

(τd(n) − τ c(n)) mod K = 0, (9)

τd(n) = τd(n∗) + K,

whenever τa(n) ≤ τd(n∗), (10)

where n∗ is the last packet that departs before the nth packet
from the same time interleaved linear compressor at the second
stage.

We will prove this by induction. For n = 1, we have

τ c(1) = τa(1) +
(
(τd(1) − τa(1)) mod K

)
.

Thus,
τa(1) ≤ τ c(1) ≤ τa(1) + K − 1

and

τd(1) − τ c(1) = K�(τd(1) − τa(1))/K�
≤ (B − 1)K.

It is easy to see that (6), (8) and (9) are satisfied. As the
network element is started from an empty system, there is no
need to check (7) and (10).

Now suppose that the induction hypotheses in (6)-(10) hold
up to n − 1. For the nth packet, we need to consider the
following cases.
Case 1 τa(n) > τd(n − 1):

In this case, the nth packet sees an empty system. The proof
is the same as the case for n = 1.
Case 2 τa(n) ≤ τd(n − 1) and τa(n) > τ c(n − 1):

Since τa(n) > τ c(n − 1), we also have from (R1) that

τ c(n) = τa(n) + ((τd(n) − τa(n)) mod K). (11)

As argued for the case n = 1, it is easy to see that (6), (8) and
(9) are satisfied. Since τa(n) > τ c(n− 1), there is no need to
verify (7).

To prove (10), let n0 = sup{m < n : τa(m) > τd(m −
1)} be the index of the packet that initiates the busy period
containing the nth packet. From (5), it follows that for all
n0 < m ≤ n

τd(m) = τd(m − 1) + 1, (12)

As illustrated in Figure 4, these K time interleaved linear
compressors at the second stage are connected to the output
link of the linear compressor at the first stage periodically
with period K. If n − K ≥ n0, then we have from (12) that
n∗ = n − K is the last packet that departs before the nth

packet from the same time interleaved linear compressor at
the second stage. As such, it follows from (12) that

τd(n∗) + K = τd(n − K) + K = τd(n). (13)

On the other hand, if n−K < n0, then the nth packet arrives
at an empty linear compressor at the second stage and there
is no need to check (10).
Case 3 τa(n) ≤ τd(n − 1) and τa(n) ≤ τ c(n − 1):

Since τa(n) ≤ τ c(n − 1), we also have from (R1) that

τ c(n) = τ c(n − 1) + 1. (14)

Thus, (7) is satisfied. Moreover,

τa(n) ≤ τ c(n − 1) = τ c(n) − 1 ≤ τ c(n). (15)



Using the induction hypothesis for n−1 in (6) and τa(n−1) <
τa(n) yields

τ c(n) = τ c(n − 1) + 1 ≤ τa(n − 1) + K − 1 + 1
≤ τa(n) + K − 1. (16)

Thus, (6) is satisfied.
Since τa(n) ≤ τd(n − 1), we have from (5) that

τd(n) = τd(n − 1) + 1, (17)

From (17) and (14), it follows that

τd(n) − τ c(n) = τd(n − 1) − τ c(n − 1).

Thus, (8) and (9) follow from the induction hypotheses for
n − 1.

The argument for (10) is the same as that in Case 2.

Now we show how one constructs self-routing linear com-
pressors by using optical memory cells. First, we show that an
optical memory cell can be used as a linear compressor with
maximum delay 1. When there is a packet stored in the optical
memory cell, the 2×2 switch is always set to the “cross” state.
When a packet arrives at the empty optical memory cell, the
2 × 2 switch is set to the “bar” state if its delay is 0 and the
“cross” state if its delay is 1. As the maximum delay is 1,
every packet passes through the fiber delay line with one unit
of delay at most once.

With B = K = 2, we can apply Theorem 9 to construct a
linear compressor with maximum delay 3 via a concatenation
of an optical memory cell (at the first stage) and a scaled
optical memory cell with the scaling factor 2 (at the second
stage). By recursively expanding the two-stage construction in
Theorem 9 with K = 2, one can construct a linear compressor
with maximum delay 2k − 1 by using a series of k scaled
optical memory cells with scaling factors 20, 21, 22, . . . , 2k−1

(see Figure 5(a)). As a packet passes through every fiber delay
line in Figure 5(a) at most once, one can simply use the binary
representation of packet delay for self-routing. Since a linear
decompressor is the mirror image of a linear compressor, one
can also construct a self-routing linear decompressor with
maximum delay 2k − 1 by using a series of k scaled optical
memory cells with scaling factors 2k−1, 2k−2, . . . , 21, 20 (see
Figure 5(b)).

k-1
2

k-2
21 2

k-1
2

k-2
2 12

(a)

(b)

Fig. 5. (a) A self-routing linear compressor with maximum delay 2k − 1,
(b) a self-routing linear decompressor with maximum delay 2k − 1.

IV. A THREE-STAGE CONSTRUCTION OF A

NON-OVERTAKING DELAY LINE

In Figure 6, we consider a three-stage construction of a
non-overtaking delay line with maximum delay BK − 1. The
first stage is a linear compressor with maximum delay K − 1,
the second stage is a scaled non-overtaking delay line with
maximum delay B − 1 and scaling factor K, and the third
stage is a linear decompressor with maximum delay K − 1.

As shown in Figure 6, let τa(n) be the arrival time of the
nth packet, τ c(n) be the departure time of the nth packet from
the linear compressor, τ b(n) be the arrival time of the nth

packet at the linear decompressor, and τd(n) be the departure
time of the nth packet. In order to show that the three-stage
construction in Figure 6 can be operated as a non-overtaking
delay line, we need to specify τ c(n) and τ b(n) for every n.

(R2) Initially, we set

τ c(1) = τa(1) +
(
(τd(1) − τa(1)) mod K

)
, (18)

and

τ b(1) = τ c(1) + �τd(1) − τ c(1)
K

� × K. (19)

Note from (18) that

τd(1) − τ c(1) = �τd(1) − τa(1)
K

� × K. (20)

Thus, it follows from (19) and (18) that

τ b(1) = τd(1). (21)

If τ c(n − 1) < τa(n), then we set

τ c(n) = τa(n) +
(
(τd(n)− τa(n)) mod K

)
, (22)

and

τ b(n) = τ c(n) + �τd(n) − τ c(n)
K

� × K. (23)

By so doing, we also have

τ b(n) = τd(n). (24)

Otherwise, we set

τ c(n) = τ c(n − 1) + 1, (25)

and

τ b(n) = τ c(n) + �τd(n) − τ c(n)
K

� × K. (26)

Note from (19),(23) and (26) that we always have

τ b(n) = τ c(n) + �τd(n) − τ c(n)
K

� × K (27)

for all n. As such, τ b(n)− τ c(n) is an integer multiple of K
and it can be carried by the scaled non-overtaking delay line
with scaling factor K in the second stage.

Theorem 10 If the network element in Figure 6 is started from
an empty system, then under (R2) the three-stage construction
is a non-overtaking delay line with maximum delay BK − 1.



    c (n)      b (n)
Linear

compressor
with

maximum
delay K-1

Linear
decompressor

with maximum
delay K-1

     a (n)     d(n)
Scaled non-

overtaking delay
line with

maximum delay
B-1 and scaling

factor K

Fig. 6. A three-stage construction of a non-overtaking delay line

Proof. We need to show that all the mappings that satisfy
(1) and (3) can be realized by a concatenation of a linear
compressor with maximum delay K − 1 (at the first stage), a
scaled non-overtaking delay line with maximum delay B − 1
and scaling factor K (at the second stage), and a linear
decompressor with maximum delay K−1 (at the third stage).
According to Definition 4 for a non-overtaking delay line,
Definition 5 for a linear compressor and Definition 8 for a
linear decompressor, we need to show that if for all n

τa(n) ≤ τd(n) ≤ τa(n) + BK − 1, (28)

τd(n) > τd(n − 1), (29)

then under the assignment rule for τ c(n) and τ b(n) in (R2)
that

τa(n) ≤ τ c(n) ≤ τa(n) + K − 1, (30)

τ c(n) = τ c(n − 1) + 1,
whenever τa(n) ≤ τ c(n − 1), (31)

τ c(n) ≤ τ b(n) ≤ τ c(n) + (B − 1)K (32)

(τ b(n) − τ c(n)) mod K = 0, (33)

τ b(n) > τ b(n − 1), (34)

τ b(n) ≤ τd(n) ≤ τ b(n) + K − 1, (35)

τ b(n) = τ b(n − 1) + 1,
whenever τ b(n) ≤ τd(n − 1). (36)

We first show that τa(n) ≤ τ c(n) for all n. If n = 1 or
τ c(n − 1) < τa(n), then we have τa(n) ≤ τ c(n) from (18)
and (22). On the other hand, if τ c(n − 1) ≥ τa(n), then we
have from (25) that

τa(n) < τ c(n − 1) + 1 = τ c(n).

Next, we show by induction that τ c(n) ≤ τd(n) for all n.
Since τa(1) ≤ τd(1), this holds trivially for n = 1 from (18).
Now suppose that τ c(n − 1) ≤ τd(n − 1). If τ c(n − 1) <
τa(n), then we also have from (22) and τa(n) ≤ τd(n) that
τ c(n) ≤ τd(n). On the other hand, if τ c(n−1) ≥ τa(n), then
we have from (25) that τ c(n) = τ c(n−1)+1. It then follows
from the induction hypothesis and τd(n) > τd(n − 1) that

τ c(n) = τ c(n − 1) + 1 ≤ τd(n − 1) + 1 ≤ τd(n).

Now we use τ c(n) ≤ τd(n) for all n to show that (32),(33)
and (35) hold for all n. Note from (27) that

τ b(n) − τ c(n) = K�τd(n) − τ c(n)
K

�.

Thus, (33) is satisfied for all n. Moreover, we have from
τa(n) ≤ τ c(n) for all n and (28) that

τ b(n) − τ c(n) = K�τd(n) − τ c(n)
K

�

≤ K�τd(n) − τa(n)
K

� ≤ K� (BK − 1)
K

�
= (B − 1)K. (37)

Thus, (32) is also satisfied for all n. Furthermore,

τd(n) − τ b(n) = τd(n) − τ c(n) − K�τd(n) − τ c(n)
K

�
= ((τd(n) − τ c(n)) mod K. (38)

This shows that (35) is also satisfied for all n.
We will prove the other four conditions, i.e., (30), (31), (34)

and (36), by induction on n. For n = 1, it follows from (18)
and (28) that (30) holds trivially. As this is the first packet,
there is no need to verify (31), (34) and (36).

Now suppose that the induction hypotheses in (30), (31),
(34) and (36) hold up to n − 1. For the nth packet, we need
to consider the following two cases.
Case 1 τa(n) > τ c(n − 1):

In this case, the assignments for τ c(n) and τ b(n) are the
same as those for n = 1. As such, (30) holds accordingly.
Since τa(n) > τ c(n−1), there is no need to verify (31). Also,
in view of τ b(n) = τd(n) in (24) and τd(n) > τd(n − 1) in
(29), we have τ b(n) > τd(n − 1). Thus, there is no need to
verify (36). In conjunction with τd(n−1) ≥ τ b(n−1) in (35),
we derive τ b(n) > τ b(n − 1) for (34).
Case 2 τa(n) ≤ τ c(n − 1):

In this case, we have from (25) that τ c(n) = τ c(n−1)+1.
Thus, (31) is satisfied. Moreover, using the induction hypoth-
esis for n− 1 in (30) and the fact that τa(n) ≥ τa(n− 1)+1
yields

τ c(n) = τ c(n − 1) + 1 ≤ τa(n − 1) + K − 1 + 1
≤ τa(n) + K − 1.

This shows that τ c(n) ≤ τa(n) + K − 1 in (30).
To see (34), note from (25) and (29) that

τd(n) − τd(n − 1) ≥ 1 = τ c(n) − τ c(n − 1).

It then follows from (27) and (25) that

τ b(n − 1)

= τ c(n − 1) + �τd(n − 1) − τ c(n − 1)
K

� × K

≤ τ c(n − 1) + �τd(n) − τ c(n)
K

� × K

< τ c(n) + �τd(n) − τ c(n)
K

� × K

= τ b(n).

It remains to verify (36). If τ b(n) ≤ τd(n − 1), then it
follows from (35) (for n − 1) that

τ b(n) ≤ τd(n − 1) ≤ τ b(n − 1) + K − 1.



Since (τ b(n) − τ c(n)) mod K = 0 for all n in (33), it then
follows from (25) that(

(τ b(n) − τ b(n − 1)) mod K
)

=
(
(τ c(n) − τ c(n − 1)) mod K

)
= 1.

Thus, we have τ b(n) = τ b(n − 1) + 1.

For the special case that B = 1, the second stage can be
omitted. Thus, the three-stage construction of a non-overtaking
delay line in Theorem 10 is a generalization of the two-stage
construction in [8]. As we have shown how one constructs
self-routing linear compressors and decompressors by optical
memory cells in Section III, it is quite straightforward to
apply Theorem 10 to construct a self-routing non-overtaking
delay line by a concatenation of scaled optical memory cells.
As pointed out in [8], one can further construct buffered
multiplexers in [10], [9] by non-overtaking delay lines.

V. A THREE-STAGE CONSTRUCTION OF A FLEXIBLE DELAY

LINE

In Figure 7, we show a construction of a flexible delay line
with the range of delay [K − 1, BK − 1]. It is a combination
of three parallel three-stage constructions. In each three-stage
construction, there is a flexible delay line with maximum delay
K − 1 (at the first stage), a scaled flexible delay line with
maximum delay B − 1 and scaling factor K (at the second
stage), and a flexible delay line with maximum delay K−1 (at
the third stage). These three parallel three-stage constructions
are joined by a 1×3 switch at the beginning and a 3×1 switch
at the end. The 1 × 3 switch acts as a 1-to-3 demultiplexer
so that an arriving packet can choose its path from one of
the three three-stage constructions. The departures from these
three three-stage constructions are then multiplexed by the 3×
1 switch at the end.

Theorem 11 The three-stage construction in Figure 7 is a
flexible delay line with the range of delay [K − 1, BK − 1].

Proof. The proof for Theorem 11 is quite similar to that for
the classical three-stage nonblocking Clos networks [11]. We
will show for each arriving packet, there is a non-conflicting
path from the input to the output. Consider the nth packet. Let
τa(n) be the arrival time of the nth packet and τd(n) be the
departure time of the nth packet. Suppose that the delay of
the nth packet, denoted by d, is in the range [K−1, BK−1],
i.e., K − 1 ≤ d ≤ BK − 1. Then we claim that the number
of feasible paths for the nth packet to go through one of the
three three-stage constructions is K. To see this, note that one
can choose 0 ≤ d1 ≤ K − 1 to be the delay at the flexible
delay line with maximum delay K − 1 at the first stage. Once
d1 is chosen, there is a unique way to determine the delay
at the second stage and the delay at the third stage (as the
delay at the second stage must be an integer multiple of K).
Specifically, the delay at the third stage is ((d − d1) mod K)
and the delay at the second stage is �(d − d1)/K� × K.
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Fig. 7. A three-stage construction of a flexible delay line with the range of
delay [K − 1, BK − 1]

As there are three parallel constructions, the total number
of feasible paths for the nth packet to go through the network
element is 3K. The only places that the nth packet might
collide with others are the three output links of the first stage
and the three input links of the third stage. As the first stage
(in all the three-stage constructions) is a flexible delay line
with maximum delay K − 1, those packets that might collide
with the nth packet at the output links of the first stage must
arrive during [τa(n)− (K−1), τa(n)−1]. These packets will
use at most K − 1 paths among the 3K feasible paths for
the nth packet. On the other hand, those packets that might
collide with the nth packet at the three input links of the third
stage must depart during [τd(n) − (K − 1), τd(n) − 1] and
[τd(n) + 1, τd(n) + K − 1]. Similarly, these packets use at
most another 2(K−1) paths among the 3K feasible paths for
the nth packet. Thus, there is at least one non-conflicting path
for the nth packet.

Unlike the classical nonblocking Clos networks, the con-
struction in Figure 7 cannot accommodate for the packets with
delay smaller than K−1. This is because there are not enough
feasible paths for those packets with short delay. For instance,
for a packet with delay 0, there are only three feasible paths.

To construct a flexible delay line with maximum delay
BK − 1, one can simply add a flexible delay line with maxi-
mum delay K−1 parallel to the three three-stage constructions
(see Figure 8). By so doing, those packets with delay smaller
than K−1 can be routed through the added flexible delay line
with maximum delay K − 1.

We note that one may construct a flexible delay line with
maximum delay K − 1 by a concatenation of K − 1 optical
memory cells (all with one unit of delay). This is because
an optical memory cell can be used for storing one packet.
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Fig. 8. A flexible delay line with maximum delay BK − 1

When a packet arrives, we may store that packet in an optical
memory cell until its departure time. As the maximum delay
is K − 1, there are at most K − 1 packets that need to be
stored at the same time.

To compute the construction complexity, let H(B) be the
number of 2×2 switches needed for a flexible delay line with
maximum delay B using the construction in Figure 8. Note
that a 1×3 switch (and a 3×1 switch) can be implemented by
two 2 × 2 switches. Clearly, we have the following recursive
equation:

H(BK − 1) = 7H(K − 1) + 3H(B − 1) + 6. (39)

Letting B = K yields

H(B2 − 1) = 10H(B − 1) + 6. (40)

If we use B − 1 optical memory cells to construct all the ten
(scaled or unscaled) flexible delay lines with maximum delay
B − 1, we can construct a flexible delay line with maximum
delay B2 − 1 by using 10B − 4 2 × 2 switches. By recursive
expansion of (40), one can construct a flexible delay line with
maximum delay B with O((log B)γ) 2 × 2 switches, where
γ = log2 10 ≈ 3.321928.

VI. CONSTRUCTIONS OF FLEXIBLE DELAY LINES BY

CANTOR NETWORKS

Instead of using only three parallel three-stage constructions
in the previous section, one may consider a combination of
multiple multistage constructions as in the Cantor Network
[5] for a nonblocking switch. First, we consider a multistage
network element constructed by a concatenation of 2k − 1
scaled optical memory cells. The scaling factor at the jth

stage is 2j−1 for j = 1, 2, . . . , k and the scaling factor at
the jth stage is 22k−1−j for j = k + 1, . . . , 2k − 1. Such a
network element is called a Benes time slot interchange as it
can be used for realizing a 2k×2k Benes time slot interchange
(see e.g., [24], [27], [8]). Now we combine m 2k × 2k Benes
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Fig. 9. The (6, 4)-Cantor network

time slot interchanges by adding a 1 × m switch in the front
and an m × 1 switch at the end. Such a network element is
called the (m, k)-Cantor network (as it is closely related to
the nonblocking Cantor network). In Figure 9, we depict the
(6, 4)-Cantor network.

Theorem 12 Suppose that every delay line in the (m, k)-
Cantor network can be traversed by a packet at most once. If
m ≥ 3

2k, then the (m, k)-Cantor network is a flexible delay
line with the range of delay [2k−1 − 1, 2k − 1].

Proof. The proof for Theorem 12 is quite similar to the proof
for showing that Cantor networks are non-blocking switches
(see e.g., [19]). Consider the nth packet. Let τa(n) be its
arrival time and τd(n) be its departure time. Suppose that
the delay of the nth packet, denoted by d, is in the range
[2k−1 − 1, 2k − 1], i.e.,

2k−1 − 1 ≤ d ≤ 2k − 1.

First, we claim that the total number of feasible paths for the
nth packet is m2k−1. To show this, it suffices to argue that the
total number of feasible paths through a particular Benes time
slot interchange is 2k−1. Let d1 be the delay to the input link
of the kth stage of a particular Benes time slot interchange.
As each delay line can be traversed at most once, we have
0 ≤ d1 ≤ 2k−1 − 1. Once d1 is chosen, the path to the input
link of the kth stage is uniquely determined by the binary
representation of d1. On the other hand, since 2k−1 − 1 ≤
d ≤ 2k − 1, we have 0 ≤ d − d1 ≤ 2k − 1. In view of the
constraint that each delay line can be traversed at most once,
the path from the input link of the kth stage to the output of
the Benes time slot interchange is also uniquely determined
by the binary representation of d − d1. Since there are 2k−1



choices of d1, there are 2k−1 feasible paths through a Benes
time slot interchange.

Let S1 be the set of feasible paths for the nth packet
from the input of the Cantor network to the m input links
of the optical memory cells at the kth stage. As argued in
the previous paragraph, each path in S1 corresponds to a
feasible path from the input to the output. Thus, we have
|S1| = m2k−1. Moreover, the delay of a path in S1 is
between 0 and 2k−1 − 1. As such, these paths in S1 might
be in conflict with those packets that arrive during τa(n) −
1, τa(n) − 2, . . . , τa(n) − (2k−1 − 1).

Now we claim that the maximum number of paths in S1

that are in conflict with the packet arriving at τa(n)− 1 is at
most 2k−2. First, note that the packet that arrives at τa(n)−1
might be in conflict with the nth packet at various stages (from
2 to k). However, the worst case that results in the maximum
number of conflicting paths is to have a conflict at the earliest
stage, i.e., the second stage. To achieve this, suppose that the
packet that arrives at τa(n)−1 is delayed by 1 to the input link
of the kth stage in one of the m Benes time slot interchanges.
In this case, if the nth packet would still like to use the same
Benes time slot interchange, it cannot be delayed by 0 at the
first stage. As the number of paths for that Benes time slot
interchange with delay 0 at the first stage is 2k−2, the number
of conflicting paths in this case is 2k−2.

In general, the maximum number of paths in S1 that are
in conflict with the packet arriving at τa(n) − s for some
2j−2 ≤ s ≤ 2j−1 − 1 and 2 ≤ j ≤ k, is 2k−j . This is because
the earliest conflict can only occur at the input link of the jth

stage of a Benes time slot interchange (as the maximum delay
for the nth packet to be at the input link of the (j−1)th stage
is 2j−2 − 1). As such, the maximum number of paths in S1

that are in conflict with those packets arriving during [τa(n)−
2j−2, τa(n)− (2j−1 − 1)] is 2j−22k−j . Hence, the maximum
number of paths that are in conflict with those packets arrive
during [τa(n) − 1, τa(n) − (2k−1 − 1)] is (k − 1)2k−2.

Define a reachable path as a feasible path that is not
conflicting with other packets (ahead of the nth packet). Let
S̃1 be the set of reachable paths for the nth packet from the
input link of the Cantor network to the m input links of the
optical memory cells at the kth stage. Clearly, we have

|S̃1| ≥ |S1| − (k − 1)2k−2 = m2k−1 − (k − 1)2k−2. (41)

Similarly, one can define S2 (resp. S̃2) to be the set of
feasible (resp. reachable) paths for the nth packet from the
output of the Cantor network to the m output links of the
kth stage. As the Cantor network is symmetric (its mirror
image is itself), we also know that |S2| = m2k−1. Moreover,
these paths in S2 might be in conflict with those packets that
depart during [τd(n) − 1, τd(n) − (2k−1 − 1)] and [τd(n) +
1, τd(n)+(2k−1−1)]. Analogous to the argument used in the
previous paragraph, one can show that the maximum number
of paths that are in conflict with those packets departing during
[τd(n) − 1, τd(n) − (2k−1 − 1)] is (k − 1)2k−2. Similarly,
the maximum number of paths that are in conflict with those
packets departing during [τd(n) + 1, τd(n) + (2k−1 − 1)] is

also (k − 1)2k−2. Thus,

|S̃2| ≥ m2k−1 − 2(k − 1)2k−2. (42)

If m ≥ 3
2k, it then follows from (41) and (42) that

|S̃1| + |S̃2| > m2k−1. (43)

Since the total number of feasible paths for the nth packet is
m2k−1, it follows from (43) that there must be at least one
feasible path that is in the intersection of S̃1 and S̃2. Thus,
there must be a reachable path from the input of the Cantor
network to the output of the Cantor network.

As discussed in the previous section, there are not enough
feasible paths for packets with short delay, especially in the
middle stages of the Cantor network. To construct a flexible
delay line with maximum delay 2k − 1, one may simply add
a flexible delay line with maximum delay 2k−1 − 1 parallel
to the (� 3

2k�, k)-Cantor network as in the previous section.
Since the number of 2 × 2 switches in the (� 3

2k�, k)-Cantor
network is O(k2), recursively expanding such a construction
yields a flexible delay line with maximum delay 2k − 1 that
needs O(k3) 2 × 2 switches.

Here we propose a better alternative to solve the problem for
packets with short delay. The idea is to add redundancy to each
Benes time slot interchange so that packets with short delay
can bypass the middle stages. As illustrated in Figure 10, we
consider a “layered” (m, k)-Cantor network by inserting a 1×2
switch before the optical memory cell at the jth stage for j =
1, 2, . . . , k−1 and a 2×1 switch after the optical memory cell
at the jth stage for j = k+1, k+2, . . . , 2k−1. In addition to
these, we add another scaled optical memory cell with scaling
factor 2j−1 at the jth stage, j = 1, 2, . . . , k−1. For the newly
added optical memory cell at the jth stage, its input link is
connected to the upper output link of the 1× 2 switch before
the optical memory cell at the jth stage, and its output link is
connected to the upper input link of the 2× 1 switch after the
optical memory cell at the 2k − jth stage. For a packet with
delay between 2j−1 − 1 and 2j − 1, j = 1, 2, . . . , k − 1, it is
then routed through the newly added optical memory cell at the
jth stage. This is equivalent to embedding an (m, j)-Cantor
network, j = 1, 2, . . . , k− 1, inside the layered (m, k)-Cantor
network. By so doing, a packet with the delay ranging between
2j−1 − 1 and 2j − 1 can be routed by the embedded (m, j)-
Cantor network. This is stated in the following corollary.

Corollary 13 Suppose that every delay line in the layered
(m, k)-Cantor network can be traversed by a packet at most
once. If m ≥ 3

2k, then the layered (m, k)-Cantor network (see
Figure 10) is a flexible delay line with maximum delay 2k −1.

Proof. It suffices to show that a packet with the delay ranging
between 2j−1 − 1 and 2j − 1 can be routed by the embedded
(m, j)-Cantor network. The argument for this is exactly the
same as that in the proof of Theorem 12.



Note that the number of 2 × 2 switches in the layered
(� 3

2k�, k)-Cantor network is still O(k2). This implies that one
can construct a flexible delay line with maximum delay B by
using O((log B)2) 2 × 2 switches.
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Fig. 10. The layered (6, 4)-Cantor network

VII. CONCLUSIONS

With the help from the classical switching theory, in this
paper we developed mathematical theory for multistage con-
structions of linear compressors, non-overtaking delay lines
and flexible delay lines. In Section III, we showed that
there is a two-stage construction of a linear compressor. Via
recursive expansion of the two-stage construction, one can
then construct a linear compressor via a series of scaled
optical memory cells. In Section IV, we showed that there is
a three-stage construction of a non-overtaking delay line. This
is a generalization of the two-stage construction for a non-
overtaking line in [8]. In Section V, we showed that there is a
three-stage construction of a flexible delay line. Such a result
is analogous to the three-stage Clos network for a nonblocking
switch. We used the Cantor network in Section VI to construct
a flexible delay line. The complexity for constructing a flexible

delay line by the Cantor network is less than that by the three-
stage construction.

There are some research problems that need further inves-
tigation. We have shown that one can construct a flexible
delay line with maximum delay B by using O((log B)2)
2 × 2 switches. Is it possible to construct a flexible delay
line with O(log B) complexity? For this, one might look into
the expanders in [26], [25], [1], [13], [27]. In the classical
switching theory, one might construct a nonblocking switch
by sorting, e.g., the Batcher-banyan networks [2]. How can we
construct a “sorting line” so that overtaking can be avoided?
If this is feasible, then a flexible delay line can be constructed
by a concatenation of a “sorting line” and a non-overtaking
delay line.
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