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Abstract—There is growing interest in structural analysis of
directed networks. Two major points that need to be addressed
are (i) a formal and precise definition of the graph clustering
and community detection problem in directed networks, and
(ii) algorithm design and evaluation of community detection
algorithms in directed networks. Motivated by these, we develop a
probabilistic framework for structural analysis and community
detection in directed networks based on our previous work in
undirected networks. By relaxing the assumption from symmetric
bivariate distributions in our previous work to bivariate distribu-
tions that have the same marginal distributions in this paper, we
can still formally define various notions for structural analysis
in directed networks, including centrality, relative centrality,
community, and modularity. We also extend three commonly
used community detection algorithms in undirected networks to
directed networks: the hierarchical agglomerative algorithm, the
partitional algorithm, and the fast unfolding algorithm. These
are made possible by two modularity preserving and sparsity
preserving transformations. In conjunction with the probabilistic
framework, we show these three algorithms converge in a finite
number of steps. In particular, we show that the partitional
algorithm is a linear time algorithm for large sparse graphs.
Moreover, the outputs of the hierarchical agglomerative algo-
rithm and the fast unfolding algorithm are guaranteed to be
communities. These three algorithms can also be extended to
general bivariate distributions with some minor modifications.
We also conduct various experiments by using two sampling
methods in directed networks: (i) PageRank and (ii) random
walks with self-loops and backward jumps.
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I. INTRODUCTION

As the advent of on-line social networks, structural analysis
of networks has been a very hot research topic. There are
various notions that are widely used for structural analysis
of networks, including centrality, relative centrality, similarity,
community, modularity, and homophily (see e.g., the book by
Newman [2]). In order to make these notions more math-
ematically precise, we developed in [3], [4] a probabilistic
framework for structural analysis of undirected networks. The
key idea of the framework is to model a network as a graph
and “sample” the graph to generate a bivariate distribution
p(v, w) that specifies the probability that a pair of two nodes
v and w are selected from a sample, e.g., the probability that
v and w appear respectively at the two ends of a “randomly”
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selected path in the graph. The bivariate distribution p(v, w)
can be viewed as a normalized similarity measure [5] between
the two nodes v and w and thus provides a certain viewpoint
to the graph. A graph G associated with a bivariate distribution
p(·, ·) is then called a sampled graph.

In [3], [4], the bivariate distribution is assumed to be sym-
metric. Under this assumption, the two marginal distributions
of the bivariate distribution, denoted by pV (·) and pW (·), are
the same and they represent the probability that a particular
node is selected in the sampled graph. As such, the marginal
distribution pV (v) can be used for defining the centrality of a
node v as it represents the probability that node v is selected.
The relative centrality of a set of nodes S1 with respect to
another set of nodes S2 is then defined as the conditional
probability that one node of the selected pair of two nodes
is in the set S1 given that the other node is in the set S2.
Based on the probabilistic definitions of centrality and relative
centrality in the framework, the community strength for a set
of nodes S is defined as the difference between its relative
centrality with respect to itself and its centrality. Moreover, a
set of nodes with a nonnegative community strength is called
a community. Intuitively, if the bivariate distribution p(v, w) is
the probability for v and w to appear respectively at the two
ends of a randomly selected path, then a community is a set
of nodes with the property that it is more likely to find the
other end in the same community given one of the two ends
in a randomly selected path is already in the community. In
the probabilistic framework, the modularity for a partition of
a sampled graph is defined as the average community strength
of the community. As such, a high modularity for a partition
of a graph implies that there are communities with strong
community strengths. It was further shown in [4] that the
Newman modularity in [6] and the stability in [7], [8] are
special cases of the modularity for certain sampled graphs.

As pointed out in the recent survey [9], most networks in
sociology, biology, neuroscience and computer science, are
directed and one major point that needs to be addressed
is ”a formal and precise definition of the graph clustering
and community detection problem in directed networks.”
Motivated by this, our main objective of this paper is to
extend the probabilistic framework in [3], [4] to directed
networks, where the sampling bivariate distributions could
be asymmetric. Our main finding is that we can relax the
assumption from symmetric bivariate distributions to bivariate
distributions that have the same marginal distributions. By
using such a weaker assumption, we show that the notions
of centrality, relative centrality, community and modularity
can be defined in the same manner as before. Moreover, the
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equivalent characterizations of a community still hold.
Another point that needs to be addressed in [9] is algorithm

design and evaluation of community detection algorithms in
directed networks. For this, we extend three commonly used
community detection algorithms in undirected networks to
directed networks: (i) the hierarchical agglomerative algorithm
[10], (ii) the partitional algorithm [11], and (iii) the fast un-
folding algorithm [12]. Since the bivariate distribution could be
asymmetric, these community detection algorithms cannot be
directly applied. For this, we show two modularity preserving
transformations: (i) the transformation from a sampled graph
that has the same marginal distributions to another sampled
graph that has a symmetric bivariate distribution, (ii) the
transformation from a sampled graph with a larger number
of nodes to another sampled graph with a smaller number
of nodes by node aggregation. These two transformations not
only preserve modularity but also preserve sparsity (of the
sampled graph). As such, the computational complexity of
these three algorithms for directed networks remains the same
as that of their undirected counterparts. In conjunction with
the probabilistic framework, we show these three algorithms
converge in a finite number of steps. In particular, we show
that the partitional algorithm is a linear time algorithm for
large sparse graphs. Moreover, the outputs of the hierarchical
agglomerative algorithm and the fast unfolding algorithm
are guaranteed to be communities. Though there are several
variants of fast unfolding algorithms in the literature, it seems
(to the best our knowledge) that our fast unfolding algorithm
is the first one that has provable guarantees and also is general
enough to be applicable to directed networks.

Further extension to the setting with general bivariate dis-
tributions is possible. However, the results are not as elegant
as the setting with bivariate distributions that have the same
marginal distributions. The good news is that the notions
of community and modularity can be extended in the same
manner. Moreover, the hierarchical agglomerative algorithm,
the partitional algorithm, and the fast unfolding algorithm can
also be extended to the setting with some minor modifications.

To test these algorithms, we consider two methods for sam-
pling a directed network with a bivariate distribution that has
the same marginal distributions : (i) PageRank and (ii) random
walks with self-loops and backward jumps. Though PageRank
[13] has been very successful in ranking nodes in directed
networks, our experimental results show that its performance
in community detection is not as good as sampling by a
random walk with self-loops and backward jumps. This might
be due to the fact that PageRank adds weak links in a network
and that changes the topology of the network and thus affects
the results of community detection. In [14], the authors pointed
out a similar problem for the original PageRank and provided
various ways to modify PageRank to tackle this problem.

We summarize the logic flow of using sampled graphs for
structural analysis and community detection in Figure 1. For
a graph G = (Vg, Eg), we provide a viewpoint by sampling
the graph with the bivariate distribution p(·, ·). This results
in a sampled graph. Based on this sampled graph, we can
then define the notions of relative centrality and centrality.
The notions of community and modularity are built upon the

notions of relative centrality and centrality. Ranking algorithms
and community detection algorithms can then be developed
and written in codes by using sampled graphs as inputs. If
one is not satisfied with the community detection result from
a sampled graph, e.g., the resolution, one has the freedom to
choose another viewpoint for the graph and try out the analysis
again. There is no need to rewrite the codes for the community
detection algorithm.

Fig. 1. The logic flow of using sampled graphs for structural analysis and
community detection.

The rest of the paper is organized as follows. In Section II,
we introduce the sampled graph with a bivariate distribution
that has the same marginal distributions. Various notions for
structural analysis in directed networks are then defined in
Section III. In Section IV, we propose three community detec-
tion algorithms for directed networks. Extensions to sampled
graphs with general bivariate distributions are addressed in
Section V. We then conduct various experiments to test these
algorithms in Section VI. The paper is concluded in Section
VII.

II. SAMPLING NETWORKS BY BIVARIATE DISTRIBUTIONS
WITH THE SAME MARGINAL DISTRIBUTIONS

In [4], a probabilistic framework for network analysis
for undirected networks was proposed. The main idea in
that framework is to characterize a network by a sampled
graph. Specifically, suppose a network is modelled by a graph
G(Vg, Eg), where Vg denotes the set of vertices (nodes) in the
graph and Eg denotes the set of edges (links) in the graph. Let
n = |Vg| be the number of vertices in the graph and index the
n vertices from 1, 2, . . . , n. Also, let A = (aij) be the n× n
adjacency matrix of the graph, i.e.,

aij =

{
1, if there is an edge from vertex i to vertex j,
0, otherwise.

A sampling bivariate distribution p(·, ·) for a graph G is the
bivariate distribution that is used for sampling a network by
randomly selecting an ordered pair of two nodes (V,W ), i.e.,

P(V = v,W = w) = p(v, w). (1)
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Let pV (v) (resp. pW (w)) be the marginal distribution of the
random variable V (resp. W ), i.e.,

pV (v) = P(V = v) =

n∑
w=1

p(v, w), (2)

and

pW (w) = P(W = w) =

n∑
v=1

p(v, w). (3)

Definition 1: (Sampled graph) A graph G(Vg, Eg) that is
sampled by randomly selecting an ordered pair of two nodes
(V,W ) according to a specific bivariate distribution p(·, ·) in
(1) is called a sampled graph and it is denoted by the two-tuple
(G(Vg, Eg), p(·, ·)).

For a given graph G(Vg, Eg), there are many methods to
generate sampled graphs by specifying the needed bivariate
distributions. In [4], the bivariate distributions are all assumed
to be symmetric and that limits its applicability to undirected
networks. One of the main objectives of this paper is to relax
the symmetric assumption for the bivariate distribution so that
the framework can be applied to directed networks. The key
idea of doing this is to assume that the bivariate distribution
has the same marginal distributions, i.e.,

pV (v) = pW (v), for all v. (4)

As pointed out in [15], the bivariate distribution that has
the same marginal distributions, called circulation in [15],
plays an important role in analyzing directed networks. Note
that a symmetric bivariate distribution has the same marginal
distributions and thus the assumption in (4) is much more
general.

Extensions to sampled graphs with general bivariate dis-
tributions will be addressed in Section V. One particular
sampling method is the uniform edge sampling method with
p(v, w) = avw/m, where m is the total number of edges in the
directed network. Such a sampling method corresponds to the
modularity in [16]. If one uses the uniform edge sampling
method, then there is a one-to-one mapping between the
bivariate distribution p(v, w) and the adjacency matrix of the
network (if the total number of edges is known). In that case,
one still has the complete information of the network. On the
other hand, if one uses the random walk with self-loops and
backward jumps or the sampling method with paths of length
2 (described later in the paper), then the adjacency matrix of
the network cannot be recovered. The loss of the complete
information of the adjacency matrix might not be crucial for
the community detection problem.

A. PageRank

One approach for sampling a network with a bivariate
distribution that has the same marginal distributions is to
sample a network by an ergodic Markov chain. From the
Markov chain theory (see e.g., [17]), it is well-known that
an ergodic Markov chain converges to its steady state in the
long run. Hence, the joint distribution of two successive steps
of a stationary and ergodic Markov chain can be used as
the needed bivariate distribution. Specifically, suppose that a

network G(Vg, Eg) is sampled by a stationary and ergodic
Markov chain {X(t), t ≥ 0} with the state space {1, 2, . . . , n}
being the n nodes in Vg . For this Markov chain, let pij be the
transition probability from state i to state j and πi be the
steady state probability of state i. Then we can choose the
bivariate distribution

P(V = v,W = w) = p(v, w)

= P(X(t) = v,X(t+ 1) = w). (5)

As the Markov chain is stationary, we have

P(X(t) = v) = P(X(t+ 1) = v) = pV (v) = pW (v). (6)

It is well-known that a random walk on the graph induces a
Markov chain with the following state transition probabilities:

pij =
aij
kouti

, (7)

where

kouti =
n∑

j=1

aij , (8)

is the number of outgoing edges from vertex i. In particular,
if the graph is an undirected graph, i.e., aij = aji, then the in-
duced Markov chain is reversible and the steady state probabil-
ity of state i, i.e., πi, is ki/2m, where m = 1

2

∑n
i=1

∑n
j=1 aij

is the total number of edges of the undirected graph.
One problem for sampling a directed network by a simple

random walk is that the induced Markov chain may not be
ergodic even when the network itself is weakly connected.
One genuine solution for this is to allow random jumps from
states to states in a random walk. PageRank [13], proposed
by Google, is one such example that has been successfully
used for ranking web pages. The key idea behind PageRank
is to model the behavior of a web surfer by a random walk
(the random surfer model) and then use that to compute the
steady state probability for a web surfer to visit a specific web
page. Specifically, suppose that there are n web pages and
a web surfer uniformly selects a web page with probability
1/n. Once he/she is on a web page, he/she continues web
surfing with probability λ. This is done by selecting uniformly
one of the hyperlinks in that web page. On the other hand,
with probability 1−λ he/she starts a new web page uniformly
among all the n web pages. The transition probability from
state i to state j for the induced Markov chain is then

pij = (1− λ)
1

n
+ λ

aij
kouti

, (9)

where aij = 1 if there is a hyperlink pointing from the ith web
page to the jth web page and kouti =

∑n
j=1 aij is the total

number of hyperlinks on the ith web page. Let πi be steady
probability of visiting the ith web page by the web surfer. It
then follows that

πi = (1− λ)
1

n
+ λ

n∑
j=1

aji
koutj

πj . (10)

PageRank then uses πi as the centrality of the ith web page and
rank web pages by their centralities. Unlike the random walk
on an undirected graph, the steady state probabilities in (10)
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cannot be explicitly solved and it requires a lot of computation
to solve the system of linear equations.

The sampled graph (G(Vg, Eg), p(·, ·)) by using PageRank
then has the following bivariate distribution

p(v, w) = πvpvw, (11)

where pvw is defined in (9) and πv is the solution of (10).
Such a sampled graph was called LinkRank in [18].

B. Random walks with self-loops and backward jumps

Another way to look at the Markov chain induced by
PageRank in (9) is that it is in fact a random walk on a different
graph with the adjacency matrix Ã that is constructed from the
original graph with additional edge weights, i.e.,

Ã = (1− λ)
1

n
1 + λD−1A, (12)

where 1 is an n × n matrix with all its elements being 1
and D = (dij) is the diagonal matrix with dii = kouti for all
i = 1, 2, . . . , n.

In view of (12), another solution for the ergodic problem is
to consider a random walk on the graph with the adjacency
matrix

Â = λ0I + λ1A+ λ2A
T , (13)

where I is the n× n identity matrix and AT is the transpose
matrix of A. The three parameters λ0, λ1, λ2 are positive and

λ0 + λ1 + λ2 = 1.

A random walk on the graph with the adjacency matrix Â
induces an ergodic Markov chain if the original graph is
weakly connected. Also, with the additional edges from the
identity matrix and the transpose matrix, such a random walk
can be intuitively viewed as a random walk on the original
graph with self-loops and backward jumps.

In addition to random walks, one can also consider using
diffusion in a network to obtain the corresponding Markov
chain. Specifically, let koutmax = max1≤i≤n k

out
i , I be the n×n

identity matrix and D = (dij) be the diagonal matrix with
dii = kouti for all i = 1, 2, . . . , n. The transition probability
matrix is then I − α(D − A), where α ≤ 1/koutmax is a
normalization coefficient and D − A is the graph Laplacian.
For other Laplacian related methods, we refer to the survey
paper [9].

In general, one can generate a bivariate distribution that
has the same marginal distributions by using a stationary and
ergodic stochastic process, e.g., a semi-Markov process or a
hidden Markov process.

III. THE FRAMEWORK FOR DIRECTED NETWORKS

A. Centrality and relative centrality

Centrality [19], [20], [2] is usually used as a measure for
ranking the importance of a set of nodes in a (social) network.
Under the assumption in (4), such a concept can be directly
mapped to the probability that a node is selected as in [4].

Definition 2: (Centrality) For a sampled graph
(G(Vg, Eg), p(·, ·)) with the bivariate distribution p(·, ·)

that has the same marginal distributions in (4), the centrality
of a set of nodes S, denoted by C(S), is defined as the
probability that a node in S is selected, i.e.,

C(S) = P(V ∈ S) = P(W ∈ S). (14)

As a generalization of centrality, relative centrality in [4] is
a (probability) measure that measures how important a set of
nodes in a network is with respect to another set of nodes.

Definition 3: (Relative centrality) For a sampled graph
(G(Vg, Eg), p(·, ·)) with the bivariate distribution p(·, ·) that
has the same marginal distributions in (4), the relative cen-
trality of a set of nodes S1 with respect to another set of
nodes S2, denoted by C(S1|S2), is defined as the conditional
probability that the randomly selected node W is inside S1

given that the randomly selected node V is inside S2, i.e.,

C(S1|S2) = P(W ∈ S1|V ∈ S2). (15)

We note that if we choose S2 = Vg , then the relative
centrality of a set of nodes S1 with respect to Vg is simply
the centrality of the set of nodes S1.

Example 4: (Relative PageRank) PageRank described in
Section II-A has been commonly used for ranking the im-
portance of nodes in a directed network. Here we can use
Definition 3 to define relative PageRank that can be used for
ranking the relative importance of a set of nodes to another
set of nodes in a directed network. Specifically, let πi be
the PageRank for node i in (10) and pi,j be the transition
probability from state i to state j for the induced Markov chain
in (9). Then the relative PageRank of a set S1 with respect to
another set S2 is

C(S1|S2) = P(W ∈ S1|V ∈ S2)

=
P(W ∈ S1, V ∈ S2)

P(V ∈ S2)
=

∑
i∈S2

∑
j∈S1

πipij∑
i∈S2

πi
. (16)

Analogous to the relative centrality in [4], there are also
several properties of relative centrality in Definition 3. How-
ever, the reciprocity property in Proposition 5(iv) is much
weaker than that in [4]. The proof of Proposition 5 is given
in Appendix A of the online-only supplement.

Proposition 5: For a sampled graph (G(Vg, Eg), p(·, ·)) with
the bivariate distribution p(·, ·) that has the same marginal
distributions in (4), the following properties for the relative
centrality defined in Definition 3 hold.
(i) 0 ≤ C(S1|S2) ≤ 1 and 0 ≤ C(S1) ≤ 1. Moreover,
C(Vg|S2) = 1 and C(Vg) = 1.
(ii) (Additivity) If S1 and S2 are two disjoint sets., i.e., S1∩S2

is an empty set, then for an arbitrary set S3,

C(S1 ∪ S2|S3) = C(S1|S3) + C(S2|S3). (17)

In particular, when S3 = {1, 2, . . . , n}, we have

C(S1 ∪ S2) = C(S1) + C(S2). (18)

(iii) (Monotonicity) If S1 is a subset of S′1, i.e., S1 ⊂ S′1, then
C(S1|S2) ≤ C(S′1|S2) and C(S1) ≤ C(S′1).
(iv) (Reciprocity) Let Sc = Vg\S be the set of nodes that are
not in S.

C(S)C(Sc|S) = C(Sc)C(S|Sc).
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B. Community strength and communities

The notions of community strength and modularity in [4]
generalizes the original Newman’s definition [10] and unifies
various other generalizations, including the stability in [7], [8].
In this section, we further extend these notions to directed
networks.

Definition 6: (Community strength and communities)
For a sampled graph (G(Vg, Eg), p(·, ·)) with a bivariate
distribution p(·, ·) that has the same marginal distributions in
(4), the community strength of a set of nodes S ⊂ Vg , denoted
by Str(S), is defined as the difference of the relative centrality
of S with respect to itself and its centrality, i.e.,

Str(S) = C(S|S)− C(S). (19)

In particular, if a subset of nodes S ⊂ Vg has a nonnegative
community strength, i.e., Str(S) ≥ 0, then it is called a
community.

To see the intuition for the definition of community strength,
suppose that we use a Markov chain to sample a network. For
a set S that is relatively small to the total number of nodes in
a network, we have C(S) ≈ 0. In this case,

Str(S) ≈ C(S|S) = P(W ∈ S|V ∈ S)

= 1− P(W ∈ Sc, V ∈ S)

P(V ∈ S)
= 1− φ(S),

where φ(S) = P(W ∈ Sc, V ∈ S)/P(V ∈ S) is known as the
conductance of the Markov chain. Thus, a (small) set with a
strong community strength is a set with low conductance of the
Markov chain. In particular, suppose we ignore the directions
of the edges in a directed network and consider the random
walk on the corresponding undirected network. Then such a
random walk is a reversible Markov chain with the transition
probabilities

pvw =
Avw

kv
,

where Avw is the number of edges between node v and node
w, and kv is the degree of node v. The steady state probability
for such a reversible Markov chain to visit node v is

πv =
kv
2m

,

where m is total number of edges in the undirected network.
For such a reversible Markov chain,

φ(S) =
P(W ∈ Sc, V ∈ S)

P(V ∈ S)

=

∑
v∈S

∑
w 6∈S Av,w∑

v∈S kv
,

which is exactly the graph conductance for a small set S in
the undirected network. The graph conductance is a commonly
used measure in the literature (see e.g., [21], [22]) to detect
communities that are densely connected inside and sparsely
connected outside.

In the following theorem, we show various equivalent
statements for a set of nodes to be a community. The proof
of Theorem 7 is given in Appendix B of the online-only
supplement.

Theorem 7: Consider a sampled graph (G(Vg, Eg), p(·, ·))
with a bivariate distribution p(·, ·) that has the same marginal
distributions in (4), and a set S with 0 < C(S) < 1. Let
Sc = Vg\S be the set of nodes that are not in S. The following
statements are equivalent.

(i) The set S is a community, i.e., Str(S) = C(S|S)−
C(S) ≥ 0.

(ii) The relative centrality of S with respect to S is not
less than the relative centrality of S with respect to
Sc, i.e., C(S|S) ≥ C(S|Sc).

(iii) The relative centrality of Sc with respect to S is not
greater than the centrality of Sc, i.e., C(Sc|S) ≤
C(Sc).

(iv) The relative centrality of S with respect to Sc is
not greater than the centrality of S, i.e., C(S|Sc) ≤
C(S).

(v) The set Sc is a community, i.e., Str(Sc) =
C(Sc|Sc)− C(Sc) ≥ 0.

(vi) The relative centrality of Sc with respect to Sc is not
less than the relative centrality of Sc with respect to
S, i.e., C(Sc|Sc) ≥ C(Sc|S).

As discussed in [4], the social meaning of the first statement
in Theorem 7(i) is that a community is a group of people
who consider themselves much more important to themselves
than to random people on the street. The second statement in
Theorem 7(ii) says that a community is a group of people who
consider themselves much more important to themselves than
to the other people not in the community. The third statement
in Theorem 7(iii) says that the other people not in a community
are much less important to the people in the community than to
random people on the street. The fourth statement in Theorem
7(iv) says that people in a community are much less important
to the other people not in the community than to random
people on the street. The fifth statement in Theorem 7(v)
says that the other people not in a certain community are
also a community. Finally, the sixth statement says that the
other people not in a community are much more important to
themselves than to the people in a community.

C. Modularity and modularity preserving transformations

As in [4], we define the modularity for a partition of a
network as the average community strength of a randomly
selected node in Definition 8.

Definition 8: (Modularity) Consider a sampled graph
(G(Vg, Eg), p(·, ·)) with a bivariate distribution p(·, ·) that has
the same marginal distributions in (4). Let P = {Sc, c =
1, 2, . . . , C}, be a partition of {1, 2, . . . , n}, i.e., Sc ∩ Sc′ is
an empty set for c 6= c′ and ∪Cc=1Sc = {1, 2, . . . , n}. The mod-
ularity Q(P) with respect to the partition Sc, c = 1, 2, . . . , C,
is defined as the weighted average of the community strength
of each subset with the weight being the centrality of each
subset, i.e.,

Q(P) =

C∑
c=1

C(Sc) · Str(Sc). (20)

We note the modularity in (20) can also be written as
follows:
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Q(P) =

C∑
c=1

P(V ∈ Sc,W ∈ Sc)− P(V ∈ Sc)P(W ∈ Sc)

=

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(v, w)− pV (v)pW (w)). (21)

As the modularity for a partition of a network is the average
community strength of a randomly selected node, a good
partition of a network should have a large modularity. In
view of this, one can then tackle the community detection
problem by looking for algorithms that yield large modularity.
As the definition of modularity is the weighted sum of
community strength of each community, one should note that
the larger communities also have larger weights (in terms
of C(S)). Thus, as illustrated in our experimental results
later, large communities can also be found by modularity
maximization even though a smaller set of nodes tends to
have a strong community strength. We also note that if a set
S is a community, then by Theorem 7(v) the set Sc is also
a community. It is possible that the community Sc contains
several communities with much larger community strengths.
By doing modularity maximization, it is possible that Sc can
be further partitioned into several communities with much
larger community strengths.

For sampled graphs with symmetric bivariate distributions,
there are already various community detection algorithms in
[3], [4] that find local maxima of the modularity. However,
they cannot be directly applied as the bivariate distributions
for sampling directed networks could be asymmetric. For
this, we show two modularity preserving transformations: (i)
the transformation from a sampled graph that has the same
marginal distributions to another sampled graph that has a
symmetric bivariate distribution, (ii) the transformation from
a sampled graph with a larger number of nodes to another
sampled graphs with a smaller number of nodes by node
aggregation.

In the following lemma, we first show that one can construct
another sampled graph with a symmetric bivariate distribution
so that for any partition of the network, the modularity remains
the same as that of the original sampled graph. The proof
of Lemma 9 is given in Appendix C of the online-only
supplement.

Lemma 9: Consider a sampled graph (G(Vg, Eg), p(·, ·))
with a bivariate distribution p(·, ·) that has the same
marginal distributions in (4). Construct the sampled graph
(G(Vg, Eg), p̃(·, ·)) with the symmetric bivariate distribution

p̃(v, w) =
p(v, w) + p(w, v)

2
. (22)

Let Q(P) (resp. Q̃(P)) be the modularity for the par-
tition P = {Sc, c = 1, 2, . . . , C} of the sam-
pled graph (G(Vg, Eg), p(·, ·)) (resp. the sampled graph
(G(Vg, Eg), p̃(·, ·))). Then

Q̃(P) = Q(P). (23)

We note the transformation in Lemma 9 is also sparsity
preserving. Specifically, let m0 be the total number of nonzero
entries in the n × n matrix P = (p(v, w)). Then the number
of nonzero entries in the n × n matrix P̃ = (p̃(v, w)) is at
most 2m0. Such a sparsity property is crucial for reducing
the computational complexity of the community detection
algorithms described in the next section.

Now we show another modularity preserving and sparsity
preserving transformation by node aggregation.

Definition 10: (Node aggregation) Consider a sampled
graph (G(Vg, Eg), p(·, ·)) with a bivariate distribution p(·, ·)
that has the same marginal distributions in (4), and a par-
tition P = {Sc, c = 1, 2, . . . , C} of the sampled graph
(G(Vg, Eg), p(·, ·)). Now we aggregate the nodes in Sc into
a giant node c, c = 1, 2, . . . , C, and define the bivariate
distribution p̂(·, ·) with

p̂(c1, c2) =
∑

u∈Sc1

∑
v∈Sc2

p(u, v), (24)

for c1, c2 = 1, 2, . . . , C. Let V̂ be the collection of the
giant nodes c, c = 1, 2, . . . , C, and Ê be the collection of
pairs (c1, c2) with p̂(c1, c2) > 0. The new sampled graph
(G(V̂ , Ê), p̂(·, ·)) is called the P-aggregated sampled graph
of the sample graph (G(Vg, Eg), p(·, ·)).

It is clear from Definition 10 that the new sampled graph
(G(V̂ , Ê), p̂(·, ·)) also has a bivariate distribution p̂(·, ·) that
has the same marginal distributions. In the following lemma,
we further show that the node aggregation in Definition 10 is
a modularity preserving transformation. Its proof is given in
Appendix D of the online-only supplement.

Lemma 11: Consider a sampled graph (G(Vg, Eg), p(·, ·))
with a bivariate distribution p(·, ·) that has the same marginal
distributions in (4), and a partition P = {Sc, c =
1, 2, . . . , C} of the sampled graph (G(Vg, Eg), p(·, ·)). Sup-
pose Pa = {Sa

k , k = 1, 2, . . . ,K} for some K ≤ C
is a partition of the P-aggregated sampled graph of the
sample graph (G(Vg, Eg), p(·, ·)). Then Pa induces a par-
tition Po = {So

k, k = 1, 2, . . . ,K} on the sampled graph
(G(Vg, Eg), p(·, ·)), where

So
k = ∪c∈Sa

k
Sc, (25)

for k = 1, 2, . . . ,K. Let Q̂(Pa) be the modularity of the
partition Pa of the P-aggregated sampled graph and Q(Po)
be the modularity of the induced partition Po of the sampled
graph (G(Vg, Eg), p(·, ·)). Then

Q̂(Pa) = Q(Po). (26)

Note from (24) that the number of nonzero entries in the
C × C matrix P̂ = (p̂(·, ·)) is not larger than the number of
nonzero entries in the n× n matrix P = (p(·, ·)). Thus, such
a transformation is also sparsity preserving.

IV. COMMUNITY DETECTION

In this section, we extend three commonly used modu-
larity maximization algorithms for community detection in
undirected networks to directed networks: (i) the hierarchical
agglomerative algorithm [10], (ii) the partitional algorithm
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[11], and (iii) the fast unfolding algorithm [12]. The keys are
the modularity preserving transformations in Lemma 9 and
Lemma 11. As Q̃(P) = Q(P) in Lemma 9, one can then use
the community detection algorithms for the sampled graph
(G(Vg, Eg), p̃(·, ·)) with the symmetric bivariate distribution
to solve the community detection problem for the original
sampled graph (G(Vg, Eg), p(·, ·)). For this, we define the
correlation measure between two nodes v and w as follows:

q(v, w) = p̃(v, w)− p̃V (v)p̃W (w)

=
p(v, w)− pV (v)pW (w) + p(w, v)− pV (w)pW (v)

2
.

(27)

For any two sets S1 and S2, define the correlation measure
between these two sets as

q(S1, S2) =
∑
v∈S1

∑
w∈S2

q(v, w). (28)

With this correlation measure, we have from Lemma 9, (21)
and (28) that the modularity for the partition P = {Sc, c =
1, 2, . . . , C} is

Q(P) = Q̃(P) =

C∑
c=1

q(Sc, Sc), (29)

Moreover, a set S is a community if and only if q(S, S) ≥ 0.

A. A hierarchical agglomerative algorithm

Analogous to the hierarchical agglomerative algorithms
in [10], [12], we first propose a hierarchical agglomerative
algorithm for community detection in directed networks.

The hierarchical agglomerative algorithm in Algorithm 1
has the following properties.

Theorem 12:
(i) For the hierarchical agglomerative algorithm in Al-

gorithm 1, the modularity is non-decreasing in every
iteration and thus converges to a local optimum.

(ii) When the algorithm converges, every set returned by
the hierarchical agglomerative algorithm is indeed a
community.

The proof of Theorem 12 is given in Appendix E of the
online-only supplement. For (i) and (ii) of Theorem 12, it
is not necessary to specify how we select a pair of two
sets with a nonnegative correlation. In our experiments in
Section VI, we will use the greedy selection that selects the
two sets with the largest correlation measure to merge in
(H3) of Algorithm 1. Such a selection results in the largest
increase of the modularity in each merge. Even though the
hierarchical agglomerative algorithm in Algorithm 1 produces
communities, there are still two drawbacks:
(i) The hierarchical agglomerative algorithm only uses the
”merge” operation to increase the modularity. As such, once
a ”merge” operation is done, there is no way to reverse it. As
such, the order of the ”merge” operations might have a serious
effect on the final outcome.
(ii) In the initialization stage, every node is assumed to be
a community itself. There are roughly O(n) communities at

ALGORITHM 1: The Hierarchical Agglomerative Algo-
rithm
Input: A sampled graph (G(Vg, Eg), p(·, ·)) with a

bivariate distribution p(·, ·) that has the same
marginal distributions in (4).

Output: A partition P = {Sc, c = 1, 2, . . . , C} for some
C ≤ n.

(H1) Initially, C = n; Si = {i}, i = 1, 2, . . . , n;
(H2) Compute the correlation measures
q(Si, Sj) = q({i}, {j}) from (27) for all
i, j = 1, 2, . . . , n;

while there exists some i and j such that q(Si, Sj) > 0
do

(H3) Merge Si and Sj into a new set Sk, i.e.,
Sk = Si ∪ Sj ;

q(Sk, Sk) = q(Si, Si)+2q(Si, Sj)+q(Sj , Sj); (30)

for each ` 6= k do

q(Sk, S`) = q(S`, Sk) = q(Si, S`) + q(Sj , S`);
(31)

end
C = C − 1;

end
Reindex the C remaining sets to {S1, S2, . . . , SC};

the early stage of the hierarchical agglomerative algorithm.
Thus, its computational complexity is high at the early stage
of the algorithm. For a graph with n nodes, it is well-
known (see e.g., [2]) that the computational complexity of a
näive implementation is O(n3) [23] for a greedy hierarchical
agglomerative algorithm and it can be reduced to O(n2 log n)
(or O(m log n) in a sparse graph) by implementing priority
queues [24].

B. A partitional algorithm

As mentioned in the previous section, there are two draw-
backs of the hierarchical agglomerative algorithm in Algorithm
1. To tackle these problems, we propose a partitional algorithm
in Algorithm 2 that has a much lower computational complex-
ity. Like the K-means algorithm and the K-sets algorithm in
[11], our partitional algorithm also allows nodes to move from
communities to communities.

We first consider another correlation measure q0(·, ·) from
the original correlation measure q(·, ·) in (27) by letting
q0(v, w) = q(v, w) for v 6= w and q0(v, w) = 0 for v = w.
Also let

q0(S1, S2) =
∑
v∈S1

∑
w∈S2

q0(v, w). (32)

In view of (29), we have for any partition P = {Sc, c =
1, 2, . . . , C} that

Q(P) =

C∑
c=1

q(Sc, Sc) =

C∑
c=1

q0(Sc, Sc) +

n∑
v=1

q(v, v). (33)
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ALGORITHM 2: The Partitional Algorithm
Input: A sampled graph (G(Vg, Eg), p(·, ·)) with a

bivariate distribution p(·, ·) that has the same
marginal distributions in (4), and the (maximum)
number of communities K.

Output: A partition P = {Sc, c = 1, 2, . . . , C} for some
C ≤ K.

(P0) Initially, choose arbitrarily K disjoint nonempty sets
S1, . . . , SK as a partition of the sampled graph
(G(Vg, Eg), p(·, ·)).

(P1) for v = 1, 2, . . . , n do
for each neighboring set Sj of node v do

Compute the correlation measures q0(v, Sj).
end
Find the neighboring set to which node v has the
largest correlation measure. Assign node v to that
set.

end
(P2) Repeat from (P1) until there is no further change.

Thus, maximizing the modularity is equivalent to maximizing∑C
c=1 q0(Sc, Sc).
To describe the partitional algorithm in Algorithm 2, we let

Nei(v) = {w : p̃(v, w) > 0} (34)

be the set that contains the “neighboring” nodes of v, where
p̃(v, w) is the symmetric bivariate distribution defined in (22).
A set S is called a neighboring set of a node v if there exists
a node w ∈ S such that p̃(v, w) > 0. In each iteration, every
node is assigned to one of its neighboring set to which it
has the largest correlation measure. It might happen (in fact
very often) that some sets of the initial partition become empty
when all their set members are moved to other sets. Intuitively,
the ”merge” operation that is used in the hierarchical ag-
glomerative algorithm is done in a microscopic manner in the
partitional algorithm. As such, the chance for the partitional
algorithm to be trapped in a bad ”merge” operation is smaller
than that for the hierarchical agglomerative algorithm.

The partitional algorithm has the following property and its
proof is given in Appendix F of the online-only supplement.

Theorem 13: In the partitional algorithm in Algorithm 2,
the modularity is non-decreasing when there is a change, i.e.,
a node is moved from one set to another. Thus, the algorithm
converges to a local optimum of the modularity in a finite
number of steps.

Now we turn our attention to the computation complexity
of the partitional algorithm in Algorithm 2. Let m be the
total number of nonzero entries in the n × n matrix P̃ =
(p̃(v, w)). Even though the total number of nonzero entries
in the modularity matrix Q is O(n2), we will show that the
computation complexity of the partitional algorithm is only
O((n+m)I), where I is the number of iterations in Algorithm
2. This is done with the memory complexity O(n+m). Thus,
Algorithm 2 is a linear time algorithm for a sparse graph with
m = O(n) and it is much more efficient than the hierarchical
agglomerative algorithm for large sparse graphs.

Let

p̃(S1, S2) =
∑
v∈S1

∑
w∈S2

p̃(v, v), and (35)

p̃V (S) =
∑
v∈S

p̃V (v). (36)

To store the nonzero entries of the n×n matrix P̃ = (p̃(v, w))
requires O(m) memory complexity. In addition to this, we also
store q(v, v), p̃V (v) for all v = 1, 2, . . . , n, and p̃V (Sk) for all
k = 1, 2, . . . ,K. Thus, the memory complexity is O(n+m).
Now suppose node v is moved from S1 to S2. As p̃V (v) for all
v = 1, 2, . . . , n, are all stored in the memory, one can perform
the following updates:

p̃V (S1)⇐ p̃V (S1)− p̃V (v), and
p̃V (S2)⇐ p̃V (S2) + p̃V (v).

These updates can be done in O(1) steps. Thus, the total
number of updates in each iteration of Algorithm 2 requires
O(n) steps.

Now we argue that the computational complexity for the
correlation measures in each iteration is O(n+m). Note that

q(v, Sk) =
∑
w∈Sk

q(v, w)

= p̃(v, Sk)− p̃V (v)p̃V (Sk)

and that

p̃(v, Sk) =
∑

w∈SK

p̃(v, w)

=
∑

w∈Sk∩Nei(v)
p̃(v, w).

As now p̃V (v) and p̃V (Sk) are stored in the memory and there
are |Nei(v)| ”neighboring” nodes of v, one can compute the
correlation measures q(v, Sk) for all the neighboring sets Sk

of node v in |Nei(v)| steps. The correlation measure q0(v, Sk)
can be computed by using q(v, Sk) for v 6∈ Sk and q(v, Sk)−
q(v, v) for v ∈ Sk. Thus, the computational complexity for
the correlation measures for the n nodes in each iteration is
O(n+m).

One possible initial partition for the partitional algorithm is
to choose K = n and every node is in a different set. Such
a choice was in fact previously used in the fast unfolding
algorithm in [12]. The fast unfolding algorithm is also a
modularity maximization algorithm and it consists of two-
phases: the first phase is also a partitional algorithm like
the one presented here. The difference is that our partitional
algorithm uses the probabilistic framework. Such a framework
not only provides the needed physical insights but also allows
a much more general treatment for modularity maximization.
Once the first phase is completed, there is a second phase of
building a new (and much smaller) network whose nodes are
the communities found during the previous phase. This will
be addressed in the next section.
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ALGORITHM 3: The fast unfolding (Louvain) algorithm
Input: A sampled graph (G(Vg, Eg), p(·, ·)) with a

bivariate distribution p(·, ·) that has the same
marginal distributions in (4).

Output: A partition P = {Sc, c = 1, 2, . . . , C} for some
C ≤ n.

(F0) Initially, choose the partition P with C = n and
Si = {i}, i = 1, 2, . . . , n;

(F1) Run the partitional algorithm in Algorithm 2 with
the initial partition P . Let P ′ = {S1, S2, . . . , SC} be its
output partition.

(F2) If P = P ′, then there is no improvement and return
P as the output partition.

(F3) Otherwise, do node aggregation to generate the
P ′-aggregated sampled graph of the sampled graph
(G(Vg, Eg), p(·, ·)). Run the fast unfolding algorithm in
Algorithm 3 with the P ′-aggregated sampled graph as
its input. Suppose it outputs the partition
Pa = {Sa

k , k = 1, 2, . . . ,K} on the P ′-aggregated
sampled graph. Return the induced partition
Po = {So

k, k = 1, 2, . . . ,K} on the sampled graph
(G(Vg, Eg), p(·, ·)), where So

k = ∪c∈Sa
k
Sc.

C. A fast unfolding algorithm

The outputs of the partitional algorithm may not be commu-
nities when it converges. For this, we consider another phase
that uses node aggregation as in the fast unfolding algorithm
in [12]. As shown in Lemma 11, node aggregation is a
modularity preserving and sparsity preserving transformation.
The modularity preserving property in Lemma 11 allows us
to further increase the modularity by recursively applying the
partitional algorithm in Algorithm 2 and the node aggregation
in Definition 10. This is outlined in the (recursive) fast
unfolding algorithm in Algorithm 3.

Since the transformation by node aggregation is also spar-
sity preserving, the computational complexity of each recur-
sive call of Algorithm 3 is O(m+n) (as in the partitional al-
gorithm). Thus, the overall computational complexity depends
on the depth of the recursive calls. A rigourous proof for the
upper bound on the depth of the recursive calls appears to
be difficult. The original fast unfolding algorithm is a special
case of ours (by using the uniform edge sampling) and it is
generally conjectured to be O(logm) for the depth of the
recursive calls. But we do not have a formal proof for that.
However, in our experiments, the depth is quite small.

We have the following properties for Algorithm 3. Its proof
is given in Appendix G of the online-only supplement.

Theorem 14:

(i) In the fast unfolding algorithm in Algorithm 3, the
modularity is non-decreasing when there is a change
of the partition. Thus, the algorithm converges to a
local optimum of the modularity in a finite number
of steps.

(ii) When the algorithm converges, every set returned by
Algorithm 3 is indeed a community.

The intuition behind the fast unfolding algorithm is to
increase the modularity by moving a single node one at a
time at the first level and then moving a block of nodes in
each recursive level. As it gets deeper, the block size is larger.
The fast unfolding algorithm stops at its deepest level when no
more blocks of nodes can be moved to increase the modularity.
In view of this, it is not necessary to start the fast unfolding
algorithm from the initial partition that contains n sets with
each node in a set. The modularity can be further increased by
running the fast unfolding algorithm again with its first output
partition as its input partition. However, the gain from doing
another iteration of the fast unfolding algorithm is in general
quite limited. Also, as pointed out in [12], two tricks to reduce
the computational cost are (i) to stop the partitional algorithm
when the gain of modularity is below a certain threshold, and
(ii) removing the nodes with degree 1 and then adding them
back later.

In comparison with the original fast unfolding algorithm in
[12], our fast unfolding algorithm has the following advan-
tages:
(i) Generalization: based on our probabilistic framework, our
fast unfolding algorithm provides users the freedom to choose
the sampled graph that might be more suitable for their
viewpoints and resolution requirements. By doing so, our fast
unfolding algorithm is also applicable for directed networks.
(ii) Theoretical guarantees: our framework provides a rigor-
ous proof for the convergence of the fast unfolding algo-
rithm through modularity maximization and node aggregation.
Moreover, when the algorithm converges, it returns communi-
ties that are formally defined in our framework.
(iii) Probabilistic insights: our probabilistic framework defines
the concept of correlation. The partitional algorithm in the first
phase of the fast unfolding algorithm is simply to repeatedly
move each node to the most positively correlated set. Also,
the variables that need to be stored in the memory have clear
probabilistic meanings that can then be used for speeding
up the computation of correlation. More importantly, the
node aggregation phase can be understood as a modularity
preserving and sparsity preserving transformation.
(iv) Reduction of computational cost: by setting the diagonal
elements of the modularity matrix to be 0, the computation for
the largest increase of modularity, ∆Q in [12], is now reduced
to the computation of the largest correlation of a node to its
neighboring sets.

D. Weak communities and outliers

If the output partition of the fast unfolding algorithm is
satisfactory, then we can simply stop there. If otherwise, we
can perform the following post-processing to find another and
possibly better initial partition. The idea of our post-processing
is to examine the contribution of each community to the mod-
ularity and reassign the nodes in the communities with small
contributions. Specifically, suppose that the fast unfolding al-
gorithm returns a partition of C communities S1, S2, . . . , SC .
The contribution of Sc to the modularity is then q(Sc, Sc),
where q(·, ·) is defined in (28). Then we can sort q(Sc, Sc),
c = 1, 2, . . . , C in the ascending order and perform a “sweep”
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to cut these C communities (at the maximum gap) into strong
communities and weak communities. Suppose that the strong
communities are S′1, . . . , S

′
K with K < C. The nodes in the

weak communities are then iteratively reassigned to the most
positively correlated strong community, i.e., node i is assigned
to S′j if q(i, S′j) = max1≤`≤K q(i, S′`) and q(i, S′j) > 0.
After this is done, we have K communities, S′′1 , . . . , S

′′
K with

S′` ⊂ S′′` , ` = 1, 2, . . . ,K. There might be still some nodes
that are negatively correlated to S′′` for all ` = 1, 2, . . . ,K.
The set of nodes {i : q(i, S′′` ) ≤ 0, ` = 1, 2, . . . ,K} can be
classified as outliers. For outliers, we can either remove them
from the graph or reassign them to the most correlated strong
community. In either case, we have a new initial partition that
we can use for another run of the fast unfolding algorithm.

V. GENERAL BIVARIATE DISTRIBUTION

In this section, we discuss how to extend our framework of
sampled graphs to the setting with general bivariate distribu-
tions. As the marginal distributions may not be the same, many
results derived in this paper are not as elegant as before. For
instance, now we have to distinguish the notion of centrality
into two types: the out-centrality (with respect to the marginal
distribution of V ) and the in-centrality (with respect to the
marginal distribution of W ). The notion of relative centrality
also needs to be extended in the same manner. However, even
with such an extension, the reciprocity property in Proposition
5(iv) is not true any more.

The good news is that the notions of community and
modularity can be extended in the same manner as before.
There is no need to distinguish an in-community and an out-
community. Specifically, we can still define a set S as a
community if

P(V ∈ S,W ∈ S)− P(V ∈ S)P(W ∈ S) ≥ 0,

and define the modularity Q(P) with respect to the partition
Sc, c = 1, 2, . . . , C, by using (21). However, the equivalent
characterizations for a community in Theorem 7 are no long
valid as the reciprocity property in Proposition 5(iv) is not true
any more.

With the general definition of the modularity, one can still
apply the hierarchical agglomerative algorithm in Algorithm 1,
the partitional algorithm in Algorithm 2, and the fast unfolding
algorithm in Algorithm in 3 for community detection in a
sampled graph with a general bivariate distribution. Moreover,
the results in Theorem 12, Theorem 13, and Theorem 14 also
hold. However, there are two minor modifications:
(i) The modularity preserving transformation of sampled
graphs in Lemma 9 cannot be directly applied. As such, one
needs to skip the transformation and directly apply the defini-
tion of the correlation measure between two nodes v and w,
i.e., q(v, w), in (27) to construct the correlation matrix. Also,
for any two sets S1 and S2, the correlation measure between
these two sets, i.e., q(S1, S2), is still defined as in (28). By
doing so, a set S is community if and only if q(S, S) ≥ 0 and
the modularity for a partition P = {Sc, c = 1, 2, . . . , C} can
still be computed by

∑C
c=1 q(Sc, Sc) as described in (29).

(ii) The definition of ”neighboring” nodes of a node v in (34)
should be generalized as follows:

Nei(v) = {w : p(v, w) > 0 or p(w, v) > 0}. (37)

Also, a set S is called a ”neighboring” set of a node v if there
exists a node w ∈ S such that w is a ”neighboring” node of v.
In order to show that the partitional algorithm is still a linear-
time algorithm, one needs to store in memory the nonzero
entries of the n × n matrix P = (p(v, w)), q(v, v), pV (v),
pW (v) for all v = 1, 2, . . . , n, and pV (Sk), pW (Sk) for all
k = 1, 2, . . . ,K. Then use those to compute the correlation
measure

q(v, Sk)

=
p(v, Sk) + p(Sk, v)− pV (v)pW (Sk)− pW (v)pV (Sk)

2
.

As pointed out by one of the reviewers, there are two
different types of communities for directed networks that are
commonly addressed in the literature (see e.g., [25], [26]):
structural communities (based on the densities of edges) and
flow communities (based on the flow of probabilities). These
two types of communities correspond to two different types
of sampled graphs in our probabilistic framework. For flow
communities, they can be detected by using random walks as
a random walker tends to be ”trapped” in a community with a
high probability. On the other hand, structural communities
can be detected by using uniform edge sampling in [16]
to produce communities that are densely connected inside
and sparsely connected outside. A very enlightening example
was shown in Fig. 4 of [26]. We note that the computation
complexity of constructing the desired bivariate distribution
to detect a certain type of communities might vary. For
instance, the computation complexity of finding p(v, w) by
using uniform edge sampling in [16] is O(1). On the other
hand, the computation complexity of finding p(v, w) by using
a random walk requires solving the steady state probabilities
of a Markov chain, which is in general O(n3).

VI. EXPERIMENTAL RESULTS

A. The hierarchical agglomerative algorithm

In this section, we use the hierarchical agglomerative al-
gorithm to compare the sampling methods by PageRank in
Section II-A and random walks with self-loops and backward
jumps in Section II-B. We conduct various experiments based
on the stochastic block model with two blocks. The stochastic
block model, as a generalization of the Erdos-Renyi random
graph, is a commonly used method for generating random
graphs that can be used for benchmarking community detec-
tion algorithms. In a stochastic block model with two blocks
(communities), the total number of nodes in the random graph
are evenly distributed to these two blocks. The probability that
there is a directed edge between two nodes within the same
block is pin and the probability that there is a directed edge
between two nodes in two different blocks is pout. These edges
are generated independently. Let cin = npin and cout = npout.

In our experiments, the number of nodes n in the stochastic
block model is 2000 with 1000 nodes in each of these two
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blocks. The average degree (the sum of the average in-degree
and the average out-degree) of a node is set to be 3. The
values of cin− cout of these graphs are in the range from 2.5
to 5.9 with a common step of 0.1. We generate 20 graphs
for each cin − cout. Isolated vertices are removed. Thus,
the exact numbers of vertices used in this experiment might
be slightly less than 2000. For PageRank, the parameter λ
is chosen to be 0.9. For the random walk with self-loops
and backward jumps, the three parameters are λ0 = 0.05,
λ1 = 0.75 and λ2 = 0.2. We run the greedy hierarchical
agglomerative algorithm in Algorithm 1 until there are only
two sets (even when there do not exist nonnegative correlation
measures between two distinct sets). We then evaluate the
overlap with the true labeling. In Figure 2, we show the
experimental results, where each point is averaged over 20
random graphs from the stochastic block model. The error
bars are the 95% confidence intervals. From Figure 2, one
can see that the performance of random walks with self-loops
and backward jumps is better than that of PageRank. One
reason for this is that PageRank uniformly adds an edge (with
a small weight) between any two nodes and these added edges
change the network topology. On the other hand, mapping by a
random walk with backward jumps in (13) does not change the
network topology when it is viewed as an undirected network.

Fig. 2. Community detection of the stochastic block model by using PageRank
in (12) and a random walk with self-loops and backward jumps in (13).

We also test the hierarchical agglomerative algorithm by
using a real world dataset [27], [28]. The directed network in
[27], [28] is a neural network that consists of 297 nodes and
2345 directed edges. In Figure 3(a), we show the community
detection result for the neural network by using PageRank in
(12). The parameter λ for PageRank is chosen to be 0.9. There
are five communities from the hierarchical agglomerative
algorithm by using PageRank. These five communities have
the community strength 0.3379, 0.4603, 0.4202, 0.0934, and
0.3539. The modularity for such a partition is 0.3025. In Figure
3(b), we show the community detection result for the neural
network by a random walk with backward jumps in (13). On
the other hand, the three parameters for a random walk with
backward jumps are λ0 = 0, λ1 = 0.9 and λ2 = 0.1. There
are two communities with the community strength 0.3763 and
0.4457. The modularity for such a partition is 0.4086. Once
again, the mapping by a random walk with backward jumps
in (13) performs better than the mapping by using PageRank

(a) PageRank (b) random walk with back-
ward jumps

Fig. 3. The community detection result for the neural network.

in (12) as there is a rather weak community (with community
strength 0.0934) by using PageRank.

B. The fast unfolding algorithm

In this section, we evaluate the fast unfolding algorithm
by using two different benchmark graphs: (i) the six cluster
model, (ii) the LFR model [29], and (iii) the SNAP collection
[37].

1) The six cluster model: We generate a graph with six
communities on a plane. We consider six unit circle centered
at (2, 0), (4, 0), (6, 0), (2, 2), (4, 2), and (6, 2), respectively.
For the first (resp. last) three circles, we generate 1000 (resp.
800) random nodes. A node within a circle is generated by
first selecting its distance to its center uniformly in [0, 1]
and then its angle uniformly in [0, 2π]. Clearly, there are six
”ground truth clusters” of these 5400 nodes as shown in Figure
4(a). Now we construct a directed (neighborhood) graph by
connecting two nodes with a directed edge if their distance
is not greater than a constant ε. The direction of the edge is
chosen with an equal probability of 0.5.

In our first experiment, we choose ε = 0.5. We use the
random walk with backward jumps for generating the sampled
graph. The three parameters are λ0 = 0, λ1 = 0.5 and λ2 =
0.5. In view of (13), such a sampled graph has the following
symmetric bivariate distribution

p(u, v) =
au,v + av,u

2m
, (38)

where A = (au,v) is the adjacency matrix of the directed graph
and m is the total number of edges. This is also equivalent
to the edge sampling [4] of an undirected graph with the
adjacency matrix B = A+AT (with AT being the transpose
of the matrix A) that chooses the two end nodes of a uniformly
selected edge. The modularity for edge sampling is thus the
same as the Newman’s modularity [6]. The modularity of
the partition with the six ”ground truth clusters” for such
a graph is 0.8105. We run the fast unfolding algorithm in
Algorithm 3 for such a graph and it outputs a partition of
6 communities with the modularity 0.8106 (see Figure 4(b)).
The fast unfolding algorithm in facts ends when the partitional
algorithm in Algorithm 2 ends after 6 iterations. In other
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words, node aggregation is not used for this experiment of
the fast unfolding algorithm.

In our second experiment, we construct another graph that is
more difficult to detect communities. This is done by choosing
ε = 0.25 so that the graph is much more sparse than the
one with ε = 0.5. Once again, we use the sampling in (38)
for this new graph. The modularity of the partition with the
six ”ground truth clusters” for such a graph is 0.8197. We
run the fast unfolding algorithm in Algorithm 3 for such a
graph and it outputs a partition of 11 communities with the
modularity 0.8246 (see Figure 4(c)), which is much larger than
the modularity of the ground truth partition 0.8197. As can be
seen from Figure 4(a) and (c), the fast unfolding algorithm
outputs a partition (with a much larger modularity value) that
is not even close to the ground truth partition. In view of
this, one should carefully examine the output partition of a
modularity maximization algorithm.

For this new graph with ε = 0.25, the fast unfolding
algorithm needs 5 levels of node aggregations and the par-
titional algorithm in the first level has 20 iterations, which
is significantly larger than the graph with ε = 0.5. By
examining the 11 communities (see Table I), we find that
there are 5 communities (communities 3,4,6,7 and 9) that have
relatively weak contributions to the modularity. This does not
mean the community strengths of these 5 communities are
small. In fact, their community strengths are comparable to
the other 6 communities (communities 1,2,5,8,10 and 11).
However, their sizes are relatively smaller. After the process
of eliminating communities with weak contributions to the
modularity in Section IV-D, we have a partition of six clusters
with the modularity 0.8175 (see Figure 4(d)). We then use
that partition as the initial partition for another run of the
fast unfolding algorithm and it outputs a partition of six
clusters with the modularity 0.8200 (see Figure 4(e)). One
lesson learned from this experiment is that the fast unfolding
algorithm (based on modularity maximization) might produce
small communities with relatively strong community strengths
if the total number of communities is not known in advance.
These small communities are also negatively correlated to
the large communities and thus cannot be merged into larger
communities. In view of this, post processing that carefully
examines the results produced by modularity maximization
algorithms (such as the fast unfolding algorithm) is crucial to
improving the quality of the community detection result.

Though the fast unfolding algorithm is a nearly-linear time
algorithm for large sparse graphs with edge sampling, it suffers
from the problem of resolution limit [30] due to its limited
visibility to “see” more than one step (as illustrated in the pre-
vious experiment). To address the problem of resolution limit,
stability was then proposed in [7], [8] based on continuous-
time random walks. As shown in [4], the stability is also a
special case of the modularity for a certain sampled graph.
However, the sampled graph that corresponds to the stability
in [7], [8] is no longer sparse and thus the computational cost
of the fast unfolding algorithm is increased dramatically. One
reasonable compromise might be to consider the following

sampling method with paths of length two:

p(u, v) =
ău,v
2m̆

, (39)

where

Ă = (ău,v) = (A+AT ) + 0.5(A+AT )2

and
m̆ =

∑
u

∑
v

ă(u, v)/2.

In Figure 4(f), we show the partition generated by the fast
unfolding algorithm for the sampled graph in (39). Since the
matrix A is the adjacency matrix of the graph with ε = 0.25,
the matrix Ă is capable of “seeing” nodes within the distance
0.5. As shown in Figure 4(a) and (f), its performance is
comparable to that by the fast unfolding algorithm for the
more dense graph with ε = 0.5.

Our observations from the experiments for the six ”ground
truth” clusters also appear in our experiment for the real
dataset from the political blogs in [31]. For such a directed
network, we first remove the nodes with degree 0 and there
are 793 nodes left. These nodes are in two ground truth
communities with 351 nodes and 442 nodes respectively. We
first use the random walk with backward jumps for gener-
ating the sampled graph. The three parameters are λ0 = 0,
λ1 = 0.5 and λ2 = 0.5. The fast unfolding algorithm yields
11 communities. After the process of eliminating communities
with weak contributions to the modularity in Section IV-D,
we have two communities. These two communities are very
close to the two ground truth communities and the overlap is
0.9672. We then use edge sampling for the directed network
to generate another sampled graph. Specifically, we have the
bivariate distribution (that may not have the same marginal
distributions) p(u, v) = au,v/m, where A = (au,v) is the
adjacency matrix of the directed network and m is the total
number of directed edges in the network. Such a sampling
method yields the same modularity in a direct network in [16].
This time the fast unfolding algorithm yields 10 communities.
Again, after the process of eliminating communities with weak
contributions, we have two communities that are exactly the
same as that from the random walk with backward jumps.
For these two sampled graphs, we need to go through the
process of eliminating communities with weak contributions.
For the third sampled graph, we use the sampling method with
paths of length two in (39). The fast unfolding algorithm for
this sampled graph yields two communities directly with the
overlap 0.9697. This shows that the capability of the sampling
method to “see” nodes more than one step away is very helpful
in achieving the needed resolution for community detection,
especially for sparse graphs.

2) The LFR model: In [12], the authors showed that the
original fast unfolding algorithm is capable of dealing with
large scale real networks, even when the number of edges is
up to one billion. To provide convincing evidence that our fast
unfolding algorithm can not only produce good community
detection results but also has the same capability for dealing
with large scale networks, we conduct two experiments by
using the LFR benchmark graphs [29]. There are several
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TABLE I
THE 11 COMMUNITIES BY THE FAST UNFOLDING ALGORITHM FOR A GRAPH WITH SIX CLUSTERS IN FIGURE 4(C).

community 1 2 3 4 5 6 7 8 9 10 11
contribution 0.1441 0.1397 0.0222 0.0229 0.1345 0.0225 0.0096 0.1116 0.0127 0.1044 0.1004

strength 0.8029 0.8007 0.7984 0.7908 0.7888 0.7961 0.8046 0.8662 0.8641 0.8631 0.8800
size 717 621 352 324 476 372 148 756 230 598 806

(a) ground truth (b) fast unfolding, ε = 0.5 (c) fast unfolding, ε = 0.25

(d) eliminating communities, ε = 0.25 (e) 2nd fast unfolding, ε = 0.25 (f) another sampled graph, ε = 0.25

Fig. 4. The community detection result for a graph with six ”ground truth clusters.”

parameters that need to be specified in the LFR benchmark
graphs. The node degrees and the (ground truth) community
sizes in the LFR model are distributed according to the power
law, with exponents γ and β, respectively. The symbol 〈k〉
denotes the average degree. The mixing parameter µ is used
for characterizing how the built-in communities in a graph are
mixed. Specifically, each node has a fraction 1−µ (resp. µ) of
its edges connected to the other nodes of its community (resp.
the other nodes of the network). The direction of the edge is
chosen with an equal probability of 0.5.

For both experiments, we use the bivariate distribution in
(39). The objective of the first experiment is to show that
our fast unfolding algorithm can produce good community
detection results for various parameter settings. In the first
experiment, the two exponents (γ, β) are chosen to be (2,1)
and (3,2), respectively. The rest of the parameters, including
the number of nodes, the maximum degree, 〈k〉, are set to
be 100,000, 300, and 100, respectively. The values of mixing
parameter µ of these graphs are in the range from 0.1 to
0.75 with a common step of 0.05. We generate 20 graphs
for each µ. Then, we run our fast unfolding algorithm on
each graph and compute the normalized mutual information
measure (NMI) by using a built-in function in igraph [32].
The results are shown in Figure 5. The error bars are the 95%

confidence intervals. As shown in Figure 5, our fast unfolding
algorithm can produce good community detection results when
the mixing parameter µ is small. Also, increasing the average
degree 〈k〉 also increases the NMIs of the community detection
results. In Figure 6, we show the number of the iterations of
performing the partition algorithm at various recursive levels.
As shown in Figure 6, the number of iterations increases when
the mixing parameter µ increases.

In the second experiment, we show that our fast unfolding
algorithm is capable of dealing with large scale networks. In
this experiment, γ, β, the number of nodes, the maximum
degree, the average degree, and the mixing parameter µ are
set to be 2, 1, 10,000,000, 500,100, 0.5, respectively. As such,
there are roughly half a billion edges in a graph with 10
million nodes. The number of ground-truth communities is
57187. As it takes more than 150 hours to generate such a
large graph, we only generate a single LFR benchmark graph
in this experiment. We use a random walk with self-loops to
obtain the needed bivariate distribution for our probabilistic
framework. In each node, the random walker will either stay
at the same node or go along with one of its edges to an
adjacent node, with probabilities λ and 1 − λ, respectively.
Hence, the transition probability matrix of such a Markov
chain can be characterized by λI + (1 − λ)D−1A. The
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steady state probability for the random walker to visit node
v is πv = kv/2m, where kv is the degree of node v and
m is the total number of edges in the network. In this
experiment, we set λ = 2999/3000 so that the random walker
has a very high probability to stay at the same node. We
then compare our algorithm with the original fast unfolding
algorithm that uses Newman’s modularity [12]. The original
fast unfolding algorithm, to the best of our knowledge, is
one of the fastest community detection algorithms in the
literature. Our algorithm is implemented in C++, while the
original fast unfolding algorithm is obtained from built-in
functions of igraph [32], which are implemented in C. We
perform the experiment on an Acer Altos-T350-F2 machine
with two Intel(R) Xeon(R) CPU E5-2690 v2 processors (only
one single thread is used). We compare the performance of
these two algorithms in Table II. Note that the I/O time is
excluded from the running time in Table II. As shown in
Table II, our algorithm achieves better performance than the
original fast unfolding algorithm, both in accuracy (in terms
of NMI) and the running time. To dig further, we observe
that the original fast unfolding algorithm (that aims to maxi-
mize Newman’s modularity) fails to detect small communities
because it keeps recursively merging communities until there
are only 3395 communities left. This phenomenon is known
as the resolution limit previously reported in [30]. To see the
intuition behind this, note that Newman’s modularity in the
original fast unfolding algorithm is equivalent to using the
bivariate distribution pvw = Avw/(2m) in our fast unfolding
algorithm and this corresponds to the random walker without
self-loops. Intuitively, increasing the self-loop probability of
the random walker decreases its mobility and the mobility of
the random walker can be used to control the size of detected
communities. Decreasing (resp. Increasing) the mobility be-
haves like “zooming in” (resp. “zooming out”) on the graph,
and results in the detection of “local communities” (resp.
“global communities”), which are small (resp. large) in size.
Given this, our probabilistic framework has the flexibility to
choose the resolution and might be more suitable for practical
applications than other algorithms that have fixed resolutions.

3) The SNAP collection: In addition to synthetic networks,
we use several well-known real-world networks from the
Stanford Network Analysis Project Collection (SNAP) [37]
to evaluate our algorithm. The collection contains six net-
works: Amazon, DBLP, Friendster, LiveJournal, Orkut, and
Youtube. All the networks come with top 5000 ground-truth
communities with the highest quality. Since all the ground-
truth communities are overlapping, we need a preprocessing
step to generate the ground-truth disjoint communities in these
networks.

To do so, we follow the maximum independent set (MIS)
method in [38] and use their code to generate the ground-
truth disjoint communities. For each graph G, the MIS method
considers each of the 5000 ground-truth community as a giant
vertex, and assigns an edge between two giant vertices if
and only if two communities share at least one vertex, i.e.,
they are two overlapping communities. Specifically, let Ci,
i = 1, 2, . . . , 5000, be the 5000 ground-truth communities in
G. The MIS method constructs another graph G′(V ′, E′) with

V ′ = {C1, C2...C5000} and E′ = {(Ci, Cj)|Ci ∩ Cj 6= φ}.
Then, it finds the maximum independent set of the graph
G′ and removes all the giant vertices that are not in the
maximum independent set. This then leads to a graph with
disjoint communities. We summarize the parameters of these
six graphs by using the MIS method in Table III, including
the number of vertices, the number of edges and the number
of ground-truth communities. The setup of this experiment
is the same as that in the second experiment of the LFR
model in the previous section. Specifically, we use a random
walk with self-loops to obtain the bivariate distribution for
our probabilistic framework. In each node, the random walker
will either stay at the same node or go along with one of
its edges to an adjacent node, with probabilities λ and 1− λ,
respectively. In this experiment, the values of 1−λ are selected
from 2−`, ` = 0, 1, . . . , 18. The NMI results are shown in
Figure 7, and the running time for each data point in Figure
7 is within two seconds. Note that for ` = 0, we have
λ = 0 and the random walk with self-loops degenerates to
the original fast unfolding algorithm. As such, the first data
point of each curve corresponds to that from the original
fast unfolding algorithm. As shown in this figure, the NMI
values of each curve form an inverted U-shaped curve that
gradually increases to its maximum and then decreases. When
the value of 1 − λ is lower than a particular threshold, the
curve will suddenly level off. To explain this phenomenon,
we manually examine the output communities. We find that
the number of the communities increases when the value of
1 − λ decreases. This is because the random walker has a
higher probability to stay at the same node for a smaller
1−λ. If the value of 1−λ is below a particular threshold, the
algorithm outputs each single node as a community itself. As
such, each curve levels off when 1−λ is below that threshold.
Moreover, when each curve reaches its maximum NMI, the
output of the algorithm has roughly the same number of
communities as that of the ground-truth communities. For the
two networks with less than 1000 communities, i.e., Amazon
and Orkut, the original fast unfolding performs well since both
curves reach their maximums with relatively small values of
λ. On the other hand, for the other four networks with more
than 1000 communities, i.e., DBLP, Friendster, LiveJournal,
and Youtube, the number of communities resulted from the
original fast unfolding is smaller than the number of ground-
truth communities. For these four networks, the fast unfolding
algorithm based on a random walk with self-loops performs
much better than the original fast unfolding algorithm. In view
of this, when the number of detected communities is smaller
than expected, one might consider using another “viewpoint”
to detect the ground-truth communities in a real-world network
(such as the random walk with self-loops in this experiment).

VII. CONCLUSION

In this paper, we extended our previous work in [3], [4] to
directed networks. Our approach is to introduce bivariate dis-
tributions that have the same marginal distributions. By doing
so, we were able to extend the notions of centrality, relative
centrality, community strength, community and modularity to
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE ORIGINAL FAST UNFOLDING ALGORITHM AND THE FAST UNFOLDING ALGORITHM IN OUR PROBABILISTIC

FRAMEWORK.

performance metric NMI running time (hours)
fast unfolding (Newman’s modularity) 0.86 1.45

fast unfolding (probabilistic framework) 1 0.50

TABLE III
SUMMARY OF THE SIX NETWORKS AFTER THE PREPROCESSING STEP.

Amazon DBLP Friendster Livejournal Orkut Youtube
number of vertices 8258 23479 79803 38713 6722 10206
number of edges 22129 72116 992461 633195 73522 15959

number of communities 992 3021 3529 2520 375 2883

Fig. 5. The NMIs of our fast unfolding algorithm as a function of the mixing
parameter µ.

Fig. 6. The number of iterations in each level of recursive calls. The
parameters γ, β, 〈k〉 are set to be 2, 1, 100, respectively.

directed networks. For community detection, we also extended
three commonly used algorithms in undirected networks to
directed networks: the hierarchical agglomerative algorithm,
the partitional algorithm, and the fast unfolding algorithm.
These three algorithms were shown to converge in a finite
number of steps. Moreover, the outputs of the hierarchical

Fig. 7. The NMIs of the six networks from the SNAP collection. The values
of 1− λ are selected from 2−`, ` = 0, 1, . . . , 18.

agglomerative algorithm and the fast unfolding algorithm are
guaranteed to be communities. We illustrated how these three
algorithms can also be extended to the setting with general
bivariate distributions. We also conducted various experiments
by using two sampling methods in directed networks: (i)
PageRank and (ii) random walks with self-loops and backward
jumps. The experimental results showed that sampling by
random walks with self-loops and backward jumps perform
better than sampling by PageRank for community detection.

One of the most important factors that affect the per-
formance of our probabilistic framework is the selection
of the bivariate distribution (viewpoint). We also note that
the prior domain knowledge is important for choosing the
right bivariate distribution. As discussed in our second LFR
experiment, one should choose a random walker with low
mobility as there are many small ground-truth communities
in the LFR dataset. On the other hand, in the experiment
with six clusters, knowing the number of communities is
very helpful for eliminating weak communities in the post-
processing step and thus crucial to the success of community
detection. Thus, the more we know about the application, the
better we can detect communities for that application. There
are various practical applications of community detection,
e.g., identifying important places from cellular network data
[33], routing in delay tolerant networks [34], and information
spreading in social networks [35], [36]. Finding the right



16

bivariate distribution for each of these applications definitely
requires further investigation.
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APPENDICES

Appendix A

In this section, we prove Proposition 5. Since the relative
centrality is a conditional probability and the centrality is a
probability, the properties in (i),(ii) and (iii) follow trivially
from the property of probability measures.

(iv) From (15) and (14), it follows that

C(S)C(Sc|S) = P(W ∈ S)P(W ∈ Sc|V ∈ S)

= P(V ∈ S)P(W ∈ Sc|V ∈ S)

= P(V ∈ S,W ∈ Sc). (40)

Similarly, we also have

C(Sc)C(S|Sc) = P(V ∈ Sc,W ∈ S). (41)

Thus, it suffices to show that

P(V ∈ S,W ∈ Sc) = P(V ∈ Sc,W ∈ S). (42)

Note that

P(V ∈ S) = P(V ∈ S,W ∈ S) + P(V ∈ S,W ∈ Sc), (43)

and

P(W ∈ S) = P(V ∈ S,W ∈ S) +P(V ∈ Sc,W ∈ S). (44)

Since the bivariate distribution has the same marginal distribu-
tions, we have P(V ∈ S) = P(W ∈ S). In conjunction with
(43) and (44), we prove (42).

Appendix B

In this section, we prove Theorem 7. We first prove that
the first four statements are equivalent by showing (i)⇒ (ii)⇒
(iii)⇒ (iv)⇒ (i).

(i)⇒ (ii): Note from Proposition 5 (i) and (ii) that C(S|S)+
C(Sc|S) = C(Vg|S) = 1 and C(S)+C(Sc) = C(Vg) = 1. It
then follows from the reciprocal property in Proposition 5(iv)
that

C(Sc)(C(S|S)− C(S|Sc))

= C(Sc)C(S|S)− C(Sc)C(S|Sc)

= (1− C(S))C(S|S)− C(S)C(Sc|S)

= (1− C(S))C(S|S)− C(S)(1− C(S|S))

= C(S|S)− C(S) = Str(S) ≥ 0.

As we assume that 0 < C(S) < 1, we also have 0 < C(Sc) <
1. Thus,

C(S|S)− C(S|Sc) ≥ 0.

(ii) ⇒ (iii): Since we assume that C(S|S) ≥ C(S|Sc), we
have from C(S|S) + C(Sc|S) = C(Vg|S) = 1 that

1 = C(S|S) + C(Sc|S) ≥ C(S|Sc) + C(Sc|S).

Multiplying both sides by C(Sc) yields

C(Sc) ≥ C(Sc)C(S|Sc) + C(Sc)C(Sc|S).

From the reciprocal property in Proposition 5(iv) and C(S) +
C(Sc) = C(Vg) = 1, it follows that

C(Sc) ≥ C(S)C(Sc|S) + C(Sc)C(Sc|S)

= (C(S) + C(Sc))C(Sc|S)

= C(Sc|S).

(iii)⇒ (iv): Note from the reciprocal property in Proposition
5(iv) that

C(S)C(Sc|S) = C(Sc)C(S|Sc). (45)

It then follows from C(Sc|S) ≤ C(Sc) that C(S|Sc) ≤ C(S).
(iv) ⇒ (i): Since we assume that C(S|Sc) ≤ C(S), it

follows from (45) that C(Sc|S) ≤ C(Sc). In conjunction with
C(S|S) + C(Sc|S) = C(Vg|S) = 1 and C(S) + C(Sc) =
C(Vg) = 1, we have

C(S|S)− C(S) = C(Sc)− C(Sc|S) ≥ 0.

Now we show that and (iv) and (v) are equivalent. Since
C(S|Sc) +C(Sc|Sc) = C(Vg|Sc) = 1 and C(S) +C(Sc) =
C(Vg) = 1, we have

C(S|Sc)− C(S) = C(Sc)− C(Sc|Sc) = −Str(Sc).

Thus, C(S|Sc) ≤ C(S) if and only if Str(Sc) ≥ 0.
Replacing S by Sc, we see that (v) and (vi) are also

equivalent because (i) and (ii) are equivalent.

Appendix C

In this section, we prove Lemma 9.
Since pV (v) = pW (v) for all v, it then follows from (21)

that

Q(P) =

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(v, w)− pV (v)pV (w)) (46)

=

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(w, v)− pV (w)pV (v)). (47)

Adding (46) and (47) yields

2Q(P) =

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(v, w) + p(w, v)− 2pV (v)pV (w)).

(48)
As p̃(v, w) = (p(v, w) + p(w, v))/2, we have

p̃V (v) =
∑
w∈Vg

p̃(v, w) = pV (v).

Thus,

Q(P) =

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p̃(v, w)− p̃V (v)p̃V (w)) = Q̃(P).
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Appendix D

In this section, we prove Lemma 11.
Note from (21) that

Q̂(Pa) =

K∑
k=1

∑
c1∈Sk

∑
c2∈Sk

(p̂(c1, c2)− p̂V (c1)p̂W (c2)), (49)

where

p̂V (c1) = p̂W (c1) =

C∑
c2=1

p̂(c1, c2) (50)

is the marginal distribution of the bivariate distribution p̂(·, ·).
In view of (24) and (25), it is easy to verify that∑

c1∈Sk

∑
c2∈Sk

p̂(c1, c2) =
∑
u∈So

k

∑
v∈So

k

p(u, v). (51)

Similarly,

∑
c1∈Sk

p̂V (c1) =
∑

c1∈Sk

C∑
c2=1

p̂(c1, c2)

=
∑
u∈So

k

∑
v∈Vg

p(u, v) =
∑
u∈So

k

pV (u). (52)

From (49), (51) and (52), it then follows that Q̂(Pa) = Q(Po).

Appendix E

In this section, we prove Theorem 12.
(i) Since we choose two sets that have a nonnegative

correlation measure, i.e., q(Si, Sj) ≥ 0, to merge, it is easy to
see from (30) and (29) that the modularity is non-decreasing
in every iteration.

(ii) Suppose that there is only one set left. Then this set is Vg
and it is the trivial community. On the other hand, suppose that
there are C ≥ 2 sets {S1, S2, . . . , SC} left when the algorithm
converges. Then we know that q(Si, Sj) < 0 for i 6= j.

Note from (27) and (28) that for any node v,

q(v, Vg) =
∑
w∈Vg

q(v, w) = 0. (53)

Thus,

q(Si, Vg) =
∑
v∈Si

q(v, Vg) = 0. (54)

Since {S1, S2, . . . , SC} is a partition of Vg , it then follows
that

0 = q(Si, Vg) = q(Si, Si) +
∑
j 6=i

q(Si, Sj). (55)

Since q(Si, Sj) < 0 for i 6= j, we conclude that q(Si, Si) > 0
and thus Si is a community.

Appendix F

In this section, we prove Theorem 13.
It suffices to show that if node v is in a set S1 and

q0(v, S2) > q0(v, S1), then move node v from S1 to S2

increases the value of the modularity. Also let P (resp. P ′)
be the partition before (resp. after) the change. Since q0(·, ·)
is symmetric and q0(v, v) = 0, it follows from (33) that

Q(P ′)−Q(P)

= q0(S1\{v}, S1\{v}) + q0(S2 ∪ {v}, S2 ∪ {v})
−q0(S1, S1)− q0(S2, S2)

= 2
(
q0(v, S2)− q0(v, S1)

)
> 0.

As the modularity is non-decreasing after a change of the
partition, there is no loop in the algorithm. Since the number
of partitions is finite, the partitional algorithm thus converges
in a finite number of steps.

Appendix G

In this section, we prove Theorem 14.
(i) This is a direct consequence of the modularity increasing

result in Theorem 13 and the modularity preserving result in
Lemma 11.

(ii) Suppose that Algorithm 3 returns a partition
{S1, S2, . . . , SC}. Observe from (F2) of Algorithm 3 that the
algorithm terminates when the deepest level of the partitional
algorithm returns the same partition as its input partition. Let
p∗(u, v), p̃∗(u, v), and q∗(u, v) be the bivariate distribution
that has the same marginal distributions, the symmetric bi-
variate distribution (see (22)) and the correlation measure (see
(27)) at the deepest level, respectively. Also, let q∗0(u, v) =
q∗(u, v) for u 6= v and 0 otherwise. As the initial partition in
(F0) is the partition that contains a single element in each set,
the condition that the output partition is the same as the input
partition (see (P1) in Algorithm 2) implies that

q∗(u, v) = q∗0(u, v) ≤ q∗0(v, v) = 0

for all u 6= v and p̃∗(u, v) > 0. On the other hand, if
p̃∗(u, v) = 0, then q∗(u, v) ≤ 0. Thus, we conclude that in
the deepest level q∗(u, v) ≤ 0 for all u 6= v. Let Su be the
set recursively expanded from the (super)giant node u in the
deepest level. Analogous to the modularity preserving proof in
Lemma 11, one can easily show that q(Su, Sv) = q∗(u, v) and
thus q(Su, Sv) ≤ 0 for all Su 6= Sv . For a correlation measure,
we know that

∑C
v=1 q(Su, Sv) = 0. Thus, q(Su, Su) ≥ 0 and

Su is indeed a community (cf. the proof of Theorem 12(ii) in
Appendix E).


