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Abstract— In this paper, we study the problem of exact emu-
lation of two types of optical queues: (i)N -to-1 output-buffered
multiplexers with variable length bursts, and (ii) N ×N output-
buffered switches with variable length bursts. For both queues,
the delay of a packet is known upon its arrival. As such, one can
emulate such queues by finding a delay path that yields the exact
delay for each packet. For emulating the delay of a packet in
such queues, in this paper we consider a mutlistage feedforward
network with optical crossbar Switches and fiber Delay Lines
(SDL). For any fixed delayd, there exist multiple delay paths in
such a network. A delay path is feasible if it satisfies the following
three constraints: (i) conflict constraint: no more than onepacket
can be scheduled at the same input/output ports of each crossbar
switch at the same time, (ii) causality constraint: no packet can be
scheduled before its arrival, and (iii) strong contiguity constraint:
packets in the same burst should be routed through any fiber
delay lines contiguously. By the worst case analysis, we find
sufficient conditions for the numbers of delay lines needed in each
stage of such a feedforward network to achieve exact emulation
of both queues. For N -to-1 output-buffered multiplexers, our
sufficient conditions are also necessary when each burst contains
exactly one packet. By computer simulation, we also show that
the number of delay lines in each stage can be greatly reduced
due to statistical multiplexing gain.

I. I NTRODUCTION

One of the key challenges for optical packet switching
is to construct optical buffers needed for conflict resolution.
Unlike electronic packets, optical packets cannot be easily
stopped, stored, and forwarded. A typical way to construct
an optical buffer is to route optical packets through a set of
optical Switches and fiber Delay Lines (SDL) so that optical
packets appear at the right time and at the right place. Recent
advances in SDL constructions have shown several promising
results for multiplexers in [1]–[5], FIFO queues in [6], linear
compressors, non-overtaking delay lines, and flexible delay
lines in [7], and priority queues in [8][9].

In this paper, we address the problem of exact emulation
of two types of optical queues: (i)N -to-1 output-buffered
multiplexers with variable length bursts, and (ii)N×N output-
buffered switches with variable length bursts. For both queues,

the delay of a packet (in a burst) is known upon its arrival.
As such, one can emulate such queues by finding a delay path
that yields the exact delay for each packet. For emulating the
delay of a packet in such queues, in this paper we propose
a generalization of the mutlistage feedforward network in
[3]. Instead of using a single routing path for each delay
in [3], we allow multiple delay paths in such a network.
Moreover, routing of each delay path can be found by the
r-ary representation of the desired delay. By so doing, we not
only allow these multiple delay paths to be shared by packets
destined for different outputs, but also enable self-routing for
packets. As such, both the construction complexity and the
routing complexity can be greatly reduced.

To achieve exact emulation, we need to find anon-
conflicting delay path when a burst of packets arrives. One
of the main contributions in this paper is to find sufficient
conditions for the numbers of delay paths needed for exact
emulation of bothN -to-1 output-buffered multiplexers and
N × N output-buffered switches. This is done by the worst
case analysis that identifies the minimum distance between
two packets routed to the same set of delay lines. ForN -to-1
output-buffered multiplexers, our sufficient conditions are also
necessary when each burst contains exactly one packet.

Even though our results are derived for feedforward net-
works, they can be easily extended to feedback systems
constructed by a single switch. Such a feedback system,
originally proposed by Karol [10], was intended for finding
a good approximation of an output-buffered switch. Here we
strengthen the result by giving specific conditions on selecting
the lengths of the delay lines that can be used for exact
emulation of an output-buffered switch.

As our sufficient conditions are based on the worst case
analysis, its complexity is still high. For the engineering
purpose, one might only need to consider the average case.
For this, we preform various computer simulations and show
that the number of delay paths can be greatly reduced due to
statistical multiplexing gain.



The paper is organized as follows: in Section II, we first
introduce basic assumptions and the architecture of the feed-
forward network. By the worst case analysis, we then provide
a sufficient condition for exact emulation of anN -to-1 multi-
plexer with variable length bursts. In Section III, we consider
the constructions ofN×N output-buffered switches. There are
three types of constructions: direct construction, feedforward
construction, and feedback construction. In Section IV, we
perform various simulations for the average case by exploiting
statistical multiplexing gain. The paper is concluded in Section
V, where we address possible extensions of our work.

II. CONSTRUCTIONS OFN -TO-1 OUTPUT-BUFFERED

MULTIPLEXERS WITH VARIABLE LENGTH BURSTS

A. Basic Assumptions

In this paper, we partition time into slots and assume that
packets are of the same size such that each packet can be
transmitted within a time slot. We further assume that a burst
consists of an integer number of fixed size packets. Also, each
burst length is known when a burst arrives. To do this, we can
add the burst length information in the header of each burst
or transmit the information in another channel (see e.g., [11]
[12]).

A packet entering a fiber delay line withd units of delay
can be accessed again afterd time slots. Therefore, we can
use the fiber delay lines to store optical packets. AnM × M
crossbar switch can realize allM ! permutations between its
inputs and outputs. A network element constructed by crossbar
Switches and fiber Delay Lines is called anSDL element.

B. Lindley’s Recursion

An N -to-1 FIFO multiplexer subject to arrivals of variable
length bursts can be regarded as a discrete-time G/G/1 queue.
There are at mostN arriving bursts in any time slot, and an
arriving burst is attached to the tail of the queue if the buffer
is not full. Otherwise, an arriving burst is lost if there is not
enough space in the buffer to accommodate the whole burst
of packets. At each time slot, a packet departs if there are still
packets in the buffer. Letℓk (resp.τk, xk) be the burst length
(resp. arrival time, burst delay) for thekth burst. Then it is
well-known that the burst delay in a G/G/1 queue is governed
by the following Lindley recursion:

xk = (xk−1 + ℓk−1 − (τk − τk−1))
+ (1)

where(a)+ denotesmax(0, a). Define a busy period of anN -
to-1 multiplexer as the period of time that there are packets
stored in theN -to-1 multiplexer. If the firstk bursts are in
the same busy period, then thekth burst must arrive before
the departure of the(k− 1)th burst, i.e.,xk−1 + ℓk−1 + τk−1.
Therefore, we have

xk = xk−1 + ℓk−1 − (τk − τk−1). (2)

By recursively expanding (2), we further have

xk = x1 +

k−1
∑

s=1

ℓs + τ1 − τk (3)

if the first k bursts are in the same busy period. Note that the
first burst arrives when the multiplexer is empty. The delay of
the first burst is thus 0. In view of (3), the delay for each burst
is known upon its arrival.

C. A Feedforward SDL Network

As pointed out in [4], there are three constraints that need
to be satisfied when we schedule the bursts.

(i) Conflict constraint: no more than one packet can
be scheduled at the same input/output ports of each
crossbar switch at the same time.

(ii) Causality constraint: no packet can be scheduled
before its arrival.

(iii) Contiguity constraint: packets from the same burst
should be scheduled so that they leave the system
contiguously.

To avoid segmenting or reassembling bursts, here we use a
stronger constraint than (iii).

(iiiA) Strong contiguity constraint: packets in the same
burst should be routed through any fiber delay lines
contiguously.

One of our main results in this section is to construct a self-
routing discrete-timeN -to-1 multiplexer with variable length
bursts satisfying the above three constraints,i.e., (i) (ii) and
(iiiA). As shown in Figure 1, we propose an architecture con-
sisting ofM stages of SDL units and a bufferless multiplexer
(i.e., a crossbar switch). In each stage, there is a crossbar
switch with fiber delay lines connected to the next stage. The
fiber delay lines in stagei consists ofr bundles, indexed from
j = 0, 1, 2, , . . . , r−1. The length of the delay lines of thejth

bundles in stagei is jri−1. Let Dij be thejth bundle of fiber
delay lines in stagei and |Dij | be the number of delay lines
in Dij . Then Di =

∑r−1
j=0 |Dij | represents the total number

of delay lines in stagei. Therefore, the first crossbar switch
consists ofN input ports andN − 1 + D1 output ports (with
the additionalN − 1 output ports for routing loss packets due
to buffer overflow). Fori = 2, . . . , M , the ith crossbar switch
hasDi−1 input ports andDi output ports. The last crossbar
switch, as a bufferless multiplexer, hasDM input ports and a
single output port.

The delay of a path in such a feedforward network is the
sum of the delays of the fiber delay lines along the path.
Note that the maximum delay among all the paths in such
a feedforward network isrM − 1, which is the delay of the
path by taking a delay line in therth bundle in each stage.
Since the delay of a burst of packets is known when it arrives,
we can route a burst of packets using ther-ary representation
of its delay, as long as the delay does not exceedrM − 1.
Specifically, suppose the delay of a burst of packets isx for
somex ≤ rM − 1. Using ther-ary representation, we can
write

x =

M
∑

i=1

Ii(x)ri−1 , (4)

whereIi(x) = 0, 1, 2, . . . or r − 1 for each1 ≤ i ≤ M . We
route the burst to a delay line of theIi(x)th bundle in stagei,
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Fig. 1. A feedforward construction of a discrete-timeN -to-1 multiplexer with variable length bursts

for i = 1, 2, . . . , M . To be precise, suppose the burst arrives at
time t with burst lengthℓ. The burst that containsℓ packets is
first routed to a delay line inD1I1(x) during [t, t+ ℓ−1]. The
burst is then routed to a delay line inDiIi(x) in stagei at time
[t +

∑i−1
s=1 Is(x)rs−1 , t +

∑i−1
s=1 Is(x)rs−1 + ℓ − 1] for 2 ≤

i ≤ M . Thus, the burst departs the feedforward network at the
right time and at the right place. Otherwise, ifx ≥ rM , then
an arriving burst is routed to one of the lost ports immediately.
Clearly, under the self-routing rule, every packet in a burst has
the same delay and is routed through the same path. As such,
the causality constraint and the strong contiguity constraint are
satisfied. The problem left is whether there are enough fiber
delay lines in each bundle so that the conflict constraint can
still be satisfied.

D. A Sufficient Condition

In this section, we provide a sufficient condition for the
number of fiber delay lines needed to construct a discrete-
time N -to-1 multiplexer with variable length bursts. For this,
we need to compute the maximum number of packets that can
be routed toDij in a time slot. This is shown in the following
theorem.

Theorem 1 Suppose that the burst lengths are bounded by
ℓmax and that the feedforward network in Figure 1 is started
from an empty system. If

|Dij | ≥ min

(

rM−i, Nri−1,

⌈

N

r
+

2(N − 1)(ℓmax − 1)

ri

⌉)

,

(5)
then under the self-routing rule it is a discrete-timeN -to-
1 FIFO multiplexer with bufferrM − 1 for variable length
bursts.

For the proof of Theorem 1, we need the following lemmas.
Define thekth packet of a busy period as thekth departing

packet in its busy period. Suppose that thek1
th (resp.k2

th)
packet arrives at timet1 (resp.t2) with delay x1 (resp.x2).
Then, we have

k2 − k1 = (t2 + x2) − (t1 + x1) (6)

as both sides of (6) are simply the interdeparture time of these
two packets.

Lemma 2 Suppose thek1
th packet of a busy period is routed

to a delay line inDij at time t. Thek2
th packet of the same

busy period is routed to a delay line inDij at timet if and only
if the k2

th packet arrives in the time interval[t− ri−1 + 1, t]
and k2 − k1 = cri for some integerc.

Proof. Without loss of generality, we assume thek1
th (resp.

k2
th) packet arrives at timet1 (resp.t2) with delayx1 (resp.

x2).

(⇒) Since the two packets are routed toDij at time t, we
have

t1 +
i−1
∑

s=1

Is(x1)r
s−1 = t2 +

i−1
∑

s=1

Is(x2)r
s−1 = t. (7)

Thus,

t2 = t −
i−1
∑

s=1

Is(x2)r
s−1 ≥ t − ri−1 + 1.

This shows that the arrival time of packetk2 is in [t− ri−1 +
1, t].



Using (6), (4), and (7), we have

k2 − k1 = (t2 + x2) − (t1 + x1)

=

(

t2 +

M
∑

s=1

Is(x2)r
s−1

)

−

(

t1 +

M
∑

s=1

Is(x1)r
s−1

)

=

(

M
∑

s=i

Is(x2)r
s−1 −

M
∑

s=i

Is(x1)r
s−1

)

+

(

t2 +

i−1
∑

s=1

Is(x2)r
s−1

)

−

(

t1 +
i−1
∑

s=1

Is(x1)r
s−1

)

=
M
∑

s=i

Is(x2)r
s−1 −

M
∑

s=i

Is(x1)r
s−1. (8)

Since the two packets are both routed toDij , i.e., Ii(x1) =
Ii(x2) = j, we further have

k2 − k1 =

M
∑

s=i+1

Is(x2)r
s−1 −

M
∑

s=i+1

Is(x1)r
s−1. (9)

Therefore,k2 − k1 = cri for some integerc.
(⇐) First, we show that

ri−1 >

i−1
∑

s=1

Is(x1)r
s−1 + t1 − t2 ≥ 0. (10)

Since thek1
th packet is routed toDij at time t, we have

t = t1 +

i−1
∑

s=1

Is(x1)r
s−1. (11)

On the other hand, since thek2
th packet arrives in the time

interval [t−ri−1 +1, t], we havet−ri−1 < t2 ≤ t. Therefore,
we have

ri−1 > t − t2 ≥ 0. (12)

Hence, replacing thet in (12) by (11) yields (10).
Now, we show that thek2

th packet is routed toDij at
time t. That is, we need to showIi(x2) = j and t2 +
∑i−1

s=1 Is(x2)r
s−1 = t. Using (6), (4), and the assumption that

k2 = k1 + cri, we have

x2 = x1 + (k2 − k1) − (t2 − t1)

=

M
∑

s=1

Is(x1)r
s−1 + cri + t1 − t2

=

(

M
∑

s=i+1

Is(x1)r
s−1 + cri

)

+ Ii(x1)r
i−1 +

(

i−1
∑

s=1

Is(x1)r
s−1 + t1 − t2

)

. (13)

In (13), the delay x2 consists of three
parts:

∑M

s=i+1 Is(x1)r
s−1 + cri, Ii(x1)r

i−1, and
∑i−1

s=1 Is(x1)r
s−1 + t1 − t2. The first part is equal tõcri for

some integer̃c. Using (10) and the fact0 ≤ Ii(x1) ≤ r − 1,
we have

Ii(x1)r
i−1 +

(

i−1
∑

s=1

Is(x1)r
s−1 + t1 − t2

)

< (r − 1)ri−1 + ri−1 = ri. (14)

As the sum of the second part and the third part is less than
ri, we have from the factx2 ≥ 0 and (13) thatc̃ must
be a nonnegative integer. Hence, the first part is equal to a
nonnegative integer timesri, the second part is equal toIi(x1)
times ri−1, and the third part is smaller thanri−1. Since the
r-ary representation is unique, we must have

M
∑

s=i+1

Is(x2)r
s−1 =

M
∑

s=i+1

Is(x1)r
s−1 + cri (15)

Ii(x2)r
i−1 = Ii(x1)r

i−1 (16)

i−1
∑

s=1

Is(x2)r
s−1 =

i−1
∑

s=1

Is(x1)r
s−1 + t1 − t2. (17)

From (16), we haveIi(x2) = Ii(x1) = j. From (17) and (11),
we also havet2 +

∑i−1
s=1 Is(x2) = t.

Lemma 3 Let td1 (resp. td2) be the earliest (resp. largest)
departure time of the packets that arrive in the time interval
[t1, t2]. Then the number of packets that depart in the time
interval [td1, t

d
2] is bounded by

2(N − 1)(ℓmax − 1) + N(t2 − t1 + 1).

Proof. Without loss of generality, let us assume that the packet
departs attd1 (resp.td2) arrives at inputi1 (resp.i2). Because
of the FIFO property, a packet that departs later thantd1 must
arrive either at inputi1 after t1 or at the otherN − 1 inputs
after t1 − ℓmax. Similarly, a packet that departs earlier thantd2
must arrive either at inputi2 beforet2 or at the otherN − 1
inputs beforet2 + ℓmax. Thus, the number of packets that
depart in the time interval[td1 + 1, td2 − 1] is bounded by

2(N − 1)(ℓmax − 1) + N(t2 − t1 + 1) − 2.

Adding the two packets that depart attd1 andtd2 completes the
argument.

Proof. (Theorem 1)
To prove this theorem, we just need to show that the number

of packets that are routed toDij in a time slot is bounded by

min

(

rM−i, Nri−1,

⌈

N

r
+

2(N − 1)(ℓmax − 1)

ri

⌉)

.

The first two bounds are related to the number of input/output
ports. Note that the number of paths that have different delays
from Di,j to the output port isrM−i. Since there is at most
one packet that can be routed to the output port in each time



slot, we conclude that there are at mostrM−i packets inDij

in each time slot. Similarly, the number of paths that have
different delays fromDi,j to an input port isri−1. Since there
areN input ports, we also know that there are at mostNri−1

packets that can be routed toDij in each time slot.
Now we use Lemma 2 and Lemma 3 to prove that the

number of packets routed toDij at time t is bounded by
⌈

N
r

+ 2(N−1)(ℓmax−1)
ri

⌉

. As the packets from different busy
periods can not be routed toDij at the same time, we only
need to consider the busy period with packets routed toDij at
time t. Let td1 (resp.td2) be the earliest (resp. largest) departure
time among the packets that arrive in[t − ri−1 + 1, t]. From
Lemma 3, we know that the number of packets that depart in
[td1, t

d
2] is bounded by

2(N − 1)(ℓmax − 1) + Nri−1.

From Lemma 2, we also know that there is at most one
packet routed toDij at timet for every consecutiveri packets
departing the system in the time interval[td1, t

d
2]. Thus, there

are at most
⌈

2(N − 1)(ℓmax − 1) + Nri−1

ri

⌉

=

⌈

N

r
+

2(N − 1)(ℓmax − 1)

ri

⌉

(18)

packets routed toDij at time t.

Corollary 4 In the case that all the bursts contain exactly
one packet, i.e.,ℓmax = 1, the sufficient condition in (5) can
be simplified as follows:

|Dij | ≥ min
(

rM−i,

⌈

N

r

⌉

)

. (19)

When M is large andi is small, the sufficient condition
in (19) is then lower bounded by⌈N/r⌉. In this case, we
argue that it is also a necessary condition and the lower bound
cannot be improved further. To see this, suppose that there are
(j + 1)ri−1 − 1 packets in theN -to-1 multiplexer at time
t− ri−1. Then at timet− ri−1 + 1, t− ri−1 + 2, . . . , t, there
is exactly one packet arrival at each input port at each time
slot. Clearly, the delay of the first arrival att − ri−1 + 1 is
simply (j + 1)ri−1 − 1 and that packet will be routed to one
of the delay lines inDi,j at time t (according to ther-ary
representation of(j + 1)ri−1 − 1). Since there are exactly
ri−1N packets that arrive in the time interval[t− ri−1 + 1, t]
(and these packets are admitted to the multiplexer whenM is
large), it follows from Lemma 2 that there are exactly⌈N/r⌉
packets routed toDi,j at time t.

For the special case thatr = N and ℓmax = 1, we have
from Corollary 4 that there is at most one packet routed to
Dij at each time. Therefore, we can simply choose|Dij | = 1
to implement a self-routingN -to-1 multiplexer with buffer
NM − 1 as previously shown in [3].

Finally, we address the issue of choosing the optimalr-ary
representation in the construction of anN -to-1 multiplexer. We
argue that the best choice is to use theN -ary representation
whenℓmax = 1 andM is large. To see this, note that we need
to have at least one fiber delay line inDi,j for all i, j. When
ℓmax = 1, we have already known that we can chooser = N
so that only one fiber delay line is needed forDi,j . As such, we
only needN fiber delay lines at each stage by using theN -ary
representation. On the other hand, the number of fiber delay
lines at each stage is lower bounded byr⌈N/r⌉ ≥ N . Thus,
using theN -representation not only requires the minimum
number of fiber delay lines, but also requires the minimum
construction complexity of the crossbar switches used in the
feedforward construction in Figure 1.

III. E XACT EMULATION OF N×N OUTPUT-BUFFERED

SWITCHES

A. Direct Construction

An N × N output-buffered switch can be viewed as a
network element withN parallel G/G/1 queues. An arriving
burst of packets destined for output porti is added to the tail
of the ith G/G/1 queue. Therefore, the delay of a burst of
packets is characterized by the Lindley recursion in (1) andit
is known when the burst arrives at the switch. As such, each
G/G/1 queue can be implemented by anN -to-1 multiplexer,
and one can then construct anN ×N output-buffered switch
usingN 1-to-N demultiplexers in the first stage andN N -to-1
(buffered) multiplexers in the second stage. A4 × 4 output-
buffered switch by such a construction is shown in Figure 2.
Arrivals destined for outputi are routed to theith multiplexer
using the demultiplexer in the first stage. By so doing, each
packet departs at the right time and at the right output port.

4-to-1 optical 
multiplexer

1-to-4 
demultiplexer

Fig. 2. A direct construction of a4 × 4 output-buffered switch



Though the direct construction of anN×N output-buffered
switch is straightforward, it may not be efficient. To see this,
suppose that each of theN N -to-1 (buffered) multiplexers is
constructed by using the feedforward construction in Figure
1. Then the buffers, constructed by fiber delay lines, in these
N N -to-1 (buffered) multiplexers are not shared by packets
with different outputs. As such, the construction complexity
(by such a construction for anN ×N output-buffered switch)
is N times of that for anN -to-1 (buffered) multiplexer, both in
the number of fiber delay lines and in the number of crossbar
switches.

B. Feedforward Construction

The key insight is then to allow the buffers to be shared to
reduce the construction complexity. For this, we propose the
feedforward construction for anN×N output-buffered switch
in Figure 3. The architecture in Figure 3 is the same as that
for an N -to-1 multiplexer in Figure 1 except that there areN
outputs at the last stage. The selection of a routing path for
each packet (in a burst) is basically the same as that in Figure
1. Specifically, we use ther-ary representation of the delay of
a packet to route it through the feedforward network until it
reaches the last stage. At the last stage, a packet is then routed
to its destined output.

In Theorem 5 below, we provide a sufficient condition on
the number of fiber delay lines needed to construct anN ×N
output-buffered switch. LetEij be the set of fiber delay lines
with jri−1 units of delay in stagei and |Eij | be the number
of delay lines in that set.

Theorem 5 Suppose that the burst lengths are bounded by
ℓmax and that the feedforward network in Figure 3 is started
from an empty system. If

|Eij | ≥ min(NrM−i, Nri−1,

N +

⌊

N

r
+

2(N − 1)(ℓmax − 1) − N

ri

⌋

), (20)

then under the routing rule it is a discrete-timeN ×N output-
buffered switch with bufferrM − 1 for variable length bursts.

Proof. As there areN input ports andN output ports, the
first two bounds can be derived as in Theorem 1. Now, we
use Lemma 2 and Lemma 3 to prove the third bound. Similar
to the proof in Theorem 1, we only consider the busy period
of each output port with packets routed toEij at time t. Let
tdn,1 (resp.tdn,2) be the earliest (resp. largest) departure time of
packets destined to output portn that arrive in[t−ri−1 +1, t].
Also, letKn be the number of packets that depart from output
port n in the time interval[tdn,1, t

d
n,2].

Using Lemma 2, we have at most

N
∑

n=1

⌈

Kn

ri

⌉

(21)

packets routed toEij at time t. Using the property
⌈

a
b

⌉

=
⌊

a−1
b

⌋

+ 1 whena andb are integers, we have

N
∑

n=1

⌈

Kn

ri

⌉

=

N
∑

n=1

⌊

Kn − 1

ri

⌋

+ N

≤

⌊

N
∑

n=1

(
Kn − 1

ri
)

⌋

+ N. (22)

Now let td1 = min1≤n≤N tdn,1 and td2 = max1≤n≤N tdn,2.
Then

∑N

n=1 Kn is the number of packets that depart in[td1, t
d
2]

and arrive in[t− ri−1 +1, t]. From Lemma 3, it follows that

N
∑

n=1

Kn ≤ 2(N − 1)(ℓmax − 1) + Nri−1. (23)

Using (23) in (22) yields the desired bound.

Corollary 6 In the case that all the bursts contain exactly one
packet, i.e.,ℓmax = 1, the sufficient condition in (20) can be
simplified as follows:

|Eij | ≥ min(NrM−i, N +

⌊

N(ri−1 − 1)

ri

⌋

). (24)

In view of the second lower bound in (24), the number of
fiber delay lines in each stage is roughly(r + 1)N . Thus, the
best choice that minimizes the number of fiber delay lines in
each stage isr = 2. For such a choice, one only needs3N
delay lines at each stage, which is comparable to that ofN -to-
1 multiplexer in Figure 1. As such, its construction complexity
is considerably lower than that using the direct construction.

C. Feedback Construction

In this section, we show that we can also use a feedback
construction (see Figure 4) to replace the feedforward con-
struction in Figure 3. The key difference between the feedback
construction in Figure 4 and the feedforward construction in
Figure 3 is that there is no need to use fiber delay lines
with delay 0 in the feedback construction as a packet can
be routed directly to the next fiber delay line with nonzero
delay. Specifically, suppose that each burst contains exactly
one packet, i.e.,ℓmax = 1 and that the binary representation is
used, i.e.,r = 2. As discussed before, we only need3N delay
lines at each stage and only half of them are with nonzero
delay. Thus, to construct anN×N output-buffered switch with
buffer2M−1, we can use a single(N+ 3

2NM)×(N+ 3
2NM)

crossbar switch as shown in Figure 4. Fori = 1, 2, . . . , M ,
there are3

2N delay lines with delay2i−1. These3
2NM delay

lines are connected from32NM outputs of the crossbar switch
back to 3

2NM inputs of the crossbar switch, leavingN inputs
andN outputs of the crossbar switch as theN inputs and the
N outputs of theN ×N output-buffered switch. We note that
the feedback construction was originally proposed in [10] for
an approximation of an output-buffered switch. The sufficient
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Fig. 3. A feedforward construction of anN × N output-buffered switch
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Fig. 4. A feedback construction of theN × N output-buffered switch

condition in Theorem 5 (and Corollary 6) gives the specific
number of fiber delay lines (with specific delay) needed for
exact emulationof an output-buffered switch.

IV. SIMULATION RESULTS

Since in practice the buffer size is finite in anN×N output-
buffered switch, bursts are lost due to buffer overflows. Forthe

engineering purpose, it may not be efficient to use the worst
case to design anN × N output-buffered switch as we did
in Theorem 5. In stead of achieving exact emulation, in this
section we consider good approximations in the sense that
their packet loss probabilities are comparable to that of the
exact emulation.

Consider the feedforward construction in Figure 3 with the
binary representation, i.e.,r = 2. Even for the case that all
the bursts contain exactly one packet, i.e.,ℓmax = 1, we know
that in order to achieve exact emulation one needs roughly
3N/2 delay lines forEi,j . Here we argue that one can achieve
a good approximation if|Ei,j | > N/2. Our intuition is that
with equal probability a packet is routed to a delay line with
zero delay or a delay line with nonzero delay in each stage.
Thus, even withN packet arrivals in each time slot, there are
(on average) roughlyN/2 packets that are routed toEi,j in
each time slot. From the law of large numbers, the probability
that a burst of packets cannot find a feasible path can be made
arbitrarily small if |Ei,j | > N/2. We note that our intuition
may not be correct in light traffic as most packets are routed
to delay lines with zero delay. However, we expect that this
is the case in heavy traffic.

To verify our intuition, we perform various computer sim-
ulations. Each run of our simulations contains105 time slots.
We use the bursty traffic model as described in [14]. However,
the burst lengths are chosen independently according to the
following distribution: with probability 0.35 (resp. 0.45, 0.2),
a burst is chosen to be 1 (resp. 16, 38) unit of time slot. The
reason for choosing such a distribution, instead of using the
(truncated) Pareto distribution in [14], is that there are three
typical packet lengths in Ethernet traffic [13]. With probability
0.35 (resp. 0.45, 0.2), an Ethernet packet is found to be of
40 (resp. 572, 1500) bytes. Our choice for the distribution
of burst lengths is then corresponding to the three typical



N Exact emulation |Eij | = 0.6N

32 0.044872 0.055889
64 0.045428 0.047908
128 0.045614 0.046329
256 0.045808 0.045857

TABLE I

COMPARISON OF PACKET LOSS PROBABILITIES BETWEEN EXACT

EMULATION AND APPROXIMATION

Ethernet packet lengths when we set one unit of time slot
as the time interval needed to transmit 40 bytes of data. The
buffer size forN × N output-buffered switches is set to be
256 packets (time slots). WithN = 64, we plot in Figure 5
the packet loss probabilities for|Eij | = cN for c = 0.5, 0.55,
and0.6. In Table I, we report the packet loss probabilities for
N = 32, 64, 128, and256 whenc = 0.6.
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Fig. 5. Packet loss probability as a function of arrival rate

Two interesting observations can be found from our sim-
ulations. First, as expected, we can make the packet loss
probability very close to that in exact emulation by choosing
c > 0.5. This is verified in Figure 5 forc = 0.6. Second,
statistical multiplexing gain can be achieved by increasing
N . This is shown in Table I that the loss probability of the
approximation using|Ei,j | = 0.6N tends to that of the exact
emulation of an output-buffered switch asN increases.

V. CONCLUSIONS

In this paper, we proposed feedforward SDL constructions
of output-buffered multiplexers and switches with variable
length bursts. By the worst case analysis, we gave specific
sufficient conditions for the number of fiber delay lines needed
in each stage for achieving exact emulation. By computer sim-
ulation, we also showed that the number of delay lines in each
stage can be greatly reduced due to statistical multiplexing
gain.

There are several possible extensions of our work.

(i) Statistical analysis: here our analysis is based on the
deterministic worst case. As commented in Section
IV, it might be of interest to have a statistical analysis
for packet loss probability. Note that the feedforward
networks are in fact some form ofloss networksin

circuit switching [15]. Here queueing is coupled with
routing in finding “circuits”.

(ii) Continuous time: we used a discrete-time setting in
our analysis. It is plausible that our feedforward
construction can also be used for the continuous-
time setting, where burst arrivals are asynchronous.
In the continuous-time setting, there is a granularity
problem for choosing theright unit for delay lines
(see e.g., [16], [17]). Moreover, it is expected that
the worst case for the continuous-time setting is
much worse than that for the discrete-time setting.
However, we still expect that statistical multiplexing
gain can be used for reducing the number of delay
lines.
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