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Abstract— One of the most popular approaches for the con- only known way to “store” optical packets is to direct thera vi
structions of optical buffers needed for optical packet swiching g set of optical switches through a set of fiber delay lines so
is to use Switched Delay Lines (SDL). Recent advances in thethat optical packets come out at the right place and at tte rig

literature have shown that there exist systematic SDL constic- .. ' .
tion theories for various types of optical buffers, including First time. Such an approach, known as Switched Delay Line (SDL)

In First Out (FIFO) multiplexers, FIFO queues, priority que ues, Cconstruction, has received a lot of attention recently (see
linear compressors, non-overtaking delay lines, and flexie delay [1]-[15] and the references therein). Early SDL constaui
lines. As parallel FIFO queues with a shared buffer are widey  for optical buffers, including the shared-memory switcH4h
used in many switch architectures, e.g., input-buffered sitches and CORD (contention resolution by delay lines) in [2][3],

and load-balanced Birkhoff-von Neumann switches, in this pper f d the feasibility of h h. On th
we propose a new SDL construction for such queues. The key ide OCused more on the teasibility or such an approach. On the

of our construction for parallel FIFO queues with a shared bufer ~ Other hand, recent advances in SDL constructions have shown
is two-level caching, where we construct a dual-port random that there exist systematic methods for the constructidns o
request queue in the upper level (as a high switching speedvarious types of optical buffers, such as First In First Out
storage device) and a system of scaled parallel FIFO queues(FlFO) multiplexers in [4]-[9], FIFO queues in [10], prityi

with a shared buffer in the lower level (as a low switching sped in 1111712 d i i
storage device). By determining appropriate dumping threbolds queues in [11][12], and linear compressors, non-overgakin

and retrieving thresholds, we prove that the two-level caca delay lines, and flexible delay lines in [13].

can be operated as a system of parallel FIFO queues with In this paper, we focus on the constructions of optical
a shared.buffer. Moreover, such a two-level cqnstruction @ parallel FIFO queues with a shared buffer as such queues
be recursively expanded to ann-level construction, where we 5ra crycial in switch design. For instance, the virtual atitp

show that the number of 2 x 2 switches needed to construct a .. .
system of N parallel FIFO queues with a shared buffer B is dU€U€s in input-buffered switches (see e.g., [16][17]) and

O((Nlog N)log(B/(Nlog N))) for N >> 1. For the case with the central buffers in load-balanced Birkhoff-von Neumann
N =1, i.e., a single FIFO queue with buffer B, the number switches (see e.g., [18][19]) can all be implemented bygisin

of 2 x 2 switches needed ig)(log B). This is of the same order parallel FIFO queues with a shared buffer. One of the main
as that previously obtained by Changet al. We also show that  ,nyibytions of this paper is to provide a two-level redees

our two-level recursive construction can be extended to catruct . .
a system of N parallel Last In First Out (LIFO) queues with construction of parallel FIFO queues with a shared buffee T

a shared buffer by using the same number of2 x 2 switches, Key idea of our two-level construction isaching (see e.g.,
i.e., O((Nlog N)log(B/(Nlog N))) for N >> 1 and O(log B) [20]-[22]). The upper level in our construction is a random
for N = 1. Finally, we show that a great advantage of our request queue (see Definition 4 in Section Il) that can be
construction is its fault tolerant capability. The reliability of our viewed as a high switching speed storage device, while the

construction can be increased by simply adding extra optida | | li truction i t f led parall
memory cells (the basic elements in our construction) in edc ower fevel In our construction Is a system of scaled paralle

level so that our construction still works even when some offte  FIFO queues with a shared buffer that can be viewed as a low

optical memory cells do not function properly. switching speed storage device. By determining apprapriat
Index Terms— Caches, FIFO queues, LIFO queues, optical dumping thresholds and retrieving thresholds, we show that
buffers, switched delay lines. the two-level cache can be operated as a system of parallel

FIFO queues with a shared buffer. Moreover, such a two-
level construction can be recursively expanded tondevel
|. INTRODUCTION construction, where we show that the numbez ef2 switches

One of the key problems of optical packet switching i§é€ded to construct a system of parallel FIFO queues
the lack of optical buffers. Unlike electronic packets,icptt With a shared bufferB is O((N log N)log(B/(N log N)))

packets cannot be easily stopped, stored, and forwardesl. f¢f V >> 1. For the case withV = 1, i.e., a single FIFO
gueue with bufferB, the construction complexity (in term of
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expanded to am-level construction and the number ®fx 2  delay line with one time slot (unit) of delay. As illustrated
switches needed for the system remains the same. For th@][13], we can set th@ x 2 crossbar switch to the “cross”
case withV = 1, i.e., a single LIFO queue with buffer sizestate to write an arriving packet to the optical memory d&jl.
B, the construction complexity i®(log B), which is better so doing, the arriving packet can be directed to the fiberydela
thanO(v/B) as obtained in [11][12] (we note that the designkne with one time slot of delay. Once the write operation
in [11][12] are more general and work for priority queues). is completed, we then set the crossbar switch to the “bar”
We also note that one of the advantages of our constructistate so that the packet directed into the fiber delay linpkee
is its fault tolerant capability. By adding extra opticalmeary recirculating through the fiber delay line. To read out the
cells (the basic elements in our construction) in each Jekel information from the memory cell, we set the crossbar switch
reliability of our construction can be easily increasedhie t to the “cross” state so that the packet in the fiber delay line
sense that our construction still works even after some @f than be routed to the output link.
optical memory cells are broken.

The paper is organized as follows: In Section Il, we intro- (a) L O © &
duce basic construction elements, including optical memor
cells, FIFO queues, and random request queues. In Sedtjon Il L J L . J L J
we propose our two-level recursive constructionfoparallel @ | ><{ - >
FIFO queues with a shared buffer, the associated operation

rules, and the main theorem. We show that the two-level
recursive construction can be further expanded tovdevel Fig. 1. An optical memory cell: (a) writing information (bjcirculating
construction that has a much lower construction compleRrity information (c) reading information

terms of the number dfx 2 switches. The extension to parallel ) ) ]
LIFO queues with a shared buffer is reported in Section IV. Network elements that are built by optical crossbar sweche

The paper is concluded in Section V. and fiber delay lines are called Switched Delay Line (SDL)
In the following, we provide a list of notations used in th&l€ments in the literature (see e.g., [1}-[13]). Clearly, a
paper for easy reference. optical memory cell that is constructed by2ax 2 switch

Q(t): the set of packets iV parallel FIFO (resp. LIFO) and a fiber delay line with one unit of delay in Figure 1 is an
queues at the end of thé" time slot SDL element. A scaled SDL element is said to be with scaling

O.(t): the set of packets in level 1 at the end of & factor k if the delay in every delay line i& times of that in
time slo.t the original (unscaled) SDL element. For instance, if wdesca

0 (#): the set of packets in level 2 at the end of & the fiber length from 1 to 2 in Figure 1, then it is a scaled
time sIo't optical memory cell with scaling factor 2. As the length issno

Q1.,(1): the set of packets in thd" queue in level 1 at the increased to 2, the scaled optical member cell with scaling
end (’;f th.etth time slot factor 2 can be used for storing two packets. In general, each

0.,(1): the set of packets in thé” queue in level 2 at the packet in a scaled SDL element with scaling fadtotan be
end (’;f thet™ time slot individually accessed as can be seen in our early papers (see
k: a scaling factor or a frame size e.g., [7][9][10][12][13]). However, in the proposed resive
Fy(t): the set of packets in th&" front queue at the end constructions of parallel FIFO and LIFO queues in this paper
of tﬁe t;h time slot (see Definition 5) we only need to access the packetmtiguouslyas a block

T;(t): the set of packets in th&" tail queue at the end of Zf § pkaike_tst. n gfheli wo(;ds_, in-this plageésvl_e gllroup teve{z
the 1%/ time slot (see Definition 6) packets into a block and view a scale element wi

N scaling factork as an unscaled SDL element for a block of
Rr: Retrieving thresholdir = [1 +k> ﬂ k packets. For instance, if we group every two packets into a
Dr: Dumping thresholdDy = Ry + kkl block, th(_an a scaled optical memory cell with scaling fa&or
R(t): the set of queues that have packets in level 2 at tfj@" P€ viewed as an unscaled optical memory cell for a block
end of the(t — 1) time slot of two packets. This is the key observation that we will use

I;(p,t): the departure index of packetin the i queue at in our construction of parallel FIFO and LIFO queues in this

the end of the!” time slot paper. _ _ )

In the following, we extend the optical memory cell (with a
single input and a single output) to a dual-port optical mgmo
II. BASIC NETWORK ELEMENTS ceI? P 9 put) P P om
A. Optical Memory Cells

In our previous papers [10][13], we used optical memoryefinition 1 (Dual-port optical memory cells) A dual-port
cells as basic network elements for the constructions aduar optical memory cell in Figure 2 is an optical memory cell with
types of optical queues. As in the constructions in [10][13Pne additional I/O port. It consists of & x 3 switch and a
we assume that packets are of the same size. Moreover, tifh€r delay line with one unit of delay. Ttiex 3 switch has
is slotted and synchronized so that a packet can be traesmithe following three connection states: accessing statehiey t
within a time slot. An optical memory cell (see Figure 1) idirst I/O port in Figure 2(a), recirculating state in Figure(&),
constructed by & x 2 optical crossbar switch and a fiberand accessing state by the second I/O port in Figure 2(c).



(a) A (b) A (c) 0 up one position. Specifically, a discrete-time FIFO queue is

L J L J L J formalized in the following definition in [10].
—_

_ >< N >< De_finition 2 (FIFO queues)A singIeFIFQ queue with buffer
. B is a network element that has one input link, one control

input, and two output links. One output link is for departing
. . i packets and the other is for lost packets. Then the FIFO queue
Fig. 2. The three connection states of a dual-port opticahorg cell: (a) ith buff ifi he followi f .
accessing state by the first 1/O port (b) recirculating sfajeaccessing state wit uffer B satisfies the following four properties:
by the second 1/0 port (P1) Flow conservation: arriving packets from the input
link are either stored in the buffer or transmitted
_ _ through one of the two output links.
As an optical memory cell, a dual-port optical memory (p2) Non-idling: if the control input is enabled, then there

cell can be used for storing exactly one packet. Moreover, is always a departing packet if there are packets in
the stored packet can be accessed by either one of the two the buffer or there is an arriving packet.

I/O ports. With the additional I/O port, we note that a packet P3) Maximum buffer usage: if the control input is not

arriving at one input of an 1/O port may be first stored in a enabled, then an arriving packet is lost only when
dual-port optical memory cell and then routed to the output buffer is full.

of anothgr I/O port in a_diﬁerent time slot. Ip Figure 3, we (P4) FIFO: packets depart in the FIFO order.

show a simple construction of a dual-port optical memory cel o _ _

by adding a2 x 2 switch in front of an optical memory cell  The definition of $|ngIeEIFO gueue can be easily extended
and anotheR x 2 switch after the optical memory cell. It isto parallel FIFO queues with a shared buffer as follows:

easy to see that the recirculating state in Figure 2(b) can be | _
realized by setting all the x 2 switches in Figure 3 to the Definition 3 (Parallel FIFO queues with a shared buffer)

“bar” state. For the accessing states in Figure 2(a) andhe), A System ofV parallelFIFO queues with sharedbuffer 5 is

2 x 2 switch in the middle of Figure 3 is set to the “cross™® Network element that has one input link, control inputs,
state. If it is accessed by the first I/O port, then the other t@nd two output links (see Figure 4). As in Definition 2, one
2 x 2 switches are set to the “bar” state. On the other har@UtPut link is for departing packets and the o_ther is f(_)r lost
the other two2 x 2 switches are set to the “cross” state if iiPaCckets. Also, each one of thé FIFO queues is associated
is accessed by the second /O port. This shows that a du4jth a control input under the constraint that at most one of
port optical memory cell can be constructed by theee 2 the NV control inputs is enabled at any time instant. Then the
switches. Clearly, the construction in Figure 3 can readitte SyStem ofN parallel FIFO queues with a shared buffes

of the six possible connection states for the 3 switch in a Satisfies (P1), (P2), and (P4) in Definition 2 for each FIFO
dual-port optical memory cell. However, we note that we onueue. However, as the buffer is shared byAhBIFO queues,
need the three connection states described in Definitiorr 1 f§& Maximum buffer usage property needs to be modified as
the constructions of parallel FIFO and LIFO queues in thiS!loWs: _ _ . _
paper. The construction complexity (in terms of the number (P3N) Maximum buffer usage: if there is no departing

—_— — —_—

of 2 x 2 switches) is of the same order as that of a similar packet at time/, then an arriving packet at timeis
construction using all of the six possible connection stabet lost only when buffer is full.

the control mechanism is much simpler than using all of the

six possible connection states. control inputs

N

rejl L]
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Fig. 3. A simple construction of a dual-port optical memoglic | __°*****°*" | | | | |
........ [TTT1]4

B. Parallel FIFO Queues Fig. 4. TheN parallel FIFO queues

In a FIFO queue, a packet joins the tail of the queue when it
arrives. If the buffer of a FIFO queue is finite, then an amivi  Note that it is possible that one of thé queues is enabled
packet to a full queue is lost. When a packet departs fromb timet and there is still no departing packet at timeThis
the head of a FIFO queue, every packet in the queue moveppens when the enabled queue is empty at time



The construction of aingle FIFO queue with buffe3 has that thei*" optical memory cell is empty, then an arriving
been studied in [10]. It is shown in [10] that there is a thregracket can be written into th&” optical memory cell by
stage recursive construction for a FIFO queue, and that@ FIBetting the2 x 2 optical crossbar switch of th&” optical
queue with bufferB can be constructed by using(log B) memory cell to the “cross” state and the ott2ex 2 optical
2 x 2 switches. However, using the construction of a singlerossbar switches to the “bar” state. On the other handgif th
FIFO queue in [10] for the construction of a system Mf i*" optical memory cell is occupied and the state of the control
parallel FIFO queues may not be efficient as each FIFO quenput isi, wherei = 1,2, ..., B, then the packet stored in the
needs to be constructed with the same amount of buffer. $n thi"* optical memory cell can be routed to the output by setting
paper, we will propose a new two-level recursive constancti the 2 x 2 optical crossbar switch of th&” optical memory
that allows the buffer to be shared among ffigoarallel FIFO cell to the “cross” state and the oth2rx 2 optical crossbar

gueues. switches to the “bar” state. If there is an arriving packed an
the state of the control input i8 + 1, then the arriving packet
C. Optical Random Request Queues (RRQs) can be sent to the output link immediately by setting all the

n thi . introd th i f a Rand 2 x 2 optical crossbar switches to the “bar” state. Note that it
n this section, we Introduce the notion ot a Random, possible for a packet stored at tié optical memory cell

Request Queqe (RRQ.)' In an RRQ, the departing paCkf%)t’depart from the RRQ while an arriving packet is routed to
instead of the first one in a FIFO queue, could be any packettH'é ith optical memory cell at the same time

the queue (including the arriving one). As there is no pakaic The problem of the construction in Figure 5 is the maximum

order for departures, the construction complexity of an RR?Jffer usage property. If all thé optical memory cells are

is expected to be much higher than that of a FIFO queue. Acupi . . O
. . o pied and there is no departing packet, then an arriving
the following, we provide the formal definition for an RRQ. packet should be routed to the loss port. For this reason.

Definition 4 (Rand ‘ indicated in Defi. °"€ needs to add &x 2 switch in front of the construction
efinition 4 (Random request queueshs indicated in Defi- in Figure 5 for admission control. However, in the later

nition 2 for a FIFO queue, an .RRQ with bUﬁB'.S a network development, we only operate all the RRQs in such a way
element that has one input link, one control input, and tw;

tout links. O tout link is for d " ket that there is no buffer overflow. As such, thex 2 switch
output flinks. ©ne output ink 1S Tor deparing packets angqqqqq for the construction of an RRQ is omitted for clarity.
the other is for lost packets. Index the position in the uffe

. . Instead of using optical memory cells with a single 1/0 port,
from1,2,..., B. An arriving packet can be placed in any ON%ne can use dual-port optical memory cells in Figure 5. This

pf_th_eB .p.osmons as long as it is npt occupled (note tha\Iesults in adual-port RRQwith buffer B in Figure 6. Note that
it is |mpI|C|t!y assumed .th.at there exists an internal cohtr we need two control inputs for a dual-port RRQ, one control
for the pla_lcmg of an armving packe_t)_. _For an RRQ, the.f|OVanut is for the random request from the first output link and
conservation property n (P1) of Deﬂ_m_’u_on 2and th_e MaXIMURe other is for the random request from the second outgut lin
butfer usage property in .(P?’) of Def|n|fuqr_1 3 are still satsfi The dual-port RRQ in Figure 6 satisfies the flow conservation
The non-idling property in (P2) OT _Def|n|t|0n 2 |s.n0t neGdeoly:)roperty and the random request property in Definition 4.
Moreover, (P4) needs to be mod|f|ed.as fo!lows. However, as there are only three connection patterns iryever
(P4R) Random request: the control input in an RRQ has th@,a|-port optical memory cell, it is not possible for an i
set of stateg0,1,2,..., B +1}. When the state of packet to be routed to thé” dual-port optical memory cell
the control input is not zero, we say the control inpUgom the input link of one I/O port while the packet stored
is enabled. If the state of the control inputigor i the ;t» dual-port optical memory cell is departing from
i=1,2,..., B, then the packet in thé" position of the output link of another 1/O port at the same time. One
the queue (if there is one) is sent to the output linlggnsequence of such a restriction is that the maximum buffer
If the state of the control input i#3 + 1, then the sage property is not satisfied. This can be seen from the
arriving packet (if there is one) is sent to the outpufy|iowing worst-case scenario. Suppose that all of Fhdual-
link. port optical memory cells are occupied at timéf at time¢+1
there is a packet arriving at the input link of the second 1/0
& & b & 3 s port and the state of the first control inputiighen the packet
L.D{’_LD{’_LD{’—L.D{’_LD{AD{’ stored in thei*” dual-port optical memory cell will be sent to
the output link of the first /0O port, but the arriving packét a
the input link of the second 1/O port can not be placed in the
i*" dual-port optical memory cell (which is empty now). As
Fig. 5. A construction of an optical RRQ with buffer B such, the arriving packet at the second input link has to be
sent to the loss link and the maximum buffer usage property
Now we show in Figure 5 a way to construct an opticas not satisfied.
RRQ with buffer B by a concatenation oB optical memory It is clear that if the maximum buffer usage property has
cells. As discussed in the previous section, an optical nmgmdo be satisfied, then the maximum buffer that can be achieved
cell can be used for storing one arriving optical packet. 8@ sby the construction in Figure 6 iB — 1. Therefore, it would
the random request property in (P4R), we index théuffer be technically correct to call the construction in Figure 6 a
positions (optical memory cells) from left to right. Supposdual-port RRQ with bufferB — 1. However, in the recursive




constructions of parallel FIFO and LIFO queues in this paper ;. port fevel 1 output port

we never require an arriving packet from the input link of one ~ — | Dual-port optical RRQ |
I/O port be routed to the output link of another 1/0 port of a Wfth bu’}ferBl
dual-port optical memory cell at the same time, and hence
the worst-case scenario mentioned above never occurs. In
other words, there are always empty dual-port optical mgmor
cells for arriving packets at the input links (see the proof
of Theorem 8 in Appendix A for details). As such, in our
proposed scheme the construction in Figure 6 achieves the
maximum bufferB, and that is why we call the construction
in Figure 6 a dual-port RRQ with buffeB in this paper. Fig. 7. A recursive construction aV parallel FIFO queues with buffer
. . . B1 + kB>
Finally, we would like to point out that the reason why the
maximum buffer usage property is not satisfied is due to the
fact thatl we only use threg cor_mection patterns in every-dual he key idea behind the construction in Figure Zashing
port optical memory cell in this paper. If we use all of theste that if we group every: time slots into a frame and
six possible connection states for the< 3 switch in a dual- ,nerate the scaled SDL element in level 2 at the time scale of
port optical memory cell, then the maximum buffer usaggsmes; then the scaled SDL element in level 2 can be used
property is satisfied. However, the maximum buffer that cajy 5 system ofv parallel FIFO queues with a shared buffer
bg gch|eved is still the same. This implies thf';\t a constuuctlB2 by viewing k consecutive packets ashtiock of packets.
similar to that proposed in this paper and using all of the sixg g\;ch, the scaled SDL element in level 2 can be viewed as

possible connection states achieves the same order ofr bugestorage device with a much lower switching speledirhes
size, but undoubtedly increases the complexity of the ebntigiqver) than that of the dual-port RRQ in level 1. As in most

mechanism. caching systems, the problems are about (i) when to dump
1 1 1 1 A A packets from the high switching speed storage device in leve
{J —d L —J] L— L:'%: 1 to the low switching speed storage device in level 2, and (ii
> when to retrieve packets from the low switching speed storag
device in level 2 to the high switching speed storage device

\

-

\d

loss port level 2

A

N parallel FIFO queues [«
with buffer B, and
scaling factor k

\ B | .

) ! in level 1.
Fig. 6. A construction of a dual-port RRQ with buffét via a concatenation Consequeml}" \_Ne leDr be the dumplng thresholdand-
of dual-port optical memory cells Rt be theretrieving threshold These two thresholds will

be used to determine when to dump packets and when to
retrieve packets. To be precise, 1€ ;(t), ¢ = 1 and 2,

I1l. RECURSIVE CONSTRUCTIONS OFPARALLEL FIFO @ = 1,2,..., N, be the set of packets in th&" queue that
QUEUES WITH A SHARED BUFFER are stored in level at the end of the!” time slot. Then the

S . .
A. A Two-level Construction of Parallel FIFO Queues with &?t of packets in the" queue at the end of thé" time slot is
Shared Buffer simply Q1,;(t) UQ2,:(t). Furthermore, leQ+ (t) (resp.Q2(t))
. ) . be the set of packets in level 1 (resp. level 2) at the end of
It is obvious to see that an RRQ with buffét can be 1t time slot. Clearly, for = 1 and?2,

operated asN parallel FIFO queues with a shared buffer

B. However, the number o2 x 2 switches needed for the N

construction of an RRQ with buffeB in Figure 5 is alsaB. Qu(t) = U Qe,i(t). 1)
As packets have to depart in the FIFO order, the construction i=1

complexity of N parallel FIFO queues with a shared buffér  Also, the set of packets in th&" parallel FIFO queues at
(in terms of the number o2 x 2 switches) should be muchthe end of thet*” time slot, denoted by)(t), is the union of
less than that of an RRQ with buffes. To show this, in the set of packets in each queue of each level, i.e.,

this section we provide a recursive constructiombparallel
FIFO queues with a shared buff@; + kB in Figure 7. The
construction in Figure 7 consists of two levels: a dual-port
RRQ with buffer B; in level 1, and a scaled SDL network
element that can be used as a systemNofparallel FIFO For all the packets in thé'” FIFO queue at time, i.e.,
queues with a shared buffé?; and scaling factok in level Q1,;(t)UQ2;(t), we can sort them according to their departure
2. The1 x 2 switch in front of the network element is fororder. Specifically, we let;(p,t) be the departure index of
admission control. Its objective is to make sure that thaltotpacketp in thei’* queue at time, i.e., I;(p,t) = j if packet
number of packets inside the network element does not exceed the ' packet to depart in thé" queue at the end of the
B1+kBs. An arriving packet can only be admitted if the totat*” time slot.

number of packets inside the network element does not exceeth the following, we use the departure index to define the
By + kB> after its admission. Otherwise, it is routed to thaotions of front queues and tail queues that are needed for ou
loss port. operation.

2 N
Q) = Q1) UQa(t) = | | Qual). )

l=11i=1



Definition 5 (Front queues) The i*" front queue at time t, dual-port RRQ in level 1 is sent to the output port

denoted byF;(t), is a subset of the packets in tié queue at timet¢. Otherwise, there is no departing packet at
in level 1 attimet, i.e., F;(t) C Q1.:(t). A packeb is in F;(t) time ¢.
if (R3) Retrieve operation (the shortest front queue below the
(1) there are packets in th&" queue in level 2 and the retrieving threshold): suppose thais the beginning
departure index of packet is smaller than that of time slot of them'" frame, i.e..t = k(m — 1) + 1.
any packet in the'" queue in level 2, i.e|Q, ;(t)| > Consider the set of queué¥t) that have packets in
0 and I; (p, t) < I;(p, 1), ¥V p € Qa.4(t), OF level 2 at timet — 1. Suppose that th&” queue is
(2) there are no packets in th&" queue in level 2 and the queue that has the smallest number of packets in
the departure index of packets not greater than the its front queue at time¢ — 1 among all the queues in
dumping threshold, i.e|Q2 ()| = 0 and I;(p, t) < R(t). If the number of packets in th&" front queue
Dr. at timet — 1 is less than or equal to the retrieving
thresholdRr, i.e., |F;(t — 1)| < Ry, then thei'”
Definition 6 (Tail queues) The i*" tail queue at time t, FIFO queue in level 2 is enabled during the/"
denoted byr’;(t), is a subset of the packets in tHé queue in frame. As such, there are packets retrieved from
level 1 at timet, i.e., T;(t) C Q1(t). A packetp is in T;(t) the i'" FIFO queue in level 2 to th&” front queue
if in[t,t+k—1]
(1) there are packets in th&" queue in level 2 and the (R4) Dump operation (the longest tail queue with a full
departure index of packetis greater than that of any block of packets): suppose thatis the beginning
packet in thei” queue in level 2, i.e}Q.i(t)| > 0 time slot of them™ frame, i.e.t = k(m — 1) + 1.
and I; (p, t) > I;(p.t), ¥ p € Qa.4(t), or Suppose that thé'" queue is the queue that has
(2) there are no packets in thé" queue in level 2 and the largest number of packets in its tail queue at
the departure index of packetis greater than the time ¢ — 1 among all theN queues. If there are
dumping threshold, i.e|Q,;(t)| = 0 and I;(p, t) > at leastk packets in thei'" tail queue at time
Dr. t—1, ie., |Ti(t — 1) > k, then thek packets
with the smallestdeparture indices in thé'” tail
We note from Definition 5 and Definition 6 that the depar- gueue are sent (starting from the packet with the
ture index of a packet in th&" front queue is always smaller smallestdeparture index among thegepackets) to
than that of any packet in thé" tail queue at any time, no the ' FIFO queue in level 2 (as a block of packets)
matter thei'" queue in level 2 is empty or not. As such, the provided that there is buffer space in level 2 (i.e.,
i*" front queue and the'" tail queue are always disjoint at either the buffer of theV FIFO queues in level 2 is
any time, i.e.,Fi(t) N T;(t) = ¢ for all ¢. not full at time¢ — 1 or there is a retrieve operation
Now we describe the operations of our recursive construc- at timet).

tion in Figure 7. In our operations, evety time slots are

We note that both the retrieve operation and the dump

grouped into a frame. The RRQ in level 1 is operated in evegyaration can only occur at the beginning time slot of a frame
time slot, while the scaledV parallel FIFO queues in level 2 aj55 it the two-level recursive construction in Figure 7 is

is operated in the time scale of frames.

(RO)

(R1)

(R2)

started from an empty system, then in our operations we
Admission control: an arriving packet can be admit\ways keepQ, ;(t) = F;(t) U Ti(t). In other words, if the
ted to the network element in Figure 7 only if thejth queue in level 2 is not empty, then the departure index of
total number of packets in the network element dog§packet in the'™ queue in level 1 is either greater than that
not exceedB; + kB, after its admission. Otherwise, of any packet of theé’ queue in level 2 or smaller than that
it is routed to the loss port by the x 2 switch in  of any packet of the®" queue in level 2. (As for the case
front of the network element in Figure 7. that thei’” queue in level 2 is empty, it holds trivially that
Write operation: suppose that there is an arrivinQLi(t) — F,(t) UT;(t) as in this caseF;(¢) contains all the
packet to the'" queue at time. If the i queue is packets in the*” queue with departure indices less than or
empty at timet — 1 and thei"* queue is enabled atequal to the dumping threshold, andT}(t) contains all the
time¢, then the arriving packet is routed to the outpyyackets in thei’ queue with departure indices greater than
port immediately. Otherwise, the arriving packet i9),..) As this property will be very useful in the proof of our
stored in the dual-port RRQ in level 1 (as long again theorem (Theorem 8 below) in this paper, we state this

the total number of packets in the construction dogfroperty formally in the following lemma.
not exceedB; + kB> after its admission).

Read operation: suppose that tfequeue is enabled | gmmg 7 Suppose that the two-level recursive construction

at timet. If the i" queue is empty at time—1 and iy Figure 7 is started from an empty system. Then under (RO)
there is an arriving packet to th& queue at time, (R4), we have), ;(t) = F;(t) UT;(t) for all ¢ > 0.
then the arriving packet is routed to the output port " N

immediately. If thei*” queue has packets in level 1 aProof. We prove this lemma by induction an As the two-
time ¢ — 1, the packet that has the smallest departutevel recursive construction in Figure 7 is started from an
index among all the packets of thi& queue in the empty system; ;(t) = F;(t)UT;(t) holds trivially fort = 0.



Assume that it also holds for somte- 1 > 0. We consider of fluid that can be drained from queue 1 in level 1 is achieved
the following four cases. in the following scenario. Suppose that initially the numbg
Case 1: There is an arriving packet to tif#¢ queue at time packets in every front queue in level 1i5 +¢ for some small
t. According the write operation in (R1), the arriving packet > 0. As such, no retrieve operation is performed. During
is either routed to the output port immediately or stored ithe first frame, all theV front queues in level 1 are drained
the dual-port RRQ in level 1 (as long as the total number af the same rate. By the end of the first frame, the number
packets in the construction does not excéad+ kB, after of packets in the'” front queue; = 1,2,..., N, is roughly
its admission). If the arriving packet is routed to the otitpuRr+¢—k/N. At the beginning of the second frame, a retrieve
port immediately or thé'” queue in level 2 is empty at time operation is performed on one of tié queues, say queus.
t, then there is nothing to prove. On the other hand, if thEhis takes anothek time slots (a frame) an& packets of
arriving packet is not routed to the output port immediatelgueueN are retrieved from level 2 to its front queue in level
and theit® queue in level 2 is not empty at timg then it 1. During the second frame, the firat — 1 front queues are
will be placed in thei’” tail queue as the arriving packet haslrained at the same rate. By the end of the second frame, the
the largest departure index among all the packets of tHe number of packets in th&" front queue; = 1,2,..., N —1,
queue. From the induction hypothesis, we easily conclude tlis roughlyRr+e—k/N—k/(N—1). At the beginning time slot
Q1,i(t) = EFi(t) UTi(t). of the third frame, a retrieve operation is performed on gueu
Case 2: Thei® queue is enabled at time According the N — 1. During the third frame, the firs¥ — 2 front queues are
read operation in (R2), the packet with thmallestdeparture drained at the same rate. By the end of the third frame, the
index among all the packets, including the arriving packet (number of packets in thé" front queuej = 1,2,...,N —2,
there is one), of thé” queue in the dual-port RRQ in levelis roughly Ry +¢—k/N —k/(N —1)—k/(N —2). Repeating
1 is sent to the output port at tirte It follows trivially from the same argument, one can argue that by the end afthe
the induction hypothesis tha&p, ;(t) = F;(t) U T;(t). frame the number of packets in the first front queue is roughly
Case 3: There is a retrieve operation performed onitte Ry + ¢ — kZévzl 1/¢. This has to be nonnegative so that the
queue at time. According the retrieve operation in (R3), thenon-idling property can be satisfied.
retrieved packet is the packet with thmallestdeparture index =~ We now discuss our choice dbr, the threshold for dump
among all the packets in th&" FIFO queue in level 2 as operations. If we seDy > Ry + k, then from the definitions
packets in a FIFO queue must depart in the FIFO order. If tlé a front queue and a tail queue, all thepackets retrieved
it" queue in level 2 is empty at timg then there is nothing in one frame from a queue in level 2 will be stored in its
to prove. On the other hand, if th&* queue in level 2 is not front queue in level 1. Since a largd?; would require a
empty at timet, then the retrieved packet will be placed in théarger buffer sizeB; for the dual-port RRQ in level 1, we set
it" front queue as it has a departure index smaller than all ther = Ry + k.
packets of the*” queue in level 2 at timé. As such, we have  The reason why we neefl; > NDr+ N(k—1)+k+1
from the induction hypothesis th&; ;(t) = F;(t) U T;(t). can be explained intuitively by the following scenario: pape
Case 4: There is a dump operation performed on itfe at the beginning time slot of a frame each of tNequeues
queue at timet. According the dump operation in (R4), thehas D packets in its front queue arid— 1 packets in its
dumped packet is the packet with thmallestdeparture index tail queue. As such, no dump operation is performed for that
among all the packets of thé" tail queue. As in Case 2 frame. During that frame, there are arriving packets and
above, it follows trivially from the induction hypothesikat they are stored in the dual-port RRQ in level 1. At the end
Q1.i(t) = Fi(t) UTi(t). of that frame, there ar&V(Dr + k — 1) + k packets in the
Finally, we note that although we discuss the above fodual-port RRQ in level 1. As such, one of the tail queues must
cases separately, the arguments still hold if two or more béive at least: packets and a dump operation is performed at
the above four cases occur at the same time. @ the beginning time slot of the next frame. Suppose that there
is another arriving packet at the beginning time slot of the
Now we state the main theorem of our paper. The proof §fXt frame. Even though there is a packet dumped from level
Theorem 8 will be presented in Appendix A. 1lto Ieyel 2, this arriving pac!<et has to be stored in a buffer
spacdifferentfrom the one being freed by the dumped packet.
Theorem 8 Suppose the two-level recursive construction iﬁﬂ;-lpso?tegsgcsz trzeer?]g?;-gglrltsRsrﬁylgl:g\\//g tlh’rggn:ct)rnu;ig by
Figure 7le started from an empty system. If we cholige— patterns and the dumped packet and the arriving packet have
1+k> %-‘ Dr = Ry + k, and By > NDr + N(k — to use different I/O ports. As such, we ne&d > NDr +

Zzl . . B
1)+ k+ 1, then under (R0O)—(R4) the construction in Figure '?N(k —1) +k+1 at the beginning time slot of the next frame

achieves the exact emulation of a systeniVoparallel FIFO n thls;,cenarlo..f in the ab i th . -
queues with a shared buffd, + Byk. Furthermore, if in the above scenario there is an arriving

packet in each time slot, then the dump operations continue
To see the intuiton why we need to sdk, = untilthe bufferin level 2 is full, from which time the arrivg
~ : } . .
1 . . . . packets are stored in the buffer in level 1 until the entirewgu
1+k 3. ¢ |- We consider an ideal fluid model as in [Zl]is full. This shows that the maximum possible buffér+ Bok

and [Zf]z.lAs can be seen in [21] and [22], the largest amourduld be achieved.



In short, our choices ofB; and Dy ensure that empty memory cells in each level. In Figure 9, we shows-devel
memory cells are always available to store new arrivingpnstruction of a FIFO queue with buffer 63.
packets. As such, the flow conservation property and the
maximum buffer usage property are satisfied. Also, our @oic —3 4 4 & 4 4 3 E 4
of Ry ensures that the non-idling property is satisfied. : '

B. Recursive Expansion to anlevel Construction of Parallel
FIFO Queues with a Shared Buffer

One can recursively expand the two-level construction i
Theorem 8 to am-level construction in Figure 8. This-level
construction can be used for exact emulation of a systeni of
parallel FIFO queues with a shared bufﬁf(knfl —1)/(k— Fig. 9. A 3-level construction of a FIFO queue with buffer 63
1) + Bok™ 1. To see this, consider the case when= 3. )

Then we have from Theorem 8 that the dual-port RRQ with For V.>> 1 andk = 2, we know from the complexity of
buffer B, and scaling facto in level 2 and the system of the harmonic function thaB, = NDr + N(k —1) + k + 1

N parallel FIFO queues with a shared buffes and scaling 1S O(NV log N). Thus,O((N log N)log(B/(N log N))) 2 x 2
factork? in level 3 can be used for exact emulation of a systefifVifches can be used to constri¢parallel FIFO queues with
of N parallel FIFO queues with a shared buffBy + kB, bufferB. - ,

and scaling factok. Using Theorem 8 again, one can show _Note that in Theorem 8 the condition f_or the buffer in level
that the3-level construction can be used for exact emulatioh S B1 = NDr + N(k — 1) + k + 1. This leads to a great
of a system ofN parallel FIFO queues with a shared buffefdvantage of our construction — the fault tolerant capgbili

By + k(B + kBs). Specifically, if each optical memory cell has a bypass circui
that sets up a direct connection between its input link and
level 1 its output link once a fault within the optical memory cell is
input port _ | |____output pol detected, then by settinG, = F+ NDp+N(k—1)+k+1

Dual-port optical RRQ
with buffer size B

our construction still works even after up fboptical memory
cells are broken.

level 2 In [23], Bouillard and Chang provided a solution for the
= Dual-port optical RRO |~ control of 2 x 2 switches in optical FIFO queues and non-
- T oaling factor k| overtaking delay lines, which were designed based on recur-

sive constructions. As in this paper the parallel FIFO gqgeue
with a shared buffer are also recursively constructed, and

—— § —_— from (R0)-(R4) we know that we only need to keep track
: of the front queues and tail queues of the RRQs, the control
level n-1 N mechanism of the x 2 switches in the proposed recursive
Dual-port optical RRQ construction of parallel FIFO queues with a shared buffer is
with buffer size Band . N
- scaling factor®® - expected to be simpler than that in [23].
Before we move on to the recursive constructions of parallel
level n LIFO queues with a shared buffer in the next section, we
- N parallel FIFO queues= briefly address a few practical implementation issues that
with buffer size Band ) .
scaling factor® are of concern to some researchers. With recent advances in
optical technologies, the constructions of compact andhile
Fig. 8. Ann-level construction ofV parallel FIFO queues optical buffers have been made feasible by using the seetall

“slow light” technique [24]-[28]. For instance, optical fbers

Note that an RRQ with buffe’3 can be used for exactcan be implemented in the nano-scale in today’s technology
emulation of a system ofV parallel FIFO queues with a[24], and hence the construction of an optical buffer may not
shared bufferB and that the number o2 x 2 switches be as bulky as one might expect. Also it has been demonstrated
needed for an RRQ with buffeB in Figure 5 isO(B). If thata 75-ps pulse can be delayed by up to 47 ps [28], and thus
we chooseBs = B; in Figure 8, then the number & x 2 the synchronization issue that is usually of practical esnc
switches needed for the-level construction of N parallel may not be a serious design obstacle.
FIFO queues with buffeB; (k™ — 1)/(k — 1) is O(nBy). Furthermore, current photonic technology allows to imple-
This shows that one can construst parallel FIFO queues ment a2 x 2 optical memory cell using photonic regeneration
with buffer B with O(Bj log,(B/B1)) 2 x 2 switches. From and reshaping (P2R) wavelength converters [29]-[31] and
Theorem 8, the minimum number that one can choosé3for arrayed waveguide grating (AWG) [32][33]. According to 31
is NDr+N(k—1)+k+1.ForN = 1, one can simply choose P2R wavelength converters have an excellent cascadability
B; = 4k+1 and construct a FIFO queue with(log B) 2 x 2 up to fifteen cascaded stages using today’s technology. With
switches. This is of the same order as that in [10]. In paldicu error correcting codes employed, it is expected that theb@um
if we choosek = 2, then one only needs 9 dual-port opticabf cascaded stages can be much higher. As such, the power



loss due to recirculations through the fiber delay lines naty rthat are stored in level at the end of the" time slot, and

be a critical design obstacle as one might expect. Of coiirselet I;(p, t) be the departure index of packetat time¢, i.e.,

will be unrealistic to allow a packet to recirculate througe I;(p,t) = j if packetp is the j** packet to depart in the
fiber delay lines indefinitely, and there should be a limiati i** queue at the end of thé" time slot. Here, the departure
on the number of recirculations through the fiber delay linemdex is labeled according to LIFO order. Moreover, as the
In an approximate implementation, one may simply drop thaperations forN parallel FIFO queues, the RRQ in leveis
packets that have to be recirculated through the fiber delagerated in every time slot, while the scal&dparallel LIFO
lines for more than a certain number of times. Alternativelgueues in leve? is operated in the time scale of frames. Note
one may take into consideration the limitation on the numb#rat the notations of front queues and tail queues are nafong
of recirculations through the fiber delay lines during theige needed, because under our operation rules the departére ind
process. We have made some progresses on the constructidres packet stored in level 1 is always lower than that of any
of optical 2-to-1 FIFO multiplexers with a limited numbermacket stored in level 2.

of recirculations, and the results will be reported laterain  Now we present the operation rules of the recursive con-

separate paper. _ _ struction in Figure 10. The rule for admission control is the
Finally, we mention that crosstalk interference is also &me as that in (R0). However, the write operation rule, the

practical implementation issue of concern. We have mageaq operation rule, the retrieve operation rule, and thepu

some progresses on the constructions of linear compressggration rule need to be modified as follows:
with minimum crosstalk, and results along this line will be

reported later in a separate paper. (LR1) Write operation: suppose that there is an arriving
packet to the*” queue at time. If the i** queue is
IV. RECURSIVE CONSTRUCTIONS OFPARALLEL LIFO enabled at time, then the arriving packet is routed to
QUEUES WITH A SHARED BUFFER the output port immediately. Otherwise, the arriving

packet is stored in the RRQ in level 1 (as long as
the total number of packets in the construction does
not exceedB; + kB, after its admission).
(LR2) Read operation: suppose that ifflequeue is enabled
at time ¢. If there is an arriving packet to thé"
queue at timeg, then the arriving packet is routed to
the output port immediately. If there is no arriving

We have proposed a recursive construction in Figure 7 to
construct parallel FIFO queues. One key condition that make
such a construction feasible is the constraint of FIFO order
among the arriving packets. In this section, we will showt tha
parallel LIFO queues can also be constructed using a similar
architecture.

_ level 1 packet to thei** queue at time and thei” queue
iput port N output port has packets in level 1 at tinte- 1, the packet that has
7 ™| Dual-port optical RRQ [ * the smallest departure index among all the packets
»| Withbuffer B, - of the i** queue in the RRQ in level 1 is sent to the
output port at time. Otherwise, there is no departing
Joss port level 2 packet at timet.
- Nparallel LIFO | (LR3) Ret_rieye operation (the shortest_ queue pelqw the
queues with buffer B, retrieving threshold): suppose thais the beginning
and scaling factor k time slot of them!” frame, i.e..t = k(m — 1) + 1.
Consider the set of queué¥t) that have packets in
Fig. 10. A recursive construction a¥ parallel LIFO queues with buffer level 2 at timet — 1. Suppose that thé" queue is
B1 + kBs the queue that has the smallest number of packets
at timet — 1 among all the queues iR(¢t). If the
The definition of N parallel LIFO queues is the same as that number of packets in th€" queue at timg — 1 is
for N parallel FIFO queues except that packets depart in the less than or equal to the retrieving threshéig, i.e.,
Last In First Out (LIFO) order. In Figure 10, the construntio |Q1.:(t—1)| < Ry, then theit" LIFO queue in level
consists of two levels: a dual-port RRQ with bufi@y in level 2 is enabled during thent” frame. As such, there
1, and a scaled SDL network element that can be used as a are k packets retrieved from th&”" LIFO queue in
system of N parallel LIFO queues with a shared buffBp level 2 to thei’” queue in level 1 inft, ¢t +k — 1].
and scaling factok in level 2. Thel x 2 switch in front of the (LR4) Dump operation (the longest queue with a full block
network element is for admission control. Its objectiveas t of packets): suppose thais the beginning time slot
make sure that the total number of packets inside the network of them!" frame, i.e.t = k(m—1)+1. Suppose that
element does not exceds + kB,. An arriving packet can thei*" queue is the queue that has the largest number
only be admitted if the total number of packets inside the of packets at tim¢ — 1 among all theN queues. If
network element does not exceBd+ k B, after its admission. there are at leasbr + k packets in the*” queue in
Otherwise, it is routed to the loss port. level 1 at timet — 1, i.e., |Q1.:(t — 1)| > Dr + k,
We use the same notations as we did in the construction then thek packets with thdargestdeparture indices
of parallel FIFO queues. Specifically, we 1€ ;(¢), ¢ = 1 in the ¥ queue in level 1 are sent (starting from

and2,i=1,2,---, N, be the set of packets in th& queue the packet with thesmallestdeparture index among
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thesek packets) to the'® LIFO queue in level 2 a shared buffer. The key idea of our two-level construction
(as a block of packets) provided that there is buffés caching where we have a dual-port RRQ in level 1 that
space in level 2 (i.e., either the buffer of theLIFO acts as a high switching speed storage device and a system
queues in level 2 is not full at time— 1 or there is of scaled parallel FIFO (resp. LIFO) queues in level 2 that
a retrieve operation at tims. acts as a low switching speed storage device. By determining

Now we state the main result for the construction of parall@pPpropriate dumping thresholds and retrieving threshales

LIFO queues in the following theorem. The proof of Theorerrove that the two-level cache can indeed be operated as a
9 is given in Appendix B. system of parallel FIFO (resp. LIFO) queues with a shared

buffer.
Theorem 9 Suppose the two-level recursive construction in Ve have shown that one of the advantages of our construc-
Figure 10 is started from an empty system. If we chd®se= tion is its fault tolerant capability. By adding extra opatic
N memory cells in each level, our construction still worksreve

1+ kZ; 7| Dr = Rr+k and By > NDr + N(k - after some of the optical memory cells are broken. Further-
1)+ k+1, then under (RO) and (LR1)—(LR4) the constructiomore, to construct a single LIFO queue with buffer size
in Figure 10 achieves the exact emulation of a systen¥ of our construction only need9(log B) 2 x 2 switches, which
parallel LIFO queues with a shared buffét, + Bsk. is sharper tha®(v/B) previously given in [11][12] (we note

that the constructions in [11][12] are more general and work
The intuition for the choice of?; and B, is the same as for priority queues).

that in section Section IIl. Moreover, we can also expand theThere are some extensions that need to be further explored.
two-level construction in Theorem 9 to anlevel construction () N-port optical memory cells: for this paper, a dual-port

In Figure 11. optical RRQ in Figure 6 is constructed. Using the same
lovel 1 architecture, anv-port optical RRQ can be constructed
input port output poi via a conca?enation oiV-port optical memory cells. !t
Dual-port optical RRQ would be of interest to look for the efficient construction
- with buffer size B o .
- > of an N-port optical memory cell.
level 2 (i) N-to-1 multiplexer: the key condition to make our two-
- ) - level recursive constrution feasible is the constraint of
Dual-port optical RRQ |~ .
with buffer size pand FIFO order or LIFO order among the arriving packets.
scaling factor - Since anN-to-1 multiplexer has a similar constraint, is
) it possible to do the recursive construction of sAto-1
I : I multiplexer with an(N + 1)-port optical RRQ in level
: 1 and a scaledV-to-1 multiplexer in leveR?
level n-1 (i) N x N output-buffered switch: based on the same reason
L Dual-port optical RRQ E— of (ii), is it possible to do the recursive construction of an
| Mecaiing raciorte _ N x N output-buffered switch with @ N-port optical
RRQ in level1l and a scaledV x N output-buffered
level n switch in level2?
-t N parallel LIFO queues-=
with buffer size Band
scaling factor® APPENDIXA
PROOF OFTHEOREM 8
Fig. 11. Ann-level construction ofV parallel LIFO queues In this appendix we prove Theorem 8. The proof of

) ) Theorem 8 is based on the following three lemmas that bound
Since we use the same construction for par_allel FIFO queygs size of front queues and tail queues. In Lemma 10, we
and parallel LIFO queues, the numberof2 switches needed ot show upper bounds for tail queues. We then show upper

for the two systems are the same. For a single LIFO queygngs for front queues in Lemma 11 and lower bounds for
with buffer size B (the case withV = 1), the construction ¢ queues in Lemma 12.

complexity isO(log B), which is better thai®(v/B) as given

in [11][12] (we note that the constructions in [11][12] arera Lemma 10 Suppose that is the beginning time slot of a
general and work for priority queues). frame

o r
¢ Mtoreover, aj t\rllvetd'(I) not need_ tf[)h dlstmgtwsrl_ be;wﬂei\en the(i) Suppose that no dump operation is performed at time
ront queue and the tall queue as in tn€ construction fo phralf either the buffer of theV parallel FIFO queues in level 2

FIFQ queues, the control of the parallel LIFO queues is mu@not full at timet — 1 or there is a retrieve operation at time

easier than that for the parallel FIFO queues. N

t,then>  |T;(t —1)| < N(k —1).
=1

J_
V. CONCLUSIONS (i) If the buffer of theN parallel FIFO queues in level 2

. : . N
. In this paper, we provide a new two-level recursive constr_u not full at imet — 1, then S [T5(t — 1) < N(k —1) + k.
tion of a system of parallel FIFO (resp. LIFO) queues wit =1
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Proof. (i) Since we assume that either the buffer of tNe Proof. (i) We prove this by induction on. As we assume the
parallel FIFO queues in level 2 is not full at timte— 1 or construction is started from an empty system. The inegualit
there is a retrieve operation at timgthe only reason that no holds trivially fort = 0. Suppose for some> 1 that|F;(s)| <
dump operation is performed at tinte(see (R4)) is because D for all s < ¢ — 1 as the induction hypothesis. Now we
the number of packets in every tail queue is less thamhe consider the following three cases:
result then follows by summing all the packets in tNetail Case 1:|Q2(t)| = 0. In this case, th&'" queue does not
gueues. have packets in level 2. The inequality holds trivially frone
(if) We prove this lemma by induction on time. Since thelefinition of a front queue in Definition 5.
network element is started from an empty system, we have Case 2: |Q2.:(t)] > 0 and no retrieve operation is per-
formed on theé'" queue in[t — k + 1, ¢]. Note from Definition
Z |7;(0)| =0 < N(k—1)+ k. 6 that if there is an arriving packet to thi€ queue at time
, t, then this packet (if admitted) is added to #i& tail queue
Assume that the lemma holds at the beginning time slot & this case. As no retrieve operation is performed onithe
the (m — 1)*" frame as the induction hypothesis. We woul@ueue in[t — & + 1, ], we know that at time the number of
like to show that this is also true at the beginning time sfot dackets in the*" front queue cannot be increased. Thus, the
the m'" frame. Lett be the beginning time slot of the” inequality holds from the induction hypothesis.
frame, i.e.,t = k(m — 1) + 1. There are two possible cases. Case 3:/Q2;(t)| > 0 and there is a retrieve operation on
Case 1: The buffer of th& parallel FIFO queues in level thei'” queue inft —k+1,t]. Suppose that a retrieve operation
2 is full at timet — k — 1. Since the buffer of theV parallel is performed on thé'" queue at time- in [t —k+1,¢]. When
FIFO queues in level 2 is full at time— k — 1 and it is not this happens, we know from (R3) that the number of packets
full at time ¢ — 1, we know that there is no dump operationin the " front queue is less than or equalRa- at timer — 1.
at timet — k and there is a retrieve operation at time k. SinceDry = Ry + k and there is at most one packet that can
Thus, we have from (i) of this lemma that be retrieved to thé'" front queue in every time slot, it then
follows that

N
j;mu— s F(6)] < |Fi(r = D)l + (=7 +1)

Since there are at mostarriving packets in a frame, < Ry +k= Dr.
N N .. . . .
if) Without loss of generality, assume that a retrieve eper
N ITt -1 < STyt —k— 1)+ k (i) 9 Y, ass P
ation is performed at timeé on the;** queue. From (R3), we

know that|F;(t — 1)| < Ry = Dr — k. As the rest of front

SN(k-1)+k. gueues are still bounded above by, we then conclude that

Case 2: The buffer of tha parallel FIFO queues in level 2

is not full at timet — k — 1. If no dump operation is performed a
at timet — k, then the result follows from the same argument Z |[Fi(t = 1] < NDr — k,
in Case 1. =t
Now suppose that there is a dump operation at tirmek. and the proof is completed. [ ]

Then there are: packets that are sent from one of the tail
queues in level 1 to theV parallel FIFO queues in level 2.
Since there are at mostarriving packets in a frame, it then
follows that

Z|T t—1)] g

Lemma 12 Suppose that is the beginning time slot of a
frame. LetR(¢) be the set of queues that have packets in level

|Tj(t k1) —k+k 2 at the end of thét — 1)t" time slot. IfU is a nonempty
subset ofR(t), i.e., U C R(t) and|U| > 0, then

U114
|T5(t —k —1)]. > IF(t—1) > |U] 1%2 (4)

Jjeu

INGERANIE

Il
-

J
The result then follows from the induction hypothesis. B
with the convention that the sum on the RHS of (4) is O if the
upper index is smaller than its lower index.
Lemma 11 (i) The number of packets in thi€ front queue is
bounded above by the dumping threshold, i.E;(t)| < Dy Proof. We prove this lemma by induction on time. Suppose

for all ¢. the value of|R(t)| changes from zero to one for the first
(i) Suppose that is the beginning time slot of a frame andime at timet, which is the beginning time slot of a frame.
a retrieve operation is performed at tinte Then Therefore, a dump operation must have been performed for
N the first time at time, — k. From (R4), the definition of a tail
Z |Fy(t—1)| < NDp — k. (3) queue in Definition 6, and the definition of a front queue in

P Definition 5, we know that there is a queue, say iffequeue,
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such thal T (to — k — 1)| > k and|F;(to — k — 1)| = Dy. As  if |Fy(t; — 1)] > 1+ k3)7) L, then
there are at most packets that can depart during a frame,

Y IF(t = 1) = |U||Fy(t = 1))
> |Fi(to = 1) = |Fi(to — 1)] jev
JER(to) |U| 1
> |Fi(to—k—1)| -k 2|U|(1+k Z)
=Dr—k=Rp>1. (5) =1
i1y
Since|R(tp)| = 1, the only nonempty subset &(¢o) is itself. = |U] (1 +k Z) + k.
Thus, the lemma follows trivially from (5). (=1
Assume that the inequality in (4) holds at some beginning Ul 1

¢ On the other hand, iff, (t1 — 1) < 1+k > ,_, 7, we then

time slott; > ty of a frame as the induction hypothesis. Le . ] )
have from the induction hypothesis that

U be a nonempty subset @t(t, + k). We need to consider
the following two cases. Z |F;(t, — 1))
Case 1:U C R(t1). In this case, we knoW is a nonempty jeu '
subset ofR(t1) N R(t; + k). There are three subcases for this
subset off(1) N R(tr +) = Y Bt -l - Ryt - 1)

Subcase (1a): A retrieve operation is performed at time jevuia)

on some queue itr. From the induction hypothesis, we have Yl 1
(U4 [ 1+EY 5| = [Fylts = 1)l
i1 =1
DBG=DI= W14k D> ) (6 vl vl
jeu =1

1 1
= |U] 1+k§ 7t 1+k§ 7 — |Fy(ty = 1)]
=1 =1

Note that there aré packets retrieved from level 2 to some
front queue inU during the frame and that there are at most 1 1
k packets that can depart via the read operations during that~ Ul 1+ kZ 7 Ul 1+ Z N +k.
frame. Thus, =1 =1

|U| [U|-1

Subcase (1c): No retrieve operation is performed at time
DIEt+k=1] =Y |Fj(ti—1l+k—k  (7) For this subcase, we also show that (8) holds. As there are at

JEU JEU mostk packets that can depart in a frame, we then derive the
From (6) and (7), it then follows that desired inequality in (9). _
To show (8), we note from (R3) that at time — 1 the
|U|-1 1 number of packets in every front queueRt;) is more than
Z |Fi(ti+k—1)|>|Ul|1+k Z -1. the retrieving threshold?; because no retrieve operation is
JEU =1 ¢ performed at time;. This implies that
Subcase (1b): A retrieve operation is performed at time Z |Fj(ty = 1)| = |U|(Rr + 1)
on some queue iR(¢1)\U. For this subcase, we first show JEU
that N o4
> |U] <1+k22> + U]
U|-1 =1
1
Z|Fj(f1—1)|2|U| 1+/€ZZ +k. (8) L
jeu =1 >|Ul|1+k i
(=1

Since there are at mogét packets that can depart in a frame
(k time slots), we then have from (8) that

ER
=Ul|1+k > 7|+
S IFt+ k=1 =Y |Fj(t—1)| -k =1

ey iev Case 2:U ¢ R(t;). In this case, there is an element in
11 U that is not inR(t;). Without loss of generality, assume
>|U[(1+Fk ) 71+ ) thatg e Uandg ¢ R(t1). SinceU C R(t; + k), we know
/=1

thatq € R(t1 + k) andq ¢ R(t1). Thus, a dump operation
st have been performed on th& tail queue at time;.
reover, by the definition of a tail queue in Definition 6
and the definition of a front queue in Definition 5, we have
|T4(t1 — 1)| > k and

To show (8), suppose that a retrieve operation is performmﬁg
at time ¢, on queueg in R(t;)\U. From (R3), we know that
at timet; — 1 the number of packets in thg" front queue is
not greater than that of any other front queue B®ft, ), i.e.,
|Fq(t1 — 1)| < |Fi(t1 — 1)| forall i € R(tl) andi 75 q. Thus, |Fq(t1 — 1)| =Dr=Rr+k. (10)
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Let U = U\{q}. If U is an empty set, thetV = {¢}. As Subcase (2b): A retrieve operation is performed at time
there are at most packets that can depart during a frame, wen some queue iR(¢1)\U. We have from (8) in Case (1b)

have that
|0 — Ly
Iy (t1+k—1 ti+k—1
;' ' = 1Falt ) ST IF (1) > |0 1+k2 Yk (1)
> |Fy(t = 1)~ k €0
—Rp>1 In conjunction with (12) and (10), it follows that

U 1
and the induction is completed. Therefore, in the followivey Z Eyty— 1)] > o1+ kZ

assume thal/ is nonempty.

Since a dump operation is already performed ongtfietail
gqueue at t|m&1’ no dump Operat|0n can be performed for an§|nce there are at moat paCketS that can depart in a frame
queue inU at timet;. As we assume that’ is a nonempty We have from (15) that
subsqt ofR(t; + k), every queue inJ has packets in level Z |Fj(t + k—1)] > Z |Fj(t; — 1) — k
2 at timet; + k — 1. Hence, we also know that every queue

+ Ry +2k. (15)
jeu

jcU jcU
in U has packets in level 2 at time — 1 because no dump ! ! 7)1
operation is performed for any queuelihat timet,. Thus, <[ 1
we haveU C R(t;) N R(t, + k) and all the property derived 2 U1+ ; 14 +Rr + k.
in Case 1 forU also hold forU in this case. _ o _
We first note that in this case it suffices to show Subcase (2c):No retrieve operation is performed at time
1 . As in Case (1c), we still have (14). The rest of the proof for
11) then follows from the same argument in Case (2b
SO IFit+k—1) > U] 1+kZ +Rr+k. (11) (11) g (2bm
U
JE_ _ Proof. (Proof of Theorem 8) To prove that our construction
This is because indeed achieves the exact emulatiomboparallel FIFO queues
77— 1 |77 ) with a shared buffeB; + kB2, we need to show the following
U/ | 1+k Z +Rr+k=|0] 1+kz_ + Ry four properties. _ . .
— ¢ (P1) Flow conservation: The flow conservation property is
|U‘ satisfied trivially for the write operation, the read op&raf

and the dump operation because both the RRQ in level 1 and
the system ofV parallel FIFO queues in level 2 also satisfy the
flow conservation property. The only problem is whethereher

> (U] +1) 1+kZ

L by is always a buffer space in level 1 for a packet retrieved from
=[Ul|1+k Z the N parallel FIFO queues in level 2. To show this, suppose
that a retrieve operation is performed on e queue at the
To show (11), we write beginning time slot of them!" frame, i.e.t = k(m—1)+1.

Consider the following two cases:
Z |Fj(t — 1) = Z |[Fi(ti — )|+ |Fy(t1 — 1)], (12) Case 1: A dump operation is also performed at timés
jeu jetr there is a packet dumped from level 1 to level 2 during each
time slot of them!" frame, there is always a buffer space for
a packet retrieved from thé" queue in level 2.
Case 2: No dump operation is performed at timé&ince a
fetrieve operation is performed on ti¢ queue at time, it
follows from Lemma 11(ii) that

and consider the following three subcases as in Case 1.

Subcase (2a): A retrieve operation is performed at timé
t; on some queue iV, For this subcase, we have from the
induction hypothesis that

|U]— 1 N
S IRt - 1) > |0 1+kZ (13) ST IF(t—1)| < NDr — k.
jGU 7j=1
As there are: packets retrieved from level 2 to some fronf\s there is no dump operation at timewe have from Lemma
queue inU during the frame and there are at maspackets 10(i) that

N
that can depart during that frame, we have from (12), (13), 1) <
and (10) that Z:: it =Dl < Nk —1).
DIE i +k=1[ =D [Fi(t =) +k—k Thus,
JjEU jeu N N N
o1y ZI|Q1,.j(t—1)|=2|Fj(f—1)|+2|Tj(f—1)|
J= )= J=

>0 | 1+k > 5| +Rr+k i=
i < B —2k—1,
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where we use the fact that (t — 1) andT;(¢t—1) are disjoint, time t, and no dump operation is performed at tifye We
Q1,; = F;(t—1)UT;(t—1),andB; > NDr+N(k—1)+k+1. have from Lemma 10(i) that
Since there are at moktarriving packets during thex*" frame N
and there are at lea8t 4 1 unoccupied buffer spaces in level T

. . i(to—1)| <Nk —-1). 17
1 at timet¢ — 1, we conclude that there is always one buffer Z' slto = 1) < N( ) (A7)

=1
space in level 1 for every packet retrieved from iHequeue !
in level 2 during them!'" frame. Also, since a retrieve operation is performed at titpewe
(P2) Non-idling: We prove this property by contradictionhave from Lemma 11(ii) that
Suppose the non-idling property is violated for the firsteim N
at timgt f(_)r some queue. Without loss of generality, assume Z |Fj(to — 1)| < NDp — k. (18)
thatt is within them!" frame, i.e.k(m—1)+1 <t < km+1 =

for somem € N. Letty = k(m — 1) + 1 be the beginning )
time slot of them!® frame. When this happens, we know thafrom (17) and (18), it follows that

there are packets of queuén level 2 at timet — 1 and queue N N
iin level 1 is empty at time — L. This implies that ¢ R(to). |Q1(to — 1) = Z |Ej(to — 1)] + Z T;(to — 1))
and |F;(t — 1)| = 0. As there is at most one departure in a = =1
time slot andt — ¢y < k, we also know that < NDp—k+N(k—1)
|Fi(t0—1)| < k. (16) < B;—2k-1
From Lemma 12, it follows thatF;(to — 1)| > 1 and thus Since the number of packets in the dual-port RRQ in level
t # to. As such, we havey < ¢ <ty + k. 1 can be increased by at most 2 packets in a time slot and
Consider the following three cases. t—tg <k,
Case 1: A retrieve operation is performed on queuat
time #o. In this case, there is a packet retrieved from queue @t = D] < [Qu(to — 1] +2(t — to)
in level 2 to its front queue from, to ¢. As there is at most < By —2k—142(t —tg)
one packet departure in a time slot afd(tp — 1) > 1, it < By —1.

follows that| F;(t—1)| > 1. This contradicts t¢F;(t—1)| = 0.

Case 2: A retrieve operation is performed on some quei/ée reach a contradiction {61 (t — 1)| = B;.
j # 1 at timety. According to (R3), we know that € R(t) Case 2: The buffer in the systemfparallel FIFO queues
and|F;(to—1)| < |Fi(to—1)|. Since|F;(to—1)| < kin (16), inlevel 2 is not full at time, — 1. There are four subcases in
we have this case.

Subcase (2a): A dump operation is performed and no
retrieve operation is performed at. By Lemma 10(ii),

On the other hand, we know from Lemma 12 th&}(to — N

DI+ |Fi(to —1)| = 2(1+ k). Thus, we reach a contradiction. Z ITi(to — 1)| < N(k — 1) + k.
Case 3: No retrieve operation is performed at tigeFrom

(R3), we know that at time, — 1 the number of packets in ]

every front queue inR(t,) is not less than or equal t&,. ©On the other hand, we have from Lemma 11(i) that

Thus,

|Fj(t0 — 1)| + |Fi(t0 — 1)| < 2|Fi(t0 — 1)| < 2k.
J=1

N
|Fi(to—1)| > Rr +1>k+1. > |Fj(to — 1)] < NDy.

This contradicts to (16). =t

(P3) Maximum buffer usage: We prove this property by corts there aref — ¢, packets dumped from level 1 to level 2
tradiction. Suppose the property of maximum buffer usage and there are at most— ¢, arrivals in[tg,t — 1]
violated for the first time at timeé. Without loss of generality,

assume that is within the m'" frame, i.e.,k(m — 1) + 1 < Qi = 1) < 1Qi(to = 1)| = (t —to) + (£ — o)
t < km + 1 for somem € N. Letty = k(m — 1) + 1 be N N

the beginning time slot of the:'" frame. When this happens, = Z |Ej(to — 1) + Z |Tj(to — 1)
the read operation is not performed at timand no packet =1 i=1

departs at time. Moreover, we know that the buffer in the <SNDr+N(k—-1)+k

RRQ in level 1 is full at time —1, i.e.,|Q1(t—1)| = By, and < By —1.

the buffer in the system oW parallel FIFO queues in level 2 o

is not full at timet — 1, i.e., |Q2(t — 1)| < Bsk. Consider the Ve reach a contradiction @ (¢t —1)| = Bi. .

following two cases. Subcase (2b): A dump operation is performed and a retrieve
Case 1: The buffer in the systemMfparallel FIFO queues OPeration is performed at timg. By Lemma 10(ii),

in level 2 is full at timety — 1. Since the buffer in the system N

of N parallel FIFO queues in level 2 is not full at time- 1, Z ITj(to —1)] < N(k —1) + k.

we know in this case that a retrieve operation is performed at =
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As there is a retrieve operation at tintg, we have from Since there are — ¢, packets retrieved from level 2 to level

Lemma 11(ii) that 1 and there are at most- ¢, arrivals in[to,t — 1]
N |Qu(t = 1) < [Qu(to — )| + (¢ — to) + (t — to)
> |F(to—1)| < NDp — k. N N
= = > |Fj(to — D)+ Y _ |Ty(to — )| +2(t — to)
j=1 j=1
Now there are — to packets dumped from level 1 to level 2, < NDp —k+ N(k—1)42(t — to)

t — to packets retrieved from level 2 to level 1, and at most

L. . < By —1-2k+2(t —ty) < By — 1.
t — to packets arriving into,t — 1]. Thus, =21 ( 0) 1

We reach a contradiction t@);(t — 1)| = By.

|Q1(t — 1) < |Q1(to — 1) — (t —to) + (t —to) + (¢t — to) (P4) FIFO: The FIFO property is guaranteed because we
N N always choose the packet with the smallest departure index
= Z |Fj(to — 1) + Z Ti(to—1)|+ (t—ty) 1O depart from the RRQ in level 1 (see the read operation in

j=1 =1 (R2)). u

< NDp—k+N(k—1)+k+ (t —to)
< By —1—k+(t—tg)

B 1 APPENDIX B
<P PROOF OFTHEOREM 9
We reach a contradiction t@); (¢t — 1)| = B;. In this appendix, we prove Theorem 9. In Lemma 13, we

Subcase (2c): No dump operation is performed and rfESt show upper bounds for queues in level 1. We then show
retrieve operation is performed at timg. Since no dump ower bounds for queues in level 1 in Lemma 14. The results

operation is performed at timg, we have from Lemma 10(i) of these two lemmas are then used to prove Theorem 9.

that N Lemma 13 Suppose that t is the beginning time slot of a
Z Ty (to — 1) < N(k —1) frame andU is a subset ofV queues, i.e._U c{1,2,.. .,N}.
: : - ' (i) Suppose that no dump operation is performed at time
=t If either the buffer of theV parallel LIFO queues in level 2
On the other hand, we have from Lemma 11(i) that is not full at timet — 1 or there is a retrieve operation at time
£ then 3= |Qu(t = )| < |U1Dr + U](k — 1)
i |F;(ty — 1)| < NDr. _ (ii) Ifjtehe bL_Jffer of theN parallel LIFO queues in level 2
= is not full at timet — 1, then

. , : =D <|UDr+N(k—-1)+k. 19
Since there are at most- ¢, arrivals in[tg,t — 1] Z @i )< 1UIDr ( ) (19)

JjeU
1Q1(t— 1) < |Q1(to — 1)| + (t — to) Proof. This lemma holds trivially ifU is an empty set, so in
N N the following we assume thdf is nonempty.

N
— Z |F;(to — 1)| + Z T (to — 1) + (& — to) (i) Since we assume that either the buffer of ikeparallel
= = LIFO queues in level 2 is not full at time— 1 or there is
< NDp+ N(k— 1)+ (t — to) a retri(_eve pperation at time_ the only reason that no dump
< Bi—1—k+(l—to) operation is performed at time (s_ee (LR4))_ is because the
=71 0 number of packets in each queue in level 1 is less han-k.

<B; -1 The result then follows by summing all the packets in level
o of the queues in sdt .
We reach a contradiction t@: (¢ — 1)| = Bx. (i) We prove this lemma by induction on time. Since the

Subcase (2d): No dump operation is performed and rgetwork element is started from an empty system, for any
retrieve operation is performed at timg. Since no dump nonempty subsel/ of N queues we have
operation is performed at timg, we have from Lemma 10(i)

that > 1Qu;(0)] =0 <|UIDr + N(k—1) +k.
N JjeU
Z |T;(to —1)] < N(k —1). Assume that the inequality in (19) holds at some beginning
j=1 time slot¢ of a frame as the induction hypothesis. We would

like to show that this is true at the beginning time slet k.
As there is a retrieve operation at tintg, we have from There are two possible cases:
Lemma 11(ii) that Case 1: No retrieve operation is performed on any queue

N in U at timet. In this case, we first show that

> |Fj(to—1)| < NDp — k. D 1Qu it = V)| < |UIDr + N(k— 1) + dy(t)k,  (20)

j=1 jeu
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wheredy (t) is an indicator variable withl;; (¢) = 1 if a dump Case 2: A retrieve operation is performed at timen some
operation is performed on some queuelinat timet and0 queue inU. Suppose that a retrieve operation is performed at
otherwise. time ¢ on queueg in U. From (LR3), we know that

Since there are at mogt arriving packets in a framek(

time slots) andiy (t)k packets dumped from level to level Quq(t = 1) < Rr = Dr — k. (25)
2in [t,t + k — 1], we have from (20) that LetU = U\{q}. If U is empty, therl/ = {¢} and hence from
(25) we have
DRt +E =1 <> 1Qui(t — 1)+ k — du(t)k
J€v J€v > 1Qui(t—=1) =[Qiq(t—1)| < Dr—k
<|UIDr+N(k—1)+k  (21) jev

<|U|Dr+ N(k—1) + E.
There are four subcases for the inequality in (20).
Subcase (1a): A dump operation is performed at tinem Therefore, in the following we assume tHatis not empty.
some queue iV and the buffer of theV parallel LIFO queues ~ Since no retrieve operation is performed at timéor any
in level 2 is not full at timef — 1. To show (20), note that queue inlJ, we have from (20) that

d =1 in this subcase. It then follows from the induction
hgr()o)thesis that Z |Q17j t - 1)| < |U|DT + N(k - 1) + dU(t)k (26)

jet
> 1Qui(t=1)| <UD+ N(k — 1) + k. Therefore, from (25) and (26), we have
jeu
_ o . D 1Qu,(t 1)
Subcase (1b): A dump operation is performed at tinua e
some other queue that is not it and the buffer of theV '7
parallel LIFO queues in level 2 is not full at time— 1. For - Z @15t = 1| +|Quq(t = 1)]
this subcase, we havk;(¢) = 0. Therefore, we need to show jev
that <|U|Dr + N(k —1) +d;(t)k + Dr — k. (27)
Z |Q1,;(t =1 < [U[Dr + N(k - 1). (22) " Moreover, we can show thaty (f) — ds(t). As U =
Jev U\{q}, the only case thatly(t) # d;(t) is when a dump
Suppose that a dump operation is performed on queti&’ operation is performed on queuye But this is not possible
at timet. From (LR4), we know because of (25) and (LR4).
Now, for the setlJ, there areiy (t)k packets dumped from
|Q1,q(t —1)| > D7 + k. (23) level 1 to level 2, k packets retrieved from levé to level 1,
d at ket iving inft,t + k — 1]. Thus, f
Also from induction hypothesis, we have ?2n7) at most packets arriving inft, ¢ + ] us, from
Y Q=1 < (UI+1)Dr+ N(k—1) + k. (24) DRt +k -1 <> Qi — 1) —dut)k+k+k
JEUU{q} jeu jeu
It then follows from (23) and (24) that = Z |Q1,;( d(Ok+k+k
jeu
;] Q1 (t—1)| < ‘e;:{ }|Q1,j(t — 1) = Q1 q(t— 1) < 0|Dp 4 Nk — 1)+ Dr + &
J J q
< (U] +1)Dr + N(k—1) + k- D — k =|UIDr + N(k—1) +k,
=|U|Dr+ N(k—1). and the proof is completed. [

Subcase (1c¢): No dump operation is performed at time
and the buffer of theV parallel LIFO queues in level 2 is not
full at time ¢t — 1. For this subcase, we also show that (2
holds. It follows from (i) of this lemma that

emma 14 Suppose that is the beginning time slot of a
ame. LetR(t) be the set of queues that have packets in level
2 at the end of thét — 1)t" time slot. IfU is a nonempty

Z 1Q1.;(t — 1)| < |U|Dp + |[U|(k — 1) subsetof R(t), i.e.,U C R(t) and |U| > 0, then
Jeuy |U|— 1y
< |U[Dr + N(k - 1). D 1Qut = 1) = |U] 1+k:z . (28)
Jjeu

Subcase (1d): The buffer of thé parallel LIFO queues in
level 2 is full at timet — 1. Since the buffer of théV parallel Proof. We prove this lemma by induction on time. Suppose
LIFO queues in level 2 is full at time— 1 and it is not full at the value of R(¢)| changes from zero to one for the first time at
time ¢t + k& — 1, we know in this case that no dump operatiotime ¢, which is the beginning time slot of a frame. Therefore,
is performed at time. Using (i) of this lemma, we can showa dump operation must have been performed for the first time
that (22) still holds as in Case (1c¢). at timety — k. From (LR4), we know that there is a queue,
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say thei'” queue, such tha, ;(to —k —1)| > Dr+ k. As  [Q14(ts — 1) > 1+ k)7, 7, then
there arek packets dumped from level 1 to level 2 and there

are at most: packets that can depart during a frame, Z |Q1,;(t1 — 1)| > |U]|Q1,4(t1 — 1)]
JjeEU
Z |Q1,5(to = 1)[ = |Q1,i(to — 1) vl
JER(to) > Ul [1+ kz 7
>[Qui(to—k—1)|—k—k =1

> Dy —k =Ry > 1. (29)

-1y

=Ul{1+k > ;
Since|R(tp)| = 1, the only nonempty subset &(¢o) is itself. =1
Thus, the inequality in (28) follows trivially from (29). On the other hand, ifQ: (t, — 1) < 1+ kZ'U‘ 1 we

Assume that the inequality in (28) holds at some begmnlqgen have from the mductign hypothesis that =11

time slott; > ¢y of a frame as the induction hypothesis. We
would like to show that this is true at the beginning time slot Z |Q1,;(t1 — 1)
t1 + k. Let U be a nonempty subset @i(¢; + k). We need  jeUu

to consider the following three cases. — Z 1Q1;(t — 1) = |Qrq(ts — 1)
Case 1:U C R(t1) and no dump operation is performed /7, "
at timet; on any queue irUV. In this casel/ is a nhonempty v
subset ofR(¢1) N R(t1 + k). We first show that > (U] +1) (1 n kz ) Q1 o(t — 1)
= q
w1y
S IQuit — V) = |U [ 14k Z k= ry(t)k, vl vl
jeu = U] 1+kZ— + 1+k2 —[Q1,q(t1 — 1)
(30)
wherery (t1) is an indicator variable with;(t1) = 1 if a vl vi=1,
retrieve operation is performed on some queud/irat time > U1+ kz = (1+k Z

t; and0 otherwise.
Since there are at mostpackets that can depart in a frame

(k time slots) andry (t1)k packets retrieved from level to

level 1 in [t1,t1 + k& — 1], we then have from (30) that

Subcase (1c): No retrieve operation is performed at time
t;. For this subcase, we also show that (32) holds. To show
(32), we note from (LR3) that the number of packets in every

ek — 1) > (1 ¢\l _ . Oueue is more than the retrieving threshdtg: because no
Z @yt + )= Z @yt JI+ruty) retrieve operation is performed at time This implies that

jeu jeu
- 1+k|Uz:1l - EZ[]|Q1J(t1_1)|Z|U|(RT+1)
= " / . J v )
_ - > Ul {1+kY 5| +1U]
There are three subcases for the inequality in (30). = t
Subcase (1a): A retrieve operation is performed at time |U|
on some queue V. To show (30), note thaty (t1) = 1. It >UI[1+Ek 1
then follows from the induction hypothesis that — ¢
U] -1
lUl- Yy 1
S 1Qus(t - 1) > U] 1+kZ = U] 1+k;z +k
jeEU =

Case 2:U C R(t1) and a dump operation is performed at

Subcase (1b): A retrieve operation is performed at timgye #; on some queue ily. Suppose that a dump operation

t1 on some queue irk(t;)\U. For this subcase, we havejs performed at timg; on some queug € U From (LR4),
ry(t1) = 0. Therefore, we need to show that we know

i1 Q1q(t1 = 1)| > Dr + k (33)
Y Qi =D = [Ul [ 1+k > | +k  (32) LetU = U\{g}. If U is empty, thenU = {q}. As there
. ' 14
jeu - are k packets dumped from levél to level 2 and at most k

packets that can depart during a frame, we have
To show (32), suppose that a retrieve operation is performed

at time ¢; on queueq in R(¢1)\U. From (LR3), we know Z |Q1j(tr + k= 1) =|Quq(t1 + £ —1)|
that at timet; the number of packets in thg" queue is not jev
greater than that of any other queueRft, ), i.e.,|Q1 4(t; — 2 |Quq(ti —1)| -k —k

1)] < |Q1,:(t1 — 1)| for all i € R(t1) andi # q. Thus, if > Ry > 1.



So in the following, we assume théat is not empty.
As no dump operation is performed @t for any queue in

U, we have from (30) that

|U]-1
~ 1
ZlQLj(tl_l)lZ'Ul 1+ k& Z Z +/€—’f‘[‘](t1)k.

jeu =1
(34)

Using (33) and (34) yields

D 1Qu;(t = 1)
jeu
=3 1Qu it — | +1Quq(ts — 1)
jel
|U|-1

- 1
> U] 1+l<:2:Z +k—ry(t)k+Dr+k
=1

|U]—-1
~ 1
= |U| 1+k E z +RT+3k—TU(t1)/€, (35)
=1

where we usé)r = Ry + k in the last equality.

Moreover, we can show thaty(t) = r5(t1). As U =
U\{q}, the only case thaty (t1) # r;(t1) is when a retrieve
operation is performed on queuye But this is not possible
because of (33) and (LR3).

Now, for the seUU, there are; (¢;)k packets retrieved from
level 2 to level 1, k packets dumped from levél to level 2,
and at most packets departing ift;, ¢ + k& — 1]. Thus, we
have fromry (t1) = ri(t1) and (35) that

S Qi+ k=1 =Y [Quits — Dl +ru(t)k —k—k
Jjeu Jjeu
|U\—11
> -
> |0 1+sz + Ry +k
=1
) o,
= 0] 1+kZZ + Ry
=1
) o1,
>((|U|+1) |1+ k -
(U] +1) ;é

IU\*ll
=U|l[1+k — .
Ul |1+ gg

Case 3:U ¢ R(t1). In this case, there is an elementih

that is not inR(¢;). Without loss of generality, assume that

g € Uandq ¢ R(t1). SinceU C R(t; + k), we know that

q € R(t1 + k) andq ¢ R(t1). Thus, a dump operation must

have been performed on th&" queue at timg, and
|Quq(tr = 1)| = Dr + k. (36)

Let U = U\{q}. If U is empty, thenU = {¢}. As there
are k packets dumped from levél to level 2 and at most k
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packets that can depart during a frame, we have

D 1Qui(t+ k= 1) = |Quq(ts +k —1)|
jeU
> Qi =1 -k —k
> Rr > 1.

So in the following we assume théat is not empty. We first
showlU C R(t;)NR(t,+k). Since a dump operation is already
performed on theg!" queue at time;, no dump operation can
be performed for any queue i at timet,. As we assume
that U is a nonempty subset d®(¢; + k), every queue irl/
has packets in level 2 &t + k — 1. Hence, we also know that
every queue irl/ has packets in level 2 af — 1 because no
dump operation is performed for any queuelinat timet;.
Thus, we havdl C R(t;) N R(t; + k).

Since no dump operation is performed for any queu#in
at time ¢t;, we still have (34). In view of (36) and (34), the
rest of the proof in this case is the same as that in Cai 2.

Proof. (Proof of Theorem 9) To prove that our construction
indeed achieves the exact emulatiomdparallel LIFO queues
with a shared buffeB; + kBs, we need to show the following
four properties.

(P1) Flow conservation: As discussed in the prooféf
parallel FIFO queues, the only problem is whether there is
always a buffer space in level 1 for a packet retrieved from
the N parallel LIFO queues in level 2. To show this, suppose
that a retrieve operation is performed on e queue at the
beginning time slot of them!" frame, i.e.t = k(m—1)+1.
Consider the following two cases:

Case 1: A dump operation is also performed at timés
there is a packet dumped from level 1 to level 2 during each
time slot of them!" frame, there is always a buffer space for
a packet retrieved from th&" queue in level 2.

Case 2: No dump operation is performed at timeSince
a retrieve operation is performed on ti& queue, it follows
from (LR3) that

|Q1,i(t —1)| < Rr = Dp — k.
Also by Lemma 13(i),
jE{l,?,---,N}\{i}
Thus,

N
> 1Qust - 1)
3

GE{1,2, N\ (i}
<NDr+(N-1)(k—1)—k
=NDr+N(k—1)—(k—1)—k
< By — 3k,

|Q1,;(t—1)]| < (N —=1)Dp+ (N —1)(k—1).

1Q1;(t = D)| +|Qua(t = 1)

where we use the fact thd; > NDr + N(k—1) +k + 1.
Since there are at mogt arriving packets during thent"
frame and there are at lea%t unoccupied buffer spaces in
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level 1 at timet — 1, we conclude that there is always onef N parallel LIFO queues in level 2 is not full at tinte- 1,

buffer space in level 1 for every packet retrieved from iffe we know in this case that a retrieve operation is performed at

queue in level 2 during thex" frame. time t, on some queue and no dump operation is performed
(P2) Non-idling: We prove this property by contradictionat time¢,. We have from Lemma 13(i) that

Suppose the non-idling property is violated for the firsteim

at timet for some queué. Without loss of generality, assume > Q1,(to—1)| < (N=1)Dp+(N-1)(k-1).

thatt is within them!" frame, i.e.k(m—1)+1 <t < km+1 J€{1.2.N}\{q}

for somem € N. Letty = k(m — 1) + 1 be the beginning i i . , (38)

time slot of them!" frame. When this happens, we know tha,tAIso, since a retrieve operation is performed at tirgeon

there are packets of queuén level 2 at timet — 1 and queue queueg, we have from (LR3) that

i in level 1 is empty at timef — 1. This implies that € R(t) b — 1 < R = Do — k 39
and|Q ;(t — 1)| = 0. As there is at most one departure in a (Qulto =Dl < Ry = Dr = k. (39)
time slot andt — tg < k, we also know that From (38) and (39), it follows that
|Q1,i(to — 1) < k. (37) Q1 (to — 1)

From Lemma 14, it follows thatQ: ;(to — 1)| > 1 and thus — Z Q1,5 (to — 1)| + |Q1.4(to — 1))
t # to. As such, we havey <t <ty + k. je{1,2,— N\{q} 7 7

Consider the following three cases. <NDp+ N(k—-1)—-2k+1< B, —3k.

Case 1: A retrieve operation is performed on quéaétime - -
to. Inthis case, there is a packet retrieved from queindevel  Since the number of packets in the dual-port RRQ in level

2 to its queue in level from ¢, to t. As there is at most one 1 can be increased by at most 2 packets in a time slot and
packet departure in a time slot aj@h ;(to—1)| > 1,itfollows ¢+ ¢, < k,
that |Q1,,(t — 1)| > 1. This contradicts tdQ; ;(t — 1)| = 0.

Case 2: A retrieve operation is performed on some queue |Q1(t —1)] <|Q1(to — 1)| +2(t — to)
Jj # 4 at timety. According to (LR3), we know that € R(to) < By — 3k +2(t — to)
and|Q1,;(to — 1)| < |Q1,i(to — 1)|. Since|Q1,i(to — 1)| < k <B—k<DBy—1.

in (37), we have
We reach a contradiction t@);(t — 1)| = By.
(to— )| + ito—1) <2 i(to — 1)| < 2k. : 1 1
1@t = DI+ 1Quilto ~ 1) [@u.ilto =) Case 2: The buffer in the system/éfparallel LIFO queues
On the other hand, we know from Lemma 14 th@t ;(to — in level 2 is not full at time, — 1. There are four subcases in
D|+1Q1,i(to—1)] > 2(1+k). Thus, we reach a contradiction this case.
Case 3: No retrieve operation is performed at titgeFrom Subcase(2a): A dump operation is performed and no re-

(LR3), we know that at timé, — 1 the number of packets in trieve operation is performed at timg. By Lemma 13(ii),

every queue inR(to) is not less than or equal tB,. Thus,
N

|Qui(to —1)| = Rr+1 >k +1. Z|Q1,j(to —1)|<NDr+N(k—1)+k.

This contradicts to (37). =1
(P3) Maximum buffer usage: We prove this property bys there aret — t, packets dumped from level 1 to level 2
contradiction. Suppose the property of maximum buffer ugnd there are at most— ¢, arrivals in [to,t — 1]
age is violated for the first time at time Without loss
of generality, assume that is within the m!* frame, i.e., [Q1(t—1)] <|Q1(to —1)| — (t —to) + (t — to)
k(m—1)+1 <t < km + 1 for somem € N. Let <NDr+N(k—1)+k<B; —1.
to = k(m — 1) + 1 be the beginning time slot of thei*"
frame. When this happens, no read operation is performedVég reach a contradiction t@): (¢t — 1)| = B;.
time ¢t and no packet departs at tinie Moreover, we know  Subcase(2b): A dump operation is performed and a retrieve
that the buffer in the RRQ in level 1 is full at tinte- 1, i.e., operation is performed at timey,. Suppose that a retrieve
N operation is performed at tim& on queueq. By Lemma
Qu(t—1)] = 1Qu;(t—1)| = By, 1.3(ii)
j=1
and the buffer in the system af parallel LIFO queues in je{1,2,Z,:N}\{q} (@uito =Dl < (N=1)Dr +N(k=1)+F.
level 2 is not full at timet — 1, i.e.,
As a retrieve operation is performed on queuat time to,

N
1Qa(t — 1) = Z |Qa.;(t — 1)| < Bsk. we have from (LR3) that

j=1
. - Quqlto — 1)| < Ry = Dr — k.
Consider the following two cases.
Case 1: The buffer in the system/éfparallel LIFO queues Now there are — ¢, packets dumped from level 1 to level 2,
in level 2 is full at timety — 1. Since the buffer in the systemt — ¢, packets retrieved from level 2 to level 1, and at most



t — to packets arriving i, t — 1]. Thus,

|Q1(t —1)]
<[Qi(to —1)| = (t —to) + (t —to) + (t — to)
> |Q1,5(to — )| + [Q1,4(to — )| + (¢t — to)
Jj€{1,2,- ,N}\{q}
<(N—=1)Dyp+N(k—1)+k+ Dy — k+ (t —to)
— NDp+ N(k—1) + (t — to)
SBl—l—k+(t—t0)<Bl—1.

(1]

(2]

(31

We reach a contradiction @) (¢t — 1)| = By. (4]

Subcase(2c): No dump operation is performed and no
retrieve operation is performed at timg. Since no dump
operation is performed at timg, we have from Lemma 13(i)
that

(5]

N 6]
> 1Qu,(to — 1)| < NDp + N(k — 1)
j=1

(7]
Since there are at most- ¢, arrivals in[to, ¢t — 1]

@1t = 1)] < [Qulto — )] + (¢ — to) e
< NDp+N(k—1)+ (t—tg)
SBl—l—k+(t—t0)<Bl—1. [9]
We reach a contradiction @), (¢t — 1)| = By.

Subcase(2d): No dump operation is performed and a rgoj
trieve operation is performed at tintg. Suppose that a retrieve
operation is performed at timg on queue;. Since no dump [11
operation is performed at timg, we have from Lemma 13(i)
that

]

[12]

>

je{1,2,,N}\{q}

1Qu;(to—1)| < (N=1)Dr+(N—-1)(k—1).
[13]

As a retrieve operation is performed at timye on queuey,
we have from (LR3) that
[14]
|Q1,4(to — 1)] < Ry = Dy — k.

Since there are — t, packets retrieved from level 2 to levelj;s
1 and there are at most- t, arrivals in[tg,t — 1]

|Q1(t —1)]
<|Qi(to — V)| + (¢ —to) + (¢t —to)
> Q1,5 (to — 1) + [Q1,4(to — 1)[ +2(t — to)
Jje{1,2,- ,N}\{q}
< NDp —k+ (N —1)(k—1)+2(t — to)
SBl—3k+2(t—t0)<Bl—k§Bl—1

[16]

[17]

(18]

(19]
We reach a contradiction @), (¢t — 1)| = By.

(P4) LIFO: The LIFO property is guaranteed because we
always choose the packet with the smallest departure indgy
to depart from the RRQ in level 1 (see the read operation in
(LR2)). m 2l
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