
1

Efficient Encoding of User IDs for Nearly
Optimal Expected Time-To-Rendezvous in
Heterogeneous Cognitive Radio Networks
Cheng-Shang Chang, Fellow, IEEE, Cheng-Yu Chen, Duan-Shin Lee, Senior Member, IEEE, and

Wanjiun Liao, Fellow, IEEE

Abstract—The multichannel rendezvous problem in cognitive
radio networks (CRNs) has been a hot research topic lately. One
of the most challenging settings of the multichannel rendezvous
problem is the oblivious rendezvous problem in heterogeneous
CRNs, where (i) there are no distinguishable roles of users,
(ii) users’ clocks are not synchronized, (iii) users may have
different available channel sets, and (iv) there is no universal
labelling of the channels. Most existing works in the literature
focus on achieving deterministic bounds for the maximum con-
ditional time-to-rendezvous (MCTTR) and perform poorly (in
comparison with the random algorithm) for the expected time-
to-rendezvous (ETTR) due to the “stay” modes in these works.
In this paper, we tackle the oblivious rendezvous problem by
taking both MCTTR and ETTR into consideration. In order to
have guaranteed rendezvous, we only make two assumptions:
(A1) there is at least one common available channel and (A2)
there is a unique ID for each user. We first propose a new
class of strong symmetrization mappings to encode user IDs for
speeding up the rendezvous process. Two efficient and yet simple
encoding schemes are proposed by utilizing the C-transform and
the existing 4B5B encoding. Based on the new class of strong sym-
metrization mappings, we propose the two-prime modular clock
algorithm for the two-user rendezvous problem. The ETTR of
our algorithm is almost the same as that of the random algorithm
and its MCTTR is also comparable to the best existing bound. We
also extend the two-prime modular clock algorithm for multiuser
rendezvous by proposing the stick together algorithm and the
spread out algorithm. One interesting finding for the multiuser
rendezvous problem is that the spread out algorithm is not always
better than the stick together algorithm as commonly claimed in
the literature.

Index Terms—rendezvous search, channel hopping, cognitive
radio networks.

I. INTRODUCTION

MOTIVATED by the recent development of cognitive
radio networks (CRNs), the multichannel rendezvous

problem has been studied extensively in the literature (see
e.g., [1]–[33]). In a CRN, there are a set of frequency channels
and two types of spectrum users: primary users and secondary
users. Primary users have dedicated channels assigned to
them. On the other hand, secondary users can only access
channels that are not being blocked by primary users. As such,
secondary users need to sense a number of frequency channels

C.-S. Chang, C.-Y. Chen, and D.-S. Lee are with the Institute of Commu-
nications Engineering, National Tsing Hua University, Hsinchu 300, Taiwan,
R.O.C. email: cschang@ee.nthu.edu.tw, s100060021@m100.nthu.edu.tw,
lds@cs.nthu.edu.tw.

W. Liao is with Department of Electrical Engineering, National Taiwan
University, Taipei, Taiwan, R.O.C. email: wjliao@ntu.edu.tw.

that are not blocked by primary users. Such a set of channels is
called the available channel set for a secondary user. In order
for a set of secondary users to communicate with each other,
they need to find a channel that is commonly available to all
of them. The multichannel rendezvous problem in a CRN is
then for a set of secondary users to find a common available
channel in a distributed manner by hopping over their available
channels over time.

In this paper, we will simply call secondary users as users
and assume time is partitioned into fixed length time slots
(with synchronized slot boundaries as unsynchronized slot
boundaries can be treated by doubling the length of time slots
in the literature). A channel hopping (CH) algorithm of a user
means an algorithm that selects a channel from its available
channels in each time slot. When a set of users hop on a
common available channel at the same time, we assume that
there is a successful rendezvous and the set of users know
such a channel can be used for setting up a communication
link. Thus, the main objective of the multichannel rendezvous
problem is to find CH algorithms that minimize the time-to-
rendezvous (TTR) for a set of users to hop on a common
available channel.

Most of the works in the literature considered the mul-
tichannel rendezvous problem with only two users and a
universal labelling of channels. These works can be classi-
fied into various categories depending on their assumptions.
A two-user rendezvous problem is called asymmetric (see
e.g., ACH in [14] and ARCH in [24]) if one user can be
identified as the sender and the other user can be identified
as the receiver. On the other hand, a two-user rendezvous
problem is called symmetric (see e.g., SSCH in [1], SYN-
MAC in [4], QCH in [5] and DH-MAC in [6]) if there are
no distinguishable roles of users. In general, the performance
of asymmetric CH algorithms is better than that of symmetric
CH algorithms as the sender and the receiver can use different
algorithms to rendezvous in the asymmetric category. Also,
a two-user rendezvous problem is synchronous if the indices
of time slots of both users are the same. Synchronous CH
algorithms can achieve better performance than asynchronous
CH algorithms as both users have the same timing information.
The symmetric and asynchronous category is considered the
most challenging for the multichannel rendezvous problem. In
the literature, there are several novel CH algorithms proposed
for that setting with a universal labelling of channels (see e.g.,
SeqR [2], CRSEQ [7], DRSEQ [8], ASYNCH-ETCH [10], JS

2

[11] and DRDS [16]). Two common worst-case performance
metrics to evaluate these CH algorithms are (i) maximum
time-to-rendezvous (MTTR): the maximum time for two users
to rendezvous when all the channels are available, and (ii)
maximum conditional time-to-rendezvous (MCTTR): the max-
imum time for two users to rendezvous when there is at least
one common available channel. For comparisons of these CH
algorithms for these two worst-case performance metrics, we
refer to [22], [24]. There are also various lower bounds and
optimal CH algorithms (that achieve lower bounds) for various
categories in [28], [33].

Some recent works [9], [15], [17], [18], [18], [20], [21],
[29] on the multichannel rendezvous problem considered het-
erogeneous CRNs, where users may have different available
channel sets. Moreover, the assumption of a universal labelling
of channels is removed in [19], [25], [26]. Such a multichannel
rendezvous problem is called the oblivious rendezvous in
heterogeneous CRNs in [19], [25], [26]. By using a unique
ID assumption for each user as in [14], [22], it was shown in
[19], [25], [26] that the MCTTR can still be upper bounded
by a finite constant.

One performance metric that is not well studied in the
previous works is the expected time-to-rendezvous (ETTR).
Most of the CH algorithms in the literature perform rather
poorly in terms of ETTR even when compared with the simple
random algorithm. The rationale behind that is because there
is usually a “stay” mode in these CH algorithms. When a
user is in its “stay” mode, it stays in the same channel for a
rather long period of time. As such, it is very likely that two
users are in the “stay” mode and they stay in two different
channels for a long period of time. In Section II, we will
further illustrate this by relating it to a simple search problem.
To address the large ETTR problem, a hybrid CH algorithm
was proposed in [30] for a homogeneous CRN. The idea is
to interleave the simple random algorithm with a periodic
CH algorithm that has a bounded MCTTR, such as CRSEQ
[7] and JS [11]. Interleaving is done by a periodic wake-up
sequence that chooses the random algorithm when it is in the
asleep mode and the CH algorithm when it is in the awake
mode. Such a hybrid CH algorithm can greatly reduce the
ETTR by decreasing the duty cycle of the wake-up sequence
(so as to increase the chance to be in the asleep mode).
However, the hybrid CH algorithm can only be used in a
homogeneous CRN, where a universal labelling of channels is
available. Motivated by this, our objective in this paper is to
consider the oblivious rendezvous problem in heterogeneous
CRNs and propose a CH algorithm such that its ETTR is
comparable to that of the random algorithm while its MCTTR
is still upper bounded by a finite constant (comparable to the
best bound in the literature). In addition to the multichannel
rendezvous problem with two users, we will also consider the
scenario with multiple users in a heterogeneous cognitive radio
network.

As the oblivious rendezvous problem in [19], [25], [26], we
consider the most challenging symmetric and asynchronous
category in heterogeneous CRNs, i.e., (i) there are no dis-
tinguishable roles of users, (ii) users’ clocks are not synchro-
nized, (iii) users may have different available channel sets, and

(iv) there is no universal labelling of the channels available to
the users. In order to have a guaranteed rendezvous, we make
the following two assumptions in this paper:

(A1) There is at least one channel that is commonly
available to the users. Specifically, suppose that there
are K users and the available channel set for user i
is

ci = {ci(0), ci(1), . . . , ci(ni − 1)},

where ni = |ci| is the number of available channels
to user i, i = 1, 2, . . . ,K. Then

∩Ki=1ci ̸= ϕ. (1)

(A2) Each user is assigned with an L-bit unique ID (with
2L ≥ K).

As we do not assume that the clocks of these K users are
synchronized (to the global clock), every user operates on its
local time. Denote by Xi(t), i = 1, 2, . . . ,K, the channel
selected by user i at its local time t. The time-to-rendezvous
(TTR), denoted by T , is the first time that these K users select
a common channel that is available to every user, i.e.,

T = inf{t : X1(t+ d1) = X2(t+ d2) = . . . = XK(t+ dK)},
(2)

where di, i = 1, 2, . . . ,K, are the clock drifts to the global
clock.

Based on the two assumptions in (A1) and (A2), our
contributions of this paper are as follows:
(i) We propose a new class of strong symmetrization mappings
to encode user IDs for multichannel rendezvous. This class
of mappings has nicer properties than the symmetrization
mappings in [26] for speeding up the rendezvous process. By
using the C-transform in [34], [35], we show there exist strong
symmetrization mappings with code rates arbitrarily close to 1.
Utilizing the existing 4B5B encoding scheme, we also propose
a strong symmetrization mapping with code rate near 80%.
(ii) Based on strong symmetrization mappings, we propose the
two-prime modular clock algorithm in Algorithm 4 for obliv-
ious rendezvous of two users. In the original modular clock
algorithm, there is no guarantee that two users can rendezvous
within a finite number of time slots (see e.g., Proposition 5
of [9]). Our two-prime modular clock algorithm fixes this
problem and guarantees that the MCTTR for users i and j
is upper bounded by 6Mninj for the 4B5B encoding, where
M = (⌈L/4⌉∗5+6). In particular, when 2L = K, the MCTTR
upper bound is O((log2 K)ninj), which is comparable to the
Conversion Based Hopping (CBH) algorithm in [25] and the
Advanced Rendezvous Protocol [26] (see Table I). Moreover,
from our simulation results, its ETTR is almost the same as
that of the random algorithm and is much better than other
CH algorithms in the literature, including Modified Modular
Clock Algorithm [9], FRCH [17], CBH [25] and Advanced
Rendezvous Protocol [26].
(iii) We extend the two-prime modular clock algorithm for
multiuser rendezvous by keeping a certain set of state infor-
mation. To motivate the study of multiuser rendezvous, it was
argued in [31] that a group of users need to rendezvous on the

3

TABLE I: MCTTR comparisons for oblivious rendezvous
algorithms with the unique ID assumption

Algorithms MCTTR

CBH [25] O(Lmax[ninj]
2)(i)

Adv. rdv [26] O(Lninj)
(i)

Two-prime (this paper) O(Lninj)
(i)

(i): L is a constant depending on the number of users K

same channel periodically so as to update their common time-
dependent group key for secure communication. Such a time-
dependent key update cannot be achieved by a sequence of
pairwise rendezvous. Other applications and generalizations,
including local broadcast and data aggregation, were addressed
in [32]. As in [11], [19], when a group of users rendezvous on
a channel, a leader is elected and both the state information
and clocks are synchronized to those of the leader. The
key challenge for the multiuser rendezvous is then how to
adjust the CH sequences after a successful rendezvous of a
subset of users so as to speed up the rendezvous process. We
consider two different extensions: the stick together algorithm
in Algorithm 5 and the spread out algorithm in Algorithm 6.
In the stick together algorithm, all the users following a leader
hop along with the leader. On the other hand, in the spread
out algorithm, a user following a leader may hop on one of its
available channels that is different from the channel selected
by its leader. Our simulation results show that the ETTR of our
stick together algorithm is still almost the same as that of the
random algorithm. Moreover, the spread out algorithm is not
always better than the stick together algorithm as commonly
claimed in the literature (see e.g., [13]). In particular, when
the number of common channels among a set of multiple
users is very small, the spread out algorithm that hops on
one of its available channels does not improve the rendezvous
probability.

The rest of this paper is organized as follows: In Sec-
tion II, we consider the two-user rendezvous problem. There
we propose the strong symmetrization mappings, the 4B5B
encoding and the two-prime modular clock algorithm. In
Section III, we extend the two-prime modular clock algorithm
for the multiuser rendezvous problem. In Section IV, we
conduct extensive simulations to compare the performance of
our two-prime modular clock algorithm with that of some
best-performed channel hopping algorithms in the literature.
Finally, we conclude the paper in Section V.

II. TWO-USER RENDEZVOUS

In this section, we consider the case with two users, i.e.,
K = 2. To gain some insights of the multichannel rendezvous
problem, let us first consider a simple search problem. Suppose
there are n items and only ng items of these n items are
good. The search problem is to minimize the time to find a
good item. Clearly, if we examine an item and find out that
it is not a good item, then this item should not be examined
again (as it is a complete waste of time to do it again). As
such, the optimal policy is to simply go through these n items
one by one. As the ng good times are uniformly distributed

among any sequential search order of the n times, we can
derive from the order statistics that the average time for the
optimal policy to find a good item is (n+ 1)/(ng + 1). Now
we map the oblivious rendezvous problem with two users to
this simple search problem. Consider users i and j. As there is
no universal labelling of the channels, one can view each pair
of available channels of these two users (ci(τ1), cj(τ2)) as an
item and thus there are ninj items and ni,j good items, where
ni,j = |ci ∩ cj | is the number of common available channels
between users i and j. This then leads to the following lower
bound for the expected time-to-rendezvous (ETTR) for the
multichannel rendezvous problem with two users.

Proposition 1: For the oblivious rendezvous problem, the
ETTR for the two users i and j is lower bounded by (ninj +
1)/(ni,j + 1), where ni,j is the number of common available
channels between users i and j.

For the oblivious rendezvous problem, each user learns
nothing about the other user after an unsuccessful rendezvous.
This is worse than the simple search problem where a bad item
can be identified after an unsuccessful search. In view of this,
a good CH algorithm for the oblivious rendezvous problem
should avoid repeatedly hopping over the same channel pair
even though the two users are not aware of whether they
have hopped to a particular channel pair before. If ni and
nj are relatively prime, this can be done perfectly by cycling
through each available channel of a user over time (see the
ϵ1-rendezvous in [26]). In this case, the lower bound in
Proposition 1 is achieved. Of course, the hard part is when
ni and nj are not relatively prime.

We note that if there is a universal labelling of the channels,
then it is possible for each user to learn something about the
other user after an unsuccessful rendezvous. When the clocks
of the two users are synchronized and all the channels are
available, it was shown in [28] that finite projective planes
can be used for each user to eliminate some choices of lines
of the other user after an unsuccessful rendezvous. Such an
approach was shown to be optimal in the sense of achieving
the ETTR lower bound in the symmetric and synchronous
setting in [28]. In the case that the clocks of the two users are
not synchronized, difference sets can be used for eliminating
some choices of the starting phase of the other user [8], [12],
[16]. In particular, it was shown in Theorem 3 of [16] that the
minimum period of a periodic CH sequence that has a bounded
MCTTR for a system of N channels in the symmetric and
asynchronous setting is at least N2 + N + 1 for N ≥ 3 and
N is a prime power. Such a lower bound is achieved by a CH
sequence for N = 8 in [12].

A simple random algorithm is considered in Algorithm 1
of [9]. For the random algorithm, each user randomly selects
one of its available channels at time t. By doing so, the ETTR
of the random algorithm is ninj/ni,j , which is very close to
the lower bound in Proposition 1 (when ni,j is not too small).
Most existing multichannel rendezvous algorithms (see e.g.,
[15], [17], [20], [21]) focus on MCTTR and they perform
poorly in terms of ETTR when compared with the random
algorithm. The rationale why these algorithms perform poorly
is because there is usually a “stay” mode in these algorithms.
When a user is in its “stay” mode, it stays in the same channel

4

for a rather long period of time. As such, it is very likely
that two users are in the “stay” mode and they stay in two
different channels for a long period of time. This corresponds
to the scenario that a bad item is repeatedly examined for
many times in the simple search problem.

Motivated by this, we will propose a CH algorithm that has
no stay mode so as to reduce the possibility of hopping the
same channel pair repeatedly. We will show that the MCTTR
of our CH algorithm is O(ninj) and its ETTR is comparable
to that of the random algorithm.

A. Deterministic modular clock algorithm

Algorithm 1 The deterministic modular clock algorithm

Require: An available channel set c = {c(0), c(1), . . . , c(n−
1)}, a period p ≥ n, a slope r > 0 that is relatively prime
to p, and a bias 0 ≤ b ≤ p− 1.

Ensure: A deterministic sequence {α(t), t = 0, 1, . . .} with
α(t) ∈ c.

1: Let z = 0.
2: For each t, let k = ((r ∗ t+ b) mod p).
3: If k ≤ n− 1, let α(t) = c(k).
4: Otherwise, let α(t) = c(z) and update z ← ((z +

1) mod n).

Our CH algorithm is inspired by the modular clock algo-
rithm in [9]. In order to apply the modular clock algorithm
for multiuser rendezvous, we remove the random part in
the original modular clock algorithm in [9]. In Algorithm
1, we outline the deterministic modular clock algorithm. In
addition to the available channel set, the algorithm needs three
parameters: the period p that is an integer not smaller than the
number of available channels n, the slope r that is relatively
prime to p, and the bias that is an integer selected from
{0, 1, . . . , p − 1}. If the clock k in Line 3 of the algorithm
is not greater than n − 1, then a channel is selected from
the available channel set by using the clock as the index.
Otherwise, a channel in the available channel set is selected
in a round-robin fashion according to the pointer z (to mimic
a random selection).

In the following lemma, we show two important properties
of the deterministic modular clock algorithm. The proof can
be easily done by using the Chinese Remainder Theorem and
thus omitted due to space limitation.

Lemma 2: Suppose that user i generates the sequence
{αi(t), t ≥ 0} by using the deterministic modular clock
algorithm in Algorithm 1 with the available channel set
ci = {ci(0), ci(1), . . . , ci(ni − 1)}, the period pi ≥ ni, the
slope ri > 0 that is relatively prime to pi, and the bias
0 ≤ bi ≤ pi − 1.

(i) For any integer d, ci ⊂ {αi(t+d), t = 0, 1, . . . , pi−
1}.

(ii) Let ci × cj = {(ci(τ1), cj(τ2)), τ1 = 0, 1, . . . , ni −
1, τ2 = 0, 1, . . . , nj − 1} be the set that contains
all the pairs of available channels for users i and
j. If pi and pj are relatively prime, then ci × cj ⊂

{(αi(t+ d1), αj(t+ d2)), t = 0, 1, . . . , pipj − 1} for
any integers d1 and d2.

From Lemma 2(ii), we have the following corollary.
Corollary 3: Suppose that user i (resp. user j) uses the

deterministic modular clock algorithm in Algorithm 1 to
generate its CH sequence with the period pi (resp. pj). If pi
and pj are relatively prime, then under (A1) these two users
will rendezvous on every common available channel at least
once within pipj time slots.

We note that Corollary 3 was previous shown in Theorem 4
of [9] when pi and pj are assumed to be two different primes.
As shown in [9], the problem arises when pi and pj are not
relatively prime. In this case, there is no guarantee that these
two users can rendezvous within a finite number of time slots
(see e.g., Proposition 5 of [9]). To address such a problem,
it is suggested in [9] that user i randomly selects a prime in
[ni, 2ni]. Then it was shown numerically that the probability
for two users to select the same prime is very small when the
number of available channels for each user is large. But this
still does not guarantee that two users can rendezvous within
a finite number of time slots.

B. Strong symmetrization mapping

To ensure that two users can select two co-prime periods for
the deterministic modular clock algorithm, one common trick
(see e.g., [14], [22], [26], [33]) is to use the unique ID property
in (A2) to map the L-bit ID into another M -bit cyclic unique
codeword. An M -bit codeword

(
w(0), w(1), . . . , w(M − 1)

)
is cyclically unique if, for any cyclic shift d, the code-
word

(
w′(0), w′(1), . . . , w′(M − 1)

)
is not identical to(

w(d), w(d+ 1), . . . , w((M − 1 + d) mod M)
)
. Such a map-

ping is called the symmetrization mapping in [26]. Then each
user constructs two sequences from the deterministic modular
clock algorithm: the 0-sequence with the period p0 and the 1-
sequence with the period p1. The slopes (resp. biases) of both
0/1-sequences are set to 1 (resp. 0). The final CH sequence of a
user is constructed by interleaving M 0/1-sequences according
to the binary value of its M -bit cyclic unique codeword.
Specifically, let α0(t) (resp. α1(t)) be the 0-sequence (resp. 1-
sequence) at time t. If w(τ) = 0 (resp. 1) for 0 ≤ τ ≤M −1,
then we set the CH sequence X(τ + qM) = α0(q) (resp.
X(τ + qM) = α1(q)) for q = 0, 1, 2, As long as the
period of any 0-sequence is relatively prime to the period
of any 1-sequence, the result in Corollary 3 guarantees the
rendezvous of any two users within Mp0,maxp1,max time slots,
where p0,max (resp. p1,max) is the maximum of the periods of
the 0-sequences (resp. 1-sequences). One simple choice is to
set the period pi,0 of the 0-sequence of user i to be a power
of 2 that is not smaller than ni, i.e.,

pi,0 = 2⌈log2 ni⌉, (3)

(where ⌈x⌉ is the ceiling function that represents the smallest
integer that is not less than x), and the period pi,1 of the 1-
sequence of user i to an odd number that is not smaller than ni.

5

Clearly, for such a choice, pi,0 and pj,1 are relatively prime.
Moreover, for all i = 1, 2, . . . ,K,

ni ≤ pi,1 ≤ ni + 1, (4)
ni ≤ pi,0 < 2ni. (5)

From (4) and (5), any two users will rendezvous within
2Mnmax(nmax + 1) time slots, where nmax = max1≤i≤K ni

is the maximum number of available channels. However, there
are still two shortcomings of the above approach:

(i) The mapping from the L-bit unique ID into another
M -bit cyclic unique codeword in the literature is not
easy to implement if we would like to keep M close
to L [26]. For instance, for a 48-bit MAC address, it
was proposed in [14] that adding another 48 bits of
1’s and 48 bits of 0’s to the MAC address results in a
144-bit cyclically unique codeword. A mapping algo-
rithm that requires M = L+⌈

√
L⌉(2+⌈log2 L⌉)+3

was proposed in [26]. For M = 48, this requires L
to be 107.

(ii) Even though the MCTTR is bounded, the ETTR is
rather poor in comparison with the random algorithm
in [9]. This is because pi,0 and pj,0 in (3) are not
relatively prime to each other and a lot of time
slots are wasted when both users are using their 0-
sequences.

To address these two problems, we need a stronger property
than the cyclic unique property for the symmetrization class
in [26].

Definition 4: (Strong symmetrization mapping) A set of
M -bit codewords {wi = (wi(0), wi(1), . . . , wi(M − 1)), i =
1, 2, . . . ,K} is called a strong M -symmetrization class if for
any integer d and i ̸= j, (at least) one of the following two
properties is satisfied:

(i) There exist 0 ≤ τ1, τ2 ≤ M − 1 such that
wi(τ1) = 1, wj((τ1 + d) mod M) = 0 and
wi(τ2) = 0, wj((τ2 + d) mod M) = 1.

(ii) There exist 0 ≤ τ1, τ2 ≤ M − 1 such that wi(τ1) =
wj((τ1 + d) mod M) = 0, and wi(τ2) ̸= wj((τ2 +
d) mod M).

A one-to-one mapping from the set of L-bit unique IDs
to a strong M -symmetrization class is called a strong M -
symmetrization mapping.

Clearly, a strong M -symmetrization class is an M -
symmetrization class in [26]. To construct a strong M -
symmetrization mapping, we use the C-transform in [34], [35].

Definition 5: (C-transform [34]) Consider an M -vector
UM = (u1, u2, . . . , uM−1, uM) with ui ∈ N, i = 1, 2, . . . ,M .
Define a mapping C : x ∈ {0} ∪ N 7→ {0, 1}M as follows:

C(x) =
(
γ1(x), γ2(x), . . . , γM−1(x), γM (x)

)
, (6)

where
γM (x) =

{
1 if x ≥ uM

0 otherwise , (7)

and for i = M − 1, . . . , 2, 1, γi(x) is given recursively by

γi(x) =

{
1 if x−

∑M
k=i+1 γk(x) · uk ≥ ui

0 otherwise
. (8)

The mapping C(x) is called the C-transform of x with
respect to the basis vector UM . Intuitively, the C-transform
can be viewed as a “greedy” binary numeral system as the C-
transform of x is obtained by recursively subtracting x from
uM . In particular, if one selects ui = 2i−1 for all i, then
the C-transform of x is simply the usual binary representation
of x. In the following proposition, we state two important
properties of the C-transform: the complete decomposition
property (Lemma 5 of [34]) and the no consecutive 1’s
property (Lemma 3 of [35]).

Proposition 6:

(i) (Complete decomposition [34]) Assume that u1 =
1, and 1 ≤ ui+1 ≤

∑i
k=1 uk+1, i = 1, 2, . . . ,M−1.

Then x =
∑M

k=1 γk(x) · uk for 0 ≤ x ≤
∑M

k=1 uk.
(ii) (No ℓ consecutive 1’s [35]) If, furthermore, for some

ℓ ≥ 2, ui+1 ≤
∑i

k=i−ℓ+1 uk for i = ℓ, . . . ,M − 1,
then for all 0 ≤ x <

∑M
k=M−ℓ+1 uk, there are no ℓ

consecutive 1’s in C(x), i.e., there does not exist any
i such that γi(x) = γi−1(x) = · · · = γi−ℓ+1(x) = 1.

To understand these two properties, consider the Fibonacci
numeral system with the 6-vector U6 = (1, 2, 3, 5, 8, 13) as
the basis vector. Then for 0 ≤ x ≤ 32, the C-transform
uniquely maps x to a binary 6-vector. Moreover, for 0 ≤ x ≤
20, there is no two consecutive 1’s in C(x). For example,
C(20) = (0, 1, 0, 1, 0, 1) and C(15) = (0, 1, 0, 0, 0, 1). From
this example, we can map any four bit ID to a six bit codeword
that does not have 2 consecutive 1’s. In general, if we choose
ui = 2i−1, i = 1, 2, . . . , ℓ and ui+1 =

∑i
k=i−ℓ+1 uk for

i = ℓ, . . . , M̃ − 1 for some M̃ > ℓ, then the two properties
in Proposition 6 are satisfied and thus any M̃ -bit codeword
from the C-transform does not have ℓ consecutive 1’s. Now
we construct the (ℓ + 2)-bit delimiter with ℓ consecutive
1’s in the middle and two 0’s on both ends. We show in
Theorem 7 that adding this delimiter to an M̃ -bit codeword
from the C-transform is a strong M -symmetrization mapping
with M = M̃ + ℓ + 2. Such a strong M -symmetrization
mapping is outlined in Algorithm 2.

Theorem 7: Under the unique ID assumption in (A2),
Algorithm 2 is a strong symmetrization mapping from
an L-bit ID

(
γ1, γ2, . . . , γL

)
to an M -bit codeword(

w(0), w(1), . . . , w(M − 1)
)
.

Proof. From Proposition 6 (ii) and Algorithm 2, we know
that the substring of ℓ consecutive 1’s only appears in the
(ℓ+2)-bit delimiter and thus it appears exactly once in the M -
bit cyclically shifted codeword

(
w(d), w(d+1), . . . , w((M −

1 + d) mod M)
)

for any integer 0 ≤ d ≤ M − 1. Now
consider the codeword

(
wi(0), wi(1), . . . , wi(M−1)

)
and the

cyclically shifted codeword
(
wj(d), wj(d+ 1), . . . , wj((M −

1 + d) mod M)
)
.

Case 1. (d mod M) ̸= 0:
In this case, the (ℓ + 2)-bit delimiters of two M -bit code-

words are not aligned. Then we have wi(1) = . . . = wi(ℓ) = 1
and wj(t + d) mod M)), t = 1, . . . , ℓ, cannot be all 1.
Thus, there exists 1 ≤ τ1 ≤ ℓ such that wi(τ1) = 1 and
wj((τ1+d) mod M) = 0. On the other hand, we have wj(1) =
. . . = wj(ℓ) = 1 and wi((t−d) mod M)), t = 1, . . . , ℓ, cannot

6

Algorithm 2 The C-transform strong symmetrization mapping

Require: An L-bit unique ID
(
γ1, γ2, . . . , γL

)
and a param-

eter ℓ.
Ensure: An M -bit codeword

(
w(0), w(1), . . . , w(M −1)

)
in

a strong M -symmetrization class.
1: Construct the basis vector by letting ui = 2i−1,

i = 1, 2, . . . , ℓ and ui+1 =
∑i

k=i−ℓ+1 uk for i =

ℓ, . . . , M̃ − 1, where M̃ is the smallest integer such that∑M̃
k=M̃−ℓ+1 uk ≥ 2L.

2: Convert the L-bit ID into an integer x ∈ [0, 2L − 1] by
letting x =

∑L
i=1 γi · 2i−1.

3: Use the C-transform to compute the M̃ -bit codeword
C(x) =

(
γ1(x), γ2(x), . . . , γM̃ (x)

)
.

4: Generate an ℓ-bit sequence with ℓ consecutive 1’s and
then add a 0 to each end of the ℓ-bit sequence to form an
(ℓ + 2)-bit delimiter, e.g., the 6-bit delimiter 011110 for
ℓ = 4.

5: Add the (ℓ + 2)-bit delimiter in front of the
M̃ -bit codeword to form the M -bit codeword(
w(0), w(1), . . . , w(M − 1)

)
, where M = M̃ + ℓ + 2,

w(0) = 0, w(1) = . . . = w(ℓ) = 1, w(ℓ + 1) = 0,
w(ℓ+ 1 + i) = γi(x), i = 1, 2, . . . , M̃ .

be all 1. Thus, there exists 1 ≤ ((τ2 + d) mod M) ≤ ℓ such
that wi(τ2) = 0 and wj((τ2 + d) mod M) = 1.
Case 2. (d mod M) = 0: In this case, the (ℓ+2)-bit delimiters
of two M -bit codewords are aligned. Choose τ1 = 0 and
we have wi(τ1) = wj(τ1) = wj((τ1 + d) mod M) = 0.
From the uniqueness of the L-bit ID assumption in (A2) and
the one-to-one mapping of the C-transform, we know there
exists ℓ + 2 ≤ τ2 ≤ M − 1 such that wi(τ2) ̸= wj(τ2) =
wj((τ2 + d) mod M).

The parameter ℓ in Algorithm 2 plays an important role
in the code rate L/M . Note that uk in Algorithm 2 grows
asymptotically at the exponentially rate ρ, i.e., uk ≈ ρk, where
ρ is the unique solution in the interval (1, 2) of the following
equation:

1 + ρ+ ρ2 + . . .+ ρℓ−1 = ρℓ.

In particular, for ℓ = 2, we have ρ = 1+
√
5

2 and the
asymptotic code rate is log2 ρ ≈ 0.6942. For ℓ = 5, we have
ρ ≈ 1.965848 and the asymptotic code rate is log2 ρ ≈ 0.9752.
Thus, M grows linearly in L in the asymptotic regime and
the asymptotic code rate is very close 1 even for a small
ℓ. The computational complexity of the C-transform strong
symmetrization mapping for an L-bit ID is O(M) and thus
O(L). However, as shown in [35], the hardware implemen-
tation complexity (in terms of the number of logic gates)
is O(M2) and that might pose a serious hardware design
challenge even for a 48-bit MAC address.

One trick to reduce the hardware implementation complex-
ity of the C-transform strong symmetrization mapping is to
divide the L-bit ID into k parts with

L = L1 + L2 + . . . Lk.

TABLE II: The 4B5B encoding table

4B data 5B code 4B data 5B code
0000 11110 1000 10010
0001 01001 1001 10011
0010 10100 1010 10110
0011 10101 1011 10111
0100 01010 1100 11010
0101 01011 1101 11011
0110 01110 1110 11100
0111 01111 1111 11101

Then use the C-transform with the parameter ℓ for each part
to construct an M̃k-bit codeword. By inserting a 0 between
the two codewords of two successive parts, we then have an
M̃ -bit codeword that does not have ℓ consecutive 1’s, where
M̃ = M̃1+. . . M̃k+k−1. As in Algorithm 2, the last step is to
add the (ℓ+2)-bit delimiter to the M̃ -bit codeword to form an
M -bit codeword with M = M̃ + ℓ+2. For example, suppose
L = 48 (for a MAC address). We divide it into two parts,
each with 24 bits. For ℓ = 5, we then have M̃1 = M̃2 = 25,
M̃ = 51, and M = 58. This is much smaller than 144 in [14]
and 107 in [26].

C. 4B5B encoding

In this section, we propose a much simpler strong sym-
metrization mapping than the C-transform in the previous
section. The idea is to use the standard 4B5B coding of
the L-bit unique ID to construct a strong M -symmetrization
mapping, where M = ⌈L/4⌉∗5+6. In particular, for L = 48,
we have M = 66, which is slightly larger than 58 by using
the C-transform at the end of the previous section. The 4B5B
encoding scheme is widely used in computer networks (see
e.g., [36]). In such an encoding scheme, each piece of 4 bits
is uniquely mapped to a 5-bit codeword (see Table II). One
salient feature of the 4B5B encoding scheme is that each 5-bit
codeword has at most one leading 0 as well as at most two
trailing 0’s. Thus, encoding the L-bit ID results in a ⌈L/4⌉∗5-
bit codeword that does not have 4 consecutive 0’s. Now we
add the 6-bit delimiter 100001 in front of the ⌈L/4⌉ ∗ 5-bit
codeword to construct an M = ⌈L/4⌉ ∗ 5 + 6 codeword. The
details of the mapping from an L-bit ID to an M -bit codeword
is shown in Algorithm 3.

Algorithm 3 The 4B5B strong symmetrization mapping

Require: An L-bit unique ID.
Ensure: An M -bit cyclic unique codeword(

w(0), w(1), . . . , w(M − 1)
)
, where M = ⌈L/4⌉ ∗ 5+ 6.

1: If L is not an integer multiple of 4, append 4−(L mod 4)
0’s to the unique ID to form a ⌈L/4⌉ ∗ 4-bit ID.

2: Use the 4B5B encoding scheme to encode the ⌈L/4⌉ ∗ 4-
bit ID into a ⌈L/4⌉ ∗ 5-bit codeword.

3: Add the 6-bit delimiter 100001 in front of the ⌈L/4⌉∗5-bit
codeword to form a (⌈L/4⌉ ∗ 5 + 6)-bit codeword.

In the following lemma, we show that the 4B5B mapping
in Algorithm 3 is indeed a strong symmetrization mapping.

Lemma 8: Under the assumption in (A2), let(
wi(0), wi(1), . . . , wi(M − 1)

)
be the codeword generated

7

from Algorithm 3 by using the L-bit ID of user i. Then such
a mapping is a strong M -symmetrization mapping.
Proof. From the 4B5B mapping in Algorithm 3, we know
that the substring of 4 consecutive 0’s only appears in the 6-
bit delimiter 100001 and thus it appears exactly once in the
M -bit codeword for any cyclic shift d. By inverting each bit
of the M -bit codeword, we have the 6-bit delimiter 011110
and the substring of 4 consecutive 1’s appears exactly once in
the inverted M -bit codeword for any cyclic shift d. Following
the same argument as that in the proof of Theorem 7 then
leads to the desired result.

D. Two-prime modular clock algorithm

Now we combine the deterministic modular clock algorithm
in Algorithm 1 and the strong symmetrization mappings in
Algorithm 2 and Algorithms 3 to construct a CH that can
provide guaranteed rendezvous under the assumption that each
user is assigned with a unique ID. Such an algorithm is called
the two-prime modular clock algorithm in this paper and its
detail is shown in Algorithm 4. The idea, as described before,
is to interleave M 0/1-sequences according to the binary
value of its M -bit codeword from the strong symmetrization
mapping of the L-bit ID. For user i, we selects two primes
pi,0 and pi,1 such that ni ≤ pi,0 < pi,1. A 0-sequence
(resp. 1-sequence) of user i is then constructed by using the
deterministic modular clock algorithm with the prime pi,0
(resp. pi,1). The slope parameter and the bias parameter are
determined by a deterministic hash function so that these two
parameters appear to be “random.” Then the CH sequence of a
user is constructed by interleaving M 0/1-sequences according
to its M -bit codeword.

We note that it is possible that pi,0 = pj,1 and thus
the previous relatively prime argument for interleaving M
0/1-sequences according to cyclic unique codewords fails.
Fortunately, the two properties for a strong symmetrization
mapping is much stronger than the cyclic unique property
and we can use them to prove guaranteed rendezvous in the
following theorem.

Theorem 9: Suppose the assumptions in (A1) and (A2)
hold and all the K users use Algorithm 4 to generate their
CH sequences. Then user i and user j will rendezvous
on every common available channel at least once within
M max[pi,0pj,1, pi,1pj,0] time slots.
Proof. Let d be the clock shift between these two users. Note
from Algorithm 4 that for t ∈ {τ, τ +M, τ +2M, . . .}, user i
uses a wi(τ)-sequence and user j uses a wj(τ + d)-sequence.
In view of the definition of the strong M symmetrization
mapping in Definition 4, we consider the following two cases.
Case 1. There exist 0 ≤ τ1, τ2 ≤ M − 1 such that
wi(τ1) = 1, wj((τ1 + d) mod M) = 0 and wi(τ2) =
0, wj((τ2 + d) mod M) = 1:

In this case, for t ∈ {τ1, τ1 +M, τ1 +2M, . . .}, user i uses
a 1-sequence and user j uses a 0-sequence. The 1-sequence
of user i is generated from the deterministic modular clock
algorithm with the prime pi,1 and and the 0-sequence of user
j is generated from the deterministic modular clock algorithm

with the prime pj,0. If pi,1 ̸= pj,0, then we conclude from
Corollary 3 that these two users will rendezvous on every
common available channel at least once within Mpi,1pj,0 time
slots.

On the other hand, if pi,1 = pj,0, then we have

pj,1 > pj,0 = pi,1 > pi,0.

Now for t ∈ {τ2, τ2 + M, τ2 + 2M, . . .}, user i uses a 0-
sequence and user j uses a 1-sequence. The 0-sequence of user
i is generated from the deterministic modular clock algorithm
with the prime pi,0 and and the 1-sequence of user j is
generated from the deterministic modular clock algorithm with
the prime pj,1. Since pj,1 ̸= pi,0, we know from Corollary
3 that these two users will rendezvous on every common
available channel at least once within Mpi,0pj,1 time slots.
Case 2. There exist 0 ≤ τ1, τ2 ≤ M − 1 such that wi(τ1) =
wj((τ1+d) mod M) = 0, and wi(τ2) ̸= wj((τ2+d) mod M):

In this case, for t ∈ {τ1, τ1 +M, τ1 +2M, . . .}, user i uses
a 0-sequence and user j uses a 0-sequence. The 0-sequence
of user i is generated from the deterministic modular clock
algorithm with the prime pi,0 and the 0-sequence of user j
is generated from the deterministic modular clock algorithm
with the prime pj,0. If pi,0 ̸= pj,0, then we conclude from
Corollary 3 that these two users will rendezvous on every
common available channel at least once within Mpi,0pj,0 time
slots.

On the other hand, if pi,0 = pj,0, then we have

pi,1 > pi,0 = pj,0,

pj,1 > pj,0 = pi,0. (9)

Now for t ∈ {τ2, τ2+M, τ2+2M, . . .}, user i uses a wi(τ2)-
sequence and user j uses a wj(τ2+d)-sequence with wi(τ2) ̸=
wj(τ2+d). In view of (9), we conclude from Corollary 3 that
these two users will rendezvous on every common available
channel at least once within M max[pi,0pj,1, pi,1pj,0] time
slots.

Since there is a prime between [n, 2n] [37] and another
prime in [2n, 3n] [38], we then have the following corollary.

Corollary 10: Suppose the assumptions in (A1) and (A2)
hold and all the K users use Algorithm 4 to generate their CH
sequences. Furthermore, user i chooses pi,0 as the smallest
prime not smaller than ni and pi,1 as the smallest prime
larger than pi,0, i = 1, 2, . . . ,K. Then user i and user j will
rendezvous on every common available channel at least once
within 6Mninj time slots. In particular, for the 4B5B strong
symmetrization mapping, we have M = (⌈L/4⌉ ∗ 5 + 6) for
an L-bit ID.

Now we comment on the ETTR of the two-prime modular
clock algorithm. As mentioned at the beginning of this section,
one way to reduce the ETTR is to avoid introducing “stay”
modes that repeatedly examine the same channel pairs of two
users. As such, the slope r chosen in Line 8 of our algorithm is
an integer in [1, p−1] and it changes in every time slot. As the
slope r is nonzero, there is no “stay” mode in our algorithm.
On the other hand, the bias b chosen in Line 9 of our algorithm
is an integer in [0, p − 1]. Thus, the total number of “lines”

8

Algorithm 4 The two-prime modular clock algorithm

Require: An available channel set c = {c(0), c(1), . . . , c(n−
1)}, two primes p1 > p0 ≥ n, and an L-bit ID.

Ensure: A deterministic sequence {X(t), t = 0, 1, . . .} with
X(t) ∈ c.

1: Use a strong M -symmetrization mapping (such as Algo-
rithm 2 or Algorithm 3) to construct an M -bit codeword
(w(0), w(1), . . . , w(M − 1)) from the L-bit ID.

2: Let z = 0.
3: For each t, compute the following variables:
4: q = ⌊t/M⌋.
5: s = (t mod M).
6: p = pw(s).
7: y = (s mod (p(p− 1))).
8: r = (y mod (p− 1)) + 1.
9: b = ⌊y/(p− 1)⌋.

10: k = ((r ∗ q + b) mod p).
11: If k ≤ n− 1, let X(t) = c(k).
12: Otherwise, let X(t) = c(z) and update z ← ((z +

1) mod n).

with nonzero slopes is p(p − 1) and each y in Line 7 of our
algorithm corresponds to one of the time-interleaved p(p− 1)
“lines”. As such, our algorithm selects each available channel
with an equal probability in the long run and thus appears to be
random. In Section IV, we will show by computer simulations
that the ETTR of our algorithm for two-user rendezvous is
almost the same as that of the random algorithm.

To provide a rigorous argument for the ETTR of the
two-prime modular clock algorithm, let us consider using
(deterministic) pseudorandom number generators to generate
the slope r and the bias b (instead of using the deterministic
hash functions in Algorithm 4). Specifically, let h1(t, p),
h2(t, p) and h3(t, p) be three pseudorandom number gener-
ators that return “independent” and “uniformly distributed”
integers in [0, p − 1] with the seed t. Then we can replace
r = h1(s, p − 1) + 1 in Line 8, b = h2(s, p) in Line 9
and X(t) = c(h3(t, n)) in Line 12. If the same p is used
for t = 0, 1, 2, . . . ,M − 1, then the integers k(t) in Line 10
are clearly independent and uniformly distributed in [0, p−1].
Even though we use two different primes p0 and p1, the family
of random variables {X(t), t = 0, 1, 2, . . . ,M − 1}, in Lines
11 and 12 are independent as they are deterministic functions
of the three independent random variables, h1(s, p − 1),
h2(s, p) and h3(t, n). It is also not hard to see that X(t),
t = 0, 1, 2, . . . ,M − 1, are chosen from the available channel
set c = {c(0), c(1), . . . , c(n − 1)} with equal probabilities.
Thus, for t = 0, 1, 2, . . . ,M−1, the two-prime modular clock
algorithm behaves as if it were the random algorithm. On
the other hand, we note that X(t) and X(t + qM) are not
independent as they both have the same s and thus the same
r and b. Such a correlated property ensures that the MCTTR
is bounded as proved in Theorem 9.

Now we use these two properties to bound the ETTR of
the two-prime modular clock algorithm. Let h = ni,j/ninj

be the probability that the two users hop on one common

available channel by using the random algorithm. Clearly,
the ETTR of the random algorithm is 1/h. Also, let H =
M max[pi,0pj,1, pi,1pj,0] be the upper bound for the time-to-
rendezvous T in Theorem 9. As the two-prime modular clock
algorithm behaves as if it were the random algorithm for the
first M time slots, we have

E[T] =
H∑
t=1

t · P(T = t)

=
M∑
t=1

t · P(T = t) +
H∑

t=M+1

t · P(T = t)

=
M∑
t=1

t · h(1− h)t−1 +
H∑

t=M+1

t · P(T = t)

≤
∞∑
t=1

t · h(1− h)t−1 +H
H∑

t=M+1

P(T = t)

= 1/h+H · P(T > M)

= 1/h+H · (1− h)M . (10)

As H is linear in M , the second term converges to 0 as M →
∞. Thus, the ETTR of the two-prime modular clock algorithm
is almost the same as that of the random algorithm when M
is large.

The idea of using two primes to generate CH sequences
is not new. For instance, under the two-radio assumption,
i.e., each user can hop on two channels at the same time,
it was shown in Algorithm 2 of [23] that the two users can
rendezvous in O(ninj) time slots. By using the strong sym-
metrization mapping, our two-prime modular clock algorithm
does this with a single radio.

As an illustrating example, let us consider a CRN with two
users and five channels {0, 1, 2, 3, 4}. The available channel
set for user 1 (resp. user 2) is c1 = {c1(0), c1(1), c1(2)} =
{0, 2, 4} (resp. c2 = {c2(0), c2(1), c2(2)} = {3, 0, 1}). Thus,
both users have three available channels and the only common
available channel is channel 0. Each user is assigned with a
four-bit ID, i.e., L = 4, and the ID of user 1 (resp. user 2)
is 0100 (resp. 0001). Using the 4B5B mapping in Algorithm
3 yields a 10-bit codeword 10000101010 for user 1 (resp.
10000101001 for user 2). Thus, M = 10. As each user has
three available channels, we have p1,0 = p2,0 = 3 and p1,1 =
p2,1 = 5 for the two-prime modular clock algorithm. In Figure
1, we show the CH sequences for these two users from t = 0
(the top sequence for user 1 and the bottom sequence for user
2). Note that the difference between the two local clocks of
these two users is 3 in this figure.

III. MULTIUSER RENDEZVOUS

For the multiuser rendezvous problem, one commonly used
approach is to achieve multiuser rendezvous by a series of
pair-wise rendezvous (see e.g., [11], [13], [19]). The basic
idea, as described in [11], [13], [19], is to elect a leader when
a set of users rendezvous on a channel. Then every user in this
set hops along with the leader. To work with the two-prime
modular clock algorithm in Algorithm 4, each user is required
to maintain the following state information:

9

0 0 2 2 4 2 0 2 2 4 4 2 4 4 0 0 4 2 0 4

3 3 0 0 1 0 3 0 0 0 1 0 1 1 3 3 1 0 3 1

rendezvous rendezvous

Fig. 1: An illustrating example for the two-prime modular clock algorithm with two users (the top sequence for user 1 and
the bottom sequence for user 2).

(i) user’s available channel set

c = {c(0), c(1), . . . , c(n− 1)},

(ii) leader’s available channel set

c′ = {c′(0), c′(1), . . . , c(n′ − 1)},

(iii) the common channel set

c′′ = {c′′(0), c′′(1), . . . , c(n′′ − 1)},

(iv) leader’s two primes p1 > p0 ≥ n′, and
(v) leader’s L-bit ID.

Initially, each user considers itself as a leader and thus sets
leader’s available channel set and the common channel set to
be the same as its available channel set. Then each user selects
two primes following the selection in Corollary 10 and sets
leader’s L-bit ID according to its own ID. When a set of users
rendezvous on a channel, they exchange their state information
and their local clocks. Then a leader is elected among this set
of users. Each user in this set computes the new common
channel set from the intersection of the common channel sets
of these users. Moreover, each user in this set synchronizes
its clock to the clock of the leader and update its leader’s
available channel set, leader’s two primes and leader’s L-bit
ID to generate its CH sequence onwards. For instance, if user
i and user j rendezvous on a channel and user i is elected
as the leader, then user i (as the leader) updates its “common
channel set” by taking the intersection of c′′i and c′′j . Similarly,
user j also updates its “common channel set” by taking the
intersection of c′′i and c′′j . Moreover, user j synchronizes its
clock to user i’s clock and replaces its “leader’s available
channel set”, “leader’s two primes”, and “leader’s L-bit ID” by
user i’s “leader’s available channel set”, “leader’s two primes”,
and “leader’s L-bit ID”.

There are two issues that need to be further clarified: (i)
the method of electing the leader, and (ii) the method of
replacing a channel in the CH sequence of the leader that is
not an available channel to a user following the leader. Since
we assume that each user is assigned with a unique ID, one
common way to address the problem of electing a leader is
to elect the user with the largest ID. But this may not be
a good choice for the deterministic modular clock algorithm
as the period of the user with the largest ID might be very
large. A better alternative is to select the leader with the
smallest number of available channels. If there is a tie, then

the user with the largest ID among the users with the smallest
number of available channels is elected. On the other hand, one
solution for the second problem is for each user to hop only
on the channels in the common channel set. This is outlined
in the stick together algorithm in Algorithm 5.

Algorithm 5 The stick together channel hopping algorithm

Require: User’s available channel set c =
{c(0), c(1), . . . , c(n − 1)}, leader’s available channel set
c′ = {c′(0), c′(1), . . . , c(n′ − 1)}, a common channel set
c′′ = {c′′(0), c′′(1), . . . , c(n′′ − 1)}, leader’s two primes
p1 > p0 ≥ n′, and leader’s L-bit ID.

Ensure: A deterministic sequence {X(t), t = 0, 1, . . .} with
X(t) ∈ c.

1: Use a strong M -symmetrization mapping (such as Algo-
rithm 2 or Algorithm 3) to construct an M -bit codeword
(w(0), w(1), . . . , w(M − 1)) from leader’s L-bit ID.

2: Let z = 0.
3: For each t, follow Algorithm 4 to compute the clock k.
4: If c′(k) is a channel in the common channel set, i.e.,

c′(k) ∈ c′′, let X(t) = c′(k).
5: Otherwise, select a channel from the common channel

set by letting X(t) = c′′(z) and update z ← ((z +
1) mod n′′).

Since Algorithm 5 is a deterministic algorithm, the set of
users then hops along with the leader after their rendezvous.
This is why we call Algorithm 5 the stick together algorithm.
In the following theorem, we show an upper bound for the
MCTTR of K users.

Theorem 11: Suppose the assumptions in (A1) and (A2)
hold and each user chooses its initial two primes as in Corol-
lary 10 and uses Algorithm 5 to generate its CH sequence.
When a set of users rendezvous on a channel, the user with
the largest ID among the user(s) with the smallest number of
available channels in this set of users is elected as the leader
of this set of users. Then all the K users will rendezvous on
a common channel in 6Mnminnmax time slots, where

nmin = min
1≤i≤K

ni, (11)

nmax = max
1≤i≤K

ni, (12)

are the minimum number and the maximum number of avail-
able channels among the K users, respectively.

10

Proof. Let call = ∩Ki=1ci be the set of common channels.
The key insight of Algorithm 5 is that it is a deterministic
algorithm and the time slots that a user hops on a channel in
call will not be changed as long as it is still a leader. Once a
leader becomes a follower of a leader after a group rendezvous,
the follower will hop on a channel in call at the same time
slots as its leader. From the way we select a leader, there is
a total ordering of these K users. Suppose that user i is the
user with the largest ID among the user(s) with the smallest
number of available channels. Thus, ni = nmin and user i is
always elected as the leader every time it makes a rendezvous
with other users on a channel. As such, the parameters needed
in Algorithm 5 for user i is never changed except the common
channel set is getting smaller after a rendezvous and eventually
converges to call. Thus, the time slots that user i hops on a
channel in call are never changed. Call these time slots of user
i as rendezvous time slots. From Corollary 10, we know that
user i will rendezvous with other leaders (and their followers)
on these rendezvous time slots within 6Mnminnmax time slots.

One interesting question is whether the stick together policy
is a good policy. It was argued and shown by computer
simulation in [13] that it might be helpful for users to spread
out to increase the opportunity to find other users. In order to
have the guaranteed rendezvous property in Theorem 11, the
spread out policy has to be implemented with care. For this,
we modify Algorithm 5 by allowing each user to use both its
available channel set and the common channel set to generate
its CH sequence. This is outlined in Algorithm 6.

Algorithm 6 The spread out channel hopping algorithm

Require: User’s available channel set c =
{c(0), c(1), . . . , c(n − 1)}, leader’s available channel set
c′ = {c′(0), c′(1), . . . , c(n′ − 1)}, a common channel set
c′′ = {c′′(0), c′′(1), . . . , c(n′′ − 1)}, leader’s two primes
p1 > p0 ≥ n′, and leader’s L-bit ID.

Ensure: A deterministic sequence {X(t), t = 0, 1, . . .} with
X(t) ∈ c.

1: Use a strong M -symmetrization mapping (such as Algo-
rithm 2 or Algorithm 3) to construct an M -bit codeword
(w(0), w(1), . . . , w(M − 1)) from the L-bit ID.

2: Let z = 0.
3: For each t, follow Algorithm 4 to compute the clock k.
4: If c′(k) is a channel in the common channel set, i.e.,

c′(k) ∈ c′′, let X(t) = c′(k).
5: Otherwise, select a channel from the available channel set

by letting X(t) = c(z) and update z ← ((z + 1) mod n).

The only difference between the stick together algorithm in
Algorithm 5 and the spread out algorithm in Algorithm 6 is the
last step. In the stick together (resp. spread out) algorithm, a
channel is selected from the common (resp. available) channel
set. As such, if X(t) is a common channel, then all the users
following the same leader still hop to the same channel. Such a
property ensures that the worst case result in Theorem 11 still

holds. In the experiment section, we will compare the ETTR
for these two algorithms.

IV. EXPERIMENTS

In this section, we conduct extensive simulations to compare
the performance of our two-prime modular clock algorithm
with that of some best-performed CH algorithms in the litera-
ture, including Modified Modular Clock Algorithm [9], FRCH
[17], and Advanced Rendezvous Protocol [26].

A. Simulation settings

In our experiments, there are N = 50 channels, indexed
from 0 to 49. In order to satisfy the assumption that there
is at least one common available channel in (A1), channel
0 is chosen to be in the available channel set for each user.
For the rest 49 channels, we randomly assign them to the
available channel set of each user. Specifically, for user i, i =
1, 2, . . . ,K, we assign a system parameter, called the channel
availability probability vi. Each of the 49 remaining channels
is assigned independently to the available channel set of user i
with probability vi. In Figure 2, we show the expected number
of common available channels among K users as a function
of the channel availability probability when vi = v for all
i = 1, 2, . . . ,K. Such curves are generated by averaging over
100,000 simulations. It is clear to see that the expected number
of common available channels is increasing in the channel
availability probability, ranging from the lowest value 1 (when
v = 0) to the largest value 50 (when v = 1). The expected
number of common available channels is also decreasing in
the number of users K and it is more difficult to have more
than one common available channel when K is large and v is
small.

Channel availability probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 c

om
m

on
 a

va
ila

bl
e

ch
an

ne
ls

0

5

10

15

20

25

30

35

40

45

50

2 users
3 users
4 users
5 users
6 users

Fig. 2: The expected number of common available channels
as a function of the channel availability probability and the
number of users.

For the unique ID assumption in (A2), we assign each user
a randomly generated 48-bit ID (to mimic its 48-bit MAC
address). The 48-bit ID is transformed into a 66-bit codeword
by the 4B5B mapping in Algorithm 3 for our two-prime
modular clock algorithm. The clock drift of each user for our

11

two-prime modular clock algorithm is uniformly selected in
[0, T − 1], where T = 66 ∗ p0 ∗ (p0 − 1) ∗ p1 ∗ (p1 − 1). On
the other hand, we also use the η1-symmetrization mapping in
[26] to transform the 48-bit ID into a 99-bit cyclically unique
codeword for the Advanced Rendezvous Protocol in [26]. The
clock drift of each user for the Advanced Rendezvous Protocol
in [26] is uniformly selected in [0,98].

B. Two-user rendezvous

In Figure 3, we show the simulation results for the ETTRs
of these CH algorithms with two users. Each data point in
this figure is obtained by averaging over 100,000 simulations.
The ”lower bound” curve is the average of the lower bound
(ninj+1)/(ni,j+1) for ETTR in Proposition 1 over 100,000
simulations. As shown in Figure 3, the ETTR of our two-prime
modular clock algorithm basically overlaps with that of the
random algorithm and it is significantly better than the other
three CH algorithms. In fact, after examining the numerical
values of the simulation results, our two-prime modular clock
algorithm is slightly better than the random algorithm when
the channel availability probability is in the range of [0.25, 1]
and in that range it is nearly optimal as it is very close to the
lower bound curve.

The reason that the modified modular clock algorithm in
[9] does not perform well is because the channel availability
probabilities are set to be the same for these two users and thus
the difference of the number of available channels for these
two users is small. As such, it is very likely for the modified
modular clock algorithm in [9] to select the same prime for
these two users at the beginning. As it takes a long time to
detect the need to change the primes of the two users, a lot
of time slots are wasted and that leads to a long ETTR. On
the other hand, our two-prime modular clock algorithm does
not have that problem as it has been solved by the strong
symmetrization mapping in Theorem 9.

FRCH in [17] uses the DRSEQ algorithm [8] to generate its
default sequence. When all the channels are available to both
users, it was proved in [28] that a randomized version of the
DRSEQ algorithm has a slightly shorter ETTR than that of the
random algorithm. As such, FRCH performs roughly as well
as the random algorithm in our simulations when the channel
availability probability v is 1. However, the adaptive sequence
of FRCH has a ”stay” mode that replaces each unavailable
channel in its default sequence by the same channel in its
available channel set for a duration of 2N + 1 time slots,
where N is the total number of channels. As shown in Figure
3, the ETTR of FRCH is much worse than that of the random
algorithm when the channel availability probability v is less
than 1. We note that FRCH does not need the unique ID
assumption in (A2). But it needs a universal channel labelling
method for the N channels.

The Advanced Rendezvous Protocol in [26] also assumes
the unique ID assumption in (A2). For an 48-bit ID, The η1-
symmetrization mapping adds a delimiter that has 49-bit of 0’s
in the middle and two 1’s at the both ends. As such, there are
many 0’s in the 99-bit cyclically unique codeword and thus
both users use their 0-sequences very often. Since there is no

guaranteed rendezvous when both users use their 0-sequences,
a lot of time slots are wasted. On the other hand, the 4B5B
strong symmetrization mapping in Algorithm 3 does not yield
a lot of consecutive 0’s or 1’s in its codeword and it is a better
way to encode the ID than the η1-symmetrization mapping in
[26].

The Conversion Based Hopping (CBH) algorithm in [25]
also assumes the unique ID assumption in (A2). The ID
conversion is based on the (p − 1)-ary representation of an
ID, where p is a prime not smaller than the maximum of the
number of available channels and 3. Obtaining the (p−1)-ary
representation for a 48-bit integer is not as easy as the 4B5B
strong symmetrization mapping in Algorithm 3. For simplicity,
we randomly choose the ID of a user uniformly in [1,100] for
our simulations of the CBH algorithm. As shown in Figure 3,
the ETTR of CBH is larger than that of our two-prime modular
clock algorithm (and the random algorithm). One possible
explanation for this is that CBH uses a deterministic mapping
from the p “logical” channels to the available channels (see
Line 17 of Algorithm 3 in [25]) and the load is thus not evenly
distributed among the available channels.

The CH sequence generating algorithm (CHGA) in [30]
is a hybrid CH algorithm that interleaves the simple random
algorithm with a deterministic CH algorithm (such as CRSEQ
[7] and JS [11]). In our simulations, it is generated by using the
wake-up sequence {1,1,1,0,1,0,0,0} and the JS algorithm [11].
When the designated output of the JS algorithm is not in the
available channel set, we simply choose an available channel
uniformly at random. Such a wake-up schedule corresponds
to the duty cycle of 50% and thus both users of CHGA use
the simple random algorithm for more than 50% of the time.
As shown in Figure 3, its ETTR is still slightly larger than
our two-prime modular clock algorithm when the channel
availability probability v is in the range of [0.1, 0.6]. When
the channel availability probability is in the range of [0.6, 1],
the ETTRs of both algorithms are almost the same and they
are very close to the lower bound curve. When the duty cycle
of the wake-up schedule of CHGA is increased to 100%, it
reduces to the JS algorithm [11]. As shown in Figure 3, the
ETTR of the JS algorithm is almost the same as that of CHGA
when v is less than 0.3 (as the JS algorithm behaves as if it
were a random algorithm in that range). When v is in the range
of [0.3, 0.6], we start to see the effect of the “stay” mode and
the ETTR of the JS algorithm is slightly larger than that of
CHGA. Such an effect will be more apparent in the multiuser
rendezvous setting. When v is in the range of [0.8, 1], the
ETTR of the JS algorithm drops significantly and performs
much better than the other algorithms as the JS algorithm is
able to “learn” from unsuccessful rendezvous by using the
universal labelling of the channels.

In Figure 4, we also compare the simulated MCTTRs for
five algorithms that achieve guaranteed rendezvous: the two-
prime modular clock algorithm, CBH [25], the Advanced
Rendezvous Protocol in [26], CHGA in [30], JS in [11] and
FRCH in [17]. The simulated MCTTR is measured by the
maximum of the TTRs of 10,000 independent simulations.
Each data point in Figure 4 is then obtained by averaging over
100 simulated MCTTRs. As shown in Figure 4, the simulated

12

MCTTR of our two-prime modular clock algorithm is still
significantly better than that of the Advanced Rendezvous
Protocol in [26]. This is because both the MCTTRs of our two-
prime modular clock algorithm and the Advanced Rendezvous
Protocol in [26] depend on the number of coded bits M .
Since the 48-bit ID is used, we have M = 66 for our two-
prime modular clock algorithm and M = 99 for the Ad-
vanced Rendezvous Protocol in [26]. The simulated MCTTR
of CBH [25] is slightly larger than that of the Advanced
Rendezvous Protocol in [26] (even the IDs in CBH are chosen
in [1,100]). This might be because the MCTTR of CBH
is O(max[ni, nj]

2) and that of the Advanced Rendezvous
Protocol is only O(ni ·nj). The simulated MCTTR of CHGA
in [30] is comparable with that of the two-prime modular clock
algorithm. On the other hand, the simulated FRCH could be
very large when the channel availability probability is slightly
less than 1. But when all the channels are available, both the
simulated MCTTRs of FRCH and JS drop significantly due to
their ability to learn from unsuccessful rendezvous.

Channel availability probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
T

T
R

 (
sl

ot
s)

0

50

100

150

200

250
JS
Two-prime modular clock
Random
Adv. rdv
FRCH
CBH
CHGA
Modified modular clock
Lower bound

Fig. 3: Comparison of the ETTRs of various CH algorithms,
including the random algorithm, the modified modular clock
algorithm [9], FRCH [17], CBH [25], the advanced rendezvous
protocol (Adv. rdv) [26], CHGA [30], JS [11] and our two-
prime modular clock algorithm. The ”lower bound” curve is
the average of the lower bound (ninj+1)/(ni,j+1) for ETTR
in Proposition 1 over 100,000 simulations.

C. Multiuser rendezvous

To evaluate the performance of the multiuser rendezvous
algorithms, we compare the simulation results from our al-
gorithms with those from the random algorithm. To extend
the random algorithm for multiuser rendezvous, each user
considers itself as the leader at the beginning and it also
keeps the information of the common channel set. As in the
stick together algorithm, when a group of users rendezvous
on a channel in the random algorithm, they elect a leader,
compute the new common channel set, and then hop together
with the leader. At every time slot, each leader uniformly
selects a channel in its common channel set. In Figure 5,

Channel availability probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
C

T
T

R
 (

sl
ot

s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Two-prime modular clock
FRCH
JS
Adv. rdv
CBH
CHGA

Fig. 4: Comparison of the MCTTRs of various CH algorithms,
including FRCH [17], CBH [25], the advanced rendezvous
protocol (Adv. rdv) [26], CHGA [30], JS [11] and our two-
prime modular clock algorithm.

we show the simulation results for three users with the same
channel availability probability v. Each data point in the graph
is also obtained by averaging over 100,000 simulations. To
our surprise, the spread out algorithm (Algorithm 6) is not
always better than the stick together algorithm (Algorithm 5)
as commonly claimed in the literature (see e.g., [13]). As
shown in Figure 5, the ETTR curve of the stick together
algorithm (Algorithm 5) and that of the random algorithm
almost overlap with each other except only a few points that
the stick together algorithm outperforms the random algorithm.
The spread out algorithm (Algorithm 6) does not perform as
well as the other two algorithms when the channel availability
probability v is small. On the other hand, it outperforms the
other two when v is larger than 0.3. The intuition behind this
is that when v is the small, the number of common channels
for the three users is very small. Under such a scenario, the
spread out algorithm that hops on one of its available channels
does not improve the rendezvous probability. As such, it might
be better to simply hop on one of the common channels as in
the stick together algorithm. In particular, when there is only
one common channel and that channel is known to a user,
the optimal policy for that user is to hop on that common
channel all the time. On the other hand, if there are lots of
common channels between any pair of two users, then the
spread out algorithm does improve the rendezvous probability.
When a group of users rendezvous, the state information can
be “synchronized” among this group of users and users with
“synchronized” state information (including the leader ID and
the common channel set) tend to rendezvous faster. Such a
phenomenon is similar to that in the distributed consensus
problem [39], [40].

The random algorithm and our algorithms are targeted for
the oblivious rendezvous setting, where there are no universal
labelling of the channels. To see the effect of having a
universal labelling of the channels, we also conduct the sim-
ulation for the Jump-stay (JS) algorithm in [11] for multiuser

13

rendezvous. We note that the JS algorithm requires a universal
labelling of the channels and it cannot be applied to the
oblivious rendezvous problem. As shown in Figure 5, the
ETTR of the JS algorithm for K = 3 is significantly higher
than our algorithms when v is small. This is mainly due to
the effect of the long “stay” mode in the JS algorithm. On
the other hand, when v is close to 1, the ETTR of the JS
algorithm decreases rapidly and it performs even better than
the random algorithm and our algorithms. This is because
when all the channels are available to every user, the benefit
of having a universal labelling of the channels starts to emerge
for deterministic rendezvous algorithms like the JS algorithm.

Channel availability probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
T

T
R

 (
sl

ot
s)

0

10

20

30

40

50

60

70

80

90

100

K=3

JS
Stick together algorithm
Spread out algorithm
Random

Fig. 5: Comparison of the ETTRs of the four multiuser
rendezvous algorithms for a system of three users. The channel
availability probability of each user is the same.

In Figure 6, we also show the simulation results for six
users with the same channel availability probability v. The
comparison results for six users in Figure 6 are in line with
those for three users in Figure 5.

Channel availability probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
T

T
R

 (
sl

ot
s)

0

10

20

30

40

50

60

70

80

90

100

K=6

JS
Stick together algorithm
Spread out algorithm
Random

Fig. 6: Comparison of the ETTRs of the four multiuser
rendezvous algorithms for a system of six users. The channel
availability probability of each user is the same.

We also note that when all the channels are available to
every user, i.e., v = 1, then both the ETTRs of the stick

together algorithm and the spread out algorithm in Figure
5 and Figure 6 are almost the same as that of the random
algorithm. From the simulation results, it seems that the ETTR
of the random algorithm with K users and N channels can
be well approximated by 2N(1 − 1/K) for v = 1 and large
N . To see the intuition behind such an approximation, note
that for large N the rendezvous probability for a group of
more than two users is O(N−2) and thus one only needs to
consider the case that each rendezvous occurs with exactly
two users. As there are K(K − 1)/2 pairs of two users, the
first time that a rendezvous of two users occurs can be well
approximated by a geometric distribution with the parameter
K(K − 1)/2N . Then the expected time for such an event to
occur is 2N/K(K−1). After the occurrence of such an event,
the number of users is reduced from K to K − 1. A simple
induction then shows the ETTR of the random algorithm with
K users can be well approximated by

2N

K · (K − 1)
+

2N

(K − 1) · (K − 2)
+ . . .+

2N

2 · 1

= 2N(1− 1

K
).

Such an approximation argument for the ETTR of the random
algorithm is closely related to the expected coalescent time in
the Wright-Fisher model that finds the most recent common
ancestor for a population [41].

In our second experiment for the multiuser rendezvous
algorithms, we allow the channel availability probabilities of
the K users to be different. Specifically, the channel avail-
ability probability of user i is Vi/20, where Vi is uniformly
chosen from the set of integers {1, 2..., 20} in each simulation.
Each data point is again obtained by averaging over 100,000
simulations. As we show in Figure 7, the spread out algorithm
does have a better ETTR than the other two algorithms for
K = 2, 3, . . . , 20 in this experiment. This is because the
channel availability probability of each user is now selected
independently and the probability that all the users have very
small channel availability probabilities is small. On the other
hand, we also evaluate the JS algorithm [11] for this simulation
setting. As clearly shown in Figure 7, our two algorithms
significantly outperform the JS algorithm in terms of ETTR.
The intuition behind this is that the available channel sets of
the K users are quite different when the channel availability
probability is randomly selected by each user. Under such a
scenario, having a universal labelling of the channels does
not help too much for deterministic algorithms like the JS
algorithm. One interesting observation from Figure 7 is that
the ETTR is not always increasing in the number of users
K. This appears to be quite counterintuitive at the beginning.
But, as mentioned before, one factor that affects the TTR is the
speed to reach a consensus of the state information. Increasing
the number of users increases the speed to synchronize the
state information. In particular, when K ≥ 10, the number of
common channels among the K users is reduced to 1 (with a
very high probability) and that common channel (channel 0 in
our experiment) can be quickly identified by a user after a few
pairwise rendezvous. As such, increasing the number of users

14

does not necessarily increase the ETTR under the assumption
that there is at least one common channel.

Number of users
2 4 6 8 10 12 14 16 18 20

E
T

T
R

 (
sl

ot
s)

0

10

20

30

40

50

60

70

80

90

100

JS
Stick together algorithm
Spread out algorithm
Random

Fig. 7: Comparison of the ETTRs of the four multiuser
rendezvous algorithms for a system of K users. The channel
availability probability of each user is selected independently.

V. CONCLUSION

In this paper, we considered the most challenging oblivious
rendezvous problem as in [19], [26]. For such a multichannel
rendezvous problem, it is generally assumed that (i) there
are no distinguishable roles of users, (ii) users’ clocks may
not be synchronized, (iii) users may have different available
channel sets, and (iv) there is no universal labelling of the
channels available to the users. By assuming there is at
least one common channel in (A1) and there is a unique ID
for each user in (A2), we proposed the two-prime modular
clock algorithm in Algorithm 4 based on the new class of
strong symmetrization mappings. The ETTR of the two-prime
modular clock algorithm is almost the same as that of the
random algorithm and its MCTTR is still upper bounded by a
finite constant comparable to the best bound in the literature.
As the ETTR of the random algorithm is close to the lower
bound of the oblivious rendezvous problem, the ETTR of our
algorithm is nearly optimal. We also extended the two-prime
modular clock algorithm for multiuser rendezvous. For this, we
proposed the stick together algorithm in Algorithm 5 and the
spread out algorithm in Algorithm 6. One interesting finding
for the multiuser rendezvous problem is that the spread out
algorithm is not always better than the stick together algorithm
as commonly claimed in the literature.

We note that there are other methods to achieve mul-
tiuser rendezvous. For example, one might consider a two-
step approach. First, users collect the state information from
other users through a sequence of pairwise rendezvous (or
a centralized server). Once all the users share the same
state information, they can use such information to achieve
multiuser rendezvous. Such a two-step approach is beyond the
scope of this paper and will require further study.

We also note that message exchange (in our multiuser ren-
dezvous algorithms) relies heavily on the underlining physical

networks. Like most multichannel rendezvous papers in the
literature, we did not consider the cost of message exchange
in our performance evaluation for our rendezvous algorithms.
Understanding the effect of the underlining physical networks
to our algorithms (as well as other rendezvous algorithms) will
be another important topic for our future research in this area.

REFERENCES

[1] P. Bahl, R. Chandra, J. Dunagan, “SSCH: slotted seeded channel hopping
for capacity improvement in IEEE 802.11 ad-hoc wireless networks,” in
Porc. ACM MobiCom, 2004.

[2] L. DaSilva and I. Guerreiro, “Sequence based rendezvous for dynamic
spectrum access,” in Proc. IEEE Int’l Symp. New Frontiers in Dynamic
Spectrum Access Networks (DySPAN’08), pp. 1-7, Oct. 2008.

[3] J. Mo, H.-S.W. So, and J. Warland, “Comparison of multichannel MAC
protocols,” IEEE Transactions on Mobile Computing, vol. 7, no. 1, pp.
50-65, 2008.

[4] Y. R. Kondareddy and P. Agrawal, ”Synchronized MAC protocol for
multi-hop cognitive radio networks,” in Proc. IEEE ICC, 2008.

[5] K. Bian, J.-M. Park, and R. Chane, “A quorum-based framework for
establishing control channels in dynamic spectrum access networks,” in
Proc. ACM MobiCom, 2009.

[6] C.-F. Shih, T. Y. Wu, and W. Liao, “DH-MAC: A dynamic channel
hopping MAC protocol for cognitive radio networks,” in Proc. IEEE
ICC, 2010.

[7] J. Shin, D. Yang, and C. Kim, “A channel rendezvous scheme for
cognitive radio networks,” IEEE Communications Letter, vol. 14, no.
10, pp. 954–956, 2010.

[8] D. Yang, J. Shin, and C. Kim, “Deterministic rendezvous scheme in
multichannel access networks,” Electronics Letters, vol. 46, no. 20, pp.
1402–1404, 2010.

[9] N. C. Theis, R. W. Thomas, and L. A. DaSilva, “Rendezvous for
cognitive radios,” IEEE Transactions on Mobile Computing, vol. 10,
no. 2, pp. 216–227, 2011.

[10] Y. Zhang, Q. Li, G. Yu and B. Wang, “ETCH: efficient channel hopping
for communication rendezvous in dynamic spectrum access networks,”
in Proc. IEEE INFOCOM, 2011.

[11] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Jump-stay based channel-
hopping algorithm with guaranteed rendezvous for cognitive radio
networks,” in Proc. IEEE INFOCOM, 2011.

[12] F. Hou, L. X. Cai, X. Shen, and J. Huang, “Asynchronous multichan-
nel MAC design with difference-set-based hopping sequences,” IEEE
Transactions on Vehicular Technology, vol. 60, pp. 1728–1739, 2011.

[13] R. Gandhi, C. C. Wang, and Y. C. Hu, “Fast rendezvous for multiple
clients for cognitive radios using coordinated channel hopping,” In Proc.
IEEE SECON, pp. 434–442, 2012.

[14] K. Bian and J.-M. Park, “Maximizing rendezvous diversity in rendezvous
protocols for decentralized cognitive radio networks,” IEEE Transactions
on Mobile Computing, vol. 12, no. 7, pp. 1294–1307, 2013.

[15] Z, Lin, H. Liu, X. Chu, and Y.-W. Leung, “Enhanced jump-stay ren-
dezvous algorithm for cognitive radio networks,” IEEE Communications
Letters, vol. 17, no. 9, pp. 1742–1745, 2013.

[16] Z. Gu, Q.-S. Hua, Y. Wang, and F. C. M. Lau, “Nearly optimal
asynchronous blind rendezvous algorithm for cognitive radio networks,”
in Proc. IEEE SECON, 2013.

[17] G.-Y. Chang and J.-F. Huang, “A fast rendezvous channel-hopping
algorithm for cognitive radio networks,” IEEE Communications Letters,
vol. 17, no. 7, pp. 1475–1478, 2013.

[18] Z. Gu, Q.-S. Hua, and W. Dai, “Local sequence based rendezvous
algorithms for cognitive radio networks,” In Proc. IEEE SECON, pp.
194–202, 2014.

[19] Z. Gu, Q. S. Hua, Y. Wang, and F. C. M. Lau, “Oblivious Rendezvous in
Cognitive Radio Networks,” in International Colloquium on Structural
Information and Communication Complexity, pp. 165–179, 2014.

[20] S. Chen, A. Russell, A. Samanta, and R. Sundaram, “Deterministic blind
rendezvous in cognitive radio networks.” in Proc. IEEE ICDCS, pp. 358–
367, 2014.

[21] L. Yu, H. Liu, Y.-W. Leung, X. Chu, and Z. Lin, “Channel-hopping
based on available channel set for rendezvous of cognitive radios.” in
Proc. IEEE ICC, pp. 1573–1579, 2014.

[22] I. H. Chuang, H.-Y. Wu, and Y.-H. Kuo, “A fast blind rendezvous method
by alternate hop-and-wait channel hopping in cognitive radio networks,”
IEEE Transactions Mobile Computing, vol. 13, no. 10, pp. 2171–2184,
2014.

15

[23] G. Li, Z. Gu, X. Lin, H. Pu, and Q.-S. Hua, “Deterministic distributed
rendezvous algorithms for multi-radio cognitive radio networks,” In
Proc. ACM Proceedings of the 17th ACM international conference on
Modeling, analysis and simulation of wireless and mobile systems, pp.
313-320, 2014.

[24] G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel channel-
hopping schemes for cognitive radio networks,” IEEE Transactions on
Mobile Computing, vol. 13, pp. 407–421, Feb. 2014.

[25] Z. Gu, Q.-S. Hua, W. Dai, “Fully distributed algorithm for blind
rendezvous in cognitive radio networks,” In Proc. ACM MobiHoc, pp.
155–164, 2014.

[26] L. Chen, K. Bian, L. Chen, C. Liu, J. M. J. Park, and X. Li, “A group-
theoretic framework for rendezvous in heterogeneous cognitive radio
networks,” In Proc. ACM MobiHoc, pp. 165–174, 2014.

[27] M. J. Abdel-Rahman, H. Rahbari, and M. Krunz, “Multicast rendezvous
in fast-varying DSA network,” IEEE Transactions on Mobile Computing,
vol. 14, no. 7, pp. 1449–1462, 2015.

[28] C.-S. Chang, W. Liao and C.-M. Lien, “On the multichannel rendezvous
problem: fundamental limits, optimal hopping sequences, and bounded
time-to-rendezvous,” Mathematics of Operations Research, vol. 40, no.
1, pp. 1-23, 2015.

[29] Z. Gu, H. Pu, Q.-S. Hua, and F. C. M. Lau, “Improved rendezvous
algorithms for heterogeneous cognitive radio networks,” In Proc. IEEE
INFOCOM, pp. 154–162, 2015.

[30] L. Chen, S. Shi, K. Bian, and Y. Ji, “Optimizing average-maximum
TTR trade-off for cognitive radio rendezvous,” In Proc. IEEE ICC, pp.
7707-7712, 2015.

[31] M. J. Abdel-Rahman, H. Rahbari, and M. Krunz, “Multicast rendezvous
in fast-varying DSA networks,” IEEE Transactions on Mobile Comput-
ing, vol. 14, no. 7, pp. 1449-1462, July 2015.

[32] S. Gilbert, F. Kuhn, C. Newport, and C. Zheng, “Efficient communica-
tion in cognitive radio networks,” In Proc. ACM PODC, pp. 119-128,
2015.

[33] C.-S. Chang, W. Liao, and T.-Y. Wu, “Tight lower bounds for channel
hopping schemes in cognitive radio networks,” IEEE/ACM Transactions
on Netowrking, vol. 24, no. 4, pp. 2343–2356, 2016.

[34] C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary
and sufficient condition for the construction of 2-to-1 optical FIFO
multiplexers by a single crossbar switch and fiber delay lines,” IEEE
Transactions on Information Theory, vol. 52, pp. 4519–4531, 2006.

[35] C.-S. Chang, J. Cheng, T.-K. Huang and D.-S. Lee, ”Explicit construc-
tions of memoryless crosstalk avoidance codes via C-transform,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 9, pp. 2030–2033, September 2014.

[36] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Ap-
proach, 4th edition, San Francisco, CA: Morgan Kaufmann Publishers,
2007.

[37] P. Erdös, “Beweis eines satzes von tschebyschef,” Acta Litt. Univ. Sci.,
Szeged, Sect. Math., vol. 5, pp. 194–198, 1932.

[38] M. El Bachraoui, “Primes in the interval [2n, 3n],” Int. J. Contemp.
Math. Sci., vol. 1, no. 13-16, pp. 617–621, 2006.

[39] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
System & Control Letters, vol. 53, pp. 65–78, 2004.

[40] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, Vol. 52, No. 6,
pp. 2508–2530, 2006.

[41] M. Nordborg, “Coalescent theory,” Handbook of statistical genetics,
John Wiley & Sons, 2001.

Cheng-Shang Chang (S’85-M’86-M’89-SM’93-
F’04) received the B.S. degree from National Taiwan
University, Taipei, Taiwan, in 1983, and the M.S.
and Ph.D. degrees from Columbia University, New
York, NY, USA, in 1986 and 1989, respectively, all
in electrical engineering.

From 1989 to 1993, he was employed as a
Research Staff Member with the IBM Thomas J.
Watson Research Center, Yorktown Heights, NY,
USA. Since 1993, he has been with the Department
of Electrical Engineering, National Tsing Hua Uni-

versity, Taiwan, where he is a Tsing Hua Distinguished Chair Professor. He is
the author of the book Performance Guarantees in Communication Networks
(Springer, 2000) and the coauthor of the book Principles, Architectures and
Mathematical Theory of High Performance Packet Switches (Ministry of
Education, R.O.C., 2006). His current research interests are concerned with
network science, big data analytics, mathematical modeling of the Internet,
and high-speed switching.

Dr. Chang served as an Editor for Operations Research from 1992 to
1999, an Editor for the IEEE/ACM TRANSACTIONS ON NETWORKING from
2007 to 2009, and an Editor for the IEEE TRANSACTIONS ON NETWORK
SCIENCE AND ENGINEERING from 2014 to 2017. He is currently serving as
an Editor-at-Large for the IEEE/ACM TRANSACTIONS ON NETWORKING.
He is a member of IFIP Working Group 7.3. He received an IBM Outstanding
Innovation Award in 1992, an IBM Faculty Partnership Award in 2001, and
Outstanding Research Awards from the National Science Council, Taiwan, in
1998, 2000, and 2002, respectively. He also received Outstanding Teaching
Awards from both the College of EECS and the university itself in 2003. He
was appointed as the first Y. Z. Hsu Scientific Chair Professor in 2002. He
received the Merit NSC Research Fellow Award from the National Science
Council, R.O.C. in 2011. He also received the Academic Award in 2011
and the National Chair Professorship in 2017 from the Ministry of Education,
R.O.C. He is the recipient of the 2017 IEEE INFOCOM Achievement Award.

Cheng-Yu Chen received his B.S. degree in the
Department of Electronic Engineering and Computer
Science at National Tsing Hua University, Hsinchu,
Taiwan, in 2015. He is currently an MS student
in the Institute of Communications Engineering at
National Tsing Hua University, Hsinchu, Taiwan.

Duan-Shin Lee (S’89-M’90-SM’98) received the
B.S. degree from National Tsing Hua University,
Taiwan, in 1983, and the MS and Ph.D. degrees
from Columbia University, New York, in 1987 and
1990, all in electrical engineering. He worked as a
research staff member at the C&C Research Labo-
ratory of NEC USA, Inc. in Princeton, New Jersey
from 1990 to 1998. He joined the Department of
Computer Science of National Tsing Hua University
in Hsinchu, Taiwan, in 1998. Since August 2003, he
has been a professor. He received a best paper award

from the Y.Z. Hsu Foundation in 2006. His current research interests are social
networks, network science, game theory and data science. He is a senior IEEE
member.

16

Wanjiun Liao received the PhD degree in Elec-
trical Engineering from the University of Southern
California, Los Angeles, CA, USA, in 1997. She
is a Distinguished Professor of the Electrical En-
gineering Department, National Taiwan University,
Taipei, Taiwan, and the Director General of the
Engineering and Technologies Department, Ministry
of Science and Technology (MOST), Taiwan. Her
research interests include the design and analysis of
wireless networking, cloud networking, and green
communications. Prof. Liao was on the Editorial

Boards of IEEE Transactions on Wireless Communications and IEEE Transac-
tions on Multimedia. She is very active in IEEE and IEEE ComSoc, including
serving as IEEE ComSoc Distinguished Lecturer (2011-2012), IEEE Fellow
Committee (2013-2015), IEEE ComSoc Fellow Evaluation Committee (2016-
2018), the IEEE ComSoc Director for Asia Pacific Region (2014-2015),
and IEEE ComSoc Board of Governors Member-at-Large (2017-2019). She
received many recognitions and honors for her achievements from different
organizations. She is a Fellow of the IEEE.

