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Abstract

Traditionally, conflict resolution in an input-buffered switch is solved by finding a matching between inputs
and outputs per time slot, which incurs unscalable computation and communication overheads. The main objective
of this paper is to propose a scalable solution, called the mailbox switch, that solves the out-of-sequence problem
in the two-stage switch architecture. The key idea of the mailbox switch is to use a set of symmetric connection
patterns to create a feedback path for packet departure times. With the information of packet departure times, the
mailbox switch can schedule packets so that they depart in the order of their arrivals. Despite the simplicity of the
mailbox switch, we show via both the theoretical models and simulations that the throughput of the mailbox switch
can be as high as 75%. With limited resequencing delay, a modified version of the mailbox switch achieves 95%
throughput. We also propose a recursive way to construct the switch fabrics for the set of symmetric connection
patterns. If the number of inputs, N , is a power of 2, we show that the switch fabric for the mailbox switch can
be built with N

2 log2 N 2 × 2 switches.

Index Terms

Birkhoff-von Neumann switches, input-buffered switches, conflict resolution, two-stage switches

I. INTRODUCTION

As the parallel input buffers of input-buffered switches provide the needed speedup for memory access

speed, input-buffered switches are known to be more scalable than shared memory switches. However,

synchronized parallel transmissions among parallel input buffers in every time slot require careful co-

ordination to avoid conflicts. Thus, finding a scalable method (and architecture) for conflict resolution

becomes the fundamental design problem of input-buffered switches.

Traditionally, conflict resolution is solved by finding a matching between inputs and outputs per time

slot (see e.g., [11], [1], [25], [17], [18], [19], [9], [15]). Two steps are needed for finding a matching.

(i) Communication overhead: one has to gather the information of the buffers at the inputs.

(ii) Computation overhead: based on the gathered information, one then applies a certain algorithm

to find a matching.

This research is supported in part by the National Science Council, Taiwan, R.O.C., under Contract NSC-91-2219-E007-003, and the
program for promoting academic excellence of universities NSC 93-2752-E007-002-PAE. A conference version of this paper was presented
in IEEE INFOCOM 2004.
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Most of the works in the literature pay more attention to reducing the computation overhead by finding

scalable matching algorithms, e.g., wavefront arbitration in [25], PIM in [1], SLIP in [17], and DRRM in

[15]. However, in our view, it is the communication overhead that makes matching per time slot difficult

to scale. To see this, suppose that there are N inputs/outputs and each input implements N virtual output

queues (VOQ). If we use a single bit to indicate whether a VOQ is empty, then we have to transmit N

bits from each input (to a central arbiter or to an output) in every time slot. For instance, transmitting

such N bit information in PIM and SLIP is implemented by an independent circuit that sends out parallel

requests. Suppose that the packet size is chosen to be 64 bytes. Then building a switch with more than

512 inputs/outputs will have more communication overhead than transmitting the data itself.

To reduce the communication overhead, one approach is to gather the long term statistics of the

VOQs, e.g., the average arrival rates, and then use such information to find a sequence of pre-determined

connection patterns (see e.g., [1], [14], [10], [4], [5], [2]). Most of the works along this line are based

on the well-known Birkhoff-von Neumann algorithm [3], [27] that decomposes a doubly substochastic

matrix into a convex combination of (sub)permutation matrices. For an N ×N switch, the computation

complexity for the Birkhoff-von Neumann decomposition is O(N 4.5) and the number of permutation

matrices produced by the decomposition is O(N 2) (see e.g., [4], [5]). The need for storing the O(N 2)

number of permutation matrices in the Birkhoff-von Neumann switch makes it difficult to scale for a

large N . Even though there are decomposition methods that reduce the number of permutation matrices

(see e.g., [13]), they in general do not have good throughput. For instance, the throughput in [13] is

O(1/ logN) and it tends to 0 when N is large. Another problem of using long term statistics is that the

switch does not adapt too well to traffic fluctuation.

It would be ideal if there is a switch architecture that yields good throughput without the need for gather-

ing traffic information (no communication overhead) and computing connection patterns (no computation

overhead). Recent works on the two-stage switches (see e.g., [6], [7], [12], [8]) shed some light along this

direction. The switch architecture in [6], called the load balanced Birkhoff-von Neumann switch, consist

of two crossbar switch fabrics and parallel buffers between them. In a time slot, both the crossbar switch

fabrics sets up connection patterns corresponding to permutation matrices that are periodically generated

from a one-cycle permutation matrix. By so doing, the first stage performs load balancing for the incoming

traffic so that the traffic coming into the second stage is uniform. As such, it suffices to use the same

periodic connection patterns as in the first stage to perform switching at the second stage. In the load

balanced Birkhoff-von Neumann switch, there is no need to gather the traffic information. Also, as the

connection patterns are periodically generated, no computation is needed at all. More importantly, it can

be shown to achieve 100% throughput for any non-uniform traffic under a minor technical assumption.

However, the main drawback of the load balanced Birkhoff-von Neumann switch in [6] is that packets

might be out of sequence. To solve the out-of-sequence problem in the two-stage switches, two approaches



3

have been proposed. The first one uses sophisticated scheduling in the buffers between the two switch

fabrics (see e.g., [7], [12]) and hence it may require complicated hardware implementation and non-

scalable computation overhead. The second one is to use the rate information for controlling the traffic

entering the switch (see e.g., [8]). However, this requires communication overhead and it also does not

adapt too well to large traffic fluctuation.

One of the main objectives of this paper is to solve the out-of-sequence problem in the two-stage switch

without non-scalable computation and communication overhead. For this, we propose a switch architecture,

called the mailbox switch. The mailbox switch has the same architecture as the load balanced Birkhoff-

von Neumann switch. Instead of using an arbitrary set of periodic connection patterns generated by a

one-cycle permutation matrix, the key idea in the mailbox switch is to use a set of symmetric connection

patterns. As an input and its corresponding output are usually built on the same line card, the symmetric

connection patterns set up a feedback path from the central buffers (called mailboxes in this paper) to an

input/output port. Since everything inside the switch is pre-determined and periodic, the scheduled packet

departure times can then be fed back to inputs to compute the waiting time for the next packet so that

packets can depart in sequence. Thus, the communication overhead incurred by this is the transmission

of the information of the packet departure time, which is constant in every time slot for every input port.

This communication overhead in every time slot for every input port is independent of the size of the

switch. On the other hand, the computation overhead incurred by this is the computation of the waiting

time, which also requires only a constant number of operations.

Simplicity comes at the cost of throughput. The throughput of the mailbox switch is no longer 100%.

There are two key factors that limit the throughput of the mailbox switch: (i) the head-of-line (HOL)

blocking problem at the input buffers, and (ii) the stability of the waiting times. Under the usual uniform

traffic model, we provide exact analysis for two special cases. In the first special case, there is only the

HOL blocking problem and the throughput is reduced to the classical head-of-line blocking switch in

[11] that yields 58% throughput. In the second special case, there is only the stability problem of waiting

times and we show the mailbox switch achieves 68% throughput in this case. By balancing these two

constraints, the mailbox switch can achieve more than 75% throughput. These analytical results are also

verified by simulations. By allowing limited resequencing delay, a modified version of the mailbox switch

can achieve more than 95% throughput.

In this paper, we also propose a recursive way to construct the switch fabrics for the set of symmetric

connection patterns. If the number of inputs, N , is a power of 2, we show that the switch fabric for the

mailbox switch can be built with N
2

log2N 2 × 2 switches.
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II. THE SWITCH ARCHITECTURE

A. Generic mailbox switch

In this paper, we assume that packets are of the same size. Also, time is slotted and synchronized so that

a packet can be transmitted within a time slot. As in the load balanced Birkhoff-von-Neumann switch, the

N ×N mailbox switch consists of two N ×N crossbar switch fabrics (see Figure 1) and buffers between

the two crossbar switch fabrics. The buffers between the two switch fabrics are called mailboxes. There

are N mailboxes, indexed from 1 to N . Each mailbox contains N bins (indexed from 1 to N), and each

bin contains F cells (indexed from 1 to F ). Each cell can store exactly one packet. Cells in the ith bin of

a mailbox are used for storing packets that are destined for the ith output port of the second switch. In

addition to these, a First In First Out (FIFO) queue is added in front of each input port of the first stage.

Now we describe how the connection patterns of these two crossbar switch fabrics are set up. In every

time slot, both crossbar switches in Figure 1 have the same connection pattern. During the tth time slot,

input port i is connected to the output port j if

(i+ j) mod N = (t+ 1) mod N. (1)

In particular, at t = 1, we have input port 1 connected to output port 1, input port 2 connected to output

port N , . . ., and input port N connected to output port 2. Clearly, such connection patterns are periodic

with period N . Moreover, each input port is connected to each of the N output ports exactly once in

every N time slot. Specifically, input port i is connected to output port 1 at time i, output port 2 at time

i + 1, . . ., output port N at time i + N − 1. Also, we note from (1) that such connection patterns are

symmetric, i.e., input port i and output port j are connected if and only if input port j and output port i

are connected. As such, we call a switch fabric that implements the connection patterns in (1) a symmetric

Time Division Multiplexing (TDM) switch. Note that one can solve j in (1) by the following function

j = h(i, t) =
(
(t− i) mod N

)
+ 1. (2)

Thus, during the tth time slot the ith input port is connected to the h(i, t)th output port of these two

crossbar switch fabrics.

As input port i of the first switch and output port i of the second switch are on the same line card,

the symmetric property then enables us to establish a bi-directional communication link between a line

card and a mailbox. As we will see later, such a property plays an important role in keeping packets in

sequence.

As the connection patterns in the mailbox switch is a special case of the load-balanced Birkhoff-von

Neumann switch with one-stage buffering [6], one might expect that it also approaches 100% throughput

if we use the FIFO policy for each bin and increase the bin size F to ∞. However, we also suffer from

the out-of-sequence problem by doing this. Packets that have the same input port at the first switch and
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the same output port at the second switch may be routed to different mailboxes and depart in a sequence

that is different from the sequence of their arrivals at the input port of the first switch.

To solve the out-of-sequence problem, one may add a resequencing buffer and adapt a more careful load

balancing mechanism as in the load balanced Birkhoff-von Neumann switch with multi-stage buffering

[7]. However, such an approach requires complicated scheduling and jitter control in order to have a

bounded resequencing delay. Here we take a much simpler approach. The idea is that we do know the

packet departure time once it is placed in a mailbox as the connection patterns are deterministic and

periodic. Also, recall that by building an input port and the output port of the same index on a line card,

the symmetric TDM connection patterns provide a bi-directional feed back path between a line card and

a mailbox. Thus, every input port maintains the delay of the last successfully transmitted packets from

this input port to every output port. For input port i to transmit a HOL packet, input port i transmits

the delay information of the last packet destined for the same output port along with the HOL packet.

If an empty cell in the connected mailbox whose corresponding departure time is larger than that of the

previous packet, the HOL packet will be placed in the mailbox cell and removed from the HOL of input

port i. Further more, the departure time information of the newly transmitted packet is fed back to the

line card i. The delay information at input port i is updated. Otherwise, the transmission is blocked and

the packet remains at the HOL position of input port i.

To be specific, define flow (i, j) as the sequence of packets that arrives at the ith input port of the first

switch and are destined for the jth output port of the second switch. Let Vi,j(t) be the number of time

slots that a packet of flow (i, j) has to wait in a mailbox for ordered delivery, once it is transmitted from

the head-of-line (HOL) packet at the FIFO queue of the ith input port of the first switch to the j th bin of

the h(i, t)th mailbox at time t. Following the terminology in queueing theory, we call V i,j(t) the virtual

waiting time of flow (i, j). Now we describe how the mailbox switch works to keep packets of the same

flow in sequence. At each input port i, we keep the information of Vi,j(t) for j = 1, 2, ..., N . Initially, we

set Vi,j(0) = 0 for all (i, j). At each time slot t, the following operation is executed.

(iA) Retrieving mails: at time t, the j th output port of the second switch is connected to the h(j, t)th

mailbox. The packet in the first cell of the j th bin is transmitted to the j th output port. Packets

in cells 2, 3, . . . , F of the jth bin are moved forward to cells 1,2,. . . , F − 1. According to

(1), the jth output port of the second switch will be connected to the k th mailbox at time

t + ((k − h(j, t) − 1) mod N) + 1. Hence, the packet in the f th cell of the jth bin of the

kth mailbox at time t will be transmitted to the j th output port of the second switch at time

t+ (f − 1)N + ((k − h(j, t) − 1) mod N) + 1. This means that the packet departure time can

be determined once a packet is placed in a mailbox.

(iiA) Sending mails: suppose that the HOL packet of the ith input port of the first switch is from

flow (i, j). Note that the ith input port of the first switch is connected to the h(i, t)th mailbox.
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In order to keep packets in sequence, this HOL packet is placed in the first empty cell of the

jth bin of the h(i, t)th mailbox such that it will depart not earlier than t + Vi,j(t). If no such

empty cell can be found, the HOL packet is blocked and it remains the HOL packet of that

FIFO queue.

(iiiA) Updating virtual waiting times: all the flows that do not send mails (packets) at time t update

their virtual waiting time as follows:

Vi,j(t+ 1) = max[Vi,j(t) − 1, 0]. (3)

This includes flows that have blocked transmissions. To update the virtual waiting time for flow

(i, j), suppose that the HOL packet is successfully placed in the f th cell of the jth bin of the

h(i, t)th mailbox. As described in (iA) for the mail retrieval operations, one can easily verify that

the departure time for this packet is simply t+(f − 1)N + (j− i− 1) mod N + 1. As such, the

number of time slots that has to be waited at time t+1 for flow (i, j) is (f−1)N+(j−i−1) modN

and we can update the virtual waiting time as follows:

Vi,j(t+ 1) = (f − 1)N + (j − i− 1) mod N. (4)

B. Mailbox switch with cell indexes

In view of (4), there is a simple way to represent the virtual waiting time of a flow. The virtual waiting

time Vi,j(t + 1) can be written as a sum of two components: (f − 1)N and ((j − i − 1) mod N). The

first term is only a function of the cell index f and the second term is a number between 0 and N − 1.

This leads to a much easier way to implement the mailbox switch. Define fi,j(t) to be the smallest index

of the cell such that the HOL packet will not depart earlier than t + Vi,j(t) if the HOL packet is placed

in that cell. To simplify our representation, we call fi,j(t) the cell index of Vi,j(t). In addition to the cell

index of the virtual waiting time fi,j(t), we also keep a counter gi,j(t) for flow (i, j). The information of

fi,j(t) and gi,j(t) for j = 1, 2, ..., N is kept at each input port. Initially, we set fi,j(0) = 0 and gi,j(t) = 0

for all (i, j). Now we modify the second and the third phase as follows:

(iiB) Sending mails: suppose that the HOL packet of the ith input port of the first switch is from flow

(i, j). This HOL packet is sent to the h(i, t)th mailbox along with fi,j(t). This packet is then

placed in the first empty cell of the j th bin with the cell index not smaller than max(fi,j(t), 1).

If successful, the index of that cell, say f , is transmitted to the ith output port of the second

switch. If no such empty cell can be found, an error message, say f = 0, is transmitted to the

ith output port of the second switch to indicate an HOL blocking.

(iiiB) Updating virtual waiting times: If flow (i, j) has a successful transmission of a packet at time

t, then fi,j(t+ 1) is set by the index f returned by the mailbox at time t and gi,j(t+ 1) is reset

to N . On the other hand, if flow (i, j) does not have a successful transmission of a packet at
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time t, then fi,j(t+ 1) = fi,j(t) and gi,j(t+ 1) = gi,j(t) − 1. If gi,j(t+ 1) is reduced to 0, then

we reset gi,j(t+ 1) back to N . When this happens and fi,j(t+ 1) ≥ 1, we decrease fi,j(t+ 1)

by 1.

In view of (3) and (4), the virtual waiting time Vi,j(t) can be represented by fi,j(t) and gi,j(t) as follows:

Vi,j(t) = max[(fi,j(t) − 1)N + (j − i− 1) mod N − (N − gi,j(t)), 0]. (5)

The main advantage of the scheme that uses cell indexes is that there is no need to transmit the whole

information of the virtual waiting times. Instead, only cell indexes are transmitted. Note that V i,j(t) is an

integer between zero and NF − 1 and fi,j(t) is an integer between 1 and F . Thus, transmitting Vi,j(t)

requires log(NF ) bits, while transmitting the corresponding cell index requires only log(F ) bits. This

greatly reduces the communication overhead needed in the mailbox switch. Also, it is easier to place a

HOL packet in a mailbox by using the cell index of its virtual waiting time. Before we proceed to the

next section, we mention that the cell index is essentially the quotient of the virtual waiting time when

divided by N . The counter gi,j(t) is essentially the remainder of Vi,j(t) when the virtual waiting time is

divided by N .

C. Mailbox switch with a limited number of forward tries

Note that the mailbox switch resolves conflict implicitly over time and space. First, packets are distributed

evenly to the N mailboxes via the symmetric TDM switch at the first stage. Intuitively, one may view

this as conflict resolution over space. Once a packet is transmitted to a mailbox, the mailbox switch has

to find an empty cell with its cell index not smaller than the cell index of the virtual waiting time of the

packet. As cells in the same bin are ordered in the FIFO manner, this can be viewed as conflict resolution

over time. In the search for an empty cell to place the packet, there might be several tries until an empty

cell is found. For each unsuccessful try, it may be viewed as a “collision,” and each collision leads to back

off N time slots for the packet departure time. Such a backoff not only affects the packet being placed,

but also affects all the subsequent packets that belong to the same flow because the virtual waiting time

of that flow is also increased by N time slots. If there are many collisions, the increase of the virtual

waiting time will be large and eventually packets will be distributed over time sparsely. This will result in

low throughput and large delay. To avoid such an event, it might be better to block the packet by putting

a limit on the amount of virtual waiting time that can be increased for each placement. This leads to the

following modified scheme.

(iiC) Sending mails: let δ be the maximum increment of the cell index of the virtual waiting time.

We only search for an empty cell from the cell fi,j(t) to the cell min[fi,j(t)+δ, F ]. If successful,

the index of that cell, say f , is transmitted to the ith output port of the second switch. If no

such empty cell can be found, an error message, say f = 0, is transmitted to the ith output port

of the second switch to indicate a HOL blocking.
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D. Mailbox switch with limited numbers of forward and backward tries

To perform conflict resolution more efficiently over time, we may also search for an empty cell with a

limited number of backward tries. By so doing, packets in the mailbox switch might be out of sequence.

But resequencing delay is bounded.

(iiD) Sending mails: let δb be the maximum number of backward tries. We only search for an empty

cell from the cell max[fi,j(t) − δb, 1] to the cell min[fi,j(t) + δ, F ]. If successful, the index of

that cell, say f , is transmitted to the ith output port of the second switch. If no such empty cell

can be found, an error message, say f = 0, is transmitted to the ith output port of the second

switch to indicate a HOL blocking,

(iiiD) Updating virtual waiting times: the case without a successful transmission of a packet is the

same as (iiiB). For the case with a successful transmission of a packet, we have to deal with the

following two subcases. If the returned index f is not smaller than fi,j(t), then it is the same

as before. That is, we set fi,j(t + 1) = f and reset gi,j(t + 1) to N . On the other hand, if the

returned index f is smaller than fi,j(t), then the packet being placed will depart earlier than its

previous one. As such, it is treated in the same way as the case without a successful transmission

of a packet.

Note that the resequencing delay in the scheme with backward tries is bounded by Nδb time slots.

Before we proceed to the next section, we discuss briefly the impact of the propagation delay introduced

by the two crossbar switches to the throughput. We use the mailbox switch with cell indexes as an example.

Discussion of other mailbox switch versions is similar. Let the propagation delay caused by one crossbar

switch be denoted by tg, the transmission times of a cell index and a packet be denoted by tv and tp

respectively. Let the processing time of the cell index information by one mailbox by ts. At the beginning

of a time slot, input ports transmit cell indexes. After the cell index information is received and processed

by the mailboxes, the mailboxes transmit packets to their connected output ports followed by cell index

information. See Figure 2 for an illustration. The length of a time slot is 2(tg+tv)+tp+ts). From Figure 2,

we can see that if 2tg +ts > tp, in each time slot there is a time interval of length 2tg +ts−tp, in which the

mailboxes are not transmitting nor receiving data. However, if 2tg+ts ≤ tp, no such interval exists in a time

slot. Thus, the bandwidth utilization due to propagation delay is 1−max[2tg+ts−tp, 0]/(2(tg+tv)+tp+ts).

III. THEORETICAL MODELS

To further explain the mailbox switches, in this section we provide theoretical models for δ = 0, δ = ∞,

and 0 < δ < ∞, respectively. In these models, we assume that both the bin size F and the buffers for

the FIFO queues at the input ports of the first switch are infinite. Also, we do not allow backward tries,

i.e., δb = 0.
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In our models, we consider the well-known uniform i.i.d. traffic model as in [11], [6]. Assume that the

arrival processes to the input ports of the first switch satisfy the following conditions.

(A1) Arrivals at each input port are independent and identical Bernoulli processes.

(A2) All arrival processes have the same arrival rate ρa and every arrival process is independent of

others.

(A3) The destination of every arrival at each input port is uniformly distributed over N outputs.

(A4) N is large.

A. Exact analysis for the throughput with δ = 0

In this section, we consider the mailbox switch with δ = 0. Since δ = 0, the cell index of the virtual

waiting time will never be increased. As such, there is no need to keep track of the virtual waiting times

at all! Moreover, even though we assume that F = ∞ in our model, only the first cell in every bin is

used. As such, it can be implemented with F = 1. Since F = 1, there is no need to transmit and feedback

the cell index of the virtual waiting time. However, we still need to feedback a single bit information to

indicate whether a HOL packet is successfully placed, i.e., f = 0 for a HOL blocking and f = 1 for a

successful placement.

Our objective of this section is to show that this special case of the mailbox switch with δ = 0 yields the

same throughput as the classical HOL blocking switch in [11], i.e., it achieves 58% throughput. In fact,

the mailbox switch with δ = 0 can be viewed as a HOL blocking switch with distributed and pipelined

conflict resolution.

As the traffic is uniform, we only need to consider a particular output port of the second switch, say,

the first output. At time t, it is connected to the h(1, t)th mailbox, and this mailbox is also connected to

the first input port of the first switch by symmetry. If the first bin of the h(1, t)th mailbox is occupied

at the beginning of the tth time slot, then the packet is retrieved by the first output port and the first bin

becomes empty at time t. In any event, we know that the first bin of the h(1, t)th mailbox is empty at

time t.

Let Yi(t) = 1 if the HOL packet of the FIFO queue of the ith input port is destined for the first output

port of the second switch at time t, and Yi(t) = 0 otherwise. Let

q(t) =

N∑
i=1

Yi(t+ i− 1). (6)

As the h(1, t)th mailbox is connected to the first input port at time t, it will be connected to the ith input

port at time t+ i− 1. Thus, q(t) is the total number of HOL packets that can be placed in the first bin of

the h(1, t)th mailbox from t to t+N − 1. If q(t) ≥ 1, then there is exactly one HOL packet that will be

placed in the first bin of the h(1, t)th mailbox as the bin is empty at time t. Those blocked HOL packets
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remain the HOL packets and they can be placed in the first bin of the h(1, t+ 1)th mailbox from t + 1

to t+N . Thus, we have

q(t+ 1) = (q(t) − 1)+ + a(t), (7)

where a(t) is the number of packets that becomes the HOL packets and can be placed in the first bin of

the h(1, t+ 1)th mailbox from t+ 1 to t+N . Once we have the recursive equation in (7), we can follow

the standard argument to show that the maximum throughput is 2−√
2 (see e.g., [11], [22]). Specifically,

we first assume that ρa = 1 in the uniform i.i.d. traffic model. As such, once a HOL packet is placed in

a mailbox, it will be replaced by another packet that chooses its destination uniformly and independently.

When N is large, a(t) is the sum of a large number of Bernoulli random variables and may be viewed

as a Poisson random variable. To have a stable system, the mean rate of a(t) should be the same as the

throughput ρd, i.e.,

E[a(t)] = ρd. (8)

From the well-known result for the discrete-time M/G/1 queue, we then have in steady state

P(q(t) > 0) = ρd, (9)

and

E[q(t)] =
1

2

2ρd − ρ2
d

1 − ρd
. (10)

To find ρd, we note that the expected total number of blocked HOL packets is NE(q(t) − 1)+ and the

expected number of departing HOL packets is Nρd. Since the total number of HOL packets is N , it

follows that

NE(q(t) − 1)+ +Nρd = N. (11)

Since

E(q(t) − 1)+ = E[q(t)] − P(q(t) > 0), (12)

using (12), (9) and (10) in (11) yields ρd = 2 −√
2.

B. Exact analysis for the throughput with δ = ∞
In this section, we consider the mailbox with δ = ∞. Since δ = ∞, there is no head-of-line blocking

at the FIFO queues. As such, there is no need to buffer packets at the input ports of the first switch.

Our objective of this section is to show that the mailbox switch with δ = ∞ achieves 67.5% throughput

under the uniform i.i.d. traffic model. To see this, consider a particular flow, say flow (i, j). Let W (n) be

the virtual waiting time seen by the nth packet of flow (i, j) (upon its arrival). Let T (n) be the number

of time slots between the arrivals of the nth and n+1th packets of this flow. Note that the virtual waiting

time of a flow is reduced by 1 for every time slot if the flow does not have a successful transmission. Let
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S(n) be the increment of the virtual waiting time after the nth packet is placed in a cell. Then we have

the following Lindley recursion:

W (n+ 1) = (W (n) + S(n) − T (n))+. (13)

In order for the virtual waiting times to be stable, we need to have (see e.g., [16])

E[S(n)] < E[T (n)]. (14)

From the uniform i.i.d. traffic model, it follows that T (n) is a geometric random variable (r.v.) with

parameter ρa/N , i.e.,

P(T (n) = k) = (1 − ρa

N
)k−1ρa

N
, k = 1, 2, . . . (15)

Thus,

E[T (n)] =
N

ρa
. (16)

To find E[S(n)], note that the increment of the virtual waiting time consists of two factors: (i) the

increment of the cell index and (ii) the increment of the counter (after being reset to N). The increment

of S(n) due to the second factor is simply T (n) mod N . On the other hand, the increment of the cell

index is the number of collisions encountered when the nth packet of flow (i, j) is placed in the mailbox.

Let B(n) be the number of collisions encountered when the nth packet of flow (i, j) is placed in the

mailbox. Then, we have

E[S(n)] = E[B(n)] ·N + E[T̃ (n)], (17)

where

T̃ (n) = T (n) mod N.

Recall that T (n) is a geometric r.v. with parameter ρa/N , Thus, for k = 1, 2, 3, . . .N − 1,

P(T̃ (n) = k) =
(1 − ρa

N
)k−1 · (ρa

N
)

1 − (1 − ρa

N
)N

. (18)

When N is large, this implies that

E[T̃ (n)] ≈ (
1 − e−ρa − ρae

−ρa

ρa(1 − e−ρa)
)N. (19)

To find E[B(n)], we first find the expected number of “collisions” that occurs in a time slot at an output

port. From symmetry, this is equivalent to finding the expected number of “collisions” in a cell of a

particular mailbox. Let q̃(k) be the number of packets that are ever tried to be placed in the kth cell for

that particular mailbox. Also, let ã(k) be the number of packets that are placed to the k th cell as their

first trial. As the Poisson assumption used in the case with δ = 0, we may assume that ã(k) is a Poisson



12

random variable. As the kth cell can only hold one packet and the rest of packets have to try the k + 1th

cell, we then have the following Lindley recursion:

q̃(k + 1) = (q̃(k) − 1)+ + ã(k + 1). (20)

Note that P(q̃(k) > 0) is the probability that the kth cell is occupied and hence it equal to the throughout

ρd. Using a similar argument to that in the case with δ = 0, we have

P(q̃(k) > 0) = E(ã(k)) = ρd (21)

and

E[q̃(k)] =
2ρd − ρ2

d

2(1 − ρd)
. (22)

Since the first packet can be placed in the kth cell successfully, the number of collisions in the k th cell

is (q(k) − 1)+. Thus, the expected number of ”collisions” in a time slot is

E[(q̃(k) − 1)+] = E[q̃(k)] − ρd =
ρ2

d

2(1 − ρd)
. (23)

As E[B(n)] is the expected number of ”collisions” when a packet is placed in a cell, it can be computed

by the following limit

E[B(n)] = lim
t→∞

Nc(t)

Np(t)
, (24)

where Nc(t) is the cumulative number of ”collisions” by time t at an output port and Np(t) is the

cumulative number of departures by time t at an output port. If the system is ergodic, i.e., the ensemble

average is the same as its time average, then we have from (23) and (24) that

E[B(n)] = lim
t→∞

Nc(t)

Np(t)
=

limt→∞
Nc(t)

t

limt→∞
Np(t)

t

=

ρ2
d

2(1−ρd)

ρd
=

ρd

2(1 − ρd)
. (25)

From (17), (19), and (25), we have

E[S(n)] =
ρd

2(1 − ρd)
·N + (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
) ·N. (26)

When the system is stable, we have ρd = ρa. It then follows from (16) and (26) that the inequality in

(14) can be rewritten as
ρa

2(1 − ρa)
+ (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
) <

1

ρa
. (27)

The maximum stable throughput can be found to be 0.6748 when the above inequality becomes an equality.

One interesting phenomenon is that when one increases the arrival rate ρa beyond the maximum stable

throughput 0.6748, the system becomes unstable and the expected virtual waiting time W (n) is increased

to ∞ as n goes to ∞. However, the throughput ρd is also increased with respect to the arrival rate ρa.

To see this, note that for an unstable system, we have

W (n+ 1) = W (n) + S(n) − T (n) (28)
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for large n. Thus, the expected inter departure time between the nth packet and the n + 1th packet is

simply E[S(n)]. As the throughput of a particular flow ρd/N is simply the inverse of the expected inter

departure time between two packets of that flow, we then have from (26) that

N

ρd
= E[S(n)] =

ρd

2(1 − ρd)
·N + (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
) ·N. (29)

To find the maximum unstable throughput, we solve the above equation by setting the maximum arrival

rate ρa = 1. This yields the maximum unstable throughput 0.6786. Even though the difference between

the maximum stable throughput and the maximum unstable throughput is very small, the existence of two

types of throughput in the mailbox switch is quite interesting. Both the maximum stable throughput and

the maximum unstable throughput are found to be quite close to our simulation in Figure 4 for N = 100.

C. Approximation for the throughput with 0 < δ <∞
As described in Section III-A, the key factor that limits the throughput for δ = 0 is the head-of-line

(HOL) blocking problem at the input buffers. On the other hand, as shown in Section III-B, the key

factor that limits the throughput for δ = ∞ is the stability of virtual waiting times. It is expected that the

throughput for the mailbox switch with 0 < δ <∞ is limited by both the head-of-line blocking problem

and the stability problem of virtual waiting times. Unlike the cases with δ = 0 and δ = ∞, exact analysis

for the finite case with 0 < δ < ∞ is much more difficult. Instead, our objective is to find a simple

approximation formula for the maximum throughput of the mailbox switch with 0 < δ <∞.

First, let us consider an FIFO queue, say the ith queue, at the input port of the first switch. In order to

have a stable queue, we need to make sure that the arrival rate to the queue is smaller than the service rate

of the queue. From the uniform i.i.d. traffic model, the arrival rate to the queue is simply ρa. To compute

the service rate, consider a HOL packet of the queue at time t. Suppose the HOL packet is destined for

the jth output port of the second switch. The HOL packet is blocked only if there is no empty cell among

the cells fi,j(t), fi,j(t) + 1, . . . , fi,j(t) + δ. Let ρd be the throughput of the mailbox switch. As a packet

eventually leaves the mailbox switch once it is placed in a cell, the throughput ρd is also the probability

that a cell is occupied. To simplify our analysis, we make the following assumption on the independence

of cell occupancy:

(A5) Every cell is occupied independently with probability ρd. This is independent of everything else.

Note that (A5) is an over simplified assumption and it does not hold in general. As explained in the case

with δ = ∞, call placement is in fact governed by Lindley recursion in (20). From (A5), the probability

that the HOL packet is blocked is ρδ+1
d . Thus, the service rate is 1 − ρδ+1

d . This leads to the following

condition for the FIFO queue to be stable:

ρa < 1 − ρδ+1
d . (30)
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Now we consider the cell index of the virtual waiting time for a particular flow, say flow (i, j). In order

for fi,j(t) to be stable, we need to make sure that the increase rate of fi,j(t) is smaller than the decrease

rate of fi,j(t). To compute the increase rate, note that fi,j(t) is increased by k for some 0 ≤ k ≤ δ if the

following three conditions hold: (i) the HOL packet at the ith input port of the first switch is a packet

from flow (i, j), (ii) the cells in the jth bin with the indexes fi,j(t), fi,j(t) + 1, . . . , fi,j(t) + k − 1 are

occupied, and (iii) the cell with the index fi,j(t) + k is empty. From the uniform i.i.d. traffic model, the

probability that the HOL packet at the ith input port of the first switch is a packet from flow (i, j) is

simply ρa/N . As everything is assumed to independent in (A5), the probability that fi,j(t) is increased

by k is
ρa

N
· ρk

d · (1 − ρd).

Thus, the increase rate of fi,j(t) is

δ∑
k=0

k · ρa

N
· ρk

d · (1 − ρd) =
ρa

N

δρδ+2
d − (δ + 1)ρδ+1

d + ρd

1 − ρd
. (31)

To compute the decrease rate, note that fi,j(t) is decreased by 1 if the following two conditions hold:

(i) there is no successful transmission of a packet from flow (i, j), and (ii) the counter gi,j(t) = 1. The

event that there is no successful transmission of a packet from flow (i, j) can be decomposed as the union

of the two disjoint events: the HOL packet at the ith input port of the first switch is not a packet from

flow (i, j) or the HOL packet at the ith input port of the first switch is a blocked packet from flow (i, j).

Thus, the probability that there is no successful transmission of a packet from flow (i, j) is

1 − ρa

N
+
ρa

N
· ρδ+1

d .

To compute the probability that gi,j(t) = 1, we make the following assumption.

(A6) The counter gi,j(t) is uniformly distributed over {1, 2, . . . , N}.

As such, the probability that gi,j(t) = 1 is simply 1/N . Thus, the decrease rate of fi,j(t) is

(1 − ρa

N
+
ρa

N
ρδ+1

d )
1

N
. (32)

Using (31) and (32) and letting N → ∞, we have the following condition for the fi,j(t) to be stable:

ρa
δρδ+2

d − (δ + 1)ρδ+1
d + ρd

1 − ρd
< 1. (33)

As the throughput ρd cannot be larger than the arrival rate ρa, it follows from (30) and (33) that throughput

ρd is limited by the following two inequalities:

ρd + ρδ+1
d < 1, (34)

ρd
δρδ+2

d − (δ + 1)ρδ+1
d + ρd

1 − ρd
< 1. (35)



15

In the theoretical curve of Figure 3, we use the bound obtained by (34) and (35) to plot the theoretical

value of the maximum throughput as a function of δ. For δ < 5, the inequality in (34) sets the limit on the

maximum throughput. On the other hand, for δ ≥ 5, the inequality in (35) sets the limit on the maximum

throughput. From these, it is interesting to see that the curve is peaked when δ = 4 and that gives the

maximum throughput of 0.75. The intuition behind this is that if we set δ too small, it is quite likely that

the HOL blocking will become a problem. On the other hand, if we set δ too large, then packets will be

distributed over time sparsely and that also results in a low throughput.

IV. SIMULATION STUDY

In this section, we perform various simulations to verify our theoretical results in the previous section.

In all our simulations, we consider 100× 100 mailbox switches, i.e., N = 100. Our first experiment is to

find the maximum throughput of the mailbox switch. To achieve this, the arrival rate of each input port

is set to 1, i.e., a packet arrives at each input port in every time slot. Each packet selects a destination

with an independent and equal probability. This model is called the uniform i.i.d. traffic model. In Figure

3, we plot the simulation results (along with the theoretical results in Section III-C) for the maximum

throughput as a function of δ under the uniform i.i.d. traffic.

Note that the curve from the simulation results in Figure 3 is similar to that from the theoretical results.

Both curves show that the throughput can be increased by increasing δ at the beginning, and it then starts

to decrease if δ is increased further. As explained in our theoretical model, this is because the throughput

is limited by the HOL blocking at the FIFO queues of the first switch when δ is small. On the other

hand, when δ is large, the throughput is limited by the stability of the virtual waiting times. Thus, the

throughput model based on the stability of the FIFO queues and the virtual waiting times seems to be

valid (at least qualitatively).

We also note that for the case δ = 0 the simulation result shows the maximum throughput is 0.58

as predicted by our theoretical model in Section III-A. On the other hand, for the case δ → ∞, the

simulation results show that the mailbox switch has the maximum throughput 0.68, which is quite close

to 0.6786 predicted by our theoretical model in Section III-B. But it is higher than 0.61 predicted by the

theoretical model in Section III-C. The main reason behind this is that the independence assumption for

cell occupancy in (A5) in Section III-C is an over simplified assumption. In fact, we expect that nonempty

cells are more likely to be clustered together as we always search for the first empty cell. As such, packets

destined for the same output are more well packed and the increase rate of the cell indexes of the virtual

waiting times is not as large as predicted in (31). One might think that deterministic connection patterns

and unbalanced traffic may cause throughput degradation. We simulate the mailbox switch subject to

hot-spot traffic and long-tail Pareto traffic [26]. Specifically, in our hot-spot traffic model, each input port

is 100% loaded and each packet selects its destination independently. However, as a packet arrives to
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an input port, say input i, it is destined for output port i with probability 0.5 and is destined for any

other output port with probability 0.5/(N − 1). In the Pareto traffic model, packets arrive in bursts. The

distribution of burst length � is c/�2.5, where c is a normalization constant and i = 1, 2, . . . , 10000. All

packets in a burst are destined to the same output port. Each burst selects its destination independently

and uniformly. Figure 3 indicates that the mailbox switch does not suffer from performance degradation

when the traffic is unbalanced or has long tails.

In our second experiment, we measure the throughput by increasing the arrival rate ρa. For this

experiment, we choose δ = 50. In Figure 4, we plot the throughput as a function of the arrival rate

ρa. Note that the throughput of the mailbox switch increases linearly as a function of the arrival rate ρa

until it reaches its maximum stable throughput near 0.67. From that point on, the throughout is increased

at a much slower rate to it maximum (unstable) throughput near 0.68. This shows that the mailbox switch

does not have the undesired catastrophic behavior in some random conflict resolution algorithms such as

ALOHA and CSMA (see e.g., [20]), where the throughput decreases as the load is increased further.

In this experiment, we also measure the normalized average increment of the virtual waiting time when

a packet is placed successfully in a mailbox. The normalized average increment of the virtual waiting

time is obtained by the ratio of the average increment of the virtual waiting time to the number of input

ports N . In Figure 5, we plot the normalized average increment of the virtual waiting time as a function

of the arrival rate and compare it with the theoretical model in (26). Specifically, we plot the theoretical

curve as a function of the arrival rate ρa by

ρd

2(1 − ρd)
+ (

1 − e−ρa − ρae
−ρa

ρa(1 − e−ρa)
), (36)

where ρd = ρa if ρa is smaller than the maximum stable throughput 0.6748, and ρd is obtained from (29)

otherwise. As shown in Figure 5, the simulation result is quite close to that obtained from our theoretical

model.

To further explore the behavior of the mailbox switch, we plot packet delay as a function of the arrival

rate for various numbers of forward trials δ. For every curve in the Figure 6, we observe that packet

delay increases rapidly to ∞ as the arrival rate approaches its maximum throughput. This phenomenon

provides further support for the throughput predicted by our theoretical models.

Moreover, as shown in Figure 6, in order to obtain the best packet delay, it seems that one should use

the least δ that has the maximum throughput larger than the arrival rate ρa. For instance, when the arrival

rate ρa is smaller than 0.58, the case with δ = 0 has the best performance in terms of packet delay. In this

case, the average packet delay is around N/2 = 50, which is the average number of time slots needed for

a bin in a mailbox to be connected to its output. However, when the arrival rate ρa is between 0.58 and

0.74, the case with δ = 1 is the best choice. As shown in Figure 3, the maximum throughput is achieved

when δ = 3. It is interesting to see in Figure 7 that the case with δ = 3 is better than any other cases
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with δ > 3 in terms of packet delay for the whole range of arrival rates.

In the third experiment, we consider the mailbox switch with limited numbers of forward and backward

tries. As discussed in Section II-D, there are two parameters for such a mailbox switch: δ and δb. The

search for an empty cell for flow (i, j) is started from the cell with the index max[1, fi,j(t) − δb] to the

cell with the index min[F, fi,j(t) + δ]. The resequencing delay for such a mailbox switch is bounded by

Nδb slots. In Figure 8 we plot the throughput as a function of δb for δ = 5, 6, and 7. From Figure 8, we

note that the mailbox switch can achieve more than 95% throughput with small δ and δb. The throughput

is an increasing function of δb as placing a packet in a cell with the index smaller than the cell index

of its virtual waiting time does not result in the increase of its virtual waiting time. Another interesting

observation is that increasing δ does increase the throughput when δb is large. In the case that δb = 0, we

have known from Figure 3 that the throughput decreases as δ increases when δ ≥ 4. This is because a

large δ tends to increase a large amount of the virtual waiting time when backward tries are not allowed

(δb = 0). However, this is not the case when δb is large. Even though a large δ tends to increase a large

amount of the virtual waiting time, a large δb allows packets to be repacked in the cells that are “wasted”

by a large increase of the virtual waiting time. Thus, the constraint is shifted from the stability of the

virtual waiting time to the HOL blocking of FIFO queues. As a large δ tends to have a small probability

of HOL blocking, this explains why the mailbox switch with a large δ has better throughput than that

with a small δ when δb is large.

V. DISCUSSIONS AND EXTENSIONS

In this section we first discuss the complexity and unfairness issue of the mailbox switches. We then

discuss two extensions as future works.

First we compare the computation and communication overhead of the mailbox switch with that of input

buffered switches running iSLIP, as iSLIP is a popular matching algorithm that demands low computation

overhead. The comparison is shown in Table I. Note that there are two ways to implement iSLIP. In

a distributed implementation, all input ports and output ports are fully connected by a mesh network,

from which the request, grant and accept messages are communicated between the input ports and output

ports. Each input port and output port are equipped with a processor that executes the iSLIP algorithm.

The complexity of the fully connected mesh network is O(N 2). The computation overhead to process the

request, grant and accept messages in each input and output port is O(N). In a centralized implementation

of the iSLIP algorithm, a central controller keeps track of the buffer occupancy of the VOQs at the input

ports. In each time slot, every input port informs the central controller the index of the VOQ to which a

new packet arrives. The central controller executes the iSLIP algorithm centrally. Thus, the communication

overhead is O(N logN) and the computation overhead is O(N 2). For the mailbox, we mention at the

end of Section II-B that the communication overhead per input port to transmit virtual waiting times is
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O(log(NF )) bits. The communication overhead for the mailbox switch with cell indexes is O(N log(F )).

For the computation overhead, it takes a linear search to find the first empty cell in a send mail operation.

Thus, the computation overhead of the virtual waiting time based mailbox is O(F ). The argument for

mailbox switches with limited tries or backward tries is similar.

We note that some TDM scheduling approaches cause an unfairness problem when traffic is not

uniformly destined for every output port. We refer the reader to [21], [24]. Deterministic and cyclic

connection patterns in the mailbox switch do create an unfairness problem that we will describe now.

In a mailbox switch this unfairness problem leads to unfair throughput and delay performance for traffic

arriving at different input ports. Although the unfairness problem exists for general F , we explain the

problem using an example in which F = 1. Consider the j th mailbox and the ith output port. At time

t = kN+i+j−1, where k is an integer, input port i is connected to mailbox j by the first crossbar switch

and the second crossbar switch connects mailbox j to output port i. Now consider the traffic destined to

output port i. To ease our illustration, call the traffic destined to output i the type i traffic and use the

short-hand notation [n]N to denote n mod N . Since the retrieve mail operations occur before the send

mail operations, if input i sends a type i packet, this packet will be, with probability one, successfully

placed into the ith bin in the jth mailbox. In general, input port [i+ �]N can successfully transmit a type i

packet to the ith bin in mailbox j only if input port [i+m]N did not transmit a type i packet at time t+m

for all m = 0, 1, . . . , � − 1. Thus, the probability of successfully transmitting a type i packet by input

port [i+ �]N at time t+ � is decreasing in �. These decreasing probabilities of successfully transmitting

packets to mailboxes create an unfairness problem to the input ports. See Figure 11 for the discrepancy

of average delay. Note that one can view the input ports to have priorities to contend and to transmit

packets to the mailboxes. Specifically, to contend for the ith bin in a mailbox, input port i has the highest

priority, followed by input port [i+ 1]N , [i+ 2]N , and so on.

We now present a method to solve this unfairness problem. Our approach is to assign aliases to each

input and output pair, and determine connection patterns according to the aliases. The alias of input and

output port i is η(i), where η is a one-to-one function that maps from the set {1, 2, . . . , N} onto itself.

Input port i is connected with mailbox j at time t if j = h(η(i), t). From the observation presented in the

last paragraph, to contend for output i the descending priority order of input ports is η−1(η(i)), η−1([η(i)+

1]N), . . . , η−1([η(i) + N − 1]N), where η−1 is the inverse mapping of η. By properly assigning aliases,

one can equalize the priorities of input ports 1, 2, . . . , i− 1, i+ 1, . . . , N . Specifically, we define K alias

mapping functions denoted by η1, η2, . . . , ηK . Divide time into periods of length Kτ time slots. In each

period, adopt the K alias mapping functions sequentially, each for τ time slots. Clearly in order for each

input port to have the second highest priority for an equal number of time slots, K must be equal to

(N−1)k for any positive integer k. In general, K must be equal to (N−1)!k for any positive integer k in

order for all input ports to have the same priority p, where p = N − 1, N − 2, . . . , 1, for an equal number
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of time slots. Note that for type i traffic, input port i always has the highest priority no matter how we

assign the aliases. To cope with the unfairness problem of input port i for type i traffic we interchange

the order of the send mail operations and the retrieve mail operations every (N − 1)!τ time slots. Finally,

we note that as we change from one alias mapping function to another, existing packets in the mailboxes

may reach their destinations out of sequence. To cope with this problem, we insert NF time slots before

the transition from one mapping function to another. During these NF time slots, packets in the input

buffers are halted and packets in the mailboxes are transmitted to their destinations.

Practically, (N − 1)!τ can be very large if N is large. One way to reduce the period is to use a random

sampling technique. We randomly, independently and uniformly generate N 2 samples from (N−1)! alias

mapping functions. To generate one sample, we flip N−1 coins independently. Coin j has N−j possible

values and each value appears with an equal probability. According to the law of large number, if we

sample the permutation N 2 times uniformly, each priority for each input port appears about N times.

By computer simulation, we study a mailbox switch with N = 100 implementing random sampling of

port mapping functions. In the experiment, we let τ = 100N time slots. There are totally N 2 permutations

sampled. We study uniform i.i.d. traffic and show how the delay varies among the N 2 flows. As shown in

Figure 12, the maximum average delay and the minimum average delay among the N 2 flows are almost

identical. Thus, taking N 2 samples of mapping functions in a period seems to be sufficient.

In the rest of this section, we discuss possible extensions of the mailbox switches.

(i) In addition to returning the cell indexes of the virtual waiting times, one can also send out the

information for the occupancy of the cells. With this additional information, one can implement

VOQs at the inputs so that one can select packets from various VOQs to reduce the probability

of HOL blocking. This corresponds to doing pipelined matching in a distributive manner. Our

preliminary results show that even for the case δ = 0, the throughput can be very close to 100%

if the longest VOQ is selected. However, it is not clear how much information is needed for the

occupancy of the cells in order to achieve high throughput.

(ii) Even though the number of forward tries δ is fixed in our original design of the mailbox switch,

it can be made to be adaptive to the FIFO queue at each input. It is intuitive that one should

choose a large δ to avoid HOL blocking when the number of packets in the FIFO queue is large.

On the other hand, one should reduce δ to minimize the increase of the virtual waiting time

when the number of packets in the FIFO queue is small. The tradeoff is not clear.

VI. RECURSIVE CONSTRUCTION OF THE SYMMETRIC TDM SWITCHES

In order to construct an N × N mailbox switch, one needs to construct two N × N symmetric TDM

switches. Even though an N × N symmetric TDM switch can be implemented by an N × N crossbar

switch, we show in the section that an N × N symmetric TDM switch can be easily constructed with
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O(N logN) complexity.

In Figure 9, we show a two-stage construction of an N×N symmetric TDM switch (with N = pq). The

first stage consists of p q × q symmetric TDM switches (indexed from 1, 2, . . . , p) and the second stage

consists of q p×p symmetric TDM switches (indexed from 1, 2, . . . , q). These two stages of switches are

connected by the perfect shuffle, i.e., the �th output of the kth switch at the first stage is connected to the

kth input of the �th switch at the second stage. Also, index the N inputs and outputs from 1 to N . The

N inputs of the N ×N switch are connected to the inputs of the switches at the first stage by the perfect

shuffle. To be precise, let

�(i) = �i− 1

p
� + 1, (37)

and

k(i) = i− (�(i) − 1) · p. (38)

Note that for i = 1, 2, . . . , N , �(i) is an integer between 1 and q and k(i) is an integer between 1 and p.

Then the ith input of the N × N switch is connected to the �(i)th input of the k(i)th switch at the first

stage. Also, we note that the j th output of the N ×N switch is the k(j)th output of the �(j)th switch at

the second stage.

The symmetric TDM switches at these two stages are operated at different time scales. The connection

patterns of the symmetric TDM switches at the second stage are changed every time slot. However, the

connection patterns of the symmetric TDM switches at the first stage are changed every frame with each

frame containing p time slots. To be specific, we define the mth frame of the kth switch at the first stage in

Figure 9 to be the set of time slots {(m−1)p+k, (m−1)p+k+1, . . . , mp+k−1}. Then every symmetric

TDM switch at the first stage is operated according to its own frames. Note that the p symmetric TDM

switches at the first stage do not change their connection patterns at the same time as the mth frames of

these switches contain different sets of time slots.

Lemma 1 The two-stage construction in Figure 9 is an N ×N symmetric TDM switch.

Proof. In order for the N ×N switch to be a symmetric TDM switch, we need to show that the ith input

port is connected to the jth output at time t when

(i+ j) mod N = (t+ 1) mod N. (39)

From the topology in Figure 9, we know there is a unique routing path from an input of the N × N

switch to an output of the N×N switch. To be precise, the ith input is connected to the �(i)th input of the

k(i)th switch at the first stage. Also, the �(j)th output of the k(i)th switch at the first stage is connected

to the k(i)th input of the �(j)th switch at the second stage. Note that the j th output of the N ×N switch

is the k(j)th output of the �(j)th switch at the second stage. Thus, in order for the ith input of the N ×N

switch to be connected to the j th output of the N ×N switch at time t, one must have
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(i) the �(i)th input of the k(i)th switch at the first stage is connected to its �(j)th output at time t,

and

(ii) the k(i)th input of the �(j)th switch at the second stage is connected to its k(j)th output at time

t.

As the switches at the first stage are q× q symmetric TDM switches that change their connection patterns

every frame, we have from (i) that t must be in the mth frame of the k(i)th switch at the first stage, where

m satisfies

(�(i) + �(j)) mod q = (m+ 1) mod q. (40)

From (40), it follows that for some integer m2

(�(i) − 1) + (�(j) − 1) = (m− 1) +m2q. (41)

Similarly, as the switches at the second stage are p × p symmetric TDM switches that change their

connection patterns every time slot, we have from (ii) that

(k(i) + k(j)) mod p = (t+ 1) mod p. (42)

Since t is in the mth frame of the k(i)th switch, t is one of the p time slots {(m− 1)p+ k(i), (m− 1)p+

k(i) + 1, . . . , mp+ k(i) − 1}. Thus, we have from (42) that

t = (m− 1)p+ k(i) + k(j) − 1. (43)

Note from (38), (41) and (43) that

(i+ j) mod N =
(
�(i) − 1)p+ k(i) + (�(j) − 1)p+ k(j)

)
mod N

=
(
(m− 1)p+m2pq + k(i) + k(j)

)
mod N

= (t+ 1 +m2N) mod N

= (t+ 1) mod N. (44)

Note that a 2 × 2 switch only has two connection patterns and it is a symmetric TDM switch if it

alternates its two connection patterns every time slot. If N is a power of 2, then one can recursively

expand the two-stage construction by 2×2 switches. The number of 2×2 switches needed for an N ×N
symmetric TDM switch is then N

2
log2N . This shows that one can build an N × N symmetric TDM

switch with O(N logN) complexity. In Figure 10, we show an 8×8 symmetric TDM switch that uses the

recursive construction. The eight connection patterns of each 2× 2 switch are represented by a sequence

of 8 characters in “b” and “x”, where “b” denotes the bar connection and “x” denotes the cross connection
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of a 2× 2 switch. To find out the connection patterns of the 2× 2 switches in the general case, we index

the stage from left to right by 1, 2, ..., log2N , and index the switch in each stage from top to bottom by

1, 2, ..., N/2 as in Figure 10. Then the connection pattern of the mth switch at the �th stage at time t is

determined by the function ψ(�,m, t):

ψ(�,m, t) = �(t− φ(�,m)) mod 2�

2�−1
�, (45)

where

φ(�,m) = ((m− 1) mod 2�−1) + 1. (46)

We set the bar connection pattern if ψ(�,m, t) = 0, and the cross connection pattern if ψ(�,m, t) = 1.

VII. CONCLUSIONS

In this paper, we proposed the mailbox switch as a scalable two-stage switch architecture for conflict

resolution of ordered packets. The mailbox switch has the following nice features:

(i) Low communication overhead: only the cell indexes need to be transmitted between input/output

ports and mailboxes. This requires log2(F + 1) bits for each placement of a HOL packet into a

mailbox.

(ii) Low computation overhead: one only needs to keep track of the cell index of the virtual waiting

times fi,j(t) and the associated counter gi,j(t). The connection patterns of the two symmetric

TDM switch fabrics are independent of the traffic.

(iii) Low hardware implementation complexity: the symmetric TDM switches can be constructed

recursively. An N×N symmetric TDM switch can be constructed with N
2

log2N 2×2 switches.

(iv) In order delivery: packets of the same flow are delivered in the order of their arrivals.

(v) High throughput: more than 75% throughput can be achieved. When allowing limited resequenc-

ing delay, the mailbox switch can achieve 95% throughput.

Though not reported here, our simulations also show that the throughput can be higher if the traffic is

bursty. The intuition behind this is that packets of the same burst tend to be distributed evenly to the

mailboxes and they are placed in the cells with the same index. As such, it is less likely to have a large

increase of the virtual waiting time for a placement of a HOL packet.
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Fig. 3. The maximum throughput as a function of δ.
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Fig. 7. Packet delay as a function of the arrival rate for forward trials not less than 3, i.e. δ ≥ 3.
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Fig. 11. The average delay without port mapping for N = 100 under uniform i.i.d. traffic.

Fig. 12. The average delay using random port mapping for N = 100 under uniform i.i.d. traffic.


