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Abstract—In this paper, we consider the two-user multi-
channel rendezvous problem in a cognitive radio network
(CRN) and derive tight lower bounds for maximum time-
to-rendezvous (MTTR) and maximum conditional time-to-
rendezvous (MCTTR) of various channel hopping (CH) schemes
under a channel loading constraint. In the symmetric and syn-
chronous setting, we propose a novel Cycle Adjustable Channel
Hopping (CACH) scheme to achieve the MTTR lower bound
(when the channel loading is bounded above by 1/u with u
being a prime power). Thus, the MTTR lower bound is tight
and the CACH scheme is optimal in minimizing MTTR among
all the symmetric and synchronous CH schemes under the
same channel loading constraint. In the asymmetric setting, we
show that the classical wait-for-mommy strategy can be used to
achieve the MCTTR lower bound and thus it is optimal. In the
symmetric and asynchronous setting, we also show a hierarchical
construction of an asynchronous CH sequence by using two
smaller asynchronous CH sequences. To further understand the
effect of channel loading to the other performance metrics in
a CRN, we perform various computer simulations for various
CH schemes. Our simulation results show that the average time-
to-rendezvous of CACH is independent of the total number of
channels and it is also robust to the disturbance of primary users.

Index Terms—rendezvous search, channel hopping, Galois
field, cognitive radio networks.

I. INTRODUCTION

W IRELESS networks used today are regulated by a
fixed spectrum policy. This policy leads to the problem

of inefficient usage of radio spectrum [2]. To solve this
problem, cognitive radio (CR) [3] was introduced to improve
the spectrum efficiency. In a cognitive radio network (CRN),
unlicensed users (called secondary users (SUs)) are allowed
to use unused licensed spectrum without interfering with
licensed users (called primary users (PUs)). With the support
of software defined radio (SDR) technology, nodes equipped
with cognitive radio transceivers (CR transceivers) can intelli-
gently adjust the transmission characteristics (e.g., transmis-
sion power, carrier frequency, and modulation strategy) to
achieve highly reliable communications and high spectrum
efficiency throughout a wide range of spectrum. Therefore,
they can quickly switch their operation spectrums and utilize
the unused licensed spectrums efficiently.
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In a CRN, each SU is associated with a set of channels
for communications, and the availability of each channel is
determined by the behavior of neighboring PUs. SUs located
in different locations may have different available channel sets
because their neighboring PUs may be different. In addition,
the available channel set of an SU may change with time
because the neighboring PUs may change their transmission
states. The diverseness of available channel sets makes the
problem of establishing a control channel very challenging in
a CRN, especially in a fully distributed environment.

The most typical approach for control channel establishment
is to use a dedicated global control channel among all SUs
[4]–[7]. However, the availability of channel sets among SUs
may vary due to the fact that they might have different
neighboring PUs. Hence, the likelihood of having a control
channel globally available to all SUs is very slim. Even if SUs
are able to find a globally available channel, the availability
of this dedicated control channel may change over time.
When the dedicated control channel is unavailable, the normal
operations of SUs may be disrupted. In particular, new data
packets cannot be transmitted because the control messages
cannot be exchanged even though there are other common
available channels. Once a PU starts using its channel, it is
very likely that the PU will continue to use this channel for
a long time. Thus, all the control messages will be “blocked”
during this long duration. Such a problem is known as the PU
long-time blocking problem (see e.g., [13], [14]). Moreover,
using one single control channel may introduce a bottleneck
in the operation and may further cause the control channel
saturation problem in a high node-density environment.

To cope with the control channel saturation problem and
the PU long-time blocking problem, channel hopping (CH)
schemes are commonly used in the literature (see e.g., [8]–
[13], [15]–[22]). In a CH scheme, time is usually divided into
consecutive time intervals and each SU hops to a channel
in every time interval according to a specific CH sequence.
Eventually, two SUs rendezvous when they both hop to
a common unblocked channel. As discussed in [22], CH
schemes can be classified into various categories depending
on their assumptions. A CH scheme is called asymmetric if
one SU can be identified as the sender and the other SU can
be identified as the receiver. For asymmetric CH schemes
(such as ACH in [21] and ARCH in [22]), the sender and
the receiver can use different strategies to rendezvous. On
the other hand, both SUs in a symmetric CH scheme (such
as SSCH in [8], SYN-MAC in [11], QCH in [12] and DH-
MAC in [13]) have to follow the same strategy. As such, the
performance of asymmetric CH schemes is better than that
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of symmetric CH schemes. We note that the definition of
symmetry might be used differently in various papers in this
area. For instance, there are some papers in the literature (see
e.g., [23], [24]) that define asymmetric users as users who have
different available channel sets. As the available channel set to
each user is only a subset of all the channels, such information
can then be used for speeding up the rendezvous process [14],
[24], [25]. In this paper, we do not assume that the available
channel set to each user is fixed and known to each user. Also,
a CH scheme is synchronous if the indices of time intervals of
both SU are the same. Synchronous CH schemes can achieve
better performance than asynchronous CH schemes as both
SUs know when to start their CH sequences simultaneously.
There are also several novel symmetric and asynchronous CH
schemes that have been proposed in the literature, e.g., SeqR
[9], CRSEQ [15], DRSEQ [16], ASYNCH-ETCH [18] and JS
[19]. A comparison of all these CH schemes can be found in
Table 1 of [22].

As addressed in [12], [22], there are four common metrics
for evaluating the performance of a CH scheme: (i) degree
of overlapping: the number of distinct channels for two SUs
to rendezvous in each operation period, (ii) maximum time-
to-rendezvous (MTTR): the maximum time for two SUs to
rendezvous when there are no blocked channels, (iii) maxi-
mum conditional time-to-rendezvous (MCTTR): the maximum
time for two SUs to rendezvous when there is at least one
fixed unblocked channel in a CRN with N channels, and (iv)
channel loading: the maximum probability that an SU hops to
a particular channel at a particular time interval. Clearly, for
the PU long-time blocking problem, a CH scheme should have
a large degree of overlapping, preferable the maximum degree
of overlapping. On the other hand, to reduce packet delay, it is
preferable to have a low MTTR. Finally, to mitigate the control
channel saturation problem, a CH scheme should control its
channel loading so that the average number of SUs that hop to
the same channel at the same time interval do not saturate the
channel. As pointed out in [12], there is a tradeoff between
time-to-rendezvous (TTR) and channel loading. In general,
one can increase channel loading to reduce TTR and such
a tradeoff can then be used to optimize system performance.
Unfortunately, most existing CH schemes [8], [11], [13], [15]–
[22] in the literature were designed for a fixed environment and
they cannot be easily adjusted to optimize system performance.

Despite all the efforts in finding novel CH schemes, it is still
not clear whether the performance of these CH schemes can
be further improved. In our recent work [26], we made a first
attempt to prove the optimality of various CH schemes under
the uniform (equal) channel loading constraint. For this, we
formulated a new type of rendezvous search problem, called
the multichannel rendezvous problem, that is different from
the classical rendezvous search problem (see e.g., the book
[27] and references therein) in the additional channel loading
constraint that puts a limit on the probability for a user to
search a certain channel (or location).

In the multichannel rendezvous problem, there are N par-
allel channels (with N ≥ 2), indexed from 0 to N − 1. Also,
time is slotted into time intervals, indexed from t = 0, 1, 2, . . ..
Two users (SUs in a CRN) who would like to rendezvous on

a common unblocked channel generate their own random CH
sequences independently and hop over these N channels with
respect to time according to their CH sequences. Denote by
c1(t) (resp. c2(t)) the channel selected by user 1 (resp. user 2)
at time t. Let B(t) be the set of channels that are blocked at
time t. If a channel is blocked at time t, then the two users will
not rendezvous even though they both hop to that channel at
time t. Then the time-to-rendezvous, denoted by T , is the first
time that these two users select a common unblocked channel,
i.e.,

T = inf{t ≥ 0 : c1(t) = c2(t) 6∈ B(t)}. (1)

As each user generates its CH sequence independently, a CH
scheme in the multichannel problem satisfies the following
independence assumption:

(A1) (Independence assumption) The two CH sequences
{ci(t), t ≥ 0}, i = 1 and 2 are independent.
Moreover, they are also independent of the channel
blocking process {B(t), t ≥ 0}.

The independence assumption of the two CH sequences
seems reasonable in a practical scenario as the two users are
not able to communicate with each other before they meet each
other. The independence assumption of the channel blocking
process is also reasonable when the behavior of primary users
is not predicable. However, when the behavior of primary users
is predicable or known in advance, then one might exploit the
information of the channel blocking process to improve the
performance. We note that there are some recent papers (see
e.g., [14], [24], [25]) that use the information of the available
channel set to each user to speed up the rendezvous process.

In [26], we added the following uniform channel loading
constraint in the multichannel rendezvous problem:

(A2u) (Uniform channel loading assumption) At any time
t, each channel is selected with an equal probability,
i.e., for all i = 1 and 2, j = 0, 1, 2, . . . , N − 1, and
t ≥ 0,

P(ci(t) = j) = 1/N. (2)

In this paper, we take one step further by considering the
tradeoff between channel loading and the other performance
metrics, such as MTTR and MCTTR. We ask the question how
much performance gain we can have for MTTR and MCTTR
if we are allowed to increase channel loading. For this, we
consider the general channel loading assumption below:

(A2) (Channel loading assumption) The maximum prob-
ability that a user hops to a particular channel at a
particular interval is not greater than 1/u, i.e., for all
i = 1 and 2, j = 0, 1, . . . , N − 1 and t ≥ 0,

P(ci(t) = j) ≤ 1/u. (3)

Note that the definitions of channel loading in [12], [22] are
equivalent to ours if the CH sequences in the their CH systems
are chosen according to a probability distribution. Thus, it is
more general to consider random CH sequences and define
channel loading in terms of the maximum probability that a
user hops to a particular channel at a particular interval. By
doing so, the channel loading of the blind rendezvous scheme
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that uses independent coin-tossing random sequences (see e.g.,
[17]) can also be defined.

In this paper, we will extend the results in [26] by deriving
tight lower bounds for the MTTR and MCTTR of various CH
schemes in the synchronous setting under the channel loading
assumption in (A2). In the symmetric and asynchronous set-
ting, we will also address another unsolved question in [26] by
deriving a tight lower bound for the period of an asynchronous
CH sequence with maximum degree of overlapping. Our main
theoretical contributions include the following results:
(i) Synchronous CH schemes with channel loading constraints:
In Section II, we consider synchronous CH schemes with
channel loading constraints. Under the constraint that channel
loading cannot exceed 1/u for some integer 2 ≤ u ≤ N ,
we show in Theorem 2 that the MTTR of a symmetric CH
scheme cannot be smaller than u + 1. In Algorithm 2, we
then propose a Cycle Adjustable Channel Hopping (CACH)
scheme and show that the CACH scheme achieves the lower
bound when u is a prime power. Thus, such a lower bound
is tight when u is a prime power, and the CACH scheme is
also optimal in minimizing MTTR among all the symmetric
and synchronous CH schemes under the same channel loading
constraint. In Theorem 16, we further show that the MCTTR
of a CH scheme cannot be smaller than uN . The MCTTR of
CACH is (u + 1)N and it is slightly larger than the lower
bound. In Algorithm 3, we further construct an asymmetric
CH scheme, called the synchronous wait-for-mommy strategy,
that achieves the lower bound for MCTTR in Theorem 16.
(ii) Asynchronous CH schemes: In Section III, we consider
asynchronous CH sequences that guarantee rendezvous even
when there are N − 1 blocked channels. For the asymmetric
setting, we construct an asynchronous CH scheme, called the
asynchronous wait-for-mommy strategy in Algorithm 4, that
achieves the lower bound for MCTTR in Theorem 16. The
MTTR of such a CH scheme is N , which is smaller than the
MTTR of ACH [21] and the MTTR of ARCH [22]. For the
symmetric setting, we show in Theorem 18 that the period
of an asynchronous CH sequence with maximum degree of
overlapping cannot be smaller than N2 +N +1. Such a lower
bound is not only better than the N2 lower bound in [15], [21]
but also tight for N = 2 and N = 8. In particular, the periodic
CH sequence with 8 channels and 73 time slots in a period in
[20] achieves the lower bound. We also show in Theorem 19 a
hierarchical construction of an asynchronous CH sequence by
using two smaller asynchronous CH sequences. For N = 64,
such a construction enables us to find an asynchronous CH
sequence that has a smaller MCTTR than CRSEQ [15].

In Table I, we summarize the lower bounds for MTTR
and MCTTR in the four settings, (Symmetric, Synchronous),
(Asymmetric, Synchronous), (Asymmetric, Asynchronous),
and (Symmetric, Asynchronous). In the last column of the ta-
ble, we show the optimal CH schemes that achieve these lower
bounds. In comparison with the state-of-the-art CH schemes in
Table 1 of [22], we note that in the symmetric and synchronous
setting CACH has a smaller MTTR than L-QCH [12] under
the same channel loading. By choosing u = N , the channel
loading of CACH is smaller than that of SSCH [8] under the
same MTTR. In the asymmetric and synchronous setting, the

TABLE I: Summary of the lower bounds and the optimal CH
schemes that achieve the lower bounds

channel MTTR MCTTR Optimal CH
loading or period scheme

Sym. 1/u u + 1 n/a CACH(i)
Syn. (Theorem 2) (Algorithm 2)

Asym. 1/u u uN Syn. w-f-m(ii)
Syn. (Theorem 16) (Algorithm 3)

Asym. 1/N N N2 Asyn. w-f-m
Asyn. (Theorem 16) (Algorithm 4)
Sym. n/a n/a N2 + N + 1(iii) (8, 73)-MACH(iv)
Asyn. (Theorem 18) [20]

(i): u has to be a prime power
(ii): w-f-m stands for wait-for-mommy
(iii): the minimum period of an asynchronous CH sequence with maximum
degree of overlapping
(iv): The lower bound is achieved for N = 8

synchronous wait-for-mommy strategy and RCCH in [22] have
the same degree of overlapping, channel loading, MTTR and
MCTTR when the channel loading is set to 2/N . However,
the synchronous wait-for-mommy strategy is more flexible
than RCCH as the synchronous wait-for-mommy strategy can
also be operated under any other channel loading 1/u with u
being a positive integer. In the asymmetric and asynchronous
setting, the asynchronous wait-for-mommy strategy, ACH in
[21] and ARCH [22] all have the same degree of overlapping,
channel loading and MCTTR. However, the MTTR of the
asynchronous wait-for-mommy strategy is N , which is smaller
than N2 −N + 1 in ACH and 2N − 1 in ARCH. According
to Table 1 of [22], the period of CRSEQ [15] is N(3N − 1)
(with N being a prime), which is the best result in the literature
for an asynchronous CH sequence with maximum degree of
overlapping in the symmetric and asynchronous setting. The
period of CRSEQ is still much larger than our lower bound
N2 + N + 1 and that suggests there might be still room for
improvement in this setting.

In addition to the theoretical analysis of the CH schemes,
we also perform various computer simulations in Section IV
to further understand the effect of channel loading to the other
performance metrics in a CRN. For this, we compare SYN-
MAC [11], SSCH [8], L-QCH [12], RRICH [1], CACH [1]
EJSCH [23], AHWCH [34] and ETCH [18]. Our simulation
results show that the average time-to-rendezvous of CACH is
independent of the total number of channels and it is also
robust to the disturbance of primary users.

II. SYNCHRONOUS CHANNEL HOPPING SCHEMES WITH
CHANNEL LOADING CONSTRAINTS

In this section, we consider synchronous channel hopping
schemes in the multichannel rendezvous problem.

Definition 1: If a CH scheme satisfies the independence
assumption in (A1) and the channel loading assumption in
(A2), it is called a CH scheme with channel loading not greater
than 1/u. Furthermore, a CH scheme is symmetric if it also
satisfies the following assumption:

(A3) (Symmetric assumption) The CH sequences
{ci(t), t ≥ 0}, i = 1 and 2, follow the same joint
distribution.
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One way for (A3) to hold is for both SUs to generate
their CH sequences by using a common (random) algorithm
independent of the channel blocking process {B(t), t ≥ 0}.

A. A lower bound for MTTR

In this section, we show a tight lower bound for the MTTR
of a symmetric CH scheme with channel loading not greater
than 1/u.

Theorem 2: For a symmetric CH scheme with channel
loading not greater than 1/u, if u is an integer and 2 ≤ u ≤ N ,
then its MTTR cannot be smaller than u+ 1.

In Theorem 2 of [26], it was showed that the MTTR of
a symmetric CH scheme with channel loading 1/N is not
smaller than N + 1. By taking u = N , it is easy to see that
the lower bound in Theorem 2 is a generalization of that. We
will show in Section II-C that the Cycle Adjustable Channel
Hopping scheme (CACH) achieves the lower bound when u
is a prime power. Thus, the lower bound is tight when u is a
prime power.

The rest of this section is devoted to the proof of Theorem
2. Our proof relies heavily on Lemma 3 and Lemma 4 that
were previously proved in [26], Lemma 1 and Lemma 3,
respectively. The generalized union bound in Lemma 3 is
tighter than the usual union bound as it subtracts a sum of
additional nonzero probabilities.

Lemma 3: (Generalized union bound, [26], Lemma 1) For
any n ≥ 2 events, E1, E2, . . . , En,

P(∪n
i=1Ei) ≤

n∑
i=1

P(Ei)−
n−1∑
i=1

P(Ei ∩ Ei+1). (4)

Lemma 4 shows that the event for the two symmetric
SUs to rendezvous at two different time slots has a nonzero
probability. Note that such an event is undesirable as it wastes
an addition time slot. This is also the key difference between
the symmetric setting and the asymmetric setting. In the
asymmetric setting, the probability of such an event could be
zero, e.g., the wait-for-mommy strategy [29].

Lemma 4: ( [26], Lemma 3) Consider two CH sequences
{c1(t), t ≥ 0} and {c2(t), t ≥ 0} over N channels. If these
two sequences satisfy (A1) and (A3), then

P(c1(s) = c2(s), c1(t) = c2(t)) ≥
1
N2

, s 6= t. (5)

In the following proposition, we show a result for a con-
strained optimization problem. The result of such an opti-
mization problem will be used in Lemma 6 for bounding the
probability that the two SUs rendezvous at a particular time
slot under the channel loading constraint.

Proposition 5: Suppose that u is an integer and 1 ≤ u ≤ N .
Consider the following constrained optimization problem:

max
N−1∑
j=0

pjqj

s.t. 0 ≤ pj ≤ 1/u, 0 ≤ qj ≤ 1/u,
N−1∑
j=0

pj = 1,
N−1∑
j=0

qj = 1.

Then its maximum value is 1/u.
Proof. Note that

pjqj ≤
p2

j + q2j
2

.

From the majorization theory [30], the maximum of∑N−1
j=0 p2

j/2 under the same constraint is achieved when
pj = 1/u, j = 0, 1, . . . , u − 1 and pj = 0 for j =
u, u+1, . . . , N−1. Thus,

∑N−1
j=0 p2

j/2 ≤ 1/(2u). Similarly, we
also have

∑N−1
j=0 q2j /2 ≤ 1/(2u). Thus, the maximum value

of the optimization problem is bounded above 1/u.
On the other hand, if we choose pj = qj = 1/u, j =

0, 1, . . . , u− 1 and pj = qj = 0 for j = u, u+ 1, . . . , N − 1,
then the objective value of the optimization problem is 1/u.
Such a choice achieves the maximum value of the optimization
problem.

Lemma 6: Consider two CH sequences {c1(t), t ≥ 0} and
{c2(t), t ≥ 0} over N channels. If these two sequences satisfy
(A1) and (A2) with u being an integer and 1 ≤ u ≤ N , then

P(c1(t) = c2(t)) ≤ 1/u. (6)

Proof. Since we assume in (A1) that these two sequences are
independent of each other, we have

P(c1(t) = c2(t))

=
N−1∑
j=0

P(c1(t) = j, c2(t) = j)

=
N−1∑
j=0

P(c1(t) = j) · P(c2(t) = j). (7)

From (A2), we know that for i = 1 and 2,

0 ≤ P(ci(t) = j) ≤ 1/u.

As a direct consequence of Proposition 5 of (7), we then have

P(c1(t) = c2(t)) ≤ 1/u.

Proof. (Theorem 2) Consider the event {T ≥ u} that these
two CH sequences do not rendezvous before time u when there
are no blocked channels. We will show that P(T ≥ u) > 0 so
that MTTR cannot be smaller than u+ 1. Note that

P(T ≥ u) = P(c1(s) 6= c2(s), 0 ≤ s ≤ u− 1)
= 1− P(∪u−1

s=0 {c1(s) = c2(s)}).

Using the generalized union bound in Lemma 3, we have for
u ≥ 2,

P(∪u−1
s=0 {c1(s) = c2(s)})

≤
u−1∑
s=0

P(c1(s) = c2(s))

−
u−2∑
s=0

P(c1(s) = c2(s), c1(s+ 1) = c2(s+ 1)).
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It then follows from (5) in Lemma 4 and (6) in Lemma 6 that

P(∪u−1
s=0 {c1(s) = c2(s)}) ≤ 1− u− 1

N2
.

Thus, for u ≥ 2

P(T ≥ u) = 1− P(∪u−1
s=0 {c1(s) = c2(s)}) ≥

u− 1
N2

> 0.

B. The round-robin indemnity channel hopping scheme

In this section, we introduce the construction of the Round-
Robin Indemnity Channel Hopping (RRICH) sequence. Such
a construction will be used in our simulation for performance
comparison in Section IV. It will also be used in the next
section to construct the Cycle Adjustable Channel Hopping
(CACH) scheme that achieves the MTTR lower bound in
Theorem 2.

Our construction for the RRICH sequence is based on the
mathematical theory of Galois fields [28]. A Galois field
GF (N) is a set of N elements with two operations ⊕
(addition) and ⊗ (multiplication) that satisfy various algebraic
properties, including the associative law, the commutative law
and the distributive law. Moreover, there exists an identity
element for addition ⊕, called the zero element, and for every
element in GF (N), its additive inverse exists. Similarly, there
exists an identity element for multiplication ⊗, called the
one element, and for every nonzero element, its multiplicative
inverse exists. Intuitively, we can add, subtract, multiply and
divide in a Galois field as in rational numbers.

It is well known that a Galois field GF (N) exists if and only
if N is a prime power. In particular, if N = 2, the addition in
GF (2) is the exclusive-OR operation and the multiplication in
GF (2) is the AND operation. When N is a prime, the addition
is the usual addition with the modulo N operation and the
multiplication is the usual multiplication with the modulo N
operation. The operations for GF (2m) are more involved, but
they can be easily implemented by using combinatorial logic
circuits and have a lot of applications in error correcting codes
and network coding.

In RRICH, we assume that N is a prime power. Hence, a
Galois field GF (N) with the two operations ⊕ and ⊗ exist.
Denote the N elements in GF (N) as {0, 1, 2, . . . , N − 1},
where 0 is the zero element (the identity element for ⊕) and
1 is the one element (the identity element for ⊗). We will
use −a to denote the inverse element of a under ⊕ and a−1

to denote the inverse element of a under ⊗. As we can treat
these two operations as usual addition and multiplication, it is
well-known that −(a⊕ b) = (−a)⊕ (−b), a⊗ 0 = 0⊗ a = 0
and a ⊗ (−b) = (−a) ⊗ b = −(a ⊗ b) for the Galois field
GF (N).

For each SU i, its RRICH sequence is a periodic sequence
with period N(N+1). Each period of N(N+1) time intervals
is called a frame. The sequence for SU i in a frame is
determined by using a set of two CH parameters: {xi, hi}
(called the RRICH parameter set). The parameter xi is called
the initial seed. It denotes the initial channel of the RRICH

sequence and its value is an integer ranged over [0, N − 1].
The other parameter hi is called the hopping seed. It is used
to determine which channel for SU i to switch to. In order
for the SU to change its control channel over time, we will
not select the zero element as a hopping seed (we note that
such a constraint will be removed in CACH). Hence, the
value of a hopping seed is an integer ranged over [1, N − 1].
Specifically, let ci(t) be the control channel of SU i used at
the tth time interval for 0 ≤ t ≤ N(N + 1)− 1. Suppose that
t = q(N + 1) + r, where q is the quotient of t divided by
N + 1 and r is its remainder. Then ci(t) is determined by:

ci(t) =
{
hi ⊕ q, if r = N
(xi ⊕ q)⊕ (hi ⊗ r), if 0 ≤ r ≤ N − 1 . (8)

To see the intuition behind (8), suppose that 0 ≤ t ≤ N−1.
For this case, we have q = 0. The above equation is simply a
”line” in the field GF (N) with hi being its ”slope.” As hi is
a nonzero element, the line is not a constant. As such, every
SU hops to different channels as time goes on. Moreover, for
two SUs with different hopping seeds, they hop as two lines
with different ”slopes” and these two lines intersect each other
at a unique point. For two SUs with identical hopping seeds,
they hop as two ”parallel lines.” That is why we have to add
indemnity time intervals (the time intervals with r = N ) for
them to rendezvous.

For the ease of our presentation, we partition each frame
of N(N + 1) time intervals into N sub-frames, each with
N + 1 time intervals. Specifically, the qth sub-frame, q =
0, 1, . . . , N − 1, contains the time intervals from q(N + 1) to
q(N+1)+N . Call the channel that an SU uses at an indemnity
interval the indemnity channel. Note that the initial seed and
the indemnity channel of an SU are updated by ”adding” q for
every sub-frame while the hopping seed remains unchanged
for every sub-frame. As such, the channel selections for every
sub-frame behave exactly the same as those in the first sub-
frame by re-indexing the channels through a ”rotation” under
the ⊕ operation. That is why we call such a sequence the
round-robin indemnity channel hopping scheme.

In the following lemma, we show that an SU can scan all
the channels and check the availability of each channel.

Lemma 7: An SU visits all the N channels within the first
N time intervals in each sub-frame.
Proof. See the proof of Lemma 1 in [1].

The following lemma shows when two SUs rendezvous in
each sub-frame.

Lemma 8: . Consider two SUs with the parameter sets
{x1, h1} and {x2, h2}.

(i) If they are assigned with the same hopping seed and
the same initial seed, i.e., x1 = x2 and h1 = h2,
then they will rendezvous at each time interval.

(ii) If they are assigned with the same hopping seed
(h1 = h2), but with different initial seeds x1 and
x2 (x1 6= x2), they will rendezvous at the indemnity
time intervals (the last time interval in each sub-
frame), i.e., t = q(N+1)+N , q = 0, 1, 2, . . . , N−1.
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(iii) If they are assigned with different hopping seeds
(h1 6= h2 ), they will rendezvous at the rth time
interval in each sub-frame, i.e., t = q(N + 1) + r,
q = 0, 1, 2, . . . , N − 1, where

r = (h2 ⊕ (−h1))−1 ⊗ (x1 ⊕ (−x2)). (9)

Proof. See the proof of Lemma 2 in [1].

In the following theorem, we show that RRICH achieves the
maximum degree of overlapping if the two SUs do not have the
same parameter set. Together with Lemma 7, RRICH achieves
the maximum degree of overlapping, i.e., all the channels
can be used as rendezvous channels for any two SUs in an
operation period.

Theorem 9: In RRICH, any two SUs will rendezvous at
least once in each sub-frame. Moreover, the channels they
rendezvous in the N sub-frames are distinct if these two SUs
do not have the same parameter set.
Proof. See the proof of Theorem 3 in [1].

As a direct consequence of Theorem 9, we show that
RRICH also solves the PU long-time blocking problem.

Corollary 10: . Suppose that there are only m (m < N )
fixed channels that are used by PUs. Any two SUs will
rendezvous within (m+ 1)(N + 1) time intervals.
Proof. See the proof of Corollary 4 in [1].

Algorithm 1: (Round-robin indemnity channel hopping
scheme) Each SU chooses its initial seed x independently and
uniformly over [0, N−1] and its hopping seed h independently
and uniformly over [1, N − 1]. Construct its CH sequence
{cx,h(t), t ≥ 0} according to (8).

Corollary 11: The RRICH scheme is a synchronous CH
scheme with channel loading 1/(N − 1). Its MTTR is N + 1
and its MCTTR is N(N + 1).
Proof. Clearly the independent assumption in (A1) and the
symmetric assumption in (A3) are satisfied trivially. Now we
show that the channel loading of RRICH is 1/(N − 1). If
t = q(N+1)+N , then cx,h(t) = (h⊕q) and an SU that selects
such a channel must select the hopping seed h. As the hopping
seed is selected uniformly over [1, N −1], the probability that
an SU selects such a channel is then 1/(N − 1). On the other
hand, if t = (q + 1)N + r for some 0 ≤ r ≤ N − 1, then
for every fixed h and every fixed channel c there is a unique
x such that c = (x⊕ q)⊕ (h⊗ r). Thus, the probability that
an SU will select channel c is the probability that the SU
selects the exact x that solves the equation. Such a probability
is 1/N . For both cases, we conclude that the channel loading
of RRICH is 1/(N − 1).

From Corollary 10, we also know that the its MTTR is
N + 1 (when m = 0) and its MCTTR is N(N + 1) (when
m = N − 1).

We note that RRICH and SSCH (see in Table 1 of [22])
has the same channel loading and the same MTTR. In fact,

RRICH is a generalization of SSCH in two folds: (i) RRICH
uses the field operations which are much more general than the
prime number modular arithmetic in SSCH, and (ii) RRICH
implements ”rotation” under the ⊕ operation and thus the
degree of overlapping is N . We also note that the idea of
using ”rotation” was previous used in [13].

C. The cycle adjustable channel hopping scheme

One problem of the RRICH scheme is that the time-to-
rendezvous (TTR) might be very long when the number of
channels N is very large. To solve the long TTR problem
for a large number of channels N , we introduce the Cycle-
Adjustable Channel Hopping (CACH) scheme in this section.
We will show that the CACH scheme achieves the MTTR
lower bound in Theorem 2.

The key idea of CACH is to create another layer of logical
channels and have SUs rendezvous on logical channels. By
choosing a modulo operation between logical channels and
physical channels, CACH still achieves the maximum degree
of overlapping as RRICH and thus it can still be used for
solving the PU long-time blocking problem.

To reduce the TTR, we choose a much smaller prime power
u for the construction of the first sub-frame in RRICH and
have two SUs rendezvous on one of the u logical channels in
the first u+1 time intervals. As in the construction of RRICH,
we find a Galois field GF (u) with the two operations ⊕ and
⊗. Then SU i chooses its parameter set {xi, hi}, where xi is
the initial seed and hi is the hopping seed. However, unlike
RRICH, both the initial seed and the hopping seed are chosen
in [0, u − 1]. In other words, the hopping seed can be the
zero element in the GF (u) used here. Each CACH sequence
is a periodic sequence with period (u + 1)N . For 0 ≤ t ≤
(u+1)N−1, we further partition this period of (u+1)N time
intervals into N sub-frames, each with u + 1 time intervals.
The last interval in a sub-frame is called the indemnity time
interval. Let `i(t) and ci(t) be the logical channel and the
physical channel used by SU i at the tth time interval. Suppose
that t = q(u + 1) + r, where q is the quotient of t divided
by (u + 1) and r is its remainder. Then `i(t) and ci(t) are
determined by the following equation:

`i(t) =
{
hi, if r = u
xi ⊕ (hi ⊗ r), if 0 ≤ r ≤ u− 1 , (10)

ci(t) = (`i(t) + q) mod N. (11)

The construction of the sequence {`i(t), t ≥ 0} is the same
as that in (8) except we remove the effect of q. Thus, the
sequence {`i(t), t ≥ 0} is a periodic sequence with period
u + 1 and it repeats itself in every sub-frame. The index q
is used in the mapping from a logical channel to a physical
channel through the modulo operation in (11). As such, the
physical channels used in each sub-frame are different.

In Figure 1, we give an example for the construction of
CACH sequences for N=5 and u=3. In this example, the
addition in GF (3) is the usual addition with the MOD
3 operation and the multiplication in GF (3) is the usual
multiplication with the MOD 3 operation. Since u=3, each
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Fig. 1: CACH sequences for two SUs with 5 physical channels and 3 logical channels (i.e., N =5 and u=3).

sub-frame contains four time intervals with the last time
interval in each sub-frame being the indemnity interval. For
SU A with parameter set (xA, hA) = (1, 2), we have
`A(0) = xA = 1, `A(1) = (xA + hA) mod 3 = 0, and
`A(2) = (xA + 2hA) mod 3 = 2. As the last time interval in
each sub-frame is the indemnity interval, `A(3) = hA = 2.
Note that the logical channel hopping sequence `A(t) repeats
itself in each sub-frame with the sequence 1, 0, 2, 2. The
physical channel hopping sequence cA(t) then adds 1 with
the MOD 5 operation to 1, 0, 2, 2 in each sub-frame and
that leads to 1, 0, 2, 2 for the 0th sub-frame, 2, 1, 3, 3 for
the 1st sub-frame, 3, 2, 4, 4 for the 2nd sub-frame, 4, 3, 0,
0 for the 3rd sub-frame and 0, 4, 1, 1 for the 4th sub-frame.
Both the logical channel hopping sequence and the physical
channel hopping sequence for SU B with the parameter set
(xB , hB) = (2, 1) are also shown in Figure 1.

Following the same argument as in the proof of Lemma 8,
we have the following lemma for CACH. Note that this lemma
still holds even though we allow the hopping seed to be the
zero element.

Lemma 12: Consider two SUs with the parameter sets
{x1, h1} and {x2, h2}.

(i) If they are assigned with the same hopping seed and
the same initial seed, i.e., x1 = x2 and h1 = h2,
then they will rendezvous at each time interval.

(ii) If they are assigned with the same hopping seed
(h1 = h2), but with different initial seeds x1 and
x2 (x1 6= x2), they will rendezvous at the indemnity
time intervals (the last time interval in each sub-
frame), i.e., , t = q(u+1)+u, q = 0, 1, 2, . . . , N−1.

(iii) If they are assigned with different hopping seeds
(h1 6= h2), they will rendezvous at the rth time
interval in each sub-frame, i.e., t = q(u + 1) + r,
q = 0, 1, 2, . . . , N − 1, where

r = (h2 ⊕ (−h1))−1 ⊗ (x1 ⊕ (−x2)). (12)

In Theorem 13, we show that CACH also achieves the
maximum degree of overlapping as RRICH.

Theorem 13: Any two SUs will rendezvous at least once
in each sub-frame. Moreover, the physical channels they
rendezvous in the first m sub-frames contain at least m distinct
channels, m = 1, 2, . . . , N .
Proof. See the proof of Theorem 6 in [1].

Analogous to proof for Corollary 10, one can use the results

in Theorem 13 to show that CACH also solves the PU long-
time blocking problem.

Corollary 14: Suppose that there are m (m < N) fixed
channels that are used by PUs. Any two SUs will rendezvous
within (m+ 1)(u+ 1) time intervals.
Algorithm 2: (Cycle adjustable channel hopping scheme) Each
SU chooses its initial seed x independently and uniformly over
[0, u−1] and its hopping seed h independently and uniformly
over [0, u − 1]. Construct its CH sequence {cx,h(t), t ≥ 0}
according to (11).

Corollary 15: The CACH scheme is a synchronous CH
scheme with channel loading 1/u. Its MTTR is u + 1 and
its MCTTR is N(u+ 1).
Proof. Clearly the independent assumption in (A1) and the
symmetric assumption in (A3) are satisfied trivially. To see
that the channel loading of CACH is 1/u, note that the
probability that an SU is distributed in a logical channel (and
the corresponding physical channel) is simply 1/u.

From Corollary 14, we also know that the its MTTR is u+1
(when m = 0) and its MCTTR is N(u+1) (when m = N−1).

In particular, if we choose u = 2, the MTTR for CACH
is 3 and its channel loading is only 1/2, which is lower than
2/3 of M-QCH [12]. For this case, CACH is better than M-
QCH as CACH has a lower channel loading while keeping
the same degree of overlapping and the same MTTR. Now
we compare CACH with L-QCH [12]. If the MTTR is τ , it
is shown in Theorem 2 of [12] that the channel loading of
any QCH system is at least 1/

√
τ . L-QCH is the QCH system

with the channel loading 1/
√
τ . Taking u = τ − 1, we then

derive that the channel loading of the CACH scheme is only
1/(τ − 1), which is significantly lower than 1/

√
τ in L-QCH.

In view of these, we conclude that CACH is in general much
better than QCH in terms of reducing channel loading while
keeping the same degree of overlapping and the same MTTR.
In fact, in view of Corollary 15, CACH achieves the MTTR
lower bound in Theorem 2 and thus is optimal in minimizing
MTTR among all the symmetric and synchronous CH schemes
with the same channel loading constraint.

Certainly, choosing the number of logical channels u that
optimizes the system performance, e.g., throughput, depends
on various system characteristics, e.g., the number of SUs,
the number of channels, and the characteristics of PUs. For
this, we will perform various computer simulations in Section
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IV. One of our findings from the simulations results is to set
the number of logical channels u close to the average number
of neighbors for a reasonably good throughput. As the load
of CACH is 1/u, the average number of SUs that hop to a
rendezvous channel is close to 1 if u is close to the average
number of neighbors.

D. A lower bound for MCTTR

In this section, we show a tight lower bound for the MCTTR
of a CH scheme with channel loading not greater than 1/u.

Theorem 16: For a CH scheme with channel loading not
greater than 1/u, if u is an integer and 1 ≤ u ≤ N , then its
MCTTR cannot be smaller than uN .
Proof. Recall that MCTTR is defined as the maximum time
for two SUs to rendezvous when there are N − 1 blocked
channels. Consider the scenario that every channel has an
equal probability of being the only unblocked channel, i.e.,
with an equal probability 1/N , channel z is the only unblocked
channel for z = 0, 1, 2, . . . , N − 1. Consider the event {T ≥
uN−1} that these two CH sequences do not rendezvous before
time uN − 1. We will show that P(T ≥ uN − 1) > 0 so that
MCTTR cannot be smaller than uN . Note that {T < uN−1}
is the event that these two CH sequences rendezvous before
time uN − 1. Thus,

P(T < uN − 1)

=
1
N

N−1∑
z=0

P(∪uN−2
s=0 {c1(s) = c2(s) = z}).

Using the union bound yields

P(∪uN−2
s=0 {c1(s) = c2(s) = z})

≤
uN−2∑
s=0

P(c1(s) = c2(s) = z).

Since these two sequences are independent, we then have

P(T < uN − 1) =
1
N

uN−2∑
s=0

N−1∑
z=0

P(c1(s) = z) · P(c2(s) = z).

From the channel loading assumption in (A2) and Proposition
5, it then follows that

P(T < uN − 1) ≤ 1
N

uN−2∑
s=0

1
u

= 1− 1
uN

< 1.

Thus, P(T ≥ uN − 1) > 0.

From Corollary 15, the MCTTR of CACH is (u + 1)N .
This is slightly larger than the lower bound for MCTTR in
Theorem 16. The reason is that CACH is a symmetric CH
scheme while the derivation of the lower bound for MCTTR
in Theorem 16 does not require the symmetric assumption in
(A3).

Now we show how to construct an asymmetric CH scheme
with channel loading not greater than 1/u to achieve the lower
bound for MCTTR in Theorem 16. The idea is to use the wait-
for-mommy strategy [29] and the concept of logical channels
in CACH.

Algorithm 3: (Synchronous wait-for-mommy strategy) For any
t, let q(t) = bt/uc and r(t) = (t mod u).
(Receiver/mommy) SU 1 generates independently a uniformly
distributed random variable U1 over [0, u− 1]. Then construct
its CH sequence as follows:

`1(t) = (r(t) + U1) mod u, (13)
c1(t) = (`1(t) + q(t)) mod N. (14)

(Sender/child) SU 2 also generates independently a uniformly
distributed random variable U2 over [0, u− 1]. Then construct
its CH sequence as follows:

`2(t) = U2, (15)
c2(t) = (`2(t) + q(t)) mod N. (16)

Clearly, both CH sequences are periodic with period uN .
As in CACH, we may view every u time intervals as a sub-
frame. Since U1 and U2 are uniformly distributed over [0, u−
1], it is easy to see that the channel loading for both SUs is
1/u. Moreover, according to the wait-for-mommy strategy in
(13) and (15), the receiver (the mommy) cycles through the u
(logical) channels periodically and the sender (the child) stays
at the same (logical) channel for u time slots. Thus, these
two SUs rendezvous for every sub-frame. From the rotation
operations in (14) and (16), the rendezvous channels for the
first N frames are distinct and thus the MCTTR for such a
CH scheme is uN .

III. ASYNCHRONOUS CHANNEL HOPPING SCHEMES

In this section, we consider asynchronous channel hopping
schemes. In Section III-A, we consider the asymmetric setting.
We then consider the symmetric setting in Section III-B and
show a hierarchical construction in Section III-C.

A. The asymmetric setting

The asymmetric setting is relatively easy. Observe that the
smallest channel loading is 1/N . As a corollary of Theorem 16
(with u = N ), we know that the MCTTR of an asynchronous
CH scheme cannot be smaller than N2. There are many known
CH schemes that achieve such a lower bound, e.g., ACH
[21] and ARCH [22]. In Algorithm 4 below, we propose
the asynchronous wait-for-mommy strategy that also achieves
such a lower bound.
Algorithm 4: (Asynchronous wait-for-mommy strategy) For
any t, let q(t) = bt/Nc and r(t) = (t mod N).
(Receiver/mommy) SU 1 generates independently a uniformly
distributed random variable U1 over [0, N−1]. Then construct
its CH sequence as follows:

c1(t) = (r(t) + U1) mod N. (17)

(Sender/child) SU 2 also generates independently a uniformly
distributed random variable U2 over [0, N−1]. Then construct
its CH sequence as follows:

c2(t) = (q(t) + U2) mod N. (18)

For such a CH scheme, the receiver (the mommy) cycles
through the N channels periodically with period N and the
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sender (the child) stays at the same channel for N time slots
and then repeatedly hops to another unvisited channel for
another N time slots. Clearly, the channel loading for such
a CH scheme is 1/N . Moreover, even in the asynchronous
setting, it is easy to see that the MTTR and the MCTTR for
such a CH scheme is N and N2 respectively when the sender
starts to look for its receiver. As indicated in Table 1 of [22],
the MTTR of ACH [21] is N2 − N + 1 and that of ARCH
[22] is 2N − 1. In comparison with these two CH schemes,
the MTTR of the asynchronous wait-for-mommy strategy is
much smaller.

B. A lower bound for the period of an asynchronous channel
hopping sequence in the symmetric setting

Now we focus on the symmetric setting. Recall that a
periodic CH sequence is said to achieve the maximum degree
of overlapping for a system with N channels if two asyn-
chronous SUs rendezvous within the period of the sequence
even if there are N − 1 blocked channels. In the following
definition, we state formally the mathematical properties for
an Asynchronous Channel Hopping sequence with Maximum
degree of overlapping (MACH).

Definition 17: An (N, p)-MACH sequence {c(t), t ≥ 0}
satisfies the following properties:

(i) (Periodicity) c(t) = c(t+ p) for all t.
(ii) (Maximum degree of overlapping) For any time shift

0 ≤ d ≤ p−1 and any channel 0 ≤ i ≤ N−1, there
exists τ(i, d) such that 0 ≤ τ(i, d) ≤ p − 1 and
c(τ(i, d)) = c(τ(i, d) + d) = i.

From the maximum degree of overlapping property in (ii),
we know if there is a time shift d between two SUs, then
SU 1 with c1(t) = c(t) and SU 2 with c2(t) = c(t + d) will
rendezvous at channel i at time τ(i, d). Such a property is
also known as the rotation closure property for channel i in
the literature (see e.g., [15], [20], [21]). Clearly, for an (N, p)-
MACH sequence, its MCTTR is bounded above by its period
p.

For example, the periodic sequence 0010111... with period
7 in [20] is a (2, 7)-MACH sequence. By packing eight
difference sets into 73 time slots, it was further shown in
[20] that there is a (8, 73)-MACH sequence. If N is a prime,
the CRSEQ scheme in [15] is an (N,N(3N − 1))-MACH
sequence. Such a result is the best known result for MCTTR
in the symmetric and asynchronous setting when the number
of channels is large.

It was argued in [15] (by using Theorem 2 in [31]) and
Theorem 1 of [21] that the period p of an (N, p)-MACH
sequence cannot be smaller than N2. In this section, we
tighten the lower bound to N2 +N + 1 in Theorem 18. Our
lower bound is not only better but also tight for N = 2 and
N = 8. In particular, the (2, 7)-MACH sequence in [20] and
the (8, 73)-MACH sequence in [20] achieve the lower bound
in Theorem 18. Thus, the (2, 7)-MACH sequence in [20] and
the (8, 73)-MACH sequence in [20] are optimal in the sense of
minimizing the period among all the MACH sequences with
the same number of channels.

Theorem 18: For any (N, p)-MACH sequence with N ≥ 2,
its period p cannot be smaller than N2 +N + 1.
Proof. Let ni be the number of times in a period that channel
i is selected. Clearly, we have

N−1∑
i=0

ni = p. (19)

Suppose that channel i is selected at 0 ≤ ti,1 < ti,2 < . . . <
ti,ni ≤ p− 1. Let

Si = {(ti,j , ti,k), j 6= k, j, k = 1, 2, . . . , ni}.

Clearly, the size of the set Si, i.e., the number of un-ordered
pairs, is ni ∗ (ni − 1). For an (N, p)-MACH sequence, we
know that for any time shift 0 ≤ d ≤ p − 1, there is τ(i, d)
such that

c(τ(i, d)) = c((τ(i, d) + d) mod p) = i. (20)

For each 1 ≤ d ≤ p− 1, the ordered pair

(τ(i, d), (τ(i, d) + d) mod p)

is in Si. Thus, for all i = 0, 1, . . . , N − 1,

p− 1 ≤ |Si| = ni(ni − 1). (21)

Let i∗ = argmin[ni] be the channel that are selected the
smallest number of times in a period. From (19), we know
that

Nni∗ ≤
N−1∑
i=0

ni = p. (22)

Using this in (21) yields

Nni∗ ≤ ni∗(ni∗ − 1) + 1. (23)

This shows that for N ≥ 2,

ni∗ ≥ N + 1. (24)

From (22), it then follows that

p ≥ N(N + 1).

It remains to show that p 6= N(N + 1). We will prove
this by contradiction. Suppose that p = N(N + 1). In this
case, we know from (24) and (19) that ni = N + 1 for all
i = 0, 1, . . . , N − 1. Let

S̃i = {d : d = (ti,j − ti,k) mod p,
for some j 6= k, j, k = 1, 2, . . . , N + 1}. (25)

From the modulo operation and j 6= k, we know that S̃i ⊂
{1, . . . , p−1} and thus |S̃i| ≤ p−1. On the other hand, from
the property of maximum degree of overlapping, we also know
that d ∈ S̃i for each 1 ≤ d ≤ p−1. Thus, S̃i = {1, . . . , p−1}
and |S̃i| = p− 1. Since p = N(N + 1), it then follows that

|S̃i| = N(N + 1)− 1. (26)

As there are N(N+1) ordered pairs (ti,j , ti,k) for j 6= k, there
must exist some 1 ≤ d′ ≤ N(N + 1) − 1 and two ordered
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pairs (ti,j1 , ti,k1) and (ti,j2 , ti,k2) with j1 6= j2, k1 6= k2 such
that

d′ = (ti,j1 − ti,k1) mod N(N + 1)
= (ti,j2 − ti,k2) mod N(N + 1). (27)

This then implies that

(ti,j1 − ti,k2) mod N(N + 1)
= (ti,j2 − ti,k1) mod N(N + 1) = d′′, (28)

for some 1 ≤ d′′ ≤ N(N+1)−1. Thus, |S̃i| ≤ N(N+1)−2
and this contradicts to (26). Therefore, p cannot be N(N+1).

C. Hierarchical construction of asynchronous CH sequences

For N = 2 and N = 8, we know there exist optimal MACH
sequences. In this section, we show how one can use these
optimal MACH sequences to construct good MACH sequences
that can beat the best known MACH sequence in the literature.
Our idea for this is the hierarchical construction that constructs
a MACH sequence by using two smaller MACH sequences as
shown in the following theorem.

Theorem 19: Consider two sequences: an (N1, p1)-MACH
sequence {c1(t), t ≥ 0} and an (N2, p2)-MACH sequence
{c2(t), t ≥ 0}. For any time t, let q(t) be the quotient of
t divided by 2p1−1 and r(t) be the corresponding remainder,
i.e.,

q(t) = bt/(2p1 − 1)c, (29)

and
r(t) = (t mod (2p1 − 1)). (30)

Let
c(t) = c1(r(t)) + c2(q(t)) ∗N1. (31)

Then the CH sequence {c(t), t ≥ 0} is an (N1 ∗ N2, (2p1 −
1) ∗ p2)-MACH sequence.
Proof. (i) (Periodicity) To see that c(t) is periodic with period
(2p1 − 1) ∗ p2, let t′ = t+ (2p1 − 1) ∗ p2. Then r(t′) = r(t)
and q(t′) = q(t)+p2. Thus, we have c1(r(t)) = c1(r(t′)) and
c2(q(t)) = c2(q(t) + p2) = c2(q(t′)) from the periodicity of
c2(t). In view of the construction of the sequence of c(t) in
(31), we then have c(t) = c(t′) = c(t+ (2p1 − 1) ∗ p2).

(ii) (Maximum degree of overlapping) We need to show for
any 0 ≤ d ≤ (2p1 − 1) ∗ p2 − 1 and 0 ≤ i ≤ N − 1, there
exists τ(i, d) such that

0 ≤ τ(i, d) ≤ (2p1 − 1) ∗ p2 − 1,

and
c(τ(i, d)) = c(τ(i, d) + d) = i.

For any 0 ≤ i ≤ N1 ∗ N2 − 1, we let i1 = (i mod N1)
and i2 = bi/N1c. Then i = i1 + i2 ∗ N1. Now for 0 ≤ d ≤
(2p1 − 1) ∗ p2 − 1, we consider the following two cases:
Case 1. 0 ≤ r(d) ≤ p1 − 1:

Let d1 = r(d) and d2 = q(d). Clearly,

d = d1 + d2 ∗ (2p1 − 1). (32)

Since 0 ≤ r(d) ≤ p1 − 1 and 0 ≤ d ≤ (2p1 − 1) ∗ p2 − 1,
we know that 0 ≤ d1 ≤ p1 − 1 and 0 ≤ d2 ≤ p2 − 1. Thus,
it follows from the maximum degree of overlapping property
of {c1(t), t ≥ 0} and {c2(t), t ≥ 0} that for 0 ≤ i1 ≤ N1 − 1
and 0 ≤ i2 ≤ N2−1 there exist τ1(i1, d1) and τ2(i2, d2) such
that

0 ≤ τ1(i1, d1) ≤ p1 − 1, (33)
c1(τ1(i1, d1)) = c1(τ1(i1, d1) + d1) = i1, (34)
0 ≤ τ2(i2, d2) ≤ p2 − 1 (35)
c2(τ2(i2, d2)) = c2(τ2(i2, d2) + d2) = i2. (36)

Now let

τ(i, d) = τ1(i1, d1) + τ2(i2, d2) ∗ (2p1 − 1). (37)

In view of (33) and (35), we know from (37) that

0 ≤ τ(i, d) ≤ (2p1 − 1) ∗ p2 − 1. (38)

Observe from (37) that

r(τ(i, d)) = τ1(i1, d1),

and
q(τ(i, d)) = τ2(i2, d2).

Thus, it follows from (31), (34) and (36) that

c(τ(i, d)) = c1(τ1(i1, d1)) + c2(τ2(i2, d2)) ∗N1

= i1 + i2 ∗N1 = i. (39)

On the other hand, it follows from (37) and (32) that

τ(i, d)+d = τ1(i1, d1)+d1+(τ2(i2, d2)+d2)∗(2p1−1). (40)

Since 0 ≤ τ1(i1, d1) ≤ p1 − 1 and 0 ≤ d1 ≤ p1 − 1, we have

0 ≤ τ1(i1, d1) + d1 < 2p1 − 1.

Thus, we know that

r(τ(i, d) + d) = τ1(i1, d1) + d1

and that
q(τ(i, d) + d) = τ2(i2, d2) + d2.

It then follows from (31), (34) and (36) that

c(τ(i, d) + d)
= c1(τ1(i1, d1) + d1) + c2(τ2(i2, d2) + d2) ∗N1

= i1 + i2 ∗N1 = i. (41)

In view of (39) and (41), we conclude that

c(τ(i, d)) = c(τ(i, d) + d) = i.

Case 2. p1 ≤ r(d) < 2p1 − 1:
In this case, let

d̃ = (2p1 − 1) ∗ p2 − d. (42)

Since p1 ≤ r(d) < 2p1 − 1, we know that d 6= 0 and thus
0 < d < (2p1 − 1) ∗ p2. From (42), we have

0 < d̃ < (2p1 − 1) ∗ p2
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and
0 < r(d̃) = 2p1 − 1− r(d) ≤ p1 − 1. (43)

It then follows from Case 1 that there exists τ(i, d̃) such that

0 ≤ τ(i, d̃) ≤ (2p1 − 1) ∗ p2 − 1, (44)
c(τ(i, d̃)) = c(τ(i, d̃) + d̃) = i. (45)

Now let

τ(i, d) =
(
(τ(i, d̃) + d̃) mod (2p1 − 1) ∗ p2)

)
. (46)

Clearly, we have

0 ≤ τ(i, d) ≤ (2p1 − 1) ∗ p2 − 1.

In conjunction with (42), we also have

(τ(i, d) + d) mod ((2p1 − 1) ∗ p2)
= ((τ(i, d̃) + d̃+ d) mod (2p1 − 1) ∗ p2)
= τ(i, d̃). (47)

Using (46), (45), (47) and the periodicity of c(t) yields

c(τ(i, d)) = c(τ(i, d̃) + d̃)
= c(τ(i, d̃)) = c(τ(i, d) + d) = i.

As an illustrating example, we can use the (8, 73)-MACH
sequence in [20] as the two MACH sequences in Theorem
19 to construct a (64, 10585)-MACH sequence. On the other
hand, one can also use the CRSEQ scheme in [15] to construct
a (67, 13400)-MACH sequence for a system of 64 channels.
For a system of 64 channels, our hierarchical construction
yields a better MCTTR than the CRSEQ scheme. In view
of this, one can search for good MACH sequences with a
moderate number of channels and then use our hierarchical
construction to construct a MACH sequence for systems with
a large number of channels.

IV. SIMULATION RESULTS

In this section, we compare the performance of various
channel hopping algorithms by computer simulations, includ-
ing SYN-MAC [11], SSCH [8], L-QCH [12], RRICH [1],
CACH [1] EJSCH [23], AHWCH [34] and ETCH [18]. We
do this by implementing an event-driven C++ simulator for
an IEEE 802.11a ad hoc network. Both SUs and PUs are
distributed randomly in a 380mx380m region. Each simulation
result is obtained by averaging 30 randomly generated topolo-
gies. In our simulations, we only consider disjoint flows, where
each source SU and each destination SU cannot have multiple
flows. To avoid the scenario of having many SUs choosing the
same hopping seed, we also allow SUs to change their hopping
seeds. Specifically, we let each SU change its hopping seed
with probability 1/1000 at the beginning of each time interval.
The transmission range (the range within which a message is
successfully received if there is no interference from other
SUs) and the interference range (the range within which
SUs in receive mode will be interfered with by an unrelated
transmitting SU) are set to 250m and 550m, respectively. The

behavior of a PU is modeled by a (discrete-time) Gilbert-
Elliott model [32], [33] (see Figure 2). The Gilbert-Elliott
model is an Markov chain with only two states: the BUSY
state and the IDLE state. The transition probability from the
BUSY state to the IDLE state in the next time interval is 1−α
and the transition probability from the IDLE state to the BUSY
state in the next time interval is 1 − β. The simulation time
is set to 6s. The length of each time interval is set to 6 ms.
In the first 2 ms, each pair of SUs will exchange the control
messages. If both SUs correctly receive the control messages
from each other, then we have a successful rendezvous. We
note that our simulations are implemented from the MAC layer
(without using any detailed wireless channel model) and all
SUs have to contend the right of accessing the channel through
the IEEE 802.11 Distributed Coordination Function. Also, in
order to see the effects (and the insights) of these rendezvous
algorithms, we do not simulate data traffic for the remaining
4ms after a successful rendezvous in a time interval of 6ms.

Fig. 2: The Gilbert-Eliott model for a PU.

In our first experiment, there are 13 channels and each
channel is associated with a PU. The parameter β of the
Gilbert-Elliott model is set to 0.5 for each PU. On the other
hand, the parameter α is set to 0.5 with probability 1/5 and
0.7 with probability 4/5. As each SU is within the interference
range of another SU, each SU is a neighbor of another SU and
thus the number of neighboring SUs (including itself) of an
SU is simply the total number of SUs. As suggested in [1],
the number of logical channels u in CACH is set to be the
minimum of the number of SUs and the number of channels
in our simulations. Also, to simulate AHWCH, the length of
the ID of each SU is set to 6 bits. In Figure 3(a), we show
the effect of the number of SUs on the average number of
co-channel SUs (for a particular SU). A co-channel SU for
a particular SU in a particular time interval is an SU that
operates on the same channel as that SU in the time interval. To
measure this, we choose an arbitrary SU and take the average
of the number of co-channel SUs over time. Clearly, the larger
the average number of co-channel SUs is, the larger the co-
channel interference is. As such, a large average number of co-
channel SUs might suffer from the problem of control channel
saturation. It can be seen from Figure 3(a) that the average
numbers of co-channel SUs for these algorithms are quite close
except SYN and L-QCH. When the number of SUs is larger
than 11, the number of logical channels is upper bounded by
the number of channels. In this case, we set the number of
logical channels of CACH to the number of channels and



12

(a) Effect of the number of SUs on the average number of co-
channel SUs.

(b) Effect of the number of SUs on the average number of used
channels.

Fig. 3: Effects of the number of SUs on the average number
of co-channel SUs and the average number of used channels.

CACH is reduced to RRICH. Also, the average number of
co-channel SUs for L-QCH is larger than those of RRICH,
CACH, SSCH, EJSCH, AHWCH and ETCH. Such a result is
expected as the channel loading of L-QCH is larger than the
channel loading of RRICH, CACH, SSCH, EJSCH, AHWCH
and ETCH. Since the channel loading of SYN-MAC is 1, the
average number of co-channel SUs for SYN-MAC increases
linearly with respect to the number of SUs. On the other hand,
the average numbers of co-channel SUs for RRICH, CACH,
SSCH, EJSCH, AHWCH, ETCH and L-QCH only increase
slowly with respect to the increase of the number of SUs. In
Figure 3(b), we further show the effect of the number of SUs
on the average number of used channels in a time interval.
A channel is said to be used in a time interval if there is (at
least) one SU that operates that channel as the control channel
in that time interval. To measure this, we count the number of
used channels in every time interval and then take its average.
Intuitively, a CH scheme that has a large average number of
used channels tends to distribute its traffic evenly over the
channels. It is observed that RRICH, CACH, SSCH, EJSCH,
AHWCH and ETCH have the same average number of used
channels when the number of SUs is larger than 11. When
the number of SUs is only 6, the average number of used
channels for RRICH is larger than that of CACH because the
channel loading in CACH is larger than that of RRICH. Also,
the average number of used channels for CACH is better than
L-QCH, even when the number of SUs is 6. This is because

(a) Effect of the number of channels on average TTR.

(b) Effect of the PU behavior on the average TTR.

Fig. 4: Effects of the number of channels and the PU behavior
on the average TTR.

L-QCH only distributes the control traffic over the time (but
not over the channels).

In our second experiment, we consider six disjoint flows.
The transmitters (source SUs) of these flows are first dis-
tributed randomly in the region. Each receiver (destination
SU) is then distributed randomly and repeatedly in the region
until it is within the range of its transmitter. In Figure 4(a),
we show the effect of the number of channel on the average
TTR. Since SYN-MAC allows all SUs to hop to the same
channel, it has the lowest average TTR. Since the MTTRs of
CACH and L-QCH are independent of the number of channels,
their average TTRs are also not influenced by the number of
channels. However, the MTTRs of RRICH, SSCH, EJSCH,
AHWCH, and ETCH depend on the number of channels,
and the average TTRs of RRICH, SSCH, EJSCH, AHWCH,
and ETCH increases when the number of channels increases.
Moreover, since the degree of overlapping of RRICH is N ,
RRICH has a lower average TTR than SSCH (as SSCH suffers
from the PU long-time blocking problem). We also note that
the slopes of the average TTRs of AHWCH and EJSCH are
higher than those of RRICH and SSCH in Figure 4(a). This
is because both SSCH and RRICH have the advantage of
time synchronization. On the other hand, both AHWCH and
EJSCH are designed without the need of time synchronization.
In Figure 4(b), we measure the effect of α (of a PU) on
the average TTR. The larger α is, the longer the time for
a PU to be on the BUSY state. When α of each PU is
between 0.5 and 0.8, RRICH and SSCH almost have the
same average TTR. However, when α is set 0.9, the average
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TTR of SSCH is increased rapidly due to the long-time PU
blocking problem. Also, in AHWCH and EJSCH there is a
“stay” mode that requires an SU to stay on a channel for a
long period of time. If that channel is blocked by a PU, then
that SU will not meet its counterpart during its “stay” mode
and thus AHWCH and EJSCH might suffer from the long-
time PU blocking problem. It seems that ETCH also suffers
from the long-time PU blocking problem as an SU might hop
to a certain channel more often than the other channels in an
ETCH sequence. The three CH schemes, SYN, CACH and
LQCH, do not increase their average TTRs quickly because
their degree of overlapping is equal to N and then they are
immune to the long-time PU blocking problem. In view of
Figure 4(a) and Figure 4(b), we note that L-QCH has a lower
average TTR than that of CACH. This is because the channel
loading of L-QCH is larger than that of CACH. On the other
hand, CACH have a smaller number of co-channel SUs and a
larger number of used channels than those of L-QCH. We also
note that CACH requires to optimize the number of logical
channels u. If such an optimization is not possible and the
number of channels is not too large, then RRICH could be a
more practical choice than CACH.

V. DISCUSSIONS

In this section, we discuss two additional meth-
ods/assumptions to enhance rendezvous algorithms: (i) the
unique ID assumption in Section V-A and (ii) the assumption
of the available channel set in Section V-B.

A. Unique ID

In view of the theoretical results in Table I, it is clear that
the rendezvous problem is relative easy in the asymmetric
setting. In order for the two SUs to play different roles (as
a sender/child or a receiver/mommy), one commonly used
assumption in the literature is to assume there is a unique
ID for each SU, for instance the 48-bit universal MAC
address (see e.g., [21], [34]). Now suppose that each user
is assigned with a unique n-bit ID (b0, b1, . . . , bn−1). In
order to use the unique ID assumption in the asynchronous
setting, the trick is then to transform the unique ID into
another m-bit codeword (c0, c1, . . . , cm−1) so that it is cycli-
cally unique, i.e., for any cyclic shift d, there does not
exist another codeword (c′0, c

′
1, . . . , c

′
m−1) that is the same

as (cd, cd+1, . . . , c(m−1+d) mod m). Then each user can use
the (t mod m)th bit of its codeword to determine the role
it should play in the tth time period. The cyclic uniqueness
property ensures that there is some period among the first m
time period that the two SUs will play different roles.

The method used in [21] to transform the unique ID
(b0, b1, . . . , bn−1) into another m-bit cyclically unique code-
word (c0, c1, . . . , cm−1) is to append (b0, b1, . . . , bn−1) with n
consecutive 1’s and n consecutive 0’s. This results in a 3n-bit
codeword. On the other hand, the method used in [34] is to
add a new symbol “2” in front of the n-bit ID. This creates a
problem of dealing with the additional symbol “2.”

Here we discuss a simple method of transforming the unique
ID (b0, b1, . . . , bn−1) into another m-bit cyclically unique

codeword (c0, c1, . . . , cm−1). Note that the concatenation of
n bits of consecutive 1’s and n bits of consecutive 0’s in
[21] in fact acts a delimiter. So is the new symbol “2” in
[34]. This is similar to adding a delimiter in front of a packet.
One widely used delimiter for framing packets is to use the
0111110 bit sequence and then use the bit-stuffing algorithm
to ensure that there are no six consecutive 1’s in the body of
the message. The problem of using the bit-stuffing algorithm
is that it generates a variable length code. Though it is fine
for a variable length packet, it is not suitable for fixed length
codewords here. In Lemma 3 of [35], it was shown that the
C-transform can be used as a one-to-one mapping that maps
an n-bit ID to another m-bit codeword that does not have `
consecutive 1’s for any ` ≥ 2.

B. Available channel set

In some recent papers (se e.g., [14], [17], [23]–[25], the
available channel set to each user is assumed to be fixed and
known to each user. Such information can be used for speeding
up the rendezvous process. In particular, Chang and Huang
[14] proposed a fast rendezvous channel hopping algorithm
(FRCH) that re-maps all the unavailable channels in a round of
2N +1 time slots in DRSEQ [16] alternatively to an available
channel. By doing so, FRCH still has the same MTTR (2N +
1) as DRSEQ [16] and its MCTTR can be reduced to N(2N+
1) (for some N specified in [14]), which is better than N(3N−
1) in CRSEQ [15]. Such an algorithm performs well when
the number of available channels is O(N). However, when
the number of available channels to each user is much smaller
than N , re-mapping all the unavailable channels in a round of
2N+1 time slots to the same available channel might result in
an average TTR of order O(N). When the number of available
channels to each user is much smaller than N , the modular
clock algorithm [17] might be a better choice for minimizing
the average TTR as it only needs to cycle through the channels
that are available to each user. However, the modular clock
algorithm does not have a bounded MCTTR (Proposition 5 of
[17]). A compromise might be for each user to use a good
MACH (e.g., the (8,73)-MACH in [20]) and simply remaps
every unavailable channel at random to one of its available
channel. By doing so, the MCTTR is still bounded. Also, when
the the number of available channels to each user is much
smaller than N , it behaves as the random algorithm (Algorithm
1 in [17]) that has an average TTR independent of N .

Finally, we note that the rendezvous problem with the
information of available channel set is also relative easy in
the asymmetric setting. Suppose that user 1 (resp. user 2) is
the sender (resp. receiver) and it has n1 (resp. n2) available
channels. Then user 1 can choose a prime p1 not less than n1

and user 2 can choose an even number p2 not less than n2.
At time t, if (t mod pi) < ni, user i selects its (t mod pi)th

available channel from its available channel set. Otherwise, it
selects at random a channel from its channel available set. As
p1 and p2 are relatively prime, all the n1n2 available channel
pairs will be visited at least once in a period of p1p2 time
slots. Thus, the MCTTR is p1p2. To extend such an approach
to the symmetric setting, one might use the unique ID method



14

described in the previous section to determine the role of each
user. We note that the unique ID method in [34] requires
determining three different roles in order to have a bounded
MCTTR.

VI. CONCLUSION

In this paper, we derived various lower bounds for MTTR
and MCTTR of various CH schemes in the multichannel
rendezvous problem. We also showed there are CH schemes
that achieve these lower bounds, and thus these lower bounds
are tight for some choices of u and N . However, there are
still some theoretical gaps:
(i) In the symmetric and asynchronous setting, the gap between
our lower bound N2 + N + 1 in Theorem 18 and the best
achievable result N(3N − 1) in [15] is still very large. Also,
the lower bound in Theorem 18 is for the period of a MACH
sequence. It is not a lower bound for MCTTR.
(ii) In the symmetric and synchronous setting, the MCTTR of
CACH is (u+1)N , which is still larger than the lower bound
uN in Theorem 16. The main difficulty is to incorporate the
symmetric assumption in (A3) in the proof of Theorem 16.
(iii) If the primary users are often on from time to time,
the average-time-to-rendezvous is a better performance metric
than MTTR. One possible extension is to consider the average
time-to-rendezvous when there are randomly blocked channels
as in [26]. It is possible to derive a lower bound for such
a performance metric under a channel loading constraint.
However, it is not clear whether such a lower bound would be
tight.
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