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Abstract—In this paper, we consider the community detection
problem in signed networks, where there are two types of
edges: positive edges (friends) and negative edges (enemies).
One renowned theorem of signed networks, known as Harary’s
theorem, states that structurally balanced signed networks are
clusterable. By viewing each cycle in a signed network as a
parity-check constraint, we show that the community detection
problem in a signed network with two communities is equivalent
to the decoding problem for a parity-check code. We also show
how one can use two renowned decoding algorithms in error-
correcting codes for community detection in signed networks:
the bit-flipping algorithm, and the belief propagation algorithm.
In addition to these two algorithms, we also propose a new
community detection algorithm, called the Hamming distance
algorithm, that performs community detection by finding a
codeword that minimizes the Hamming distance. We compare
the performance of these three algorithms by conducting various
experiments with known ground truth. Our experimental results
show that our Hamming distance algorithm outperforms the
other two.

I. INTRODUCTION

As the advent of on-line social networks, structural anal-
ysis of networks becomes an important research topic. In a
social network, an edge between two nodes usually represents
friendly interactions between these two nodes, and structural
analysis of networks with both directed or undirected edges
has been studied extensively in the literature (see e.g., [1], [2],
[3] and references therein). However, as pointed out in the
recent survey paper [4], structural analysis of signed networks
has received a lot of attention lately in various areas, including
sociology, physics, biology, and computer science. In signed
networks, there are two types of edges: positive edges (friends)
and negative edges (enemies). With these two types of edges
in signed networks, researchers can better characterize the
interactions between two persons in social networks.

A signed network is called structurally balanced if every
cycle in the network contains an even number of negative
edges [5], [2]. One of the most renowned theorems of signed
networks is Harary’s theorem [6]. Harary’s theorem states that
a structurally balanced signed network is clusterable and it can
be separated into several communities, where the edges within
a community are positive and the edges between two different
communities are negative (see the node coloring algorithm
in Algorithm 1 for more detailed explanations). But what if
a signed network is not structurally balanced? How do we

address the community detection problem in a signed network
that is not structurally balanced?

In this paper, we focus on the community detection problem
in signed networks that might not be structurally balanced. For
such a problem, it was proposed in [7] a partition criterion (and
an associated partitional algorithm) that finds a partition of the
nodes to minimize the (weighted) sum of the following two
types of errors: (i) the number of positive edges between two
different communities and (ii) the number of negative edges
within a community. Such an intuition for the two types of
errors in signed networks can be easily incorporated into the
notion of modularity [8] for community detection in unsigned
networks. In particular, it was proposed in [9] that community
detection in signed networks could be formulated as an opti-
mization problem that maximizes the positive modularity and
minimizes the negative modularity. In addition to modularity
maximization, a signed Laplacian matrix was proposed in [10]
and the community detection problem in signed networks was
formulated as a normalized cut for such a matrix.

One of the main contributions of this paper is to address
the community detection problem in signed networks by using
error-correcting codes (ECC). To the best of our knowledge,
this is the first paper that links error-correcting codes to
the community detection problem in signed networks. The
fundamental insight of this is that each cycle in a signed
network can be viewed a parity-check constraint in an error-
correcting code and every structurally balanced signed network
can be viewed as a legitimate codeword. A signed network
that is not structurally balanced can then be “corrected”
back to a structurally balanced sign network by changing a
“minimum” number of the signs of the edges. In this paper,
we show how one can use two renowned decoding algorithms
in error-correcting codes for community detection in signed
networks with two communities: (i) the bit-flipping algorithm,
(ii) the belief propagation algorithm. In addition to these two
algorithms, we also propose a new community detection algo-
rithm, called the Hamming distance algorithm, that performs
community detection by finding a codeword that minimizes
the Hamming distance. We compare the performance of these
three algorithms by conducting various experiments with
known ground truth. Our experimental results show that our
Hamming distance algorithm outperforms the other two.

The rest of the paper is organized as follows. In Section
II, we introduce the related backgrounds for signed networks
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and Harary’s theorem. In Section III, we establish the links
between the community detection problem in signed networks
and error-correcting codes. We also illustrate how one can use
two renowned decoding algorithms for community detection
in signed networks. Experimental results for these three algo-
rithms are presented in Section IV. The paper is concluded in
Section V.

II. SIGNED NETWORKS

In this paper, we consider community detection in signed
networks. A signed network Gs = (V,E,W ) consists of a
set of nodes V , a set of edges E, and a function W that
maps every edge in E to the two signs {+,−}. An edge
(u, v) with the sign + is called a positive edge and it is
generally used for indicating the friendship between the two
nodes u and v. On the other hand, an edge with the sign
− is called a negative edge. A negative edge (u, v) indicates
that u and v are enemies and it is better not to cluster these
two nodes in the same community. One of the most important
results of signed networks is Harary’s theorem (see e.g., the
book [2]). For a signed network, it is said to be structurally
balanced if it contains only cycles (loops) with even numbers
of negative edges. Harary’s theorem says that a structurally
balanced signed network is clusterable in the sense that it
can be divided into connected groups of nodes such that all
edges between members of the same group are positive and
all edges between members of different groups are negative.
The converse statement for Harary’s theorem is in general not
true, e.g., a signed network with three nodes connected by
three negative edges has a cycle of three negative edges. But
it is true for a signed networks with two groups. This is stated
in the following proposition.

Proposition 1: Consider a signed network that can be
divided into two connected groups of nodes such that all edges
between members of the same group are positive and all edges
between members of different groups are negative. Then every
cycle of the signed network has an even number of negative
edges. Thus, the signed network is structurally balanced.
Proof. Image the two groups of nodes as two islands and
the negative edges as bridges between these two islands. As
there are exactly two groups in the signed network, a cycle
that starts from a node in one group must cross the bridges an
even number of times in order to get back to where the cycle
is started.

In view of Proposition 1, a structurally balanced signed
network with two groups can be easily detected by the node
coloring algorithm (see e.g., the book [11]) that colors all
the nodes in two colors, say black and white. It starts from
coloring a node with one color (e.g., black) and repeatedly
coloring a neighbor of a colored node by the same (resp. the
other) color if it is connected by a positive (resp. negative)
edge. This is summarized in Algorithm 1.

ALGORITHM 1: The Node Coloring Algorithm for a
Structural Balanced Signed Network with Two Groups
Input: A structurally balanced signed network

Gs = (V,E,W ).
Output: A partition P = {S1, S2}.
(1) Initially, choose a node w and assign that node to S1.
(2) Traverse the graph by using the breadth-first search

(BFS) with node w as the root.
(3) For each neighbor v of a traversed node u, assign

node v to the set that u is assigned if (u, v) is a
positive edge. Otherwise, assign node v to the other set.

III. COMMUNITY DETECTION

In the previous section, we have shown that a structurally
balanced signed network with two groups can be easily
detected by the node coloring algorithm in Algorithm 1. But
what if the input signed network is not structurally balanced?
Our idea is to treat this as an error-correcting code problem
and “correct” a signed network that is not structurally balanced
into another structurally balanced signed network.

A. Parity-check codes

In this section, we briefly review the parity check codes
(see e.g., [12] for more details). The Galois field GF(2) defines
two operations ⊕ (the exclusive-OR operation) and · (the AND
operation) on the set {0, 1}. These two operations act similarly
to the usual addition operation and the usual multiplication
operation as they satisfy various algebraic properties, including
the associative law, the commutative law and the distributive
law. As such, we can add, subtract, multiply and divide in
GF(2) as in rational numbers. Specifically, for two binary m-
vectors h = (h1, h2, . . . , hm) and w = (w1, w2, . . . , wm), its
inner product is defined as

h ·wT = (h1 · w1)⊕ (h2 · w2)⊕ . . .⊕ (hm · wm), (1)

where wT is the transpose of w. The matrix multiplication
can also be defined similarly.

Now consider an ` × m matrix H = (hi,j) with all its
elements in GF(2) and the set of vectors in the null space
of H, i.e., {w : H · wT = 0`}, where 0` is the zero vector
with dimension `. The matrix H is called the parity-check
matrix and the set of vectors in the null space of H are called
the codewords of the parity-check code with the parity-check
matrix H. To see the intuition behind such an error-correcting
code, suppose we transmit a codeword w through an error-
prone channel and receive another vector w′. The vector w′

may not be in the null space and thus we may be able to correct
it by selecting a codeword that is “closest” to w′. There are
a vast amount of papers in the literature addressing the issue
of how to “decode” the received vector. In this paper, we will
consider three renowned decoding algorithms: the bit-flipping
algorithm, the belief propagation algorithm, and the Hamming
distance algorithm.



3

B. Cycle basis and parity-check codes
In this section, we establish the connections between signed

networks and error-correcting codes. Consider a graph G =
(V,E) with m edges and n nodes. Index these m edges from
1, 2, . . . ,m and n nodes from 1, 2, . . . , n. Then every (simple)
cycle of the graph can be represented by a binary m-vector
h = (h1, h2, . . . , hm), where hi indicates whether the ith edge
is in the cycle. Suppose that h and h′ represent two non-
disjoint cycles of the graph. Then it is clear that h⊕ h′ also
represents another cycle of the graph, where ⊕ is the bit-
wise exclusive-OR operation of these two vectors. In fact, any
linear combination of cycles (in the field of GF(2)) is also a
cycle (or a collection of disjoint cycles). Thus, a collection of
the maximum number of linearly independent cycles forms a
cycle basis. For a connected graph with n nodes and m edges,
the maximum number of linearly independent cycles is known
to be m − n + 1 [13]. Thus, every collection of m − n + 1
linearly independent cycles forms a cycle basis. One way to
find a cycle basis is to first construct a spanning tree of the
connected network with m edges and n nodes. The number
of edges in the spanning tree is n − 1 and there are exactly
m − n + 1 edges that are not in the spanning tree. Adding
each of these m − n + 1 edges to the spanning tree forms a
linearly independent cycle.

Suppose for a connected graph G = (V,E) with m
edges and n nodes, we have found a cycle basis {hi, i =
1, 2 . . . ,m− n+ 1}, where hi = (hi,1, hi,2, . . . , hi,m). Form
the (m− n+ 1)×m matrix H = (hi,j). Such a matrix H is
called a fundamental cycle matrix for the graph G = (V,E).
Now for a signed network Gs = (V,E,W ), we can also asso-
ciate each positive edge with the weight 0 and each negative
edge with the weight 1. Then the weights of the m edges
can be represented by a binary vector w = (w1, w2, . . . , wm).
Such a vector w is called the weight vector of the signed
network Gs = (V,E,W ). Clearly, the statement that a cycle
represented by h = (h1, h2, . . . , hm) contains an even number
of negative edges is equivalent to

(h1 · w1)⊕ (h2 · w2)⊕ . . .⊕ (hm · wm) = 0. (2)

Writing (2) in the inner product of two vectors in GF(2) yields

h ·wT = 0, (3)

wT is the transpose of w.
In the following lemma, we show that a structurally bal-

anced signed network is a codeword of a parity-check code.
Lemma 2: Consider a signed network Gs = (V,E,W ).

Let H be any fundamental cycle matrix for the graph G =
(V,E) and w be the weight vector of the signed network
Gs = (V,E,W ). Then the signed network Gs = (V,E,W )
is structurally balanced if and only if

H ·wT = 0m−n+1, (4)

where the matrix product is in GF(2) and 0m−n+1 is the m−
n+ 1-column vector with all its elements being 0.
Proof. (⇒) If the signed network Gs = (V,E,W ) is
structurally balanced, then every cycle in Gs consists of an

even number of negative edges. Note that H is a fundamental
cycle matrix of Gs with its row vector hi representing the ith

cycle. By (2), we have hi ·wT = 0, for 1 6 i 6 m− n+ 1.
Thus, H ·wT = 0m−n+1.

(⇐) Assume H · wT = 0m−n+1. Then hi · wT = 0, for
1 6 i 6 m− n+ 1. Rewrite it as in (2), i.e.,

(h1 · w1)⊕ (h2 · w2)⊕ . . .⊕ (hm · wm) = 0.

It implies that the ith cycle consists of an even number of neg-
ative edges for all i. Thus, the signed network Gs = (V,E,W )
is structurally balanced.

In view of (4), a fundamental cycle matrix H for a graph
can be viewed as the parity-check matrix of a parity-check
code. Also, a vector w that satisfies (4) is a codeword for the
parity-check matrix H (or simply a codeword for the graph
G = (V,E) in this paper). In the following lemma, we further
show that a two-way partition of a network corresponds to a
codeword of a parity-check code.

Lemma 3: Consider a two-way partition P = {S1, S2} of
the nodes in a graph G = (V,E). Construct a signed network
Gs(V,E,W ) by assigning all the edges within the same set to
be positive and all the edges between two sets to be negative.
Let w(P) be the weight vector of the signed network Gs =
(V,E,W ). Then w(P) is a codeword for the graph G =
(V,E).
Proof. As a direct result of Harary’s theorem in Proposition
1, the signed network Gs = (V,E,W ) constructed from
the partition P = {S1, S2} is structurally balanced. Also,
in the structurally balanced network, the multiplication of a
fundamental cycle matrix H and w(P) is zero by Lemma 2.
Thus, we conclude that w(P) is a codeword for the graph
G = (V,E).

From Lemma 3, we know every two-way partition corre-
sponds to a codeword. This leads to the following method to
generate codewords for a graph G(V,E) from an n-binary
vector x = (x1, x2, . . . , xn). For the n-binary vector, we
assign node i the value xi for i = 1, 2, . . . , n. Suppose that the
two ends of the jth edge are node u and v. Then we assign
wj = xu ⊕ xv for all j = 1, 2, . . . ,m. Note that both the two
binary vectors 0n and 1n generate the same codeword, i.e.,
the zero codeword. Excluding these two binary vectors, we let
S1 = {i : xi = 0} and S2 = {i : xi = 1} and this yields a
two-way partition and a codeword w(P). We can write this
in the following matrix form:

w = x ·G, (5)

where G = (gi,j) is n × m generator matrix with gi,j = 1
when node i is one end of the jth edge and 0 otherwise. Such
a generator matrix was considered in [14] for decoding binary
node values.

To illustrate this, let us consider a graph with five nodes and
nine edges in Figure 1. For this graph, we choose the spanning
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Fig. 1. A graph with five nodes and nine edges.

tree with the edges connected to vertex 5. Such a spanning tree
is a star graph and every fundamental cycle contains exactly
three edges. For this graph, we have the following parity check
matrix

H =


1 1 0 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0 1

 , (6)

and the generator matrix

G =


1 0 0 0 1 0 0 1 1
0 1 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0
1 1 1 1 0 0 0 0 0

 . (7)

Our approach for the (two-way) community detection prob-
lem for a signed network Gs(V,E,W ) is to treat a signed
network as a received signal and then decode such a signal by
finding the most likely codeword. In Section III-C and Section
III-D, we discuss two commonly used decoding algorithms
for low-density parity-check (LDPC) codes in the literature
(see e.g., [15], [16]): (i) the bit-flipping algorithm, and (ii) the
belief propagation algorithm. In Section III-E, we propose our
decoding algorithm based on Hamming distance.

C. The bit-flipping algorithm

For a signed network Gs(V,E,W ), let w be its weight
vector and H be a fundamental cycle matrix. As discussed
before, we may consider w as the received signal of a parity-
check code. To decode such a signal, we first compute the
syndrome s = (s1, si, . . . , sm−n+1) in GF(2):

si =

m∑
j=1

hijwj . (8)

Rewriting (8) in the inner product form yields

s = H ·wT , (9)

where the matrix product is in GF(2). The ith syndrome
component, si, indicates whether the ith cycle in G = (V,E)
is structurally balanced. If si equals to one, the ith cycle is not

ALGORITHM 2: The Bit-Flipping Algorithm
Input: A signed network Gs = (V,E,W ).
Output: A partition P = {S1, S2}.
(1) Compute the syndrome s in (9). If all the syndrome

components are zero, then stop decoding.
(2) Find the number of unbalanced cycles uk for each

edge k by using (10).
(3) Find the edge with maximum uk and then flip the

sign of that edge.
(4) Repeat Steps 1 to 3 until all of the syndrome

components are zero or a predefined maximum number
of iterations is reached.

(5) Detect two groups by the node coloring algorithm in
Algorithm 1.

structurally balanced. In view of (4), all of the parity-check
constraints are satisfied if all syndrome components are zero.

With the syndrome, we can then compute uk as follows:

uk =

m−n+1∑
i=1

sihik, (10)

The physical meaning of uk is the number of unbalanced
cycles that traverse through the kth edge. Thus, we can
find out the edge that has the largest number of unbalanced
cycles and then flip the sign of that edge. Intuitively, such a
greedy correction will reduce the number of unbalanced cycles
and hopefully it will converge to a codeword (that has no
unbalanced cycles). Specifically, let k∗ be the index of the
edge that has the largest number of unbalanced cycles, i.e.,

k∗ = argmax
k

uk. (11)

We then flip its sign from 1 to 0 or from 0 to 1, i.e.,

wk ← 1− wk. (12)

We summarize the bit-flipping algorithm in Algorithm 2.
However, this algorithm does not guarantee convergence. As
pointed out in [16], usually there is a design parameter δ that
stops the algorithm when the number of unbalanced cycles is
within δ.

D. The belief propagation algorithm

The belief propagation algorithm, first introduced by Gal-
lager [15], is a soft decision method. In this paper, we use
the computer program written for the sum-product algorithm
in [17] (we thank Prof. H.-C. Lee for providing us the
computer program). The sum-product algorithm is to compute
the maximum a posteriori probability for each codeword bit.

For a signed network Gs(V,E,W ), let w be its weight
vector and H = (hij) be a fundamental cycle matrix. We can
create a bipartite graph as depicted in Figure 2 with m variable
nodes and m− n+ 1 check nodes, where vj denotes the jth

variable node, and ci denotes the ith check node. If hij = 1,
there is an edge between variable node j and check node i.
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Fig. 2. The construction of the bipartite graph from H

Denote by N (vj) the neighboring check nodes that connect
to variable node vj , i.e., N (vj) = {ci : hij = 1}. Similarly,
denote by N (ci) the neighboring variable nodes that connect
to check node ci, i.e., N (ci) = {vj : hij = 1}.

For the ease of computation, we deal with the log-likelihood
ratios (LLRs). Using LLRs as messages offers implementa-
tion advantages over using probabilities or likelihood ratios,
because multiplications are replaced by additions and the
normalization step is eliminated. The log-likelihood ratio is
shown below:

L(w) = log(
p(w = 0)

p(w = 1)
). (13)

If p(w = 0) > p(w = 1) (resp. p(w = 1) > p(w = 0)) then
L(w) is positive (resp. negative). The larger the magnitude of
L(w), the higher the probability that w would equal to zero
(resp. one).

From the Bayes formula, a posteriori probability is posi-
tively correlated to likelihood and a priori probability. Then,
we can compute a posteriori LLR as follows:

log
p(w∗ = 0|w)
p(w∗ = 1|w)

= log
p(w|w∗ = 0)

p(w|w∗ = 1)
+log

p(w∗ = 0)

p(w∗ = 1)
, (14)

where w∗ is the original sign of the edge and w is the observed
sign. On the right-hand side, the first term is the log-likelihood
ratio and the second term is a priori LLR. The log-likelihood
ratio is called the intrinsic information and can be computed
for the binary symmetric channel as follows:

log
p(wj |w∗j = 0)

p(wj |w∗j = 1)
= log(

1− p
p

)wj . (15)

We denote a posteriori LLR as the variable-to-check mes-
sage Lvj→ci that propagates from variable node vj to check
node ci. Such a message can be calculated according to

Lvj→ci =
∑

ca∈N (vj)\ci

mca→vj + Lvj . (16)

where Lvj is the intrinsic LLR of variable node vj .
A priori LLR is denoted as the check-to-variable message

mci→vj that propagates from check node ci to variable node
vj . Such a message is generated according to

mci→vj = 2 tanh−1

 ∏
vb∈N(ci)\vj

tanh

(
Lvb→ci

2

) . (17)

ALGORITHM 3: The Belief Propagation Algorithm
Input: A signed network Gs = (V,E,W ).
Output: A partition P = {S1, S2}.
(1) Initially, set Lvj = wj log(

p
1−p ).

(2) For each check node ci, update mci→vj
by using (17).

(3) For each variable node vj , update Lvj→ci by using
(16). and update Lvj by using (18)

(4) Compute the decision value ŵj by using (19).
(5) Repeat Steps 1 to 4 until all of the parity-check

constraints are satisfied or a predefined maximum
number of iterations is reached.

(6) Detect two groups by the node coloring algorithm in
Algorithm 1.

Thus, we can compute the LLR value of variable node vj
by using

L(vj) =
∑

ci∈N (vj)

mci→vj + Lvj . (18)

To estimate the value of the jth variable node vj , we can
make a hard decision according to

ŵj =

{
0, if L(vj) ≥ 0
1, if L(vj) < 0

. (19)

With a hard decision value ŵ, we can compute the syn-
drome s by using (9). If all of the syndrome components are
zero, then ŵ is a codeword for the graph G = (V,E). Con-
versely, If ŵ does not satisfy all the parity-check constraints,
we continue the iteration until all parity-check constraints are
satisfied or a predefined maximum number of iterations is
reached. We summarize the belief propagation algorithm in
Algorithm 3.

E. The Hamming distance algorithm

The Hamming distance between two binary vectors is the
number of different bits between these two binary vectors.
For a signed network Gs(V,E,W ), let w be its weight vector
and w(P) be the weight vector associated with the partition
P = {S1, S2} of the nodes in the graph G = (V,E). The
Hamming distance algorithm aims to find a codeword that has
the minimum Hamming distance to the received signal. In the
following lemma, we first show how to compute the Hamming
distance by computing the number of positive (resp. negative)
edges between two sets.

Lemma 4: The Hamming distance between w and w(P),
denoted by d(P), can be computed as follows:

d(P) =
1

2

(
N−(S1, S1) +N+(S1, S2)

+N+(S2, S1) +N−(S2, S2)
)
, (20)

where

N−(Si, Sj) =
∑

u∈Si,v∈Sj

1{w(u, v) = 1} (21)
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is the number of negative edges from the set Si to the set Sj ,
and

N+(Si, Sj) =
∑

u∈Si,v∈Sj

1{w(u, v) = 0} (22)

is the number of positive edges from the set Si to the set Sj .
Proof. Note that

d(P) =

m∑
i=1

1{wi = 1, w(P)i = 0}

+

m∑
i=1

1{wi = 0, w(P)i = 1}. (23)

For the ith edge, we know that w(P)i = 0 if both ends of the
ith edge belong to the same set. Thus,

m∑
i=1

1{wi = 1, w(P)i = 0}

=
1

2
N−(S1, S1) +

1

2
N−(S2, S2).

On other hand, w(P)i = 1 if one end of the ith edge belongs
to one set and the other end belongs to the other set. Thus,

m∑
i=1

1{wi = 0, w(P)i = 1}

=
1

2
N+(S1, S2) +

1

2
N+(S2, S1).

In general, there is no efficient algorithm to find the optimal
w(P) that minimizes d(P). Here we propose a heuristic
algorithm in Algorithm 4 that finds a local optimum. Such
an algorithm is related to the partitional algorithm in [7]. Al-
gorithm 4 can be clearly described by defining the correlation
measure between a node v and a set S as the difference of the
number of positive edges and the number of negative edges
from v to S, i.e.,

q(v, S) = N+({v}, S)−N−({v}, S). (24)

With this correlation measure, Algorithm 4 is simply a local
search algorithm that iteratively assigns each node to the most
correlated set.

Unlike the bit-flipping algorithm and the belief propagation
algorithm, we show in the following theorem that the Ham-
ming distance algorithm in 4 is guaranteed to converge within
a finite number of steps. The proof of Theorem 5 is given in
Appendix A.

Theorem 5: In Algorithm 4, the Hamming distance is non-
increasing when there is a change, i.e., a node is moved from
one set to another. Thus, the algorithm converges to a local
minimum of the Hamming distance in a finite number of steps.

ALGORITHM 4: The Hamming Distance Algorithm
Input: A signed network Gs = (V,E,W ).
Output: A partition P = {S1, S2}.
(0) Initially, choose arbitrarily two disjoint nonempty sets
S1 and S2 as a partition of the n nodes in G = (V,E).

(1) for v = 1, 2, . . . , n do
Compute the correlation measures q(v, S1) and
q(v, S2) in (24).

If the two correlation measures are the same, node v
remains in the original set. Otherwise, assign node v
to the set with a larger correlation measure.

end
(2) Repeat from Step 1 until there is no further change.

IV. EXPERIMENTAL RESULTS

A. Community detection with two communities

In this section, we conduct experiments for these ECC
algorithms by using the stochastic block model. The stochastic
block model, commonly used for benchmarking community
detection algorithms, is a generalization of the Erdös-Rényi
model. In the stochastic block model with n nodes and two
blocks, the two blocks are equally sized with n/2 nodes. The
parameter pin is the probability that there is a positive edge
between two nodes within the same block and pout is the
probability that there is a negative edge between two nodes
in two different blocks. All edges are generated independently
according to pin and pout. Let cin = npin and cout = npout.
Clearly, such a construction generates a structurally balanced
signed network with two ground truth communities.

To generate a signed network that is not structurally bal-
anced, we randomly flip the sign of an edge in the stochastic
block model with the crossover probability p. Clearly, if p
is small, the signed network is not too far from the original
structurally balanced signed network and it is more likely
that we can recover the original signed network. The method
of random bit-flipping corresponds to the binary symmetric
channel in a communication system.

In our experiments, the total number of nodes in the
stochastic block model is 2000 with 1000 nodes in each block.
The parameter c denotes the average degree of a node that is
set to be 6, 8, and 10. The value of cin−cout is set to be 5. The
crossover probability p is in the range from 0.01 to 0.1 with a
common step of 0.01. We generate 20 graphs for each p and
c. We remove isolated nodes, and thus the exact numbers of
nodes in the experiments might be less than 2000. We show the
experimental results with each point averaged over 20 random
graphs. The error bars represent the 95% confident intervals.

For the bit-flipping algorithm (resp. belief propagation algo-
rithm), the maximum number of iterations is set to be 20 (resp.
100). To test the Hamming distance algorithm, we conduct our
experiments with two adjacency matrices: one with the original
adjacency matrix A and the other with the two-step adjacency
matrix

Â = A+ 0.5A2. (25)
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(a) average degree=6 (b) average degree=8 (c) average degree=10

Fig. 3. Community detection with two communities.

The intuition of using the two-step adjacency matrix is that
it allows us to “see” more than one step relationship between
two nodes. According to Heider’s balance theory [18], “an
enemy of my enemy is likely to be my friend” and “a friend
of my friend is likely to be my friend.” The two-step adjacency
matrix in (25) somehow predicts the two-step relationship
between two nodes and thus makes the signed network more
dense and complete.

We show our experimental results in Figure 3. The Ham-
ming distance algorithm with the two-step adjacency matrix
has the largest edge accuracy (defined as the ratio of the
number of accurately decoded edges to the total number
of edges) for the entire range of the cross probability. It
seems that the corrupted edges are all corrected by using
the Hamming distance algorithm with the two-step adjacency
matrix. As explained before, the reason that the Hamming
distance algorithm with the two-step adjacency matrix is better
than that with the original adjacency matrix is because the
former can “see” more than one step relationship between
two nodes. From Figure 3, both the bit-flipping algorithm
and the belief propagation algorithm do not perform well for
community detection in signed networks. One possible expla-
nation is that signed networks in general do not correspond
to good error-correcting codes. This is because there might
exist the girth-4 problem (see e.g., [19], [20]), i.e., the bipartite
graph constructed from a fundamental cycle matrix might have
cycles of length four and messages are likely to be trapped in
short cycles. The girth-4 problem can be avoided by using
some known methods in [19], [20] by constructing a new
parity-check matrix. However, these methods cannot be used
here as the parity-check matrix H is constructed from the
spanning tree of a random graph.

From our experimental results, it seems that the performance
of the bit-flipping algorithm is slightly better than that of the
belief propagation algorithm. Also, increasing the degree in
the stochastic block model seems to have a positive effect on
the Hamming distance algorithm with the original adjacency
matrix. This might be due to the fact that the tested signed net-
works are more dense. However, increasing the degree in the
stochastic block model seems to result in little improvement

for the other two algorithms.

B. Community detection with a real dataset

In this section, we report the experimental results for the
three ECC algorithms based on the political blogs dataset
[21]. The dataset contains a directed citation network which
is based on a single day snapshot of 1494 political blogs.
Each link is established if there is hyperlink from one blog to
another blog. For each node, there is an attribute indicating
the political orientation (i.e., conservative or liberal) of the
blog. To generate a signed network, we convert the network
into an undirected graph and label the edges within the same
community (resp. between two communities) to +1 (resp. -
1). Then, we flip the signs of edges randomly as we did in
Section IV-A. To ensure the connectivity, we remove all the
isolated nodes. By doing so, the number of nodes is down
to 1222 and the average degree is about 31. The sizes of
these two communities are 586 and 636, respectively. All
the remaining setup and parameters for each algorithm are
the same as in Section IV-A. The main difference between
the political blogs dataset and the stochastic block model is
that the political blogs dataset has different edge densities
in the two communities. The conservative community has a
denser edge density than that of the liberal community. The
experimental results in Figure 4 are consistent with our early
findings in Section IV-A for the stochastic block models.

V. CONCLUSION

In this paper, we considered the community detection
problem in signed networks. By using Harary’s theorem, we
showed that the community detection problem in a signed
network with two communities is equivalent to the decoding
problem for a parity-check code. To the best of our knowledge,
this is the first result that links error-correcting codes to the
community detection problem in signed networks. We also
showed how the bit-flipping algorithm, the belief propagation
algorithm, and the Hamming distance algorithm can be used
for community detection in signed networks. We compared the
performance of these three algorithms by conducting various
experiments with known ground truth. Our experimental re-
sults show that the Hamming distance algorithm outperforms
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Fig. 4. Community detection for the political blogs dataset [21].

the other two. One possible explanation for this is that signed
networks are in general not good error-correcting codes as
there might be short cycles in such networks. As such, the
bit-flipping algorithm and the belief propagation algorithm do
not work well for community detection in signed networks.

APPENDIX A

In this section, we prove Theorem 5.
It suffices to show that if node v is in a set S1 and

q(v, S2) > q(v, S1), then move node v from S1 to S2

decreases the Hamming distance. Also let P (resp. P ′) be the
partition before (resp. after) the change. Note that N+(·, ·) and
N−(·, ·) are symmetric, N+(v, v) = 0, and N−(v, v) = 0. It
follows from (20) that

d(P ′)− d(P)

=
1

2

(
N−(S1\{v}, S1\{v}) +N+(S1\{v}, S2 ∪ {v})

+N+(S2 ∪ {v}, S1\{v}) +N−(S2 ∪ {v}, S2 ∪ {v})
)

−1

2

(
N−(S1, S1) +N+(S1, S2)

+N+(S2, S1) +N−(S2, S2)
)
.

Note that

N−(S1\{v}, S1\{v})−N−(S1, S1) = −2N−({v}, S1),

N−(S2 ∪ {v}, S2 ∪ {v})−N−(S2, S2) = 2N−({v}, S2),

and

N+(S1\{v}, S2 ∪ {v})−N+(S1, S2)

= N+(S1\{v}, {v}) +N+(S1\{v}, S2)

−N+(S1\{v}, S2)−N+({v}, S2)

= N+(S1\{v}, {v})−N+({v}, S2)

= N+(S1, {v})−N+({v}, S2)

= N+({v}, S1)−N+({v}, S2).

Thus,

d(P ′)− d(P)
= N−({v}, S2)−N−({v}, S1)

+N+({v}, S1)−N+({v}, S2)

= q(v, S1)− q(v, S2) < 0.

As the Hamming distance is non-increasing after a change
of the partition, there is no loop in the algorithm. Since the
number of partitions is finite, the algorithm thus converges in
a finite number of steps.
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