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Greedy Constructions of Optical Queues with a
Limited Number of Recirculations

Jay Cheng, Senior Member, IEEE, Cheng-Shang Chang, Fellow, IEEE, Sheng-Hua Yang,
Tsz-Hsuan Chao, Duan-Shin Lee, Senior Member, IEEE, and Ching-Min Lien

Abstract—One of the main problems in all-optical packet-
switched networks is the lack of optical buffers, and currently the
only known feasible technology for the constructions of optical
buffers is to use optical crossbar Switches and fiber Delay Lines
(SDL). In this paper, we consider SDL constructions of optical
queues with a limited number of recirculations through the
optical switches and the fiber delay lines. Such a problem arises
from practical feasibility considerations, such as crosstalk, power
loss, amplified spontaneous emission (ASE) from the Erbium
doped fiber amplifiers (EDFA), and the pattern effect of the
optical switches.

We first transform the design of the fiber delays in such SDL
constructions into an equivalent integer representation problem.
Specifically, given 1 ≤ k ≤ M , we seek for an M -sequence
dM = (d1, d2, . . . , dM ) of positive integers to maximize the
number of consecutive integers (starting from 0) that can be
represented by the C-transform (a generalization of the well-
known binary representation) with respect to dM such that there
are at most k 1-entries in their C-transforms. Then we propose a
class of greedy constructions of dM , in which d1, d2, . . . , dM are
obtained recursively in a greedy manner so that the number of
representable consecutive integers by using d1, d2, . . . , di is larger
than that by using d1, d2, . . . , di−1 for all i. Finally, we show
that every optimal construction (in the sense of maximizing the
number of representable consecutive integers) must be a greedy
construction. As a result, the complexity of searching for an op-
timal construction can be greatly reduced from exponential time
to polynomial time by only considering the greedy constructions
rather than performing an exhaustive search. The solution of
such an integer representation problem can be applied to the
constructions of optical 2-to-1 FIFO multiplexers with a limited
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number of recirculations. Similar results can be obtained for the
constructions of optical linear compressors/decompressors with
a limited number of recirculations.

Index Terms—Fiber delay lines, FIFO multiplexers, integer
representation, linear compressors, linear decompressors, optical
buffers, optical queues, optical switches.

I. INTRODUCTION

Due to the lack of optical buffers to resolve conflicts
among packets competing for the same resources in the optical
domain, current high-speed packet-switched networks suffer
from the serious overheads incurred by the O-E-O (optical-
electrical-optical) conversion and the accompanied signal pro-
cessing. As a result, the design of optical buffers has become
one of the most critically sought after optical technologies in
all-optical packet-switched networks.

Currently, the only known way to “store” optical packets
without converting them into other media is to direct them
through a set of (bufferless) optical crossbar Switches and
fiber Delay Lines (SDL) so that the optical packets can be
routed to the right place at the right time. Recently, there
has been a lot of attention in the literature [1]–[38] on the
SDL constructions of optical queues, including output-buffered
switches in [5]–[9], FIFO multiplexers in [5] and [9]–[15],
FIFO queues in [15]–[18], LIFO queues in [18]–[19], priority
queues in [20]–[24], time slot interchanges in [15] and [25],
and linear compressors, linear decompressors, non-overtaking
delay lines, and flexible delay lines in [15] and [26]–[29].
Furthermore, results on the fundamental complexity of SDL
constructions of optical queues can be found in [30] and
performance analysis for optical queues has been addressed in
[31]–[32]. For review articles on SDL constructions of optical
queues, we refer to [33]–[38] and the references therein.

In this paper, we address an important practical feasibility
issue that is of great concern in the SDL constructions of
optical queues: the constructions of optical queues with a
limited number of recirculations through the optical switches
and the fiber delay lines. As pointed out in [39]–[41], crosstalk
due to power leakage from other optical links, power loss
experienced during recirculations through the optical switches
and the fiber delay lines, amplified spontaneous emission
(ASE) from the Erbium doped fiber amplifiers (EDFA) that
are used for boosting the signal power, and the pattern effect
of the optical switches, among others, lead to a limitation on
the number of times that an optical packet can be recirculated
through the optical switches and the fiber delay lines. If such
an issue is not taken into consideration during the design of
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optical queues, then for an optical packet recirculated through
the optical switches and the fiber delay lines for a number of
times exceeding a certain threshold, there is a good chance that
it cannot be reliably recognized at the destined output port due
to severe power loss and/or serious noise accumulation even
if it appears at the right place at the right time.

For certain optical queues, including 2-to-1 FIFO multiplex-
ers [11] and linear compressors/decompressors [27], the delay
x of a packet is known upon its arrival and the routing of
the packet is according to the C-transform [11] C(x;dM ) =
(I1(x;dM ), I2(x;dM ), . . . , IM (x;dM )) (a generalization of
the well-known binary representation) of the packet delay x
with respect to the M -sequence dM = (d1, d2, . . . , dM ) of
the fiber delays in the SDL constructions of these queues. For
these optical queues, there is a prominent route-once property
which says that an optical packet can only be routed through
each fiber at most once. Specifically, if Ii(x;dM ) = 1 for
some 1 ≤ i ≤ M , then the packet will be routed through
the ith fiber with delay di once; otherwise, the packet will not
be routed to the ith fiber. Therefore, if Ii(x;dM ) = 1 for all
i = 1, 2, . . . ,M , then the packet will be routed through each
of the M fibers once.

The problem arises if there is a limitation on the number, say
k, of recirculations through the M fibers due to the practical
feasibility considerations mentioned above. If k < M , then
a packet routed through more than k of the M fibers cannot
be reliably recognized at the destined output port. It follows
that in such situations the effective buffer size (for 2-to-
1 FIFO multiplexers) or the effective maximum delay (for
linear compressors/decompressors) is given by the maximum
representable integer with respect to dM and k, which is
defined as the largest nonnegative integer such that all of
the nonnegative integers not exceeding it have at most k 1-
entries in their C-transforms with respect to dM . Therefore,
the problem of constructing the delays d1, d2, . . . , dM of the
M fibers in these optical queues so that the effective buffer
size/maximum delay is as large as possible under the constraint
of recirculations through at most k of the M fibers is equiv-
alent to the integer representation problem of constructing an
M -sequence dM = (d1, d2, . . . , dM ) of positive integers so
that the maximum representable integer with respect to dM

and k is as large as possible.
In [13], a dynamic programming formulation obtained

through a divide-and-conquer approach was proposed for SDL
constructions of 2-to-1 FIFO multiplexers under the constraint
of recirculations through at most k of the M fibers. However,
the constructions in [13] are not optimal since they are
designed to provide a guaranteed effective buffer size (so as to
provide a guaranteed quality of service) and the fiber delays
are limited to be integral multiples of powers of 2.

Our first contribution in this paper is to propose a
class of greedy constructions of the M -sequences dM =
(d1, d2, . . . , dM ), in which d1, d2, . . . , dM are obtained recur-
sively in a greedy manner so that the maximum representable
integer is increased when di is added to the already determined
d1, d2, . . . , di−1 for all i. For each M -sequence dM given
by the greedy constructions, we obtain an explicit recursive
expression for d1, d2, . . . , dM so that di is expressed in terms

of d1, d2, . . . , di−1 for all i, and we also obtain an explicit
expression for the maximum representable integer with respect
to dM and k in terms of d1, d2, . . . , dM , and k. Our second
contribution is to show that every optimal M -sequence (in the
sense of achieving the largest possible maximum representable
integer) among all M -sequences satisfying the condition in
(A2) (described in Section II) must be a greedy construction.
This implies that every optimal construction (in the sense
of achieving the largest possible effective buffer size) of an
optical 2-to-1 multiplexer with a limited number of recir-
culations must be a greedy construction. Consequently, the
complexity of searching for an optimal construction is greatly
reduced by only considering the greedy constructions when
compared to performing an exhaustive search (polynomial
time vs. exponential time). Similar results can be obtained for
the constructions of optical linear compressors/decompressors
with a limited number of recirculations, but the algebra in-
volved is more tedious so that they are not presented here due
to space limit.

This paper is organized as follows. In Section II, we describe
in detail the transformation of the constructions of certain
types of optical queues, including optical 2-to-1 FIFO multi-
plexers and optical linear compressors/decompressors, into an
equivalent integer representation problem. In Section III, we
propose a class of greedy constructions for the M -sequence
dM in the equivalent integer representation problem. Further-
more, we obtain an explicit recursive expression for such an
M -sequence dM , and obtain an explicit expression for the
maximum representable integer with respect to dM and k.
In Section IV, we show that every optimal construction must
be a greedy construction. Finally, we conclude this paper in
Section V.

II. TRANSFORMATION INTO AN EQUIVALENT INTEGER
REPRESENTATION PROBLEM

As mention in Section I, the SDL constructions of optical
2-to-1 FIFO multiplexers in [11] and optical linear com-
pressors/decompressors in [27] rely on the C-transform (a
generalization of the well-known binary representation) for the
unique representation of nonnegative integers. We first recall
the C-transform and its unique representation property.

Definition 1 (C-Transform) [11] Let dM = (d1, d2, . . . , dM )
be an M -sequence of positive integers. The C-
transform C(x;dM ) of a nonnegative integer x
with respect to dM is defined as the M -sequence
(I1(x;dM ), I2(x;dM ), . . . , IM (x;dM )), where IM (x;dM ),
IM−1(x;dM ), . . . , I1(x;dM ), in that order, are given
recursively by

Ii(x;dM ) =

{
1, if x−

∑M
j=i+1 Ij(x;dM )dj ≥ di,

0, otherwise,
(1)

with the convention that the sum in (1) is 0 if the upper index
is smaller than its lower index. In other words, if x ≥ dM ,
then IM (x;dM ) = 1, and otherwise IM (x;dM ) = 0;
if the remaining value x − IM (x;dM )dM ≥ dM−1, then
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IM−1(x;dM ) = 1, and otherwise IM−1(x;dM ) = 0; and
so forth.

Theorem 2 (Unique Representation Property) [11] Let
dM = (d1, d2, . . . , dM ) be an M -sequence of positive in-
tegers. The C-transform C(x;dM ) of a nonnegative integer
x with respect to dM is the unique representation of x, i.e.,
x =

∑M
i=1 Ii(x;dM )di, for all x = 0, 1, . . . ,

∑M
i=1 di if and

only if d1, d2, . . . , dM satisfy the following condition in (A1):
(A1) d1 = 1 and 1 ≤ di+1 ≤

∑i
j=1 dj + 1 for i =

1, 2, . . . ,M − 1.

It is clear that if di = 2i−1 for i = 1, 2, . . . ,M , then
the C-transform becomes the well-known binary representation
for the unique representation of the nonnegative integers
0, 1, . . . , 2M − 1.

(a)

(b)

d1d2
.
.
.
 

.
.
.
 

.
.
.
 

dM-1dM

Departure linkArrival link 1 Loss linkArrival link 2
12M-1MM+1M+2

12M-1MM+1M+2
d1 d2

. . . Departure linkArrival link Loss link
dMdM-1

Fig. 1. (a) A construction of a 2-to-1 FIFO multiplexer with buffer size∑M
i=1 di. (b) A construction of a linear compressor with maximum delay∑M
i=1 di.

Now we briefly describe the SDL constructions of optical
2-to-1 FIFO multiplexers in [11] and optical linear compres-
sors/decompressors in [27]. In [11], it was shown that the
construction in Figure 1(a) consisting of an (M+2)×(M+2)
optical crossbar switch and M fiber delay lines with delays
d1, d2, . . . , dM can be operated as a 2-to-1 FIFO multiplexer
with buffer size

∑M
i=1 di under a simple packet routing scheme

if and only if d1, d2, . . . , dM satisfy the following condition
in (A2):

(A2) d1 = 1 and di ≤ di+1 ≤ 2di for i = 1, 2, . . . ,M−1.
Furthermore, it was shown in [27] that the construction in
Figure 1(b) consisting of a 1 × 2 optical crossbar switch, M
2× 2 optical crossbar switches, and M fiber delay lines with
delays d1, d2, . . . , dM can be operated as a linear compressor

with maximum delay
∑M

i=1 di under a simple packet routing
scheme if and only if d1, d2, . . . , dM satisfy the condition
in (A1). We note that a linear decompressor with maximum
delay

∑M
i=1 di can be similarly constructed since it is the

mirror image of a linear compressor with maximum delay∑M
i=1 di [27]. It is to be noted that the condition in (A2) is

stronger than that in (A1) as it has been shown in [11] that
if d1, d2, . . . , dM satisfy the condition in (A2), then they also
satisfy the condition in (A1).

The simple packet routing scheme mentioned above is a self-
routing scheme which is described as follows. Suppose that
the delay of a packet arriving at time t is x. If x >

∑M
i=1 di,

then the packet is routed to the loss link immediately so that
the packet is lost. On the other hand, if 0 ≤ x ≤

∑M
i=1 di,

then the packet is routed to the fiber with delay d1 at time
t if I1(x;dM ) = 1, to the fiber with delay d2 at time t +
I1(x;dM )d1 if I2(x;dM ) = 1, . . ., to the fiber with delay dM
at time t+

∑M−1
i=1 Ii(x;dM )di if IM (x;dM ) = 1, and finally

to the departure link at time t +
∑M

i=1 Ii(x;dM )di = t + x.
Therefore, the packet is routed to the right place at the right
time.

In reality, there is a limitation on the number, say k, of
recirculations through the M fibers in order to ensure that
a packet can be reliably recognized at the destined output
port. In such situations, the effective buffer size (for 2-to-
1 FIFO multiplexers) or the effective maximum delay (for
linear compressors/decompressors) is given by the largest
nonnegative integer such that all of the nonnegative integers
not exceeding this nonnegative integer have at most k 1-entries
in their C-transforms with respect to dM . This follows from
the fact that if k < M , then a packet with delay equal to one
more than this largest nonnegative integer has more than k
1-entries in the C-transform of its delay with respect to dM ,
and hence under the self-routing scheme described above this
packet is routed through more than k fibers so that it cannot be
reliably recognized at the destined output port. We call such a
largest nonnegative integer the maximum representable integer
with respect to dM and k, denoted B(dM ; k), i.e.,

B(dM ; k)

= max

{
0 ≤ y ≤

M∑
i=1

di :

∑M
i=1 Ii(x;dM ) ≤ k

for all x = 0, 1, . . . , y

}
.(2)

For obvious reasons, we define B(dM ; k) = 0 if M = 0 or
k = 0. As each Ii(x;dM ) is equal to 0 or 1, it follows that
B(dM ; k) =

∑M
i=1 di if k ≥ M .

Since we are most interested in the constructions of these
optical queues with as large effective buffer size/maximum
delay as possible, the problem of finding optimal constructions
of the fiber delays d1, d2, . . . , dM that achieve the largest
possible effective buffer size/maximum delay for these optical
queues under the constraint of recirculations through at most
k of the M fibers is equivalent to the integer representation
problem of finding optimal constructions of the M -sequence
dM such that the maximum representable integer B(dM ; k)
with respect to dM and k is the largest possible.

In this paper, we focus on a class of greedy constructions
of the M -sequence in the integer representation problem in
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Section III, and show that every optimal construction of
the M -sequence that achieves the largest possible maximum
representable integer among all M -sequences satisfying the
condition in (A2) must be a greedy construction in Section IV.
Therefore, the results in this paper can be directly used for
the constructions of optical 2-to-1 FIFO multiplexers with a
limited number of recirculations through the fibers. We note
that similar results can be obtained if the maximization of
the maximum representable integer is over all M -sequences
satisfying the condition in (A1), and these results can be
directly used for the constructions of optical linear compres-
sors/decompressors with a limited number of recirculations
through the fibers.

III. A CLASS OF GREEDY CONSTRUCTIONS

In this section, we propose a class of greedy constructions
of the M -sequence dM = (d1, d2, . . . , dM ). In our proposed
greedy constructions, d1, d2, . . . , dM are obtained recursively
and each di is obtained from d1, d2, . . . , di−1 in a greedy
manner so that the maximum representable integer by using
d1, d2, . . . , di is larger than that by using d1, d2, . . . , di−1 for
all i. For convenience, we denote AM as the set of all M -
sequences dM satisfying the condition in (A2).

Consider the case that M = 6 and k = 2. Sup-
pose that d′

6 = (1, 2, 4, 8, 16, 32) ∈ A6 (note that
d′

6 = argmaxd6∈A6

∑6
i=1 di) and d′′

6 = (1, 2, 3, 5, 6, 8) ∈
A6. According to the unique representation property of
the C-transform in Theorem 2, the nonnegative integers
0, 1, . . . ,

∑6
i=1 d

′
i = 63 can be uniquely represented by their

C-transforms with respect to d′
6 and the nonnegative integers

0, 1, . . . ,
∑6

i=1 d
′′
i = 25 can be uniquely represented by their

C-transforms with respect to d′′
6. From the definition of the

maximum representable integer in (2), we can see that the
maximum representable integer with respect to d′

6 and 2
is given by B(d′

6; 2) = 6 (as
∑6

i=1 Ii(x;d
′
6) ≤ 2 for

x = 0, 1, . . . , 6 and
∑6

i=1 Ii(x;d
′
6) = 3 > 2 for x = 7)

and the maximum representable integer with respect to d′′
6

and 2 is given by B(d′′
6; 2) = 11 (as

∑6
i=1 Ii(x;d

′′
6) ≤ 2 for

x = 0, 1, . . . , 11 and
∑6

i=1 Ii(x;d
′′
6) = 3 > 2 for x = 12).

Although
∑6

i=1 d
′′
i = 25 is smaller than

∑6
i=1 d

′
i = 63, the

maximum representable integer B(d′′
6; 2) = 11 by using d′′

6

is larger than maximum representable integer B(d′
6; 2) = 6

by using d′
6. It follows that d′′

6 is a better choice than d′
6 for

our purpose as it gives rise to a larger maximum representable
integer.

A natural question we would like to ask is then: can we
do better and how to do that? In other words, are there
any methods for choosing a sequence d6 in A6 such that
B(d6; 2) > B(d′′

6; 2). The answer is affirmative. A direct
approach to choose a sequence d6 in A6 is to divide the
choice into two parts, say the choice of d1, d2, d3 and the
choice of d4, d5, d6, so that there is at most one 1-entry
in (I1(x;d6), I2(x;d6), I3(x;d6)) and there is at most one
1-entry in (I4(x;d6), I5(x;d6), I6(x;d6)) (hence there are
at most two 1-entries in C(x;d6)) for as many consecutive
nonnegative integers x as possible. For instance, we can first
choose d1 = 1, d2 = 2, and d3 = 3. Then we have

B(d3; 1) = 3 and we can choose d4 = B(d3; 1) + 1 = 4,
d5 = (d4 + B(d3; 1)) + 1 = 2(B(d3; 1) + 1) = 8, and
d6 = (d5 + B(d3; 1)) + 1 = 3(B(d3; 1) + 1) = 12. It is
easy to see that B(d6; 2) = 16 (as

∑6
i=1 Ii(x;d6) ≤ 2 for

x = 0, 1, . . . , 16 and
∑6

i=1 Ii(x;d6) = 3 > 2 for x = 17),
which is greater than B(d′′

6; 2) = 11.
An even better approach, called a greedy approach in this

paper, is described as follows. We still divide the choice of a
sequence d6 in A6 into two parts, say the choice of d1, d2, d3
and the choice of d4, d5, d6, as in the direct approach above.
First we choose d1, d2, d3 recursively and each di is obtained
from d1, d2, . . . , di−1 in a greedy manner so that B(di; 1) is
larger than B(di−1; 1), and this can be achieved by simply
choosing di = B(di−1; 1) + 1 for i = 1, 2, 3, i.e.,

d1 = B(d0; 1) + 1 = 0 + 1 = 1,

d2 = B(d1; 1) + 1 = B((1); 1) + 1 = 1 + 1 = 2,

d3 = B(d2; 1) + 1 = B((1, 2); 1) + 1 = 2 + 1 = 3.

Then we choose d4, d5, d6 recursively and each di is obtained
from d1, d2, . . . , di−1 in a greedy manner so that B(di; 2) is
larger than B(di−1; 2), and this can be achieved by simply
choosing di = B(di−1; 2) + 1 for i = 4, 5, 6, i.e.,

d4 = B(d3; 2) + 1 = B((1, 2, 3); 2) + 1 = 5 + 1 = 6,

d5 = B(d4; 2) + 1 = B((1, 2, 3, 6); 2) + 1 = 9 + 1 = 10,

d6 = B(d5; 2) + 1 = B((1, 2, 3, 6, 10); 2) + 1 = 13 + 1 = 14.

It is easy to see that B(d6; 2) = 17 (as
∑6

i=1 Ii(x;d6) ≤ 2

for x = 0, 1, . . . , 17 and
∑6

i=1 Ii(x;d6) = 3 > 2 for x = 18),
which is larger than 16 in the direct approach above.

We are now in a position to describe our greedy construc-
tions of a sequence dM in AM in a general setting. Suppose
that 1 ≤ k ≤ M . Let nk = (n1, n2, . . . , nk) be a k-sequence
of positive integers such that

∑k
i=1 ni = M . Let s0 = 0 and

si =
∑i

ℓ=1 nℓ for i = 1, 2, . . . , k, and let d1, d2, . . . , dM be
recursively given by

dsi+j = B(dsi+j−1; i+ 1) + 1,

for i = 0, 1, . . . , k − 1 and j = 1, 2, . . . , ni+1. (3)

In other words, we divide the choice of a sequence
dM = (d1, d2, . . . , dM ) in AM into k parts, first the
choice of d1, d2, . . . , dn1 = ds1 , then the choice of
ds1+1, ds1+2, . . . , ds1+n2 = ds2 , . . ., and finally the choice
of dsk−1+1, dsk−1+2, . . . , dsk−1+nk

= dsk = dM . In the
(i + 1)th part, where 0 ≤ i ≤ k − 1, dsi+j is obtained
recursively by using d1, d2, . . . , dsi+j−1 according to (3) for
j = 1, 2, . . . , ni+1. For example, in Table I we show the M -
sequence dM given by (3) for the case that M = 18, k = 6,
and nk = (3, 4, 2, 5, 1, 3).

The reason why we choose d1, d2, . . . , dM recursively
according to (3) can be explained as follows. After
d1, d2, . . . , dsi+j−1 have been determined for some 0 ≤
i ≤ k − 1 and 1 ≤ j ≤ ni+1, the nonnegative integers
0, 1, . . . , B(dsi+j−1; i+1) are representable by using at most
i + 1 of the integers d1, d2, . . . , dsi+j−1 according to the
C-transform. The key idea in our greedy construction is to
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i 1 2 3 4 5 6 7 8 9
di 1 2 3 6 10 14 18 36 58

i 10 11 12 13 14 15 16 17 18
di 116 196 276 356 436 872 1744 3132 4520

TABLE I
THE SEQUENCE dM GIVEN BY (3) FOR THE CASE THAT M = 18, k = 6,

AND nk = (3, 4, 2, 5, 1, 3).

choose dsi+j such that the maximum representable integer
B(dsi+j ; i+ 1) by using d1, d2, . . . , dsi+j is greater than the
maximum representable integer B(dsi+j−1; i + 1) by using
d1, d2, . . . , dsi+j−1.

If we choose dsi+j > B(dsi+j−1; i + 1) + 1, then the
nonnegative integer B(dsi+j−1; i+1)+1 is not representable
by using at most i + 1 of the integers d1, d2, . . . , dsi+j

according to the C-transform. This is because the integer dsi+j

is not used in the representation of B(dsi+j−1; i + 1) + 1
(as dsi+j > B(dsi+j−1; i + 1) + 1) and by definition
B(dsi+j−1; i + 1) + 1 is not representable by using at most
i + 1 of the integers d1, d2, . . . , dsi+j−1. It follows that
B(dsi+j ; i+1) = B(dsi+j−1; i+1) and hence such a choice
has no use in increasing the maximum representable integer.

Therefore, we choose 1 ≤ dsi+j ≤ B(dsi+j−1; i+ 1) + 1.
For such a choice, the nonnegative integers 0, 1, . . . , dsi+j−1
are representable by using at most i + 1 of the integers
d1, d2, . . . , dsi+j according to the C-transform. This is because
the integer dsi+j is not used in their representations (as they
are less than dsi+j) and by definition they are representable
by using at most i+ 1 of the integers d1, d2, . . . , dsi+j−1 (as
they are less than or equal to B(dsi+j−1; i + 1)). Further-
more, the nonnegative integers dsi+j , dsi+j + 1, . . . , dsi+j +
B(dsi+j−1; i) are representable by using at most i+1 of the
integers d1, d2, . . . , dsi+j because the integer dsi+j is used in
their representations (as they are greater than or equal to dsi+j)
and by definition the remaining values 0, 1, . . . , B(dsi+j−1; i)
of these nonnegative integers are representable by using at
most i of the integers d1, d2, . . . , dsi+j−1 (as they are less than
or equal to B(dsi+j−1; i)). Finally, the nonnegative integer
dsi+j+B(dsi+j−1; i)+1 is not representable by using at most
i+1 of the integers d1, d2, . . . , dsi+j because the integer dsi+j

is used in its representation (as it is greater than or equal to
dsi+j) and by definition the remaining value B(dsi+j−1; i)+1
of this nonnegative integer is not representable by using at
most i of the integers d1, d2, . . . , dsi+j−1. As a result, we
have B(dsi+j ; i+ 1) = dsi+j +B(dsi+j−1; i).

Now it is clear that the best choice is dsi+j =
B(dsi+j−1; i+1)+1 as given by (3) since it gives rise to the
largest maximum representable integer.

For convenience, we denote GM,k as the set of all M -
sequences dM generated by k-sequences of positive integers
nk = (n1, n2, . . . , nk) such that

∑k
i=1 ni = M by using (3).

Note that if k = M , then we must have n1 = n2 = · · · =
nM = 1 and s0 = 0, s1 = 1, s2 = 2, . . . , sM = M , and it
follows from (3) that

d1 = ds0+1 = B(ds0 ; 1) + 1 = B(d0; 1) + 1

= 0 + 1 = 1,

d2 = ds1+1 = B(ds1 ; 2) + 1 = B(d1; 2) + 1

= d1 + 1 = 2,

d3 = ds2+1 = B(ds2 ; 3) + 1 = B(d2; 3) + 1

= d1 + d2 + 1 = 22,
...

dM = dsM−1+1 = B(dsM−1
;M) + 1 = B(dM−1;M) + 1

=
M−1∑
ℓ=1

dℓ + 1 = 2M−1.

It is clear that d1 = 1, d2 = 2, d3 = 22, . . . , dM = 2M−1

satisfy the condition in (A2). Therefore, in the following we
only consider the nontrivial case that 1 ≤ k ≤ M − 1. In
such a nontrivial case, there must exist some 1 ≤ i ≤ k such
that ni ≥ 2 as otherwise we have n1 = n2 = · · · = nk = 1
and

∑k
i=1 ni = k ≤ M − 1, contradicting to

∑k
i=1 ni = M .

Furthermore, by the following theorem, it suffices to consider
only the case that n1 ≥ 2.

Theorem 3 Suppose that 1 ≤ k ≤ M − 1. Let n1, n2, . . . , nk

be positive integers such that n1 = 1 and
∑k

i=1 ni = M .
Let a = min{2 ≤ i ≤ k : ni ≥ 2} (note that a is well
defined as n1 = 1 and hence there must exist some 2 ≤ i ≤ k
such that ni ≥ 2), and let n′

1 = n1 + 1 = 2, n′
i = ni =

1 for i = 2, 3, . . . , a − 1, n′
a = na − 1, and n′

i = ni for
i = a+ 1, a + 2, . . . , k (note that n′

1, n
′
2, . . . , n

′
k are positive

integers such that
∑k

i=1 n
′
i =

∑k
i=1 ni = M ). Suppose that

d1, d2, . . . , dM are generated by n1, n2, . . . , nk by using (3),
and d′1, d

′
2, . . . , d

′
M are generated by n′

1, n
′
2, . . . , n

′
k by using

(3), i.e.,

dsi+j = B(dsi+j−1; i+ 1) + 1,

for i = 0, 1, . . . , k − 1 and j = 1, 2, . . . , ni+1, (4)
d′s′i+j = B(d′

s′i+j−1; i+ 1) + 1,

for i = 0, 1, . . . , k − 1 and j = 1, 2, . . . , n′
i+1, (5)

where s0 = 0 and si =
∑i

ℓ=1 nℓ for i = 1, 2, . . . , k, and
s′0 = 0 and s′i =

∑i
ℓ=1 n

′
ℓ for i = 1, 2, . . . , k, Then dℓ = d′ℓ

for ℓ = 1, 2, . . . ,M .

Proof. See Appendix A.
We illustrate Theorem 3 by an example. Suppose that

M = 18, k = 7, nk = (1, 1, 1, 4, 2, 6, 3), and n′
k =

(2, 1, 1, 3, 2, 6, 3). Let dM be given by (4) and d′
M be given

by (5). Since n1 = 1, min{2 ≤ i ≤ 7 : ni ≥ 2} = 4,
n′
1 = n1 +1 = 2, n′

i = ni = 1 for i = 2, 3, n′
4 = n4 − 1 = 3,

and n′
i = ni for i = 5, 6, 7, it follows from Theorem 3 that

dℓ = d′ℓ for ℓ = 1, 2, . . . , 18. Indeed, we see from Table II
and Table III that dℓ = d′ℓ for ℓ = 1, 2, . . . , 18.

In Theorem 4 below, we derive an explicit recursive expres-
sion for the M -sequences dM given by the greedy construc-
tions, and derive an explicit expression for the maximum repre-
sentable integer B(dM ; k). We also show that d1, d2, . . . , dM
satisfy the condition in (A2) so that the feedback system in
Figure 1(a) can be operated as a 2-to-1 FIFO multiplexer with
effective buffer size B(dM ; k) =

∑k
i=1 dsi (see (10) below)
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i 1 2 3 4 5 6 7 8 9
di 1 2 4 8 16 31 46 92 153

i 10 11 12 13 14 15 16 17 18
di 306 520 734 948 1162 1376 2752 4342 5932

TABLE II
THE SEQUENCE dM GIVEN BY (4) FOR THE CASE THAT M = 18, k = 7,

AND nk = (1, 1, 1, 4, 2, 6, 3).

i 1 2 3 4 5 6 7 8 9
di 1 2 4 8 16 31 46 92 153

i 10 11 12 13 14 15 16 17 18
di 306 520 734 948 1162 1376 2752 4342 5932

TABLE III
THE SEQUENCE d′

M GIVEN BY (5) FOR THE CASE THAT M = 18, k = 7,
AND n′

k = (2, 1, 1, 3, 2, 6, 3).

under the constraint that each packet can be routed through
at most k of the M fibers by using the self-routing scheme
described in Section II.

Theorem 4 Suppose that 1 ≤ k ≤ M − 1. Let n1, n2, . . . , nk

be positive integers such that n1 ≥ 2 and
∑k

i=1 ni = M . Let
d1, d2, . . . , dM be generated by n1, n2, . . . , nk by using (3),
i.e., dsi+j = B(dsi+j−1; i + 1) + 1 for i = 0, 1, . . . , k − 1

and j = 1, 2, . . . , ni+1, where s0 = 0 and si =
∑i

ℓ=1 nℓ for
i = 1, 2, . . . , k.

(i) d1, d2, . . . , dM can be recursively expressed as follows:

dj = j, for j = 1, 2, . . . , s1, (6)
dsi+j = 2dsi + (j − 1)(ds1 + ds2 + · · ·+ dsi + 1),

for i = 1, 2, . . . , k − 1 and j = 1, 2, . . . , ni+1, (7)

(ii) d1, d2, . . . , dℓ satisfy the condition in (A2) for 1 ≤ ℓ ≤
M . Therefore, dM ∈ AM and hence GM,k ⊆ AM .

(iii) We have

B(dj ; 1) = j, for j = 1, 2, . . . , s1, (8)
B(dsi+j ; i+ 1) = dsi+j + ds1 + ds2 + · · ·+ dsi ,

for i = 1, 2, . . . , k − 1, j = 1, 2, . . . , ni+1. (9)

In particular, we have

B(dsi ; i) = ds1 + ds2 + · · ·+ dsi , for i = 1, 2, . . . , k. (10)

To prove Theorem 4, we need the following three lemmas,
whose proofs are given in Appendix B, Appendix C, and
Appendix D.

Lemma 5 Suppose that d1, d2, . . . , dm satisfy the condition
in (A2) for some 1 ≤ m ≤ M and suppose that 1 ≤ i ≤ k.

(i) If B(dm; i) < dℓ′+1 for some 1 ≤ ℓ′ ≤ m − 1 (note
that as d1 = 1 and i ≥ 1, we have B(dm; i) ≥ 1 = d1
and hence ℓ′ cannot be 0), then B(dm; i) + 1 < dℓ′+1 and
B(dm; i) = B(dm−1; i) = · · · = B(dℓ′ ; i).

(ii) Let ℓ′ = max{1 ≤ ℓ ≤ m : dℓ ≤ B(dm; i)}
(note that ℓ′ is well defined as B(dm; i) ≥ 1 = d1). Then
we have B(dm; i) = B(dm−1; i) = · · · = B(dℓ′ ; i) =
dℓ′ +B(dℓ′−1; i− 1).

We remark that the definition that ℓ′ = max{1 ≤
ℓ ≤ m : dℓ ≤ B(dm; i)} is essential for the relation
B(dm; i) = dℓ′ + B(dℓ′−1; i − 1) in Lemma 5(ii) to hold.
This is because B(dm; i) ≥ dℓ′ does not always guarantee
that B(dm; i) = dℓ′ + B(dℓ′−1; i − 1) unless ℓ′ = max{1 ≤
ℓ ≤ m : dℓ ≤ B(dm; i)}. We illustrate this by an example.
If d4 = (1, 2, 4, 8), then we can see that B(d4; 2) = 6 ≥ d2
and B(d1; 1) = 1, but B(d4; 2) ̸= d2 + B(d1; 1). However,
we have d3 ≤ B(d4; 2) < d4 and B(d2; 1) = 2, and hence
B(d4; 2) = d3 +B(d2; 1).

Lemma 6 Suppose that 1 ≤ k ≤ M − 1. Let n1, n2, . . . , nk

be positive integers such that n1 ≥ 2 and
∑k

i=1 ni = M ,
and let s0 = 0 and si =

∑i
ℓ=1 nℓ for i = 1, 2, . . . , k. Let

d1, d2, . . . , dsi+j be given by (3) for some 1 ≤ i ≤ k − 1
and 0 ≤ j ≤ ni+1. If d1, d2, . . . , dsi+j satisfy the condition in
(A2), then we have B(dsi+j ; i+1) = dsi+j +B(dsi+j−1; i).

Lemma 7 Suppose that 1 ≤ k ≤ M − 1. Let n1, n2, . . . , nk

be positive integers such that n1 ≥ 2 and
∑k

i=1 ni = M ,
and let s0 = 0 and si =

∑i
ℓ=1 nℓ for i = 1, 2, . . . , k. Let

d1, d2, . . . , dsi+j be given by (6) and (7) for some 1 ≤ i ≤
k − 1 and 0 ≤ j ≤ ni+1.

(i) d1, d2, . . . , dsi+j satisfy the condition in (A2).
(ii) If B(dsi ; i) = ds1 + ds2 + · · · + dsi , then we have

B(dsi+j ; i) = B(dsi ; i) = ds1 + ds2 + · · ·+ dsi .

Proof. (Proof of Theorem 4) From (3), we see that

d1 = ds0+1 = B(ds0 ; 1) + 1 = B(d0; 1) + 1

= 0 + 1 = 1,

d2 = ds0+2 = B(ds0+1; 1) + 1 = B(d1; 1) + 1

= B((1); 1) + 1 = 1 + 1 = 2,

d3 = ds0+3 = B(ds0+2; 1) + 1 = B(d2; 1) + 1

= B((1, 2); 1) + 1 = 2 + 1 = 3,

...
ds1 = ds0+n1 = B(ds0+n1−1; 1) + 1 = B(dn1−1; 1) + 1

= B((1, 2, . . . , n1 − 1); 1) + 1 = (n1 − 1) + 1 = s1.

Thus, we have proved (6). As it is easy to see from dj =
(1, 2, . . . , j) that B(dj ; 1) = B((1, 2, . . . , j); 1) = j for
j = 1, 2, . . . , s1, we have proved (8). Furthermore, it is
also clear that d1, d2, . . . , dj satisfy the condition in (A2) for
j = 1, 2, . . . , s1.

In the following, we show by induction that (7) and (9)
hold and d1, d2, . . . , dsi+j satisfy the condition in (A2) for all
1 ≤ i ≤ k − 1 and 1 ≤ j ≤ ni+1. From (3), Lemma 6 (with
i = 1 and j = 0 in Lemma 6), (8), and (6), we have

ds1+1 = B(ds1 ; 2) + 1 = ds1 +B(ds1−1; 1) + 1

= ds1 + (s1 − 1) + 1 = ds1 + ds1 = 2ds1 .

Thus, (7) holds for i = 1 and j = 1. As such, we have
from Lemma 7(i) that d1, d2, . . . , ds1+1 satisfy the condition
in (A2). It then follows from Lemma 6 (with i = 1 and j = 1
in Lemma 6), (8), and (6) that

B(ds1+1; 2) = ds1+1 +B(ds1 ; 1) = ds1+1 + s1

= ds1+1 + ds1 .
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Thus, (9) holds for i = 1 and j = 1.
Assume as the induction hypothesis that (7) and (9) hold

and d1, d2, . . . , dsi+j satisfy the condition in (A2) up to some
1 ≤ i ≤ k − 1 and 1 ≤ j ≤ ni+1 such that si + j < M . We
need to consider the following two cases.

Case 1: 1 ≤ j ≤ ni+1−1. In this case, we have 2 ≤ j+1 ≤
ni+1. It follows from (3) and the induction hypothesis that

dsi+j+1 = B(dsi+j ; i+ 1) + 1

= dsi+j + ds1 + ds2 + · · ·+ dsi + 1

= 2dsi + (j − 1)(ds1 + ds2 + · · ·+ dsi + 1)

+ds1 + ds2 + · · ·+ dsi + 1

= 2dsi + j(ds1 + ds2 + · · ·+ dsi + 1).

Thus, (7) holds for i and j + 1. As such, we have from
Lemma 7(i) that d1, d2, . . . , dsi+j+1 satisfy the condition in
(A2). Since it is easy to see from the induction hypothesis that
B(dsi ; i) = ds1 + ds2 + · · ·+ dsi , we see from Lemma 7(ii)
that B(dsi+j ; i) = ds1 + ds2 + · · ·+ dsi . It then follows from
Lemma 6 that

B(dsi+j+1; i+ 1) = dsi+j+1 +B(dsi+j ; i)

= dsi+j+1 + ds1 + ds2 + · · ·+ dsi .

Thus, (9) holds for i and j + 1.
Case 2: j = ni+1. In this case, we have 1 ≤ i ≤ k − 2

(as si + j = si+1 < M in the induction hypothesis) and
si + j + 1 = si+1 + 1. It follows from (3) and Lemma 6 that

dsi+1+1 = B(dsi+1 ; i+ 2) + 1

= dsi+1 +B(dsi+1−1; i+ 1) + 1. (11)

If ni+1 = 1, then si+1−1 = si, and it follows from Lemma 6,
(3), and dsi+1 = dsi+1 = 2dsi in the induction hypothesis that

B(dsi+1−1; i+ 1) + 1 = B(dsi ; i+ 1) + 1

= dsi +B(dsi−1; i) + 1

= dsi + dsi = dsi+1 . (12)

On the other hand, if ni+1 ≥ 2, then it follows from the
induction hypothesis that

B(dsi+1−1; i+ 1) + 1

= B(dsi+ni+1−1; i+ 1) + 1

= dsi+ni+1−1 + ds1 + ds2 + · · ·+ dsi + 1

= 2dsi + (ni+1 − 2)(ds1 + ds2 + · · ·+ dsi + 1)

+ds1 + ds2 + · · ·+ dsi + 1

= 2dsi + (ni+1 − 1)(ds1 + ds2 + · · ·+ dsi + 1)

= dsi+ni+1 = dsi+1 . (13)

Therefore, we have from (11)–(13) that

dsi+1+1 = dsi+1 +B(dsi+1−1; i+ 1) + 1 = 2dsi+1 .

Thus, (7) holds for i + 1 and 1. As such, we have from
Lemma 7(i) that d1, d2, . . . , dsi+1+1 satisfy the condition in
(A2). It then follows from Lemma 6 and B(dsi+1 ; i + 1) =
ds1 + ds2 + · · ·+ dsi + dsi+1 in the induction hypothesis that

B(dsi+1+1; i+ 2) = dsi+1+1 +B(dsi+1 ; i+ 1)

= dsi+1+1 + ds1 + ds2 + · · ·+ dsi+1 .

Thus, (9) holds for i+ 1 and 1.

IV. EVERY OPTIMAL CONSTRUCTION MUST BE A
GREEDY CONSTRUCTION

Recall that the the problem of finding positive integers
d1, d2, . . . , dM satisfying the condition in (A2) such that the
feedback system in Figure 1(a) can be operated as a 2-to-1
FIFO multiplexer with the largest possible effective buffer size
under the constraint that each packet can be routed through
at most k of the M fibers by using the self-routing scheme
described in Section II is equivalent to the problem of finding
a sequence dM in AM such that the maximum representable
integer B(dM ; k) is the large possible, where AM is the set
of all M -sequences dM satisfying the condition in (A2). We
call a construction of a sequence d∗

M in AM an optimal
construction if d∗

M ∈ argmaxdM∈AM
B(dM ; k).

In this section, we show that every optimal construc-
tion must be a greedy construction, i.e., if d∗

M ∈
argmaxdM∈AM

B(dM ; k), then d∗
M ∈ GM,k, where GM,k is

the set of all M -sequences dM generated by k-sequences of
positive integers nk such that

∑k
i=1 ni = M by using (3).

Since the size of AM is Ω(2M ) [12] and the size of GM,k is(
M−1
k−1

)
= O(Mk), the complexity of searching for an optimal

construction can be greatly reduced from exponential time to
polynomial time by only considering the set GM,k rather than
performing an exhaustive search through the set AM .

Note that for k = M , it is easy to see that d∗
M =

(1, 2, 22, . . . , 2M−1) is the only optimal construction. As it
is also the only sequence in GM,k as shown in Section III, it
then follows that the optimal construction is also the greedy
construction. Therefore, in Theorem 8 below we only consider
the nontrivial case that 1 ≤ k ≤ M − 1, and show that every
optimal construction must be a greedy construction.

Theorem 8 Suppose that 1 ≤ k ≤ M − 1. If d∗
M ∈

argmaxdM∈AM
B(dM ; k), then d∗

M ∈ GM,k. In other words,
every optimal construction must be a greedy construction.

To prove Theorem 8, we need the following lemma on the
basic properties of an optimal construction, whose proof is
given in Appendix E.

Lemma 9 Suppose that 1 ≤ k ≤ M − 1 and d∗
M ∈

argmaxdM∈AM B(dM ; k). Let sk, sk−1, . . . , s1, in that order,
be recursively given by

sk = max{1 ≤ ℓ ≤ M : d∗ℓ ≤ B(d∗
M ; k)}, (14)

si = max{1 ≤ ℓ ≤ si+1 − 1 : d∗ℓ ≤ B(d∗
si+1−1; i)},

for i = k − 1, k − 2, . . . , 1. (15)

(i) sk = M and B(d∗
sk
; k) = d∗sk +B(d∗

sk−1; k − 1).
(ii) si ≥ i+ 1 for i = 1, 2, . . . , k.
(iii) B(d∗

si+1−1; i) = B(d∗
si+1−2; i) = · · · = B(d∗

si ; i) =
d∗si + B(d∗

si−1; i − 1) for i = 1, 2, . . . , k − 1. Therefore,
B(d∗

si ; i) = d∗s1 + d∗s2 + · · ·+ d∗si for i = 1, 2, . . . , k.

Proof. (Proof of Theorem 8) Suppose d∗
M ∈

argmaxdM∈AM B(dM ; k). Let si, i = 1, 2, . . . , k be
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given by (14) and (15). Let s0 = 0 and ni = si − si−1

for i = 1, 2, . . . , k, and let d1, d2, . . . , dM be generated by
n1, n2, . . . , nk by using (3). Clearly, dM ∈ GM,k.

(i) We first show by induction on ℓ that d∗ℓ ≤ dℓ for all
ℓ = 1, 2, . . . ,M , and if d∗ℓ′ < dℓ′ for some 2 ≤ ℓ′ ≤ M (note
that d∗1 = d1 = 1), then d∗ℓ < dℓ for all ℓ = ℓ′, ℓ′ + 1, . . . ,M .
From the definition of B(d∗

s2−1; 1) in (2), we can see that
B(d∗

s2−1; 1) = d∗ℓ1 , where

ℓ1 = max{2 ≤ ℓ ≤ s2 − 1 : d∗2 − d∗1 ≤ 1, d∗3 − d∗2 ≤ 1,

. . . , d∗ℓ − d∗ℓ−1 ≤ 1} (16)

(note that ℓ1 is well defined as we have from Lemma 9(ii) that
s2 − 1 ≥ 2 and we also have from d∗

M ∈ AM that d∗2 − d∗1 ≤
2d∗1−d∗1 = d∗1 = 1). If 2 ≤ ℓ1 ≤ s2− 2, then d∗ℓ1+1−d∗ℓ1 ≥ 2
and hence d∗ℓ1+1 ≥ d∗ℓ1 +2 = B(d∗

s2−1; 1)+2 > B(d∗
s2−1; 1).

In this case, we see from (15) that s1 = ℓ1, On the other hand,
if ℓ1 = s2 − 1, then we have B(d∗

s2−1; 1) = d∗ℓ1 = d∗s2−1. In
this case, we see from (15) that s1 = s2 − 1 = ℓ1. As such, it
follows from (16), (6), and s1 = ℓ1 that

d∗1 = 1 = d1,

d∗2 ≤ d∗1 + 1 = 1 + 1 = 2 = d2,

d∗3 ≤ d∗2 + 1 ≤ 2 + 1 = 3 = d3,
...

d∗s1 ≤ d∗s1−1 + 1 ≤ (s1 − 1) + 1 = s1 = ds1 .

Furthermore, if d∗ℓ′ < dℓ′ = ℓ′ for some 2 ≤ ℓ′ ≤ s1 − 1, then
we have from (16) and (6) that

d∗ℓ′+1 ≤ d∗ℓ′ + 1 < ℓ′ + 1 = dℓ′+1,

...
d∗s1 ≤ d∗s1−1 + 1 < (s1 − 1) + 1 = s1 = ds1 .

Assume as the induction hypothesis that d∗1 ≤ d1, d∗2 ≤
d2, . . ., d∗ℓ ≤ dℓ for some s1 ≤ ℓ ≤ M − 1, and if d∗ℓ′ < dℓ′
for some 2 ≤ ℓ′ ≤ ℓ, then d∗ℓ′ < dℓ′ , d∗ℓ′+1 < dℓ′+1, . . .,
d∗ℓ < dℓ. We need to consider the following two cases.

Case 1: ℓ = si, where 1 ≤ i ≤ k − 1. In this case, we
have from d∗M

1 ∈ AM , the induction hypothesis, and (7) that
d∗ℓ+1 ≤ 2d∗ℓ ≤ 2dℓ = 2dsi = dsi+1 = dℓ+1. Furthermore,
if d∗ℓ′ < dℓ′ for some 2 ≤ ℓ′ ≤ ℓ, then we have from the
induction hypothesis that d∗ℓ′ < dℓ′ , d∗ℓ′+1 < dℓ′+1, . . ., d∗ℓ <

dℓ, and it follows from d∗M
1 ∈ AM and (7) that d∗ℓ+1 ≤ 2d∗ℓ <

2dℓ = 2dsi = dsi+1 = dℓ+1.
Case 2: ℓ = si + j, where 1 ≤ i ≤ k − 1 and 1 ≤ j ≤

ni+1 − 1. We first show that

d∗si+j+1 ≤ d∗si+j + d∗s1 + d∗s2 + · · ·+ d∗si + 1. (17)

It is clear from d∗M
1 ∈ AM that d∗si+j+1 ≥ d∗si+j . If

d∗si+j+1 = d∗si+j , then (17) holds trivially. So in the following
we assume that d∗si+j+1 > d∗si+j . Since si + j + 1 ≤
si + ni+1 = si+1 in this case, we have from d∗M

1 ∈ AM

that d∗si+j+1 ≤ d∗si+1
, and it then follows from Lemma 9(iii)

that d∗si+j+1 − 1 ≤ d∗si+1
− 1 < d∗s1 + d∗s2 + · · · +

d∗si+1
= B(d∗

si+1
; i+1). By definition, the nonnegative integers

d∗si+j , d
∗
si+j+1, . . . , d∗si+j+1−1 are representable by using at

most i+1 of the integers d∗1, d
∗
2, . . . , d

∗
si+1

(as they are less than
or equal to B(d∗

si+1
; i+ 1)) according to the C-transform. As

the integers d∗si+j+1, d
∗
si+j+2, . . . , d

∗
si+1

are not used, but the
integer d∗si+j is used, in the representations of these nonnega-
tive integers (as they are less than d∗si+j+1, d

∗
si+j+2, . . . , d

∗
si+1

,
but greater than or equal to d∗si+j), it is clear the remaining
values 0, 1, . . . , d∗si+j+1 − d∗si+j − 1 of these nonnegative
integers are representable by using at most i of the integers
d∗1, d

∗
2, . . . , d

∗
si+j−1. Therefore, we have d∗si+j+1−d∗si+j−1 ≤

B(d∗
si+j−1; i). By using Lemma 9(iii), we have d∗si+j+1 ≤

d∗si+j +B(d∗
si+j−1; i)+1 = d∗si+j +d∗s1 +d∗s2 + · · ·+d∗si +1,

and hence (17) is proved.
From (17), the induction hypothesis, and (7), we have

d∗ℓ+1 = d∗si+j+1

≤ d∗si+j + d∗s1 + d∗s2 + · · ·+ d∗si + 1

≤ dsi+j + ds1 + ds2 + · · ·+ dsi + 1 (18)
= 2dsi + (j − 1)(ds1 + ds2 + · · ·+ dsi + 1)

+ds1 + ds2 + · · ·+ dsi + 1

= 2dsi + j(ds1 + ds2 + · · ·+ dsi + 1)

= dsi+j+1 = dℓ+1.

Furthermore, if d∗ℓ′ < dℓ′ for some 2 ≤ ℓ′ ≤ ℓ, then we
have from the induction hypothesis that d∗ℓ′ < dℓ′ , d∗ℓ′+1 <
dℓ′+1, . . ., d∗ℓ < dℓ. Therefore, the inequality in (18) becomes
a strict inequality and we have d∗ℓ+1 < dℓ+1.

(ii) Now we show that d∗ℓ = dℓ for all ℓ = 1, 2, . . . ,M .
From dM ∈ AM in Theorem 4(ii), Theorem 4(iii), d∗ℓ ≤ dℓ
for ℓ = 1, 2, . . . ,M , and Lemma 9(iii), we have

B(d∗
M ; k) = max

d′
M∈AM

B(d′
M ; k)

≥ B(dM ; k) = B(dsk ; k)

= ds1 + ds2 + · · ·+ dsk
≥ d∗s1 + d∗s2 + · · ·+ d∗sk
= B(d∗

sk
; k) = B(d∗

M ; k). (19)

As such, the two inequalities in (19) hold with equality, and
it is easy to deduce from d∗si ≤ dsi for all i = 1, 2, . . . , k that
d∗si = dsi for all i = 1, 2, . . . , k.

We show by contradiction that d∗ℓ = dℓ for all ℓ =
1, 2, . . . ,M . Assume on the contrary that d∗ℓ′ < dℓ′ for some
2 ≤ ℓ′ ≤ M . Then we see from (i) that d∗ℓ < dℓ for all
ℓ = ℓ′, ℓ′ + 1, . . . ,M . In particular, we have d∗sk = d∗M <
dM = dsk , and a contradiction is reached.

V. CONCLUSION

In this paper, we considered an important problem arising
from practical feasibility considerations in the SDL construc-
tions of optical queues: the constructions of optical queues
with a limited number of recirculations through the opti-
cal switches and the fiber delay lines. We first transformed
the design of the fiber delays in the SDL constructions of
certain types of optical queues into an equivalent integer
representation problem. We then proposed a class of greedy
constructions for such an equivalent integer representation
problem, and showed that every optimal construction that
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achieves the largest possible maximum representable integer
must be a greedy construction. Therefore, the complexity of
searching for an optimal construction can be greatly reduced
from exponential time to polynomial time by only considering
the greedy constructions instead of performing an exhaustive
search. The results in this paper can be applied to the con-
structions of optical 2-to-1 FIFO multiplexers with a limited
number of recirculations. Similar results can be obtained for
the constructions of optical linear compressors/decompressors
with a limited number of recirculations and will be reported
in a follow-up work by the first author and Dr. Xuan-Chao
Huang, in which a simple algorithm is also proposed to obtain
the optimal constructions.

APPENDIX A
PROOF OF THEOREM 3

We show by induction on ℓ that dℓ = d′ℓ for ℓ =
1, 2, . . . ,M . From n1 = 1 and a = min{2 ≤ i ≤ k : ni ≥ 2},
we can see that ni = 1 for i = 1, 2, . . . , a − 1 and na ≥ 2.
It then follows from si =

∑i
ℓ=1 nℓ for i = 1, 2, . . . , k that

si = i for i = 1, 2, . . . , a − 1 and sa ≥ a + 1. As such, we
have from (4) that

d1 = ds0+1 = B(ds0 ; 1) + 1 = B(d0; 1) + 1

= 0 + 1 = 1,

d2 = ds1+1 = B(ds1 ; 2) + 1 = B(d1; 2) + 1

= d1 + 1 = 2,

d3 = ds2+1 = B(ds2 ; 3) + 1 = B(d2; 3) + 1

= d1 + d2 + 1 = 22,
...

da = dsa−1+1 = B(dsa−1 ; a) + 1 = B(da−1; a) + 1

=

a−1∑
ℓ=1

dℓ + 1 = 2a−1,

da+1 = dsa−1+2 = B(dsa−1+1; a) + 1 = B(da; a) + 1

=
a∑

ℓ=1

dℓ + 1 = 2a.

Furthermore, from n′
1 = n1 + 1 = 2, n′

i = ni = 1 for
i = 2, 3, . . . , a− 1, n′

a = na − 1, n′
i = ni for i = a+ 1, a+

2, . . . , k, and s′i =
∑i

ℓ=1 n
′
ℓ for i = 1, 2, . . . , k, we can see

that s′i = i + 1 = si + 1 for i = 1, 2, . . . , a − 1, and s′i = si
for i = a, a+ 1, . . . , k. As such, we have from (5) that

d′1 = d′s′0+1 = B(d′
s′0
; 1) + 1 = B(d′

0; 1) + 1

= 0 + 1 = 1,

d′2 = d′s′0+2 = B(d′
s′0+1; 1) + 1 = B(d′

1; 1) + 1

= d′1 + 1 = 2,

d′3 = d′s′1+1 = B(d′
s′1
; 2) + 1 = B(d′

2; 2) + 1

=
2∑

ℓ=1

d′ℓ + 1 = 22,

...
d′a = d′s′a−2+1 = B(d′

s′a−2
; a− 1) + 1

= B(d′
a−1; a− 1) + 1 =

a−1∑
ℓ=1

d′ℓ + 1 = 2a−1,

d′a+1 = d′s′a−1+1 = B(d′
s′a−1

; a) + 1 = B(d′
a; a) + 1

=
a∑

ℓ=1

d′ℓ + 1 = 2a.

Therefore, we have d1 = d′1, d2 = d′2, . . . , dsa−1+2 = d′sa−1+2

(note that a+ 1 = sa−1 + 2).
Assume as the induction hypothesis that d1 = d′1, d2 =

d′2, . . . , dℓ = d′ℓ for some sa−1+2 ≤ ℓ ≤ M−1. To complete
the induction, we have to show that dℓ+1 = d′ℓ+1. We need to
consider the following two cases.

Case 1: ℓ = sa−1 + j, where 2 ≤ j ≤ na − 1. In this case,
we have

dℓ+1 = dsa−1+j+1 = B(dsa−1+j ; a) + 1

= B(d′
sa−1+j ; a) + 1 = B(d′

s′a−1+j−1; a) + 1

= d′s′a−1+j = d′sa−1+j+1 = d′ℓ+1,

where the second equality follows from (4) and 3 ≤ j + 1 ≤
na, the third equality follows from d′

sa−1+j = dsa−1+j in the
induction hypothesis, and the fifth equality follows from (5)
and 2 ≤ j ≤ na − 1 = n′

a.
Case 2: ℓ = si + j, where a ≤ i ≤ k − 1 and 0 ≤ j ≤

ni+1 − 1. In this case, we have

dℓ+1 = dsi+j+1 = B(dsi+j ; i+ 1) + 1

= B(d′
si+j ; i+ 1) + 1 = B(d′

s′i+j ; i+ 1) + 1

= d′s′i+j+1 = d′si+j+1 = d′ℓ+1,

where the second equality follows from (4) and 1 ≤ j + 1 ≤
ni+1, the third equality follows from d′

si+j = dsi+j in the
induction hypothesis, and the fifth equality follows from (5)
and 1 ≤ j + 1 ≤ ni+1 = n′

i+1.

APPENDIX B
PROOF OF LEMMA 5

Note that since d1, d2, . . . , dm satisfy the condition in (A2),
we have 1 = d1 ≤ d2 ≤ · · · ≤ dm.

(i) Suppose B(dm; i) < dℓ′+1 for some 1 ≤ ℓ′ ≤ m − 1.
We first show that B(dm; i) + 1 < dℓ′+1. Assume on the
contrary that B(dm; i) + 1 = dℓ′+1. Then the nonnegative
integer B(dm; i) + 1 is representable by using exactly one
of the integers d1, d2, . . . , dm, namely, dℓ′′ , where ℓ′′ =
max{ℓ′ + 1 ≤ ℓ ≤ m : dℓ = dℓ′+1}, according to the
C-transform. However, by definition, the nonnegative integer
B(dm; i) + 1 is not representable by using at most i of the
integers d1, d2, . . . , dm, and we have reached a contradiction.

By definition, the nonnegative integers 0, 1, . . . , B(dm; i)
are representable by using at most i of the integers
d1, d2, . . . , dm (as they are less than or equal to B(dm; i)),
but the nonnegative integers B(dm; i)+1 is not representable
by using at most i of the integers d1, d2, . . . , dm according
to the C-transform. Since the integers dℓ′+1, dℓ′+2, . . . , dm
are not used in the representations of the nonnegative inte-
gers 0, 1, . . ., B(dm; i), B(dm; i) + 1 (as these nonnegative
integers are less than dℓ′+1, dℓ′+2, . . . , dm), it follows that
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the nonnegative integers 0, 1, . . . , B(dm; i) are representable
by using at most i of the integers d1, d2, . . . , dm′ , but the
nonnegative integers B(dm; i) + 1 is not representable by
using at most i of the integers d1, d2, . . . , dm′ according to
the C-transform, where ℓ′ ≤ m′ ≤ m. Therefore, we have
B(dm; i) = B(dm−1; i) = · · · = B(dℓ′ ; i).

(ii) We consider the two cases ℓ′ = m and 1 ≤ ℓ′ ≤ m− 1
separately.

Case 1: ℓ′ = m. In this case, we have dm ≤ B(dm; i) and
we need to show that B(dm; i) = dm + B(dm−1; i − 1). If
m = 1, then we have

B(dm; i) = B(d1; i) = d1 = d1 + 0 = d1 +B(d0; i− 1)

= dm +B(dm−1; i− 1).

If i = 1, then we have B(dm; 1) = B(dm; i) ≥ dm. As
it is easy to see from the definition of B(dm; 1) in (2) that
B(dm; 1) ≤ max{d1, d2, . . . , dm} = dm, it then follows that
B(dm; 1) = dm. As a result, we have

B(dm; i) = B(dm; 1) = dm = dm + 0 = dm +B(dm−1; 0)

= dm +B(dm−1; i− 1).

Therefore, we assume that 2 ≤ m ≤ M and 2 ≤ i ≤ k in the
rest of the proof.

We first show that B(dm; i) ≤ dm+B(dm−1; i−1). By def-
inition, the nonnegative integers dm, dm+1, . . . , B(dm; i) are
representable by using at most i of the integers d1, d2, . . . , dm
(as they are less than or equal to B(dm; i)) according to
the C-transform. Since the integer dm is used in their rep-
resentations (as they are all greater than or equal to dm), it
follows that the remaining values 0, 1, . . . , B(dm; i)− dm of
these nonnegative integers are representable by using at most
i − 1 of the integers d1, d2, . . . , dm−1. Therefore, we have
B(dm−1; i− 1) ≥ B(dm; i)− dm.

Now we show that B(dm; i) ≥ dm+B(dm−1; i−1). Since
in this case we have B(dm; i) ≥ dm, it remains to show that
the nonnegative integers dm+1, dm+2, . . . , dm+B(dm−1; i−
1) are representable by using at most i of the integers
d1, d2, . . . , dm according to the C-transform. As the integer dm
is used in their representations (as they are all greater than dm)
and by definition the remaining values 1, 2, . . . , B(dm−1; i−
1) of these nonnegative integers are representable by using at
most i − 1 of the integers d1, d2, . . . , dm−1 (as they are less
than or equal to B(dm−1; i− 1)), the proof is completed.

Case 2: 1 ≤ ℓ′ ≤ m − 1. In this case, we have dℓ′ ≤
B(dm; i) < dℓ′+1. As B(dm; i) < dℓ′+1, we have from (i)
that B(dm; i) = B(dm−1; i) = · · · = B(dℓ′ ; i). Therefore,
we have dℓ′ ≤ B(dm; i) = B(dℓ′ ; i), and it follows from
Case 1 above that B(dℓ′ ; i) = dℓ′ +B(dℓ′−1; i− 1).

APPENDIX C
PROOF OF LEMMA 6

Suppose that d1, d2, . . . , dsi+j satisfy the condition in (A2).
We consider the two cases j = 0 and 1 ≤ j ≤ ni+1 separately.

Case 1: j = 0. From (3), we have dsi = B(dsi−1; i) + 1.
It follows that the nonnegative integers 0, 1, . . . , dsi − 1 =
B(dsi−1; i) are representable by using at most i of the
integers d1, d2, . . . , dsi according to the C-transform because

the integer dsi is not used in their representations (as they are
less than dsi ) and by definition they are representable by using
at most i of the integers d1, d2, . . . , dsi−1 (as they are less
than or equal to B(dsi−1; i)). Furthermore, the nonnegative
integer dsi is representable by using exactly one of the
integers d1, d2, . . . , dsi , namely, dsi itself, according to the C-
transform. As a result, the nonnegative integers 0, 1, . . . , dsi
are representable by using at most i + 1 of the integers
d1, d2, . . . , dsi , and hence we have B(dsi ; i + 1) ≥ dsi . By
Lemma 5(ii) (with ℓ′ = si in Lemma 5(ii)), we obtain

B(dsi+j ; i+ 1) = B(dsi ; i+ 1) = dsi +B(dsi−1; i)

= dsi+j +B(dsi+j−1; i).

Case 2: 1 ≤ j ≤ ni+1. From (3), we have dsi+j =
B(dsi+j−1; i+1)+1 (note that this equality does not reduce
to dsi = B(dsi−1; i) + 1 when j = 0 as in Case 1 above,
and that is why we need to discuss the two cases j = 0
and 1 ≤ j ≤ ni+1 separately). By the same argument as in
Case 1, we also have B(dsi+j ; i+1) ≥ dsi+j , and it follows
from Lemma 5(ii) (with ℓ′ = si + j in Lemma 5(ii)) that
B(dsi+j ; i+ 1) = dsi+j +B(dsi+j−1; i).

APPENDIX D
PROOF OF LEMMA 7

(i) From (6), we have dℓ = ℓ for ℓ = 1, 2, . . . , s1, and
it is easy to see that d1 = 1 and dℓ ≤ dℓ+1 ≤ 2dℓ for
ℓ = 1, 2, . . . , s1−1. To show that d1, d2, . . . , dsi+j satisfy the
condition in (A2), we also need to show that dℓ ≤ dℓ+1 ≤ 2dℓ
for ℓ = s1, s1 + 1, . . . , si + j − 1. We consider the following
two cases.

Case 1: ℓ = si′ , where 1 ≤ i′ ≤ i−1, or i′ = i and j ≥ 1. In
this case, we have from (7) that dℓ+1 = dsi′+1 = 2dsi′ = 2dℓ.
Clearly, dℓ ≤ dℓ+1 ≤ 2dℓ.

Case 2: ℓ = si′ + j′, where 1 ≤ i′ ≤ i − 1 and 1 ≤ j′ ≤
ni′+1 − 1, or i′ = i and 1 ≤ j′ ≤ j− 1. In this case, we have
1 ≤ i′ ≤ i − 1 and 1 ≤ j′ < j′ + 1 ≤ ni′+1, or i′ = i and
1 ≤ j′ < j′ + 1 ≤ j ≤ ni+1, and it follows from (7) that

dℓ+1 − dℓ = dsi′+j′+1 − dsi′+j′

= ds1 + ds2 + · · ·+ dsi′ + 1 > 0

and

dℓ+1 − 2dℓ

= dsi′+j′+1 − 2dsi′+j′

= −2dsi′ − (j′ − 2)(ds1 + ds2 + · · ·+ dsi′ + 1). (20)

If j′ ≥ 2, then we have from (20) that dℓ+1−2dℓ = −2dsi′ −
(j′−2)(ds1 +ds2 + · · ·+dsi′ +1) ≤ −2dsi′ < 0. On the other
hand, if j′ = 1, then let a = max{1 ≤ a′ ≤ i′ : na′ ≥ 2}
(note that a is well defined as n1 ≥ 2) so that na+1 = na+2 =
· · · = ni′ = 1 and na ≥ 2, and we have from (20), (7), and
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(6) that

dℓ+1 − 2dℓ

= −2dsi′ − (j′ − 2)(ds1 + ds2 + · · ·+ dsi′ + 1)

= ds1 + ds2 + · · ·+ dsi′−1
+ 1− dsi′

= −2dsi′−1
− (ni′ − 2)(ds1 + ds2 + · · ·+ dsi′−1

+ 1)

= ds1 + ds2 + · · ·+ dsi′−2
+ 1− dsi′−1

...
= −2dsa − (na+1 − 2)(ds1 + ds2 + · · ·+ dsa + 1)

= ds1 + ds2 + · · ·+ dsa−1 + 1− dsa

=


1− ds1 = 1− s1 = 1− n1 < 0, if a = 1,

−2dsa−1 − (na − 2)(ds1 + ds2 + · · ·+ dsa−1 + 1)

≤ −2dsa−1
< 0, if a ≥ 2.

(21)

Therefore, we also have dℓ ≤ dℓ+1 ≤ 2dℓ in this case.
(ii) Suppose thatB(dsi ; i) = ds1 +ds2 + · · ·+dsi . If j = 0,

then there is nothing to prove. So we assume that 1 ≤ j ≤
ni+1 in the rest of the proof.

From (7), we have

B(dsi ; i) + 1− dsi+1 = ds1 + ds2 + · · ·+ dsi + 1− 2dsi
= ds1 + ds2 + · · ·+ dsi−1 + 1− dsi .

By the same argument that leads to (21), we can see that
B(dsi ; i) + 1 − dsi+1 < 0. It then follows from (i) that
B(dsi ; i) + 1 < dsi+1 ≤ dsi+2 ≤ · · · ≤ dsi+j . Thus, the
nonnegative integers 0, 1, . . . , B(dsi ; i) are representable by
using at most i of the integers d1, d2, . . . , dsi+j according to
the C-transform because the integers dsi+1, dsi+2, . . ., dsi+j

are not used in their representations (as they are less than
dsi+1, dsi+2, . . ., dsi+j) and by definition they are repre-
sentable by using at most i of the integers d1, d2, . . . , dsi
(as they are less than or equal to B(dsi ; i)). However, the
nonnegative integer B(dsi ; i)+1 is not representable by using
at most i of the integers d1, d2, . . . , dsi+j according to the C-
transform because the integers dsi+1, dsi+2, . . ., dsi+j are not
used in its representation (as it is less than dsi+1, dsi+2, . . .,
dsi+j) and by definition it is not representable by using
at most i of the integers d1, d2, . . . , dsi . This shows that
B(dsi+j ; i) = B(dsi ; i) and the proof is completed.

APPENDIX E
PROOF OF LEMMA 9

Note that since d∗
M ∈ argmaxdM∈AM B(dM ; k), we have

d∗
M ∈ AM .
(i) We will show that B(d∗

M ; k) ≥ d∗M . If this can be done,
then we see from (14) that sk is well defined and sk = M ,
and it follows from Lemma 5(ii) (note that d∗

M ∈ AM ) that
B(d∗

sk
; k) = B(d∗

M ; k) = d∗M + B(d∗
M−1; k − 1) = d∗sk +

B(d∗
sk−1; k − 1), and the proof is completed.

Assume on the contrary that B(d∗
M ; k) < d∗M . As d∗

M ∈
AM , we have d∗1 = 1 and hence B(d∗

M ; k) ≥ 1 = d∗1. Let ℓ′ =
max{1 ≤ ℓ ≤ M : d∗ℓ ≤ B(d∗

M ; k)}. Then ℓ′ is well defined,
and we have 1 ≤ ℓ′ ≤ M − 1 and d∗ℓ′ ≤ B(d∗

M ; k) < d∗ℓ′+1.
Let d′ℓ = d∗ℓ for ℓ = 1, 2, . . . , ℓ′, and d′ℓ = B(d∗

M ; k)+ℓ−ℓ′ for
ℓ = ℓ′+1, ℓ′+2, . . . ,M . In the following, we show that d′

M ∈

AM and B(d′
M ; k) > B(d∗

M ; k). Then we have from d′
M ∈

AM that B(d′
M ; k) ≤ maxdM∈AM B(dM ; k) = B(d∗

M ; k),
and a contradiction is reached.

Since d∗
M ∈ AM , we have d∗1 = 1 and d∗ℓ ≤ d∗ℓ+1 ≤ 2d∗ℓ

for ℓ = 1, 2, . . . ,M − 1. Thus, it follows from d′ℓ = d∗ℓ for
ℓ = 1, 2, . . . , ℓ′ that d′1 = 1 and d′ℓ ≤ d′ℓ+1 ≤ 2d′ℓ for ℓ =
1, 2, . . . , ℓ′ − 1. Furthermore, from d∗ℓ′ ≤ B(d∗

M ; k) < d∗ℓ′+1,
we can see that d′ℓ′+1 = B(d∗

M ; k) + 1 ≥ d∗ℓ′ + 1 > d∗ℓ′ = d′ℓ′
and d′ℓ′+1 = B(d∗

M ; k) + 1 ≤ d∗ℓ′+1 ≤ 2d∗ℓ′ = 2d′ℓ′ . Finally,
it is clear from d′ℓ = B(d∗

M ; k) + ℓ − ℓ′ for ℓ = ℓ′ + 1, ℓ′ +
2, . . . ,M that d′ℓ+1 = d′ℓ+1 for ℓ = ℓ′+1, ℓ′+2, . . . ,M −1,
and hence d′ℓ ≤ d′ℓ+1 ≤ 2d′ℓ for ℓ = ℓ′ +1, ℓ′ +2, . . . ,M − 1.
Therefore, we have proved d′

M ∈ AM .
From Lemma 5(ii) and d′ℓ = d∗ℓ for ℓ = 1, 2, . . . , ℓ′, we

have B(d∗
M ; k) = B(d∗

ℓ′ ; k) = B(d′
ℓ′ ; k). It follows that the

nonnegative integers 0, 1, 2, . . . , B(d∗
M ; k) are representable

by using at most k of the integers d′1, d
′
2, . . . , d

′
M according

to the C-transform because the integers d′ℓ′+1, d
′
ℓ′+2, . . . , d

′
M

are not used in their representations (as B(d∗
M ; k) < d′ℓ′+1 <

d′ℓ′+2 < · · · < d′M ) and by definition they are representable
by using at most k of the integers d′1, d

′
2, . . . , d

′
ℓ′ (as they are

less than or equal to B(d∗
M ; k) = B(d′

ℓ′ ; k)). Furthermore, the
nonnegative integer B(d∗

M ; k)+1 = d′ℓ′+1 (resp., B(d∗
M ; k)+

2 = d′ℓ′+2, . . . , B(d∗
M ; k)+M − ℓ′ = d′M ) is representable by

using exactly one of the integers d′1, d
′
2, . . . , d

′
M , namely, d′ℓ′+1

(resp., d′ℓ′+2, . . . , d
′
M ) itself, according to the C-transform.

Therefore, we have B(d′
M ; k) ≥ B(d∗

M ; k) + M − ℓ′ >
B(d∗

M ; k).
(ii) We show by induction on i that si is well defined and

si ≥ i+ 1 for i = k, k − 1, . . . , 1.
From (i), we know that sk is well defined and sk =

M ≥ k + 1. Assume as the induction hypothesis that
sk, sk−1, . . . , si+1 are well defined and sk ≥ k + 1, sk−1 ≥
k, . . . , si+1 ≥ i + 2 for some 1 ≤ i ≤ k − 1. Since
d∗M

1 ∈ AM , we see from Lemma 5(ii) that si is well defined.
To complete the induction, we show that si ≥ i + 1 by
contradiction. So assume on the contrary that si ≤ i. As
si < i + 1 ≤ si+1 − 1, we see from the definition of si
in (15) that d∗i+1 > B(d∗

si+1−1; i), and it then follows from
Lemma 5(i) that

d∗i+1 > B(d∗
si+1−1; i) + 1 (22)

and

B(d∗
si+1−1; i) = B(d∗

si+1−2; i) = · · · = B(d∗
i+1; i)

= B(d∗
i ; i) =

i∑
ℓ=1

d∗ℓ . (23)

From d∗
M ∈ AM and (23), we obtain d∗i+1 ≤ 2d∗i ≤

d∗i + 2d∗i−1 ≤ · · · ≤ d∗i + d∗i−1 + · · · + d∗2 + 2d∗1 =∑i
ℓ=1 d

∗
ℓ + 1 = B(d∗

si+1−1; i) + 1, which contradicts to
d∗i+1 > B(d∗

si+1−1; i) + 1 in (22).
(iii) From the definition of si in (15) and Lemma 5(ii) (note

that d∗
M ∈ AM ), we have B(d∗

si+1−1; i) = B(d∗
si+1−2; i) =

· · · = B(d∗
si ; i) = d∗si+B(dsi−1∗ ; i−1) for i = 1, 2, . . . , k−1.

Together with B(d∗
sk
; k) = d∗sk + B(d∗

sk−1; k − 1) in (i), it
is easy to see that B(d∗

si ; i) = d∗s1 + d∗s2 + · · · + d∗si for
i = 1, 2, . . . , k.
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