
714 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 9, SEPTEMBER 2009

Generalized Dynamic Frame Sizing Algorithm for
Finite-Internal-Buffered Networks

Ching-Min Lien and Cheng-Shang Chang

Abstract—In this paper, we generalize the Dynamic Frame
Sizing (DFS) algorithm proposed in [2] for CICQ switches to a
network of queues subject to multicast traffic flows. Under the
assumption of Bernoulli arrival processes for the multicast flows,
we show that the DFS algorithm guarantees 100% throughput
and there are at most two packets in each internal queue.

Index Terms—Flow-based networks, frame-based scheduling,
packet switching, 100% throughput.

I. INTRODUCTION

IN [7], Tassiulas and Ephremides studied the maximal
throughput of a network of interacting queues. Since then,

there are numerous research results in the literature about
the interaction of scheduling policies, network throughput and
performance guarantees of switches or networks. In particular,
Giaccone, Leonardi and Shah [3] pointed out that most papers
in the literature implicitly assumed unlimited buffer size for
queues (which might be difficult to implement in practice).
As such, they proposed scheduling policies for flow-based
networks that can maximize the throughput while keeping the
internal queues bounded.

On the other hand, Chang, Hsu, Cheng and Lee pro-
posed the Dynamic Frame Sizing (DFS) algorithm for CICQ
switches in [2]. The DFS algorithm for CICQ switches guar-
antees 100% throughput and finite crosspoint buffer, where
the buffer size is independent of the size of switch.

In this paper, we apply the DFS algorithm to the generalized
network model as considered in [3]. Under the assumption of
Bernoulli arrival processes, we show that the DFS algorithm
also provides 100% throughput and it only needs at most
two buffers in each internal queue. Similar to the scheduling
policies proposed in [3], the DFS algorithm is based on the
state (i.e., the lengths of all the queues) of the network, and
needs no prior knowledge about arrival processes. Moreover,
the DFS algorithm is a frame-based scheme and it only needs
to gather the state information at the beginning of each frame.
This incurs much less communication overheads than that in
[3], where the state information is needed for every time slot.

II. MODELING OF NETWORKS OF QUEUES

Consider a network of queues as shown in Fig.1. Suppose
that there are J multicast traffic flows and Q queues, indexed
from 1 to J and from 1 to Q, respectively. Each flow enters
the network at some queue, traverses through a set of queues

Manuscript received January 12, 2009. The associate editor coordinating
the review of this letter and approving it for publication was F. Theoleyre.

The authors are with the Institute of Communications Engineering, Na-
tional Tsing Hua University, Hsinchu 300, Taiwan, R.O.C. (e-mail: kei-
ichi@gibbs.ee.nthu.edu.tw, cschang@ee.nthu.edu.tw).

Digital Object Identifier 10.1109/LCOMM.2009.090067

Blocking Constraint

Ingress queue

Internal queue

Fig. 1. Example of flow-based network of queues with eight queues, three
multicast traffic flows and four blocking constraints.

arranged in a fan-out tree, and then leaves the network. Define
ΦI = {q(j)}J

j=1 as the collection of all the ingress queues,
where q(j) is the ingress queue for the jth flow. The rest
of the queues are called internal queues and are collected
as the set ΦM . To clarify the relationship between queues
(especially in the same flow), the queues traversed right before
and after queue q are named its upstream and downstream
queues, respectively. For the clarity of our presentation, we
assume at this moment that all the queues are of infinite sizes
(including both ingress queues and internal queues) so that no
packets are lost. Later, we will show that each internal queue
needs to hold at most two packets.

Throughout this paper, we consider the usual discrete-time
setting by assuming that packets are of the same size and that
time is slotted so that one packet can be transmitted within a
time slot. Also, we assume that each queue is started from an
empty system at time 0. Let xq(t) be the number of packets in
queue q at the end of time t. The governing equation for the
ingress queue of the jth flow, i.e., q = q(j), can be represented
as

xq(t + 1) = xq(t) + aj(t + 1) − dq(t + 1), (1)

where aj(t) and dq(t) represents the number of external arrival
packets of the jth flow and the packets departing from queue
q at time t, respectively. On the other hand, the governing
equation for an internal queue q can be written as

xq(t + 1) = xq(t) + dq1(t + 1) − dq(t + 1), (2)

where q1 is its upstream queue. In this paper, xq(t), aj(t) and
dq(t) are nonnegative integers for all queues and flows. Let Rj

be the set of queues traversed by the jth flow. Note from the
governing equations in (1) and (2) that each queue is traversed
by exactly one flow. As such, Rj’s are all disjoint. According
to (2), all the downstream queues of queue q would receive
one packet before the end of the time slot that their upstream
queue q sends a packet. The multicast policy is named no
fanout splitting in the literature [5].

To model the interaction among queues, we assume there
are blocking constraints for departure vectors, {dq(t)}Q

q=1.

1089-7798/09$25.00 c© 2009 IEEE

Authorized licensed use limited to: National Tsing Hua University. Downloaded on October 29, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

LIEN and CHANG: GENERALIZED DYNAMIC FRAME SIZING ALGORITHM FOR FINITE-INTERNAL-BUFFERED NETWORKS 715

Let S� be the collection of the queues restricted by the �th

constraint, � = 1, 2, · · · , L. In each time slot, there is at most
one of the queues in S� that can send a packet, i.e.,∑

q∈S�

dq(t) ≤ 1. (3)

Here, we further assume that all the queues in S� are traversed
by different flows. Finally, we define F� as the collection of
the flows restricted by the �th constraint. Specifically, the flow
index j is in F� if there is a queue q traversed by flow j and
constrained by the �th blocking constraint, i.e., q ∈ Rj ∩ S�.
Notice that Rj ∩ S� contains at most one queue because all
the queues in S� are traversed by different flows.

Now we make the following assumptions on the external
arrival processes.
(A1) The J end-to-end flows are independent Bernoulli pro-
cesses when they arrive at the network. Specifically, aj(t)’s
are independent Bernoulli random variables for all j and t.
(A2) Assume that the arrival rate of the jth end-to-end flow
is λj , j = 1, 2, · · · , J , and this rate information is unknown
to the network.
(A3) The arrival rates {λj}J

j=1 satisfy the following inequality

ρ = max
1≤�≤L

∑
j∈F�

λj < 1.

In the literature, the condition in (A3) is commonly known as
the no overbooking condition for the blocking constraints.

III. DYNAMIC SIZING ALGORITHM

The dynamic frame sizing (DFS) algorithm in [2] is a
framed based scheduling. The packets arriving externally
would be scheduled at the beginning of the next frame if they
were not sent until then. The size of the frame is determined by
the minimum clearance time, which is the minimum amount
of time to clear all the packets stored in the ingress queues at
the beginning of a frame if there were no future arrivals. The
implementation of the algorithm can be described as follows.
Dynamic Frame Sizing Algorithm:
(S1) Determine the size of a new frame: Denote by τn the

last time slot of the (n − 1)th frame (and by τn + 1
the beginning time slot of the nth frame). Suppose that
there are xq(j) (τn) packets stored in ingress queue q(j)

at the beginning of the nth frame. For every flow j, let
y
(n)
q = xq(j) (τn) for every q ∈ Rj . Then the size of the

nth frame is set to be

Tn = max
1≤�≤L

∑
q∈S�

y(n)
q = max

1≤�≤L

∑
j∈F�

xq(j) (τn). (4)

Note that Tn is the minimum time T such that∑
q∈S�

y
(n)
q ≤ T for all �. If we view the backlogs at the

ingress queues as fluids, then Tn is the minimum time
to clear all the backlogs under the blocking constraints
in (3). If Tn = 0 in (4), then Tn is set to be 1 and we
skip the rest of the steps.

(S2) Schedule packets in the per-flow queues with the rates
proportional to their sizes at the beginning of a frame.
For each queue q, we generate y

(n)
q tokens in the nth

frame (for sending packets to its downstream queues

or to leave the network). For each q ∈ Rj , the kth

token of jth flow in the nth frame is assigned with the
eligible time τn + 1 + �(k − 1)Tn/y

(n)
q � and the dead-

line τn + �kTn/y
(n)
q �. To schedule under the blocking

constraints in (3), there is a token arbitrator for each
blocking constraint. In each time slot of the nth frame,
i.e., the time interval [τn + 1, τn + Tn], the �th token
arbitrator selects one eligible token with the earliest
deadline (the EDF policy in the literature) among all the
remaining tokens for all the queues in S�, and removes
that token. A queue with a selected token is then allowed
to send a packet in that time slot.

In order for showing that the DFS algorithm achieves 100%
throughput under (A1-3), we need the following lemma to
make sure that there are exactly y

(n)
q tokens selected for queue

q in the nth frame.
Lemma 3.1: With the DFS algorithm and the EDF policy,

the network has the following properties.

(a) Each token is served not later than its deadline. As such,
there are exactly y

(n)
q tokens selected for queue q in the

nth frame.
(b) There are at most two packets in each internal queue.

Proof: Consider the nth frame with length Tn. We mark
the beginning of the frame as time 1 for simplicity. According
to (S2), it can be verified that the cumulative number of tokens
for the jth flow by time t is �y(n)

q t/Tn� and the number of
tokens for the jth flow that have deadlines not later than t is
�y(n)

q t/Tn�. According to Theorem 2.3.17 in [1], it is sufficient
to show that for every subset S of S�,

∑
q∈S

⌊
y
(n)
q t

Tn

⌋
≤ min

0≤s≤t

⎛
⎝∑

q∈S

⌈
y
(n)
q s

Tn

⌉
+ (t − s)

⎞
⎠ . (5)

Notice that

∑
q∈S

⌊
y
(n)
q t

Tn

⌋
−

∑
q∈S

⌈
y
(n)
q s

Tn

⌉
≤

∑
q∈S

y
(n)
q (t − s)

Tn

≤ t − s

for all 0 ≤ s ≤ t, where we use the fact that∑
q∈S

y(n)
q ≤

∑
q∈S�

y(n)
q ≤ Tn

for each token arbitrator � by the definition of Tn in (4). Thus,
we have that for all 0 ≤ s ≤ t

∑
q∈S

⌊
y
(n)
q t

Tn

⌋
≤

∑
q∈S

⌈
y
(n)
q s

Tn

⌉
+ (t − s)

and this leads to (5).
The proof of (b) follows exactly the same argument used

for (P2) in [2]. Such a result was originally proved in [4].

IV. LOGARITHM FRAME SIZE

Our main result is that the expectation of frame size E[Tn]
is bounded for each n under the DFS algorithm, as shown in
Theorem 4.1.

Authorized licensed use limited to: National Tsing Hua University. Downloaded on October 29, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

716 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 9, SEPTEMBER 2009

Theorem 4.1: Assume that the input traffic satisfies (A1-3).
Then under the DFS algorithms (S1) and (S2), we have for
n > 1

log E[eθ∗Tn] ≤ max
(

θ∗,
2 log L

1 − ρ

)
(6)

where θ∗ is the unique positive solution of

eθ − 1
θ

=
1 + ρ

2ρ
. (7)

As a result, the expectation of the frame size E[Tn] is bounded

by max
(
1, 2 log L

θ∗(1−ρ)

)
, and the DFS algorithm achieves 100%

throughput.
Proof: From (S1),(S2) and Lemma 3.1(a), all the packets

stored in ingress queue q(j) at the beginning of the nth frame
must arrive during the n−1th frame. Thus, the queue length of
ingress queue q(j) at the beginning of a frame is bounded by
the number of packets that arrive during the previous frame,
i.e.,

xq(j) (τn+1) ≤
τn+1∑

t=τn+1

aj(t). (8)

With (4) and (8), we have for θ > 0 that

eθTn+1 ≤ max
1≤�≤L

exp

⎛
⎝θ

τn+1∑
t=τn+1

∑
j∈F�

aj(t)

⎞
⎠

≤
L∑

�=1

exp

⎛
⎝θ

τn+1∑
t=τn+1

∑
j∈F�

aj(t)

⎞
⎠ ,

where we use the inequality that max(x1, x2) ≤ x1 + x2 for
x1, x2 ≥ 0. Since we assume that the arrival processes are
independent Bernoulli processes in (A1) and {aj(t)}∞t=1 are
i.i.d Bernoulli random variables with parameter λj in (A2), it
then follows that

E[eθTn+1|Tn] ≤
L∑

�=1

⎧⎨
⎩E

⎡
⎣exp

⎛
⎝θ

∑
j∈F�

aj(1)

⎞
⎠

⎤
⎦
⎫⎬
⎭

Tn

.

Note that

log E

⎡
⎣exp

⎛
⎝θ

∑
j∈F�

aj(1)

⎞
⎠

⎤
⎦ =

∑
j∈F�

log E [exp (θaj(1))]

=
∑
j∈F�

log
(
λje

θ + 1 − λj

) ≤
∑
j∈F�

λj

(
eθ − 1

)
, (9)

where we use log(1+x) ≤ x for nonnegative x. According to
(A3), we have that ρ = max1≤�≤L

∑
j∈F�

λj < 1, and thus

E[eθTn+1|Tn] ≤ L exp(ρTn(eθ − 1)). (10)

Taking expectation on both sides of (10) yields

E[eθTn+1] ≤ LE
[
exp

(
ρTn(eθ − 1)

)]
. (11)

As θ∗ is the unique positive solution of (7), we can rewrite
(11) as

E[eθ∗Tn+1] ≤ LE[eθ∗Tn(1+ρ)/2]. (12)

Since φ(θ) = log E{eθTn} is convex in θ (see e.g., [1,
Proposition 7.1.8]) and ρ < 1, we have that

log E[eθ∗Tn(1+ρ)/2] ≤ 1 + ρ

2
log E[eθ∗Tn]. (13)

Using (13) and (12) yields

log E[eθ∗Tn+1] ≤ log L +
1 + ρ

2
log E[eθ∗Tn]. (14)

Since T1 = 1, it is easy to verify (6) from induction by using
(14). Now we use (6) to show the bound of the frame size
in Theorem 4.1. Since eθx is convex in x, it follows from
Jensen’s Inequality that

E[Tn] ≤ 1
θ∗

log E[eθ∗Tn] ≤ max
(

1,
2 logL

θ∗(1 − ρ)

)
. (15)

Using the standard theory for regenerative processes [6],
it can be shown that the DFS algorithm achieves 100%
throughput according to (15).

V. CONCLUSION

We applied the dynamic frame sizing algorithm proposed
in [2] to a general network model as considered in [3]. As
the policies P1 and P2 in [3], the DFS algorithm is also
sufficient to provide the following properties: (i) It guarantees
100% throughput. (ii) Each internal queue is of finite size (two
packets at most). On the other hand, there is no need for the
DFS algorithm to solve the optimal problem globally in every
time slot. Instead, it gathers information from all the ingress
queues, determines the frame size and broadcasts to all the
queues in the network once a frame. At each time slot, all the
token arbitrators schedule locally as shown in section III, and
the computing complexity is thus reduced. The problem how
to apply the DFS algorithm to networks with cyclic flows is
under study.

REFERENCES

[1] C.-S. Chang, Performance Guarantees in Communication Networks.
London: Springer-Verlag, 2000.

[2] C.-S. Chang, Y. H. Hsu, J. Chang, and D. S. Lee, “Dynamic frame
sizing algorithms for CICQ switches with logarithm delay,” in Proc.
IEEE INFOCOM, pp. 747-755, Apr. 2009.

[3] P. Giaccone, E. Leonardi, and D. Shah, “Throughput region of finite-
buffered networks,” IEEE Trans. Parallel and Distributed Systems, vol.
18, no. 2, pp. 251-263, Feb. 2007.

[4] S.-M. He, S.-T. Sun, H.-T. Guan, Q. Zheng, Y.-J. Zhao, and W.Gao,
“On guaranteed smooth switching for buffered crossbar switches,” IEEE
Trans. Networking, vol. 16, no. 3, pp. 718-731, June 2008.

[5] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
“Multicast traffic in input-queued switches: optimal scheduling and
maximum throughput,” IEEE Trans. Networking, vol. 11, no. 3, June
2003.

[6] S. M. Ross, Stochastic Processes. John Wiley & Sons, Inc., 1996.
[7] L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automatic Control, vol. 37, no.
12, pp. 1936-1948, Dec. 1992.

Authorized licensed use limited to: National Tsing Hua University. Downloaded on October 29, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

