
Load-Balanced Birkhoff-von Neumann Switches
and Fat-Tree Networks

Hung-Shih Chueh, Ching-Min Lien, Cheng-Shang Chang, Jay Cheng, and Duan-Shin Lee
Institute of Communications Engineering

National Tsing Hua University
Hsinchu 300, Taiwan, R.O.C.

E-mail: d929607@oz.nthu.edu.tw; cmlien@ee.nthu.edu.tw;
cschang@ee.nthu.edu.tw; jcheng@ee.nthu.edu.tw; lds@cs.nthu.edu.tw;

Abstract—Fat-tree networks have been widely used in the field
of Network-on-Chip. One of the key issues in a fat-tree network
is that the degree of a node has to be increased rapidly from
the bottom of the tree to the root. As such, the complexity
of implementing the switches near the root could be extremely
high, and this poses a serious scalability issue. To cope with
the scalability issue in fat-tree networks, many previous works
require changing the tree topology and adding buffers in nodes.
Unlike the existing arts, we adopt a different approach that
can still maintain the original tree topology without adding any
buffers in internal nodes. Our key idea is to explore various nice
features of the load-balanced Birkhoff-von Neumann switches.
Such switches have been shown to achieve 100% throughput for
all admissible traffic and have comparable delay performance to
the ideal output-buffered switch when traffic is heavy and bursty.
We show that the implementation complexity can be greatly
reduced if a fat-tree network is only required to realize a set of N
permutations needed for the N ×N load-balanced Birkhoff-von
Neumann switches. For this, we first derive a lower bound on the
required degree for each node in a fat-tree network. By using
the uniform mapping property of the bit-reverse permutation,
we show that there exists a set of N permutations that achieve
the lower bound.

Index Terms—Fat-tree networks, Load-balanced Birkhoff-von
Neumann switches.

I. INTRODUCTION

Fat-tree networks [9] (and many variants of them) have been
widely used in the field of Network-on-Chip (NoC) [12], [4],
[3], [8], [11]. As suggested by its name, a fat-tree network
is constructed from a tree, where each node in the tree is a
switch and each leaf is an input/ouput port. To accommodate
the traffic multiplexed into the tree, the degree (or capacity
in [9] or radix in [8]) of a node (in terms of the number
of links connected to the node) has to be increased rapidly
from the bottom of the tree to the root. In particular, if a
fat-tree network with N input/output ports is required to be
nonblocking, i.e., all the N ! permutations can be realized by
this fat-free network, then the degree of a node has to be
increased exponentially from the bottom of the tree to the
root. This poses a serious scalability issue in designing and
connecting the switches near the root when the number of
input/output ports N is very large.

On the other hand, the load-balanced Birkhoff-von Neu-
mann switches (see e.g., [1], [6], [7], [2], [5]) have received a

N

1

N

1

Load-balancing Switching

Fig. 1. A generic load-balanced Birkhoff-von Neumann switch in [1].

lot of attention recently as they are much more scalable than
other existing switch architectures in the literature. Regarding
the throughput and the delay performance of the load-balanced
Birkhoff-von Neumann switches, it has been shown that they
achieve 100% throughput for all admissible traffic and have
comparable delay performance to the ideal output-buffered
switch when the traffic is heavy and bursty [1]. The operation
of a generic load-balanced Birkhoff-von Neumann switch
consists of two stages (see Figure 1): the first stage performs
load balancing that converts any admissible (and nonuniform)
traffic into the uniform traffic, and the second stage performs
switching for the uniform traffic. One of the most salient
features of load-balanced Birkhoff-von Neumann switches is
that the connection patterns for the switch fabrics in both
stages in Figure 1 are deterministic and periodic. As such,
there is no need to find matchings as required in most input-
buffered switches, and there are no computational overheads in
load-balanced Birkhoff-von Neumann switches. For an load-
balanced Birkhoff-von Neumann switch with N input/output
ports, the switch fabrics in both stages only need to realize
a set of N N ×N permutation matrices P1, P2, . . . , PN that
satisfy

P1 + P2 + · · ·+ PN = e, (1)

where e is the N × N matrix with all its elements being 1.
As these two stages use the same set of permutation matrices,
one can further fold these two stages by using a single N×N
switch fabric that realizes the N permutation matrices in (1).

There are several existing approaches for coping with the
scalability issue of fat-tree networks. Most of them require

2

changing the tree topology and adding buffers in nodes, e.g.,
generalized fat trees [12], Dragonfly [8], and Unidirectional
Load-Balanced Multistage Interconnection Networks [3]. In
this paper, we adopt a different approach that can still maintain
the original tree topology without adding any buffers in
internal nodes. The advantage of keeping the tree topology
includes simple routing (as there is a unique self avoiding
path from a node to another node in a tree) and easy layout
in a chip (as it is a planar graph). Also, buffers in internal
nodes are costly to implement in a chip as they usually require
a fabrication process different from that for combinational
logic circuits. Our key idea is to explore various nice fea-
tures of the load-balanced Birkhoff-von Neumann switches.
Specifically, we can operate a fat-tree network as a folded
load-balanced Birkhoff-von Neumann switch that consists of
the two phases: the load balancing phase (that converts the
incoming traffic into the uniform traffic) and the switching
phase (that performs switching for the uniform traffic). By
so doing, we can then explore the possibility of reducing
the implementation complexity of the fat-tree network as it
is now only required to realize a set of N N ×N permutation
matrices P1, P2, . . . , PN that satisfy (1) (instead of all the N !
permutations). As the load-balanced Birkhoff-von Neumann
switches have comparable delay performance to the ideal
output-buffered switch for heavy and bursty traffic, one might
not suffer too much performance degradation from imple-
menting N such permutations in a fat-tree network. On the
other hand, the gain in reducing implementation complexity
(in terms of the degrees of the nodes) is substantial as will be
shown later in the paper.

There are many choices of permutation matrices
P1, P2, . . . , PN that have been proposed in the literature for
implementing N × N load-balanced Birkhoff-von Neumann
switches, e.g., rotators and symmetric TDM switches in
[10]. Not every choice can lead to reduction of the degrees
of nodes. In Sec. II, we first show a lower bound on the
degree for each switch in a fat-tree network that is capable
of implementing any set of N permutations satisfying the
condition in (1). The lower bound is derived based on
averaging the traffic flow needed to go through a link.
Unfortunately, both rotators and symmetric TDM switches
require the degrees that are substantially higher than those
from the lower bound.

In this paper, we propose a new set of permutation matrices
P1, P2, . . . , PN that not only satisfy the condition in (1) but
also achieve the lower bound. The idea is based on the bit-
reverse permutation previously proposed by Wu and Feng
[13]. One key property of the bit-reverse permutation is the
uniform mapping property that maps a set of inputs in a subtree
uniformly to the outputs in other subtrees. We show that any
permutation that satisfies the uniform mapping property can
be realized by a fat-tree network with the degrees specified by
the lower bound. The bit-reverse permutation and its variants
obtained by circular shifts all have the uniform mapping
property and thus can be realized by a fat-tree network with
the degrees specified by the lower bound.

This paper is organized as follows. In Sec. II, we introduce
the fat-tree network and prove a lower bound on the degree
for the fat-tree network to realize any set of permutations
needed for the load-balanced Birkhoff-von Neumann switches.
In Sec. III, we introduce the bit-reverse permutation and
prove that any permutation that satisfies the uniform mapping
property can be realized by a fat-tree network with the degrees
specified by the lower bound. The paper is then concluded in
Sec. IV.

II. FAT-TREE NETWORKS

A fat-tree network, first proposed in [9], is a switching
network constructed from a complete binary tree. To explain
how a fat-tree network works, we first consider a complete
binary tree with 2n leaves (see Figure 2 for a complete binary
tree with 16 leaves). In such a binary tree, there are n+1 levels,
indexed from 0, 1, . . . , n. The root is the only node at level 0
and a node is at level j if it is a child of a node at level j−1.
Index the root as node (0, 0), and index recursively the two
children of node (j, k) as nodes (j+1, 2k) and (j+1, 2k+1)
for 0 ≤ k ≤ 2j − 1 and 0 ≤ j ≤ n − 1. Clearly, there are
2j nodes at level j and we will also call node (j, k) as the
kth node at level j in this paper. Note that the 2n leaves are
simply nodes (n, 0), . . . , (n, 2n − 1) and we will simply call
node (n, x) as leaf x (by omitting the index of level n).

Fig. 2. A complete binary tree with 16 leaves.

For 0 ≤ j ≤ n and 0 ≤ k ≤ 2j − 1, we now define the
kth subtree at the jth level as the subtree constructed by node
(j, k) and all its descendants. Such a subtree is called subtree
T (j, k). Let S(j, k) be the set of all the leaves in subtree
T (j, k), namely,

S(j, k) = {x|k · 2n−j ≤ x ≤ (k + 1)2n−j − 1} (2)

for each 0 ≤ k ≤ 2j − 1, 0 ≤ j ≤ n. Thus, the total number
of leaves in subtree T (j, k) is

|S(j, k)| = 2n−j . (3)

For example, for the complete binary tree with 16 leaves in
Figure 2, we have S(3, 2) = {4, 5}, S(3, 3) = {6, 7} and
S(2, 1) = S(3, 2) ∪ S(3, 3) = {4, 5, 6, 7}.

On the other hand, for each integer 0 ≤ x ≤ 2n − 1,
the n-tuple (In(x), In−1(x), . . . , I1(x)) is called the binary

3

representation of x if

x =
n∑

m=1

Im(x)2m−1, (4)

where Im(x) is the mth least significant bit of x. With the
binary representation, for fixed j and k, the set S(j, k) can be
alternatively represented by

S(j, k) = {x|0 ≤ x ≤ 2n − 1,

and In−j+m(x) = Im(k) for 1 ≤ m ≤ j}. (5)

That is, subtree T (j, k) contains all the leaves of which the
first j most significant bits are the same as the last j least
significant bits of k for each 0 ≤ k ≤ 2j − 1 (note that the
first n− j most significant bits of k are simply 0).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Level

2

3

4

1

0

Fig. 3. A (nonblocking) fat-tree network with 16 input/output ports.

Now we show how one constructs a 2n×2n fat-tree network
(with 2n input/output ports) by using the binary tree with 2n

leaves. For this, we view each leaf as both an input port and
an output port of a 2n × 2n switching network and every
other node as a (nonblocking) switch (see Figure 3 for a fat-
tree network with 16 input/ouptut ports). The upward (resp.
downward) degree of node (j, k), denoted by Cu(j, k) (resp.
Cd(j, k)), is the number of parallel upward (resp. downward)
links that connect from node (j, k) to its parent (resp. its two
children). In this paper, the downward degree of a node is
evenly split between its two children. For such a 2n × 2n fat-
tree network to be nonblocking, it has to realize every 2n×2n

permutation, i.e., for every 2n×2n permutation there is a non-
conflicting path for every pair of input/output ports. Clearly,
this requires that the upward degree of node (j, k) must not
be smaller than the total number of leaves in its subtree. Thus,
in order for a 2n × 2n fat-tree network to be nonblocking, we
must have

Cu(j, k) ≥ |S(j, k)| = 2n−j (6)

for 0 ≤ k ≤ 2j − 1 and 1 ≤ j ≤ n, and

Cd(j, k) ≥ |S(j, k)| = 2n−j (7)

for 0 ≤ k ≤ 2j − 1 and 0 ≤ j ≤ n − 1. On the other hand,
as long as both the upward degree and the downward degree
satisfy the conditions in (6) and (7), there is always a non-
conflicting path from an input to the root and a non-conflicting
path from the root to an output. Thus, the conditions in (6)

and (7) are the necessary and sufficient conditions for a fat-tree
network to be nonblocking. As such, in this paper we define a
2n×2n nonblocking fat-tree network to be the fat-tree network
with both the upward degree and the downward degree equal
to 2n−j for node (j, k). Note that the degree of a switch in
a nonblocking fat-tree network grows exponentially from the
leaves to the root. Moreover, the construction complexity of
the switches near the root is also very high. For example, the
two nodes at level 1 are 2n×2n switches that need to split the
2n−1 inputs from the root to their two children. The number
of connection patterns (permutations) of doing that is

(2n−1)!

(2n−2)!(2n−2)!
≈ 22

n−1

.

This poses a serious scalability problem in designing and
connecting the switches near the root.

For the scalability issue in fat-tree networks, our idea is to
explore various nice features of the load-balanced Birkhoff-
von Neumann switches (see e.g., [1], [6], [7], [2], [5]). Our
approach is different from several existing approaches that
require either changing the tree topology or adding buffers
in nodes, e.g., generalized fat trees [12], Dragonfly [8], and
Unidirectional Load-Balanced Multistage Interconnection Net-
works [3]. Instead, we still maintain the original tree topology
(or an equivalent topology to the original tree topology in
operation) without adding any buffers in internal nodes. The
advantage of keeping the tree topology includes simple routing
(as there is a unique self avoiding path from a node to another
node in a tree) and easy layout in a chip (as it is a planar
graph). Also, buffers in internal nodes are costly to implement
in a chip as they usually require a fabrication process different
from that for combinational logic circuits. As pointed out in
Sec. I, one of the nice features of an N × N load-balanced
Birkhoff-von Neumann switch is that we do not need to realize
all the N ! permutations (in order to achieve 100% throughput).
We only need to realize any N permutations that satisfy the
condition in (1). As such, it seems possible that the degrees of
the nodes in a 2n × 2n fat-tree network for implementing the
needed 2n permutations of a 2n × 2n load-balanced Birkhoff-
von Neumann switch can be greatly reduced. In the following,
we first show lower bounds for the requirements of both the
upward and downward degrees.

Lemma 1 Suppose that P1, . . . , P2n are 2n × 2n permuta-
tion matrices such that the sum of these 2n matrices is a
2n × 2n matrix with all its elements being 1. If a 2n × 2n

fat-tree network is capable of realizing these 2n permuta-
tion matrices, then the upward (resp. downward) degree of
node (j, k) is lower bounded by ⌈2n−j(1 − 1/2j)⌉ (resp.
2⌈2n−j−1(1 − 1/2j+1)⌉), 0 ≤ k ≤ 2j − 1 and 1 ≤ j ≤ n
(resp. 0 ≤ j ≤ n− 1).

Proof. We only prove the lower bound for the upward degree
of node (j, k). The proof for the lower bound of the downward
degree of node (j, k) is similar.

Our idea for the proof is by averaging. We consider the
usual discrete-time setting and partition time into time slots so

4

that a fixed size packet can be transmitted over a link within
a time slot. In such a discrete-time setting, the upward degree
of node (j, k) is simply the total number of packets that can
be transmitted to its parent in a time slot.

Consider a frame of 2n time slots, indexed from 1 to 2n.
In the ith time slot, we realize permutation matrix Pi and
transmit a packet from every input port. Since the sum of these
2n matrices is a 2n × 2n matrix with all its elements being
1, there is exactly one packet transmitted from every input to
every output in this frame of 2n time slots. In particular, for
every leaf in the subtree T (j, k), it sends a packet to every
leaf that is not in the subtree T (j, k) in that frame, and every
one of such packets has to go through an upward link of node
(j, k). As there are 2n−j leaves in the subtree T (j, k), the total
number of packets that go through the upward links of node
(j, k) in that frame of 2n time slots is 2n−j(2n − 2n−j). On
average, there are 2n−j(2n−2n−j)/2n packets going through
the upward links of node (j, k) per time slot. As the upward
degree of node (j, k) must not be smaller than the average
number of packets going through its upward links, we then
have

Cu(j, k) ≥
⌈
22n−j − 22n−2j

2n

⌉
= ⌈2n−j − 2n−2j⌉. (8)

Note that for n/2 < j ≤ n, we have 2n−2j < 1 and

⌈2n−j(1− 1/2j)⌉ = 2n−j .

Thus, for the lower half of the tree (when n/2 < j ≤ n),
both the upward degree and the downward degree of node
(j, k) are the same as those of nonblocking fat-tree networks
in (6) and (7). In view of this, the reduction of the degrees of
the nodes in Lemma 1 is only possible for the upper half of
the tree (when j ≤ ⌊n/2⌋). But, as we mentioned before, the
scalability problem is mainly due to the design of the switches
in the upper half of the tree. Thus, reducing the degrees for
switches in the upper half of the tree is still of high importance.

There are many choices of permutation matrices
P1, P2, . . . , P2n that have been proposed for the load-
balanced Birkhoff-von Neumann switches in the literature,
e.g., rotators and symmetric TDM switches in [10]. We note
that both rotators and symmetric TDM switches do not lead
to reduction of the degrees for switches in the upper half of
the tree. The question is then whether it is possible to find a
set of 2n 2n × 2n permutations that satisfy the condition in
Lemma 1 and achieve the lower bounds in Lemma 1. This
problem will be answered in the next section.

III. BIT-REVERSE PERMUTATION

In the previous section, we derive lower bounds for both
the upward degree and the downward degree of a fat-tree
network to realize the needed permutations for a load-balanced
Birkhoff-von Neumann switch. In this section, we will show
that these lower bounds are indeed achievable by using the
bit-reverse permutation introduced by Wu and Feng in [13].

First, we introduce some notations that will be used for
describing the bit-reverse permutation. Let ZN be the set of
integers {0, 1, . . . , N−1}. For a permutation σ on ZN , we use
Pσ to denote the N ×N permutation matrix that corresponds
to the permutation σ. Also, for any set S ⊂ ZN , σ(S) is
defined as the range of S, i.e.,

σ(S) = {y ∈ ZN |y = σ(x) for some x ∈ S}.

Let σc be the circular shift permutation on ZN , namely,
σc(x) = (x + 1) mod N for all 0 ≤ x ≤ N − 1. Also, let
σi
c = σc for i = 1 and σi

c = σi−1
c ◦ σc for i > 1. Clearly,

σi
c(x) = (x + i) mod N for all 0 ≤ x ≤ N − 1 and it is

the permutation that performs circular shift i times. Note that
PσN

c
is simply the N ×N identity matrix. One can easily see

that
Pσ1

c
+ Pσ2

c
+ . . .+ PσN

c
= e,

and the condition in (1) is satisfied. Moreover, for any permu-
tation σ on ZN , if we define σi = σi

c ◦σ for 1 ≤ i ≤ N , then
we have

Pσi = (Pσi
c
)Pσ

and

Pσ1 + Pσ2 + . . .+ PσN

= (Pσ1
c
+ Pσ2

c
+ . . .+ PσN

c
)Pσ

= ePσ = e.

Thus, the condition in (1) is also satisfied. This implies that we
can use an arbitrary permutation σ on ZN and all its circular
shifts to construct the needed permutations for an N × N
load-balanced Birkhoff-von Neumann switch. However, to use
them in a fat-tree network, we need to choose the permutation
σ carefully and in fact, as we will show later, the bit-reverse
permutation proposed by Wu and Feng in [13] is right for the
job.

Definition 2 Let N = 2n and (In(x), In−1(x), . . . , I1(x)) be
the binary representation of x ∈ ZN , where Im(x) is the mth

least significant bit of x. The bit-reverse permutation π on ZN

is the permutation with

Im(π(x)) = In+1−m(x) (9)

for all 1 ≤ m ≤ n. Moreover, we define the permutation
πi = σi

c ◦ π for 1 ≤ i ≤ N , i.e.,

πi(x) = σi
c (π(x)) = (π(x) + i) modN (10)

for all 0 ≤ x ≤ N − 1.

Note that

πN (x) = (π(x) +N) modN = π(x)

and thus πN is simply the bit-reverse permutation π.
One important feature of the bit-reverse permutation is the

uniform mapping property defined below.

5

Definition 3 (Uniform Mapping Property) Let N = 2n.
Recall from (5) that the set S(j, k) contains all the 2n−j

elements of which the first j most significant bits are the same
as the last j least significant bits of k for each 0 ≤ k ≤ 2j−1.
Then, for fixed 0 ≤ j ≤ n, a permutation σ on ZN is said to
satisfy the uniform mapping property if

|σ(S(j, k)) ∩ S(n− j, ℓ)| = 1 (11)

for all 0 ≤ k ≤ 2j − 1 and 0 ≤ ℓ ≤ 2n−j − 1.

When one realizes a permutation σ in a fat-tree network,
σ(S(j, k)) is the set of outputs with their inputs in the subtree
T (j, k). As there are 2n−j leaves in the subtree T (j, k) and
2n−j subtrees at the (n − j)th level for 0 ≤ j ≤ n, the
uniform mapping property implies that all the 2n−j leaves in
the subtree T (j, k) are mapped uniformly to the 2n−j subtrees
at the (n− j)th level.

According to (5) and (9), we have that

π(S(j, k)) = {y|0 ≤ y ≤ 2n − 1,

and Im(y) = Ij+1−m(k) , for 1 ≤ m ≤ j}. (12)

On the other hand, we have from (5) that

S(n− j, ℓ) = {y|0 ≤ y ≤ 2n − 1,

and Ij+m(y) = Im(ℓ) , for 1 ≤ m ≤ n− j}. (13)

Thus, we see from (12) and (13) that there is only element in
π(S(j, k)) ∩ S(n− j, ℓ) and it is uniquely determined by the
binary representation

(In−j(ℓ), . . . , I1(ℓ), I1(k), . . . , Ij(k)).

This shows that the bit-reverse permutation π satisfies the uni-
form mapping property. Moreover, we show in the following
lemma that the permutation πi defined in Definition 2 also
satisfies the uniform mapping property.

Lemma 4 Let N = 2n. The permutation πi satisfies the
uniform mapping property for 1 ≤ i ≤ N − 1.

Proof. In view of (12), we note that for each y ∈ π(S(j, k)),
y can be represented as

y = q · 2j +
j∑

m=1

Ij+1−m(k)2m−1 = q · 2j + k′ (14)

for some 0 ≤ q ≤ 2n−j − 1, where

k′ =

j∑
m=1

Ij+1−m(k)2m−1

is a function of k. In other words,

π(S(j, k)) = {y|y = q · 2j + k′,

for some 0 ≤ q ≤ 2n−j − 1}. (15)

As πi(x) = (π(x) + i) mod 2n, it then follows that

πi(S(j, k)) = {y|y = (q · 2j + k′ + i) mod 2n,

for some 0 ≤ q ≤ 2n−j − 1}. (16)

Now let α = ((k′ + i) mod 2j) and q′ = (k′ + i− α)/2j . In
other words, q′ is the quotient and α is the reminder of k′ + i
divided by 2j . Thus, k′ + i = q′ · 2j + α. Then

πi(S(j, k)) = {y|y = ((q + q′) · 2j + α) mod 2n,

for some 0 ≤ q ≤ 2n−j − 1}
= {y|y = q · 2j + α,

for some 0 ≤ q ≤ 2n−j − 1}. (17)

This then implies

πi(S(j, k)) = {y|0 ≤ y ≤ 2n − 1,

and Im(y) = Im(α) , ∀ 1 ≤ m ≤ j}, (18)

where α = (k′ + i) mod 2j . Thus, we see from (13) and (18)
that there is only element in πi(S(j, k)) ∩ S(n − j, ℓ) and it
is uniquely determined by the binary representation

(In−j(ℓ), . . . , I1(ℓ), Ij(α), . . . , I1(α)).

In the following lemma, we show that any permutation that
satisfies the uniform mapping property can be realized by a
fat-tree network with the degrees specified by the lower bounds
in Lemma 1.

Lemma 5 Let N = 2n. Consider a 2n × 2n fat-tree net-
work. Suppose that the upward degree of node (j, k) is
⌈2n−j(1− 1/2j)⌉ and the downward degree of node (j, k) is
2⌈2n−j−1(1−1/2j+1)⌉. Then any permutation σ that satisfies
the uniform mapping property can be realized in such a fat-
tree network.

Proof. For this, we need to show there is a non-conflicting
path from every pair of input/output ports when realizing a
permutation σ that satisfies the uniform mapping property. We
consider the shortest path routing for connecting a path from
an input x to its output σ(x). The shortest path between x
and σ(x) is to first go up the tree from x to the first common
ancestor of x and σ(x) and then go down the tree to σ(x).
We only show the proof for the upward links. The proof for
the downward links is similar.
Case 1. There is no conflict in the upward links of node (j, k)
in the lower half of the tree when n/2 < j ≤ n.

The argument is the same as that for nonblocking fat-tree
networks. Note that the total number of paths that go through
the upward links of node (j, k) is bounded above by |S(j, k)|,
i.e., the total number of leaves in the subtree T (j, k). As the
upward degree of node (j, k) is ⌈2n−j(1 − 1/2j)⌉, we then
have

|S(j, k)| = 2n−j =

⌈
2n−j

(
1− 1

2j

)⌉
, (19)

where we use the fact that 2n−2j < 1 for n/2 < j ≤ n. Thus,
there is no conflict in the upward links for node (j, k) when
n/2 < j ≤ n.
Case 2. There is no conflict in the upward links of node (j, k)
in the upper half of the tree when j ≤ ⌊n/2⌋.

6

Under the shortest path routing, a path needs to go through
one of the upward links of node (j, k) if its input x is a leaf
of the subtree T (j, k) and its output σ(x) is a leaf outside the
subtree T (j, k). The leaves that are outside the subtree T (j, k)
can be written as ∪k1 ̸=kS(j, k1). Thus, the total number of
paths that go through the upward links of node (j, k) is

|σ(S(j, k)) ∩ (∪k1 ̸=kS(j, k1))|
= | ∪k1 ̸=k (σ(S(j, k)) ∩ S(j, k1))|
=

∑
k1 ̸=k

|σ(S(j, k)) ∩ S(j, k1)|. (20)

Since j ≤ ⌊n/2⌋, we can further decompose the leaves
in subtree T (j, k1) into the union of the leaves in subtrees
T (n− j, ℓ), ℓ = 2n−2jk1, 2

n−2jk1+1, . . . , 2n−2j(k1+1)−1.
Specifically, we have

S(j, k1) =

2n−2j(k1+1)−1∪
ℓ=2n−2jk1

S(n− j, ℓ).

Thus,

|σ(S(j, k)) ∩ S(j, k1)|

=

2n−2j(k1+1)−1∑
ℓ=2n−2jk1

|σ(S(j, k)) ∩ S(n− j, ℓ)|

= 2n−2j , (21)

where we use the uniform mapping property of σ in the last
identity.

Using this in (20) yields

|σ(S(j, k)) ∩ (∪k1 ̸=kS(j, k1))|
=

∑
k1 ̸=k

|σ(S(j, k)) ∩ S(j, k1)| = (2j − 1)2n−2j .(22)

Since 2n−j − 2n−2j is an integer for each 1 ≤ j ≤ ⌊n/2⌋,
we also have

(2j − 1)2n−2j = 2n−j

(
1− 1

2j

)
=

⌈
2n−j

(
1− 1

2j

)⌉
, (23)

where the last quantity is exactly the upward degree of node
(j, k). In view of (22) and (23), we then conclude that there is
no conflict in the upward links of node (j, k) when j ≤ ⌊n/2⌋.

From Lemma 4 and Lemma 5, we have the following
corollary.

Corollary 6 Let N = 2n. Consider a 2n × 2n fat-tree
network. Suppose that the upward degree of node (j, k) is
⌈2n−j(1− 1/2j)⌉ and the downward degree of node (j, k) is
2⌈2n−j−1(1−1/2j+1)⌉. Then the 2n permutations π1, . . . , π2n

can be realized in such a fat-tree network.

IV. CONCLUSION

To cope with the scalability issue in designing and con-
necting the switches near the roots of fat-tree networks, we
explore various nice features of the load-balanced Birkhoff-
von Neumann switches. Specifically, we solved the problem
of implementing the needed permutations of the load-balanced
Birkhoff-von Neumann switches in fat-tree networks. For this,
we derived a lower bound on the degree for each switch in
a fat-tree network that is capable of realizing the needed per-
mutations for load-balanced Birkhoff-von Neumann switches.
By using the uniform mapping property of the bit-reverse
permutation, we found a new set of permutations that achieve
the lower bound.

REFERENCES

[1] C. -S. Chang, D. -S. Lee and Y. -S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: one-stage buffering, ” Computer Communi-
caitons, vol. 25, pp. 611-622, 2002.

[2] H. J. Chao, J. Song, N. S. Artan, G. Hu, and S. Jiang, “Byte-focal: a
practical load-balanced switch,” IEEE High Performance Switching and
Routing, 2005.

[3] C. Gómez, F. Gilabert, M.E. Gómez, P. López, and J. Duato, “Be-
yond Fat-tree: unidirectional load-balanced multistage interconnection
network,” IEEE Computer Architecture Letters, vol. 7, no. 2, pp. 49-52,
2008.

[4] H. Hossain, Md. M. Akbar and Md. M. Islam, “Extended-butterfly fat
tree interconnection (EFTI) architecture for network on chip,” IEEE
Pacific Rim Conference on Communications, Computers and signal
Processing, pp. 613-616, Aug. 2005.

[5] J. -J. Jaramillo, F. Milan and R. Srikant, “Padded Frames: A Novel Algo-
rithms for Stable Scheduling in Load-Balanced Switches, ” IEEE/ACM
Transactions on Networking, vol. 16, no. 5, pp. 1212-1225, Oct. 2008.

[6] I. Keslassy, S. -T. Chung, K. Yu, D. Miller, M. Horowitz, O. Sloggard,
and N. McKeown, “Scaling Internet Routers Using Optics, ” ACM
SIGCOMM 2003, Karlsruhe, Germany, Sep. 2003.

[7] I. Keslassy, S. -T. Chung, and N. McKeown, “A load-balanced switch
with an arbitrary number of linecards,” Proceedings of IEEE INFOCOM,
2004.

[8] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven, Highly-
Scalable Dragonfly Topology,” ISCA ’08 Proceedings of the 35th Annual
International Symposium on Computer Architecture, pp. 77-88, 2008.

[9] C. E. Leiserson, “Fat-Trees: Universal networks for hardware-efficient
supercomputing, ” IEEE Transaction on Computers, vol. c-34, no. 10,
pp. 892-901, Oct. 1985.

[10] C.-M. Lien, C.-S. Chang, J. Cheng, D.-S. Lee and J.-T. Liao, “Twister
networks and their applications to load-balanced switches,” Proceedings
of IEEE INFOCOM 2010.

[11] H. Matsutani, M. Koibuchi, Y. Yamada, D. F. Hsu and H. Amano, “Fat
H-Tree: A cost-efficient tree-based on-chip network, ” IEEE Transaction
on Parallel and Distributed Systems, vol. 20, no. 8, Aug. 2009.

[12] S. R. Ohring, M. Ibel, S. K. Das, and M. J. Kumar, “On generalized fat
trees,” Proceedings of 9th International Parallel Processing Symposium,
Santa Barbara, CA, USA, pp. 37-44, 1995.

[13] C. -L. Wu and S. -Y. Feng, “The Reverse-Exchange Interconnection
Network, ” IEEE Transaction on Computers, vol. c-29, no. 9, pp. 801-
811, Sep. 1980.

