
Explicit Constructions of Memoryless Crosstalk
Avoidance Codes via C-transform

Cheng-Shang Chang, Jay Cheng, Tien-Ke Huang and Duan-Shin Lee
Institute of Communications Engineering

National Tsing Hua University
Hsinchu 30013, Taiwan, R.O.C.

Email: cschang@ee.nthu.edu.tw; jcheng@ee.nthu.edu.tw;
d915601@oz.nthu.edu.tw; lds@cs.nthu.edu.tw

Abstract— One of the main problems in deep sub-micron
designs of high speed buses is the propagation delay due to the
crosstalk effect. To alleviate the crosstalk effect, there are several
types of crosstalk avoidance codes proposed in the literature. In
this technical brief, we develop explicit constructions of two types
of memoryless crosstalk avoidance codes: forbidden overlap codes
(FOCs) and forbidden transition codes (FTCs). Our constructions
for both FOCs and FTCs have the largest set of codewords. To
the best of our knowledge, this is the first explicit construction
of a FOC that has the largest set of codewords. Our approach is
based on the C-transform developed for routing optical packets
in optical queues. We show such an approach can also be used
for constructing limited-weight No Adjacent Transition (NAT)
codes.

keywords: crosstalk, bus encoding, Zeckendorf’s theorem

I. INTRODUCTION

High speed buses that provide information exchange among
various electronic devices are crucial to the success of tech-
nology development in many electronic switches and routers.
As pointed out in [1], one of the main problems in deep
sub-micron designs of high speed buses is the propagation
delay due to the crosstalk effect from the coupling capacitance
between adjacent wires in the buses. Specially, for a bus of
M parallel wires, it was shown in [1] that the delay of the
ith wire, denoted by Ti, can be modelled by the following
equation:

Ti =
{ τ0[(1 + λ)∆2

1 − λ∆1∆2], if i = 1,
τ0[(1 + 2λ)∆2

i − λ∆i(∆i−1 + ∆i+1)], if i 6= 1,M,
τ0[(1 + λ)∆2

n − λ∆n∆n−1], if i = M,
(1)

where λ is the ratio of the coupling capacitance between
adjacent wires and the loading capacitance between the ith

wire and the ground, τ0 is the delay of a transition on a single
wire, and

∆i =
{ 1, a transition from 0 to 1 on the ith wire,
−1, a transition from 1 to 0 on the ith wire,

0, no transition on the ith wire.
(2)

In view of (2), it is clear that we can eliminate the normal-
ized delay (1 + 4λ) if we can construct a set of codewords
that avoid the following two types of transitions for any three
adjacent bits: 101 → 010 and 010 → 101. Codewords that

have this property are known as the forbidden overlap codes
(FOCs) [2] and the maximum delay of the FOCs in each
wire is bounded by τ0(1 + 3λ). If, furthermore, for any two
adjacent wires there are no transitions of the following two
types: 10 → 01 and 01 → 10, then one can eliminate all the
normalized delay larger than 1+2λ. Codewords that have this
property are known as the forbidden transition codes (FTCs)
[3], [4], [5], [2]. The maximum delay of the FTCs in each
wire is then bounded by τ0(1 + 2λ). Another way to achieve
the same delay bound is to avoid the following two patterns in
the codewords: 010 and 101. Such codewords are called the
forbidden pattern codes (FPCs) [6], [2]. By further eliminating
all the transitions that have delay larger than τ0(1 + 2λ), one
can then deduce the so-called one-lambda codes (OLCs) in the
literature [2]. All these codes, including FOCs, FTCs, FPCs,
and OLCs, are known as crosstalk avoidance codes.

The largest number of codewords of a set of memoryless
FTCs is known to be related to the Fibonacci number [3],
[4]. By using the Fibonacci numeral system, Duan, Zhu, and
Khatri [5] developed an explicit construction of a set of mem-
oryless FTCs that has the largest number of codewords. Their
approach was further extended by Wu and Yan [2] to general
binary numeral systems for the constructions of memoryless
FPCs and OLCs. Despite the success of using numeral systems
for FTCs, FPCs, and OLCs, Wu and Yan [2] showed that
memoryless FOCs cannot be efficiently constructed by their
numeral systems. Instead, they are only able to construct a
subset of the largest set of FOCs.

Our main construction of this technical brief is to show
there exists an explicit construction of a set of memoryless
FOCs that has the largest set of codewords. To the best of
our knowledge, this is the first explicit construction of a
memoryless FOC that has the largest set of codewords. Our
approach is also applicable to the construction of FPCs and
limited-weight No Adjacent Transition (NAT) codes [7]. The
main idea is to use a “greedy” numeral system, called the C-
transform developed in our early papers [8], [9], to generate
binary representations for integers that do not have consecutive
1’s. Then we invert every even-numbered bit to construct FOCs
and FPCs.

II. C-TRANSFORM

In this section, we first briefly review the C-transform and
its associated properties that is developed by routing optical
packets in optical queues in [8], [9].

Definition 1: Consider an M -vector UM =
(u1, u2, . . . , uM−1, uM) with ui ∈ N, i = 1, 2, . . . ,M .
Define a mapping C : x ∈ {0} ∪ N 7→ 2M as follows:

C(x) =
(
d1(x), d2(x), . . . , dM−1(x), dM (x)

)
, (3)

where

dM (x) =
{

1 if x ≥ uM

0 otherwise , (4)

and for i = M − 1, . . . , 2, 1, di(x) is given recursively by

di(x) =
{

1 if x−
∑M

k=i+1 dk(x) · uk ≥ ui

0 otherwise
. (5)

We call C(x) the C-transform of x with respect to the basis
vector UM . Intuitively, one can view the C-transform as a
“greedy” binary numeral system as the C-transform of x is
obtained by recursively subtracting x from uM . In particular,
if we choose ui = 2i−1 for all i, then the C-transform of x is
simply the usual binary representation of x. Moreover, if we
choose ui = 2i−1, 1 ≤ i ≤ s, and ui =

∑i−1
`=i−s u`, i ≥ s+1,

then it is the normal-form Fibonacci number system of order
s in [10].

One of the most important properties of the C-transform
is the complete decomposition property, i.e., every integer
(within the representation range) can be written as a sum
of distinct ui’s. For example, consider the 5-vector U5 =
(1, 2, 3, 6, 10) as the basis vector. Then C(14) = (1, 0, 1, 0, 1).
Note that 14 = 1×1+0×2+1×3+0×6+1×10 and it can be
written as a sum of distinct ui’s. The complete decomposition
property was previously proved in Lemma 5 of [8] and it is
stated formally in the following proposition. A similar result
was also reported in Lemma 3.1 of [2].

Proposition 2: (Complete decomposition) Assume that
(A1) u1 = 1, and 1 ≤ ui+1 ≤

∑i
k=1 uk + 1, i =

1, 2, . . . ,M − 1
Then x =

∑M
k=1 dk(x) · uk for 0 ≤ x ≤

∑M
k=1 uk.

With an additional constraint on the choice of ui’s in (A2)
below, we show that the C-transform further has the following
property. This property will be used for the constructions of
FOCs and FTCs.

Lemma 3: Assume that (A1) in Proposition 2 holds and
(A2) for some ` ≥ 2, ui+1 ≤

∑i
k=i−`+1 uk for i =

`, . . . ,M − 1.
Then for all 0 ≤ x <

∑M
k=M−`+1 uk, there are no `

consecutive 1’s in C(x), i.e., there does not exist any i such
that di(x) = di−1(x) = . . . = di−`+1(x) = 1.
Proof.

We prove this by contradiction. Since we assume that x <
uM + uM−1 + · · · + uM−`+1, from the definition of the C-
transform it is impossible to have dM (x) = dM−1(x) = . . . =
dM−`+1(x) = 1.

Now suppose there are ` consecutive 1’s in C(x). This
implies that there exists an index i such that di+1(x) = 0
and di(x) = di−1(x) = . . . = di−`+1(x) = 1 in C(x). Since
di+1(x) = 0, it then follows from the complete decomposition
property in Proposition 2 that

x−
M∑

k=i+2

dk(x) · uk = x−
M∑

k=i+1

dk(x) · uk

=
i∑

k=1

dk(x) · uk ≥
i∑

k=i−`+1

uk.

Since we assume that ui+1 ≤
∑i

k=i−`+1 uk for i =
`, . . . ,M − 1, we then have x −

∑M
k=i+2 dk(x) · uk ≥ ui+1.

This implies that di+1(x) = 1 from the definition of the C(x)
and we reach a contradiction.

One particular sequence that satisfies the assumptions in
(A1) and (A2) with ` = 2 is to choose the Fibonacci sequence,
i.e., u1 = 1 u2 = 2 and ui+1 = ui+ui−1 for i = 2, . . . ,M−1.
Then Lemma 3 recovers the well known Zeckendorf theorem
[11], i.e., every positive integer can be written as the sum of
one or more distinct Fibonacci numbers in such a way that the
sum does not include any two consecutive Fibonacci numbers
(see also Lemma 1 in [10]).

III. MEMORYLESS FOCS

In this section, we show how one can construct memoryless
FOCs by using the C-transform.

Consider a symbol set S. An M -dimensional memoryless
binary code C for S is a mapping that maps every element
in S to a codeword with an M -dimensional binary repre-
sentation. An M -dimensional memoryless binary code for S
is a forbidden overlap code (FOC) if a transition from one
codeword to another codeword does not have the following
two types of transitions for any three adjacent bits: 101→ 010
or 010→ 101.
Algorithm for the construction of a FOC:
Symbol set: Let u1 = 1, u2 = 2, u3 = 4 and ui+1 = ui +
ui−1 + ui−2 for i = 3, . . . ,M − 1. Consider the symbol set

S = {0, 1, 2, . . . , uM + uM−1 + uM−2 − 1}.

Encoding: For x ∈ S, compute the C-transform of x,

C(x) =
(
d1(x), d2(x), . . . , dM−1(x), dM (x)

)
.

Generate the M -dimensional binary codeword for x, denoted
by c(x) = (c1(x), c2(x), . . . , cM (x)), by

ci(x) =
{
di(x), if i is odd,
1− di(x), if i is even. (6)

Decoding: For a binary codeword c = (c1, c2, . . . , cM),
generate the M -vector (d1, d2, . . . , dM) by

di =
{
ci, if i is odd,
1− ci, if i is even. (7)

Decode the codeword c as

x =
M∑
i=1

di · ui. (8)

Note that the steps in (6) and (7) are simply to invert every
even-numbered bit. Thus, they are inverse functions of each
other. Since we choose u1 = 1, u2 = 2, u3 = 4 and ui+1 =
ui + ui−1 + ui−2 for i = 3, . . . ,M − 1, the assumption (A1)
in Proposition 2 holds and thus we have from the complete
decomposition property that every codeword can be decoded
correctly by using (8).

In the following theorem, we show that the set of codewords
generated by the above algorithm is indeed a FOC.

Theorem 4: The set of codewords {c(x) =
(c1(x), c2(x), . . . , cM (x)), x ∈ S} generated by the
above algorithm is indeed a FOC. Moreover, it is optimal in
the sense that it has the largest number of codewords in a
memoryless M -dimensional FOC.
Proof.

For this, we need to show a transition from one codeword
c(x1) to another codeword c(x2) does not have the following
two types of transitions for any three adjacent bits: 101→ 010
or 010→ 101.

We prove this by contradiction. First, since we choose u1 =
1, u2 = 2, u3 = 4 and ui+1 = ui + ui−1 + ui−2 for i =
3, . . . ,M −1, the assumptions (A1) and (A2) in Lemma 3 are
satisfied with ` = 3. Thus,we know from Lemma 3 that for
all x ∈ S, there are no three consecutive 1’s in C(x).
Case 1: There is a transition of 101→ 010:

Suppose that for some x1, x2 ∈ S and some i
such that (ci(x1), ci−1(x1), ci−2(x1)) = (1, 0, 1) and
(ci(x2), ci−1(x2), ci−2(x2)) = (0, 1, 0). If i is an even num-
ber, then di(x2) = 1 − ci(x2), di−1(x2) = ci−1(x2), and
di−2(x2) = 1− ci−2(x2). Thus, we have

(di(x2), di−1(x2), di−2(x2)) = (1, 1, 1).

This contradicts to the result that there are no three consecutive
1’s in the C-transform. On the other hand, if i is an odd
number, di(x1) = ci(x1), di−1(x1) = 1 − ci−1(x1), and
di−2(x1) = ci−2(x1). Thus, we have

(di(x1), di−1(x1), di−2(x1)) = (1, 1, 1).

This also contradicts to the result that there are no three
consecutive 1’s in the C-transform.
Case 2: There is a transition of 010→ 101:

The argument for this case is exactly the same as Case 1
with x1 and x2 being interchanged.

It is known (see e.g., [12], [2]) that the largest number
of codewords in a memoryless M -dimensional FOC is NM ,
where NM is characterized by the following recursive equa-
tion:

Ni+1 = Ni +Ni−1 +Ni−2, 3 ≤ i ≤M − 1. (9)

with N1 = 2, N2 = 4, and N3 = 7. It is easy to see from
(9) that Ni = ui+1, 1 ≤ i ≤ M − 1 and NM = uM +

Fig. 1. (a) The 8B/9B FOC encoder, and (b) The 8B/9B FOC decoder.

uM−1 + uM−2. Thus, our construction of the M -dimensional
FOC indeed has the largest number of codewords.

As shown in [2], efficient FOC codes cannot be constructed
by using their numeral systems. Instead, they only construct a
suboptimal FOC using their numeral systems. In comparison
with the suboptimal FOC in [2], we note that the (asymptotic)
code rate in [2] is 0.7925, while the code rate of our optimal
memoryless FOC is 0.8791. The key difference between theirs
and ours is that we add the inverters on the even-numbered
buses so that an optimal FOC can be represented by using
numeral systems and these inverters.

We also note that the hardware implementation complexity
of our algorithm is O(M2). This is the same as those in [5],
[2] because they all require implementing numeral systems.
As an illustrating example, we show the block diagram of the
8B/9B FOC encoder and decoder in Figure 1. The encoder
takes an 8-bit input and encodes it into a 9-bit codeword. The
basis vector (u1, . . . , u9) is shown in the 8B/9B FOC column
of Table I. The COMP/SUB processing unit in the encoder in
Figure 1 is further illustrated in Figure 2. These are similar to
the implementations of the numeral systems in [5], [2] (except
the additional inverters).

The decoder in Figure 1(b) takes a 9-bit codeword and
decodes it into an 8-bit output. It consists of three stages.
In the first stage, all the even-numbered bits are inverted. In
the second stage, the ith output after the first stage is then
multiplied by ui i = 1, 2, . . . , 9. In the third stage, the 8-
bit output is generated by summing up the outputs from the
second stage.

Recently, Mutyam [10] used the transition signaling tech-
nique [13] to construct FTCs. The transition signaling tech-
nique takes a set of input data indexed in time and computes
the transition signals (by using the exclusive OR operation)

Fig. 2. The COMP/SUB processing unit in the encoder in Figure 1(a).

8B/9B FOC 6B/9B FTC (9, 6, 3)-NAT
u1 1 1 1
u2 2 2 2
u3 4 3 3
u4 7 5 5
u5 13 8 8
u6 24 13 12
u7 44 21 20
u8 81 34 32
u9 149 55 48

TABLE I
THE BASIS VECTORS FOR THE 8B/9B FOC, THE 6B/9B FTC AND THE

(9, 6, 3)-NAT CODE.

between any two successive input data. The transition signals
are then sent through the bus. We note that the transition
signaling technique can also be used here to construct FOCs.
It is easy to show if there are no 3 consecutive 1’s in each
input data, then by sending the transition signals of these
input data there are no transitions for any three adjacent bits:
101 → 010 or 010 → 101. However, the FOCs constructed
this way are not memoryless as the encoder has to store
the previous input data for computing the transition signals.
Moreover, a simple bit error in the bus might have a cascading
effect in the decoder that might cause a serious decoding
failure. Since both the transition signaling technique and our
construction for FOCs have the same encoding efficiency, our
memoryless construction is clearly a better choice than the
transition signaling technique as it not only requires lower
hardware implementation complexity (in both encoding and
decoding) but also it is more reliable in decoding (as it does
not have the cascading decoding failure problem).

We note that our approach can also be used for the construc-
tions of optimal memoryless FTCs. This is done by choosing
the basis vector with u1 = 1, u2 = 2 and ui+1 = ui+ui−1 for
i = 2, . . . ,M − 1. For the symbol set S = {0, 1, 2, . . . , uM +
uM−1 − 1}, we can then construct an optimal FTC by using
the encoding scheme and the decoding scheme described in
the algorithm for the construction of a FOC. Even though
the construction in [5] and ours are both optimal, these two
sets of codewords are different as each codeword in [5] has
a Fibonacci representation. As an illustrating example, we
can use the block diagram in Figure 1 for a 6B/9B FTC
encoder/decoder. The basis vector (u1, . . . , u9) is shown in
the 6B/9B FTC column of Table I.

IV. NO ADJACENT TRANSITION CODES

The C-transform in [9] for constructing routing paths with
a limited number of recirculations in optical queues in fact
generates limited-weight codes. As such, in conjunction with
Lemma 3, one can use the C-transform to construct limited-
weight No Adjacent Transition (NAT) codes in [7], where there
are no two consecutive 1’s in each codeword. An (M,n, k)-
NAT code consists of three parameters, where M is the length
of the codeword, n is the length of the dataword, and k is
the maximum weight (the maximum number of 1’s) in each
codeword. As shown in Lemma 2 of [10], when an NAT
code is transmitted through a bus via the transition signalling
technique, there are no transitions for any two adjacent bits
of these two types: 10 → 01 or 01 → 10. Thus, they can
be used for FTCs. Moreover, the total number of transitions
(either from 0 to 1 or from 1 to 0) over a period of time in the
bus is the same as the total number of 1’s in the transmitted
codewords (Property 1 of [7]). As such, NAT codes with the
transition signaling technique not only tackle the crosstalk
problem but also the power consumption problem.

It is known [7] that the largest number of M -bit NAT codes
with maximum weight k is g(M,k) =

∑k
i=0 f(M, i), where

f(M, i) =
(M + 1− i

i

)
(10)

is the largest number of M -bit NAT codes with weight i.
By ranking all the g(M,k) NAT codes first by their weights
and then by their values, it was shown in [7] there is an
encoding/decoding algorithm that generates the largest number
of M -bit NAT codes with maximum weight k. However,
such an approach requires storing all the f(M, i)’s in (10),
i = 1, 2, . . . , k, m = 1, 2, . . . ,M for comparison. Thus, the
hardware implementation complexity could be very high if k
is proportional to M .

In the following algorithm, we describe how one gener-
ates an NAT code via the C-transform. Our algorithm does
not generate the largest number of M -bit NAT codes with
maximum weight k. However, it only requires storing the
basis vector (u1, . . . , uM) for comparison and thus greatly
reduces the implementation complexity. Let B(u1, . . . , uM ; k)
be the maximum representable integer via the C-transform with
respect to the basis vector (u1, . . . , uM) under the constraint
of maximum weight k, i.e.,

B(u1, . . . , uM ; k)

= max

{
y :

M∑
i=1

di(x) ≤ k, x = 0, 1, . . . , y

}
.

For obvious reasons, we also define B(u1, . . . , uM ; k) = 0 if
M = 0 or k = 0.
Algorithm for constructing an (M,n, k)-NAT code via the
C-transform:
Finding the basis vector (u1, u2, . . . , uM): Choose positive
integers n1, n2, . . . , nk such that

∑k
i=1 ni = M and n1 ≥

2. Let s0 = 0 and si =
∑i

`=1 n` for i = 1, 2, . . . , k. Let

uj = j, j = 1, 2, . . . , s1. Find the rest of the basis elements
recursively as follows:

usi+j = min
[
usi+j−1 + usi+j−2,

B(u1, . . . , usi+j−1; i+ 1) + 1
]
, (11)

where 1 ≤ i ≤ k − 1, 1 ≤ j ≤ ni+1.
Encoding: Consider the symbol set S = {0, 1, 2, . . . , 2n−1},
where

n = blog2(min[uM + uM−1, B(u1, . . . , uM ; k) + 1])c. (12)

For x ∈ S, compute the C-transform of x with respect to the
basis vector (u1, u2, . . . , uM),

C(x) =
(
d1(x), d2(x), . . . , dM−1(x), dM (x)

)
.

Decoding: For a binary codeword c = (d1, d2, . . . , dM),
decode the codeword c as

x =
M∑
i=1

di · ui. (13)

Theorem 5: The set of codewords {c(x) =
(c1(x), c2(x), . . . , cM (x)), x ∈ S} generated by the
above algorithm is indeed an (M,n, k)-NAT code.
Proof. Note that the choice of the basis elements in (11)
ensures ui+1 ≤ ui + ui−1 for i = 2, . . . ,M − 1 and
that the choice of n in (12) ensures x < uM + uM−1 for
all x ∈ S. From Lemma 3, it follows that there are no
two consecutive 1’s in each codeword. Also, we have from
(12) that there are at most k 1’s in each codeword. Thus,
the encoding scheme generates an (M,n, k)-NAT code. The
complete decomposition property in Proposition 2 then ensures
the correctness of the decoder in (13).

There are many choices of n1, n2, . . . , nk such that∑k
i=1 ni = M . For the setting in [9], the optimal choices

can be found via a specific algorithm. However, it is much
more involved to find the optimal choice in this setting. As
an illustrating example, we construct a (9, 6, 3)-NAT code.
For this example, we have M = 9 and k = 3. We choose
n1 = n2 = n3 = 3. As a result of the above algorithm,
the basis vector (u1, . . . , u9) is shown in the (9, 6, 3)-NAT
column of Table I. This is better than using the Fibonacci
number system of order 2 in the FTC column of Table I as it
only generates a (9, 6, 4)-NAT code. Also, since

g(9, 3) =
3∑

i=0

(9 + 1− i
i

)
= 73,

the length of the dataword is at most 6 for a 9−bit NAT code
with maximum weight 3. Thus, such a (9, 6, 3)-NAT code
is optimal among all the 9−bit NAT codes with maximum
weight 3. Also, the hardware implementation complexity of
our (9, 6, 3)-NAT code is much simpler than that in [7].
We also test our algorithm for various values of M with
M = 3k and k = 3, 4, . . . , 12. Our numerical results show

that our algorithm generates an optimal (M,n, k)-NAT code
for 3 ≤ k ≤ 11. However, for k = 12, there exists an optimal
(36, 25, 12)-NAT code and our algorithm only generates a
(36, 24, 12)-NAT code.

V. CONCLUSION

In this technical brief, we developed an explicit construction
for a set of memoryless forbidden overlap codes (FOCs). Such
a set of memoryless FOCs also contains the largest number
of codewords. The same approach can also be applied for the
construction of a set of memoryless forbidden transition codes
(FTCs) and a set of No Adjacent Transition (NAT) codes.
Both FOCs and FTCs considered in this technical brief are
memoryless codes, and their code rates could be significantly
improved by considering codes with memory. In [14], it was
shown that there exists a simple bit stuffing algorithm that
yields a much higher code rate than the Fibonacci representa-
tion in [5]. Beside, it hardware implementation complexity is
only O(M) for an M -bit bus, which is also much lower than
the O(M2) complexity in [5]. Extension along this line for
FOCs will be reported separately.

REFERENCES

[1] P. P. Sotiriadis, “Interconnect modeling and optimization in deep submi-
cron technologies,” Ph.D. Dissertation, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, 2002.

[2] X. Wu and Z. Yan, Efficient CODEC designs for crosstalk avoidance
codes based on numeral systems, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 19, pp. 548–558, 2011.

[3] B. Victor and K. Keutzer, “Bus encoding to prevent crosstalk delay,”
in Proceedings IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’01), San Jose, CA, USA, 2001. pp. 57–63.

[4] M. Mutyam, “Preventing crosstalk delay using Fibonacci representa-
tion,” in Proceedings 17th International Conference on VLSI Design
(VLSID’04), Mumbai, India, 2004, pp. 685–688.

[5] C. Duan, C. Zhu, and S. P. Khatri, “Forbidden transition free crosstalk
avoidance CODEC design,” in Proceedings 45th Annual Design Automa-
tion Conference (DAC’08), Anaheim, CA, USA, 2008, pp. 986–991.

[6] C. Duan, V. C. Calle, and S. Khatri, “Efficient on-chip crosstalk avoidance
codec design,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 17, pp. 551–560, 2009.

[7] P. Subramanya, R. Manimeghalai, V. Kamakoti, and M. Mutyam, “A bus
encoding technique for power and cross-talk minimization,” in Proc. IEEE
Int. Conf. VLSI Design, 2004, pp. 443–448.

[8] C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary and suf-
ficient condition for the construction of 2-to-1 optical FIFO multiplexers
by a single crossbar switch and fiber delay lines,” IEEE Transactions on
Information Theory, vol. 52, pp. 4519–4531, 2006.

[9] J. Cheng, C.-S. Chang, T.-H. Chao, D.-S. Lee, and C.-M. Lien, ”On
constructions of optical queues with a limited number of recirculations,”
in Proceedings of IEEE INFOCOM 2008.

[10] M. Mutyam, “Fibonacci codes for crosstalk avoidance,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 20, pp. 1899-
1903, 2012.

[11] http://en.wikipedia.org/wiki/Zeckendorf’s_theorem.
[12] S. R. Sridhara and N. R. Shanbhag, “Coding for reliable on-chip buses:

A class of fundamental bounds and practical codes,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 26, pp. 977–982, May 2007.

[13] M. Stan and W. Burleson, “Limited-weight codes for low power I/O,” in
Proc. IEEE/ACM Int. Workshop Low Power Design, 1994. pp. 209–214.

[14] C.-S. Chang, J. Cheng, T.-K. Huang, X.-C. Huang, and D.-S. Lee, “A
bit-stuffing algorithm for crosstalk avoidance in high speed switching,”
in Proceedings of IEEE INFOCOM 2010.

